1
|
Moshrefi F, Farrokhi AM, Fattahi M, Azizbeigi R, Haghparast A. The role of orexin receptors within the CA1 area in the acquisition and expression of methamphetamine place preference. J Psychiatr Res 2024; 172:291-299. [PMID: 38428165 DOI: 10.1016/j.jpsychires.2024.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Treatment of Methamphetamine (METH) use disorder has become a crucial public health issue. The orexin system manipulation has provided promising evidence to attenuate addictive-like behaviors. This study explored the role of the orexin 1 receptor and orexin 2 receptor (OX1R and OX2R) in the CA1 area of the hippocampal formation in the acquisition and expression of METH-induced place preference. Animals were subjected to bilateral administration of different dosages (1, 3, 10, and 30 nmol/0.5 μl DMSO per side) of a selective OX1R antagonist, SB334867, or selective OX2R antagonist, TCS OX2 29 into the CA1 area throughout the conditioning phase or once on the post-conditioning phase in separate control and experimental groups. Behavioral data revealed that both OX1R (10 nmol; P < 0.01 and 30 nmol; P < 0.001) and OX2R (10 nmol; P < 0.05 and 30 nmol; P < 0.001) antagonism during the conditioning phase could block the formation of METH place preference dose-dependently. In addition, intra-CA1 microinjection of SB334867 on the post-conditioning phase attenuated the expression of METH place preference in a dose-dependent manner (3 nmol; P < 0.05, 10 nmol; P < 0.01 and 30 nmol; P < 0.001) whereas intra-CA1 administration of TCS OX2 29 only at the highest dosage (30 nmol) declined the expression of METH place preference (P < 0.01). It was also indicated that the suppressive effects of orexin receptor blockade on the METH-seeking behavior in the CA1 area were anatomically specific to this area. These findings support the possibility of targeting the orexin system to develop novel and successful pharmacological options for the treatment of METH dependence.
Collapse
Affiliation(s)
- Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Azizbeigi
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chmiel J, Malinowska A, Rybakowski F, Leszek J. The Effectiveness of Mindfulness in the Treatment of Methamphetamine Addiction Symptoms: Does Neuroplasticity Play a Role? Brain Sci 2024; 14:320. [PMID: 38671972 PMCID: PMC11047954 DOI: 10.3390/brainsci14040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Methamphetamine is a highly stimulating psychoactive drug that causes life-threatening addictions and affects millions of people around the world. Its effects on the brain are complex and include disturbances in the neurotransmitter systems and neurotoxicity. There are several known treatment methods, but their effectiveness is moderate. It must be emphasised that no drugs have been approved for treatment. For this reason, there is an urgent need to develop new, effective, and safe treatments for methamphetamine. One of the potential treatments is mindfulness meditation. In recent years, this technique has been researched extensively in the context of many neurological and psychiatric disorders. METHODS This review explores the use of mindfulness in the treatment of methamphetamine addiction. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. RESULTS Ten studies were identified that used mindfulness-based interventions in the treatment of methamphetamine addiction. The results show that mindfulness is an effective form of reducing hunger, risk of relapses, stress indicators, depression, and aggression, alone or in combination with transcranial direct current stimulation (tDCS). Mindfulness also improved the cognitive function in addicts. The included studies used only behavioural measures. The potential mechanisms of mindfulness in addiction were explained, and it was proposed that it can induce neuroplasticity, alleviating the symptoms of addiction. CONCLUSIONS Evidence from the studies suggest that mindfulness may be an effective treatment option for methamphetamine addiction, used alone or in combination with tDCS. However, further high-quality research is required to establish the role of this treatment option in this field. The use of neuroimaging and neurophysiological measures is fundamental to understand the mechanisms of mindfulness.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | | | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
3
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Seyedhosseini Tamijani SM, Beirami E, Ghazvini H, Rafaiee R, Nazeri M, Razavinasab M. A Review on the Disruption of Novel Object Recognition Induced by Methamphetamine. ADDICTION & HEALTH 2023; 15:289-297. [PMID: 38322487 PMCID: PMC10843358 DOI: 10.34172/ahj.2023.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2024]
Abstract
Background Methamphetamine (MA), is a widely abused synthetic psychostimulant that leads to irreversible brain damage manifested as cognitive impairments in humans and animals. The novel object recognition (NOR) task is a commonly used behavioral assay for the investigation of non-spatial memory in rodents. This test is based on the natural tendency of rodents to spend more time exploring a novel object than a familiar one. NOR test has been used in many studies investigating cognitive deficits caused by MA in rodents. The objective of the present study was to review neurobiological mechanisms that might be responsible for MA-induced NOR alterations. Methods A PubMed search showed 83 publications using novel object recognition and methamphetamine as keywords in the past 10 years. Findings The present study revealed different MA regimens cause recognition memory impairment in rodents. In addition, it was found that the main neurobiological mechanism involved in MA-induced recognition deficits is the dysfunction of monoaminergic systems. Conclusion NOR is a useful test to assess the cognitive functions following MA administration and evaluate the efficacy of new therapeutic agents in MA-addicted individuals.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hamed Ghazvini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Nazeri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Rocchetti J, Fasano C, Dal-Bo G, Guma E, El Mestikawy S, Wong TP, Fakhfouri G, Giros B. Persistent extrasynaptic hyperdopaminergia in the mouse hippocampus induces plasticity and recognition memory deficits reversed by the atypical antipsychotic sulpiride. PLoS One 2023; 18:e0289770. [PMID: 37624765 PMCID: PMC10456148 DOI: 10.1371/journal.pone.0289770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Evidence suggests that subcortical hyperdopaminergia alters cognitive function in schizophrenia and antipsychotic drugs (APD) fail at rescuing cognitive deficits in patients. In a previous study, we showed that blocking D2 dopamine receptors (D2R), a core action of APD, led to profound reshaping of mesohippocampal fibers, deficits in synaptic transmission and impairments in learning and memory in the mouse hippocampus (HP). However, it is currently unknown how excessive dopamine affects HP-related cognitive functions, and how APD would impact HP functions in such a state. After verifying the presence of DAT-positive neuronal projections in the ventral (temporal), but not in the dorsal (septal), part of the HP, GBR12935, a blocker of dopamine transporter (DAT), was infused in the CA1 of adult C57Bl/6 mice to produce local hyperdopaminergia. Chronic GBR12935 infusion in temporal CA1 induced a mild learning impairment in the Morris Water Maze and abolished long-term recognition memory in novel-object (NORT) and object-place recognition tasks (OPRT). Deficits were accompanied by a significant decrease in DAT+ mesohippocampal fibers. Intrahippocampal or systemic treatment with sulpiride during GBR infusions improved the NORT deficit but not that of OPRT. In vitro application of GBR on hippocampal slices abolished long-term depression (LTD) of fEPSP in temporal CA1. LTD was rescued by co-application with sulpiride. In conclusion, chronic DAT blockade in temporal CA1 profoundly altered mesohippocampal modulation of hippocampal functions. Contrary to previous observations in normodopaminergic mice, antagonising D2Rs was beneficial for cognitive functions in the context of hippocampal hyperdopaminergia.
Collapse
Affiliation(s)
- Jill Rocchetti
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Caroline Fasano
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Gregory Dal-Bo
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Elisa Guma
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Salah El Mestikawy
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
- Sorbonne Université, INSERM, CNRS, NPS – IBPS, Paris, France
| | - Tak-Pan Wong
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Québec, Canada
- Université Paris-Cité, INCC UMR 8002, CNRS, Paris, France
| |
Collapse
|
6
|
Veisi A, Khaleghzadeh-Ahangar H, Fattahi M, Haghparast A. The Role of Orexin-1 Receptors Within the Hippocampal CA1 Area in the Extinction and Reinstatement of Methamphetamine-Seeking Behaviors. Neurochem Res 2023; 48:671-680. [PMID: 36284025 DOI: 10.1007/s11064-022-03793-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 02/04/2023]
Abstract
Psychostimulant addiction is a chronic brain disorder with high relapse rates, requiring new therapeutic strategies. The orexin system is highly implicated in processing reward and addiction through connections with critical areas such as the hippocampus. This study investigated the role of orexin-1 receptors (OX1R) within the CA1 subregion of the hippocampus in the extinction and reinstatement of the methamphetamine-induced conditioned place preference. After cannulae implantation, recovery, and establishing the methamphetamine place preference, 98 male Wistar rats received different doses of bilateral intra-CA1 selective OX1R antagonist, SB334867 (1, 3, 10, and 30 nmol/0.5 μl DMSO per side) during the 10-day extinction period (daily) or after extinction phase, just on the reinstatement day (single dose) in separate experimental and control groups. The findings indicated that bilateral microinjection of SB334867 into the CA1 area during the extinction period could significantly reduce the extinction latency and maintenance of rewarding aspects of methamphetamine dose-dependently (3, 10, and 30 nmol). In another set of experiments, a single dose of bilateral intra-CA1 SB334867 administration on the reinstatement phase prevented the methamphetamine-induced reinstatement of drug-seeking behaviors at the high doses (10, and 30 nmol). The present study provided more evidence for the implication of hippocampal OX1R in the maintenance of rewarding and reinforcing properties of methamphetamine and its role in the relapse of methamphetamine-seeking behavior. Further investigations on the role of the orexin system, including the orexin-2 receptors in treating addiction, are needed to introduce its antagonists as effective therapeutic options for psychostimulant addiction.
Collapse
Affiliation(s)
- Ali Veisi
- Department of Physiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hossein Khaleghzadeh-Ahangar
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
8
|
Fauser AM, Stidham E, Cady C, Gupta A. Role of microRNA-132 in Opioid Addiction through Modification of Neural Stem Cell Differentiation. J Pers Med 2022; 12:jpm12111800. [PMID: 36579528 PMCID: PMC9696313 DOI: 10.3390/jpm12111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
In this editorial, we focused on the article, "MicroRNA-132 in the Adult Dentate Gyrus is Involved in Opioid Addiction Via Modifying the Differentiation of Neural Stem Cells" by Jia and colleagues [...].
Collapse
Affiliation(s)
- Anne-Marie Fauser
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Emily Stidham
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Craig Cady
- Bohlander Stem Cell Research Laboratory, Biology Department, Bradley University, Peoria, IL 61625, USA
| | - Ashim Gupta
- Regenerative Orthopaedics, Noida 201301, India
- Future Biologics, Lawrenceville, GA 30043, USA
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- Correspondence:
| |
Collapse
|
9
|
Aghazadeh R, Roshan-Milani S, Drafshpour L, Saboory E. Effects of prenatal methamphetamine exposure on spatial cognition and hippocampal synaptic plasticity in adolescent rats. Int J Dev Neurosci 2022; 82:471-485. [PMID: 35707884 DOI: 10.1002/jdn.10202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Global rise in methamphetamine (MA) abuse during pregnancy has placed a large number of children at risk for the adverse consequences of prenatal methamphetamine exposure (PME). While behavioral and neurocognitive deficits of PME have been extensively studied in humans and adult rodents, far less is known regarding the sex- and dose-dependent effects of PME as well as the underlying mechanisms. Adolescence in nonhuman primates is also a less explored territory. In the present study, PME was inducted by oral treatment to pregnant rats on gestational days 15-19 with either low-dose (0.1 mg/ml) or high-dose (0.6 mg/ml)) of MA. The cognitive effects of PME were then evaluated in two adolescence age-intervals: early adolescent (started on postnatal day (PND) 21) and mid adolescent (started on PND 33), among male and female rat offspring using Morris water maze (MWM) test. Alterations in hippocampal synaptic plasticity in Schaffer collaterals-CA1 pathway were also measured in vitro. Results of behavioral test showed that PME led to serious deficits of learning and memory abilities in both male and female rat offspring. PME also depressed LTP in most of the PME subgroups. Moreover, 21-day-old rats were more sensitive to PME-induced cognitive impairment in MWM tasks, but not in hippocampal synaptic plasticity, than 33-day-old rats. No sex-dependent effects of PME were found on the cognitive function and synaptic plasticity. These findings confirmed that PME impacted negatively on cognitive performance in prepubertal male and female rats, and the impairment of hippocampal synaptic functions might partly play a significant role in these effects.
Collapse
Affiliation(s)
- Razieh Aghazadeh
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Roshan-Milani
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Drafshpour
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of addiction studies, School of medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Liang M, Zhu L, Wang R, Su H, Ma D, Wang H, Chen T. Methamphetamine Exposure in Adolescent Impairs Memory of Mice in Adulthood Accompanied by Changes in Neuroplasticity in the Dorsal Hippocampus. Front Cell Neurosci 2022; 16:892757. [PMID: 35656409 PMCID: PMC9152172 DOI: 10.3389/fncel.2022.892757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023] Open
Abstract
Methamphetamine (METH) has been shown to alter learning and memory by affecting the neuroplasticity of the dorsal hippocampus, a key structure that undergoes extensive remodeling during adolescence. In this study, we investigated whether mid-to-late adolescent exposure to METH leads to long-lasting memory impairment. To do this, adolescents (35–48 postnatal days) were exposed to different doses of METH for 14 days and then evaluated by the Morris water maze (MWM), new object recognition test (NORT), and the Y-maze, to investigate the learning and memory abilities of mice in their adolescence and adulthood, respectively. We also detected the mRNA levels of genes associated with neuroplasticity in the dorsal hippocampus. The synaptic ultrastructure and the number of neurons and astrocytes in the dorsal hippocampus were also determined by transmission electron microscopy (TEM) and immunofluorescence (IF). Exposure to METH in mid-to-late adolescence impaired spatial memory retrieval ability and the long-term recognition memory of mice in their adulthood, but not in their adolescence. Of note, the impairment of memory capacity in adulthood was accompanied by molecular and structural changes in synapses in the dorsal hippocampus. Our results indicate that mice exposed to METH in mid-to-late adolescence have impaired memory ability in their adulthood; this may be the result of abnormal changes in the structural plasticity of the dorsal hippocampus; the causal relationship between changes in synaptic structural plasticity and memory impairment needs to be further confirmed. In summary, our study provides evidence for the detrimental consequences of adolescent addiction and the prevention of adolescent drug abuse.
Collapse
Affiliation(s)
- Min Liang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Li Zhu
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Rui Wang
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Hang Su
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
| | - Dongliang Ma
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hongyan Wang
- Programme in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teng Chen
- College of Forensic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
- The Key Laboratory of Health Ministry for Forensic Science, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Teng Chen,
| |
Collapse
|
11
|
Khodamoradi M, Tirgar F, Ghazvini H, Rafaiee R, Tamijani SMS, Karimi N, Yadegari A, Khachaki AS, Akhtari J. Role of the cannabinoid CB1 receptor in methamphetamine-induced social and recognition memory impairment. Neurosci Lett 2022; 779:136634. [DOI: 10.1016/j.neulet.2022.136634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023]
|
12
|
Shi S, Chen T, Zhao M. The Crosstalk Between Neurons and Glia in Methamphetamine-Induced Neuroinflammation. Neurochem Res 2022; 47:872-884. [PMID: 34982394 DOI: 10.1007/s11064-021-03513-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/06/2023]
Abstract
Methamphetamine (METH), an illicit psycho-stimulant, is widely known as an addictive drug that may cause neurotoxic effects. Previous researches on METH abuse have mainly focused on neurotransmitters, such as dopamine and glutamate. However, there is growing evidence that neuroinflammation also plays an important role in the etiology and pathophysiology of brain dysfunction induced by METH abuse. This has cast a spotlight on the research of microglia and astrocyte, which are critical mediators of neuroimmune pathology in recent years. In the central nervous system (CNS) immunity, abnormalities of the microglia and astrocytes have been observed in METH abusers from both postmortem and preclinical studies. The bidirectional communication between neurons and glia is essential for the homeostasis and biological function of the CNS while activation of glia induces the release of cytokines and chemokines during pathological conditions, which will affect the neuron-glia interactions and lead to adverse behavioral consequences. However, the underlying mechanisms of interaction between neurons and glia in METH-induced neuroinflammation remain elusive. Notably, discovering and further understanding glial activity and functions, as well as the crosstalk between neurons and glia may help to explain the pathogenesis of METH abuse and behavioral changes in abusers. In this review, we will discuss the current understanding of the crosstalk between neurons and glia in METH-induced neuroinflammation. We also review the existing microglia-astrocyte interaction under METH exposure. We hope the present review will lead the way for more studies on the development of new therapeutic strategies for METH abuse in the near future.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wan Ping Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Wang X, Tong B, Hui R, Hou C, Zhang Z, Zhang L, Xie B, Ni Z, Cong B, Ma C, Wen D. The Role of Hyperthermia in Methamphetamine-Induced Depression-Like Behaviors: Protective Effects of Coral Calcium Hydride. Front Mol Neurosci 2022; 14:808807. [PMID: 35058751 PMCID: PMC8764150 DOI: 10.3389/fnmol.2021.808807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (METH) abuse causes irreversible damage to the central nervous system and leads to psychiatric symptoms including depression. Notably, METH-induced hyperthermia is a crucial factor in the development of these symptoms, as it aggravates METH-induced neurotoxicity. However, the role of hyperthermia in METH-induced depression-like behaviors needs to be clarified. In the present study, we treated mice with different doses of METH under normal (NAT) or high ambient temperatures (HAT). We found that HAT promoted hyperthermia after METH treatment and played a key role in METH-induced depression-like behaviors in mice. Intriguingly, chronic METH exposure (10 mg/kg, 7 or 14 days) or administration of an escalating-dose (2 ∼ 15 mg/kg, 3 days) of METH under NAT failed to induce depression-like behaviors. However, HAT aggravated METH-induced damage of hippocampal synaptic plasticity, reaction to oxidative stress, and neuroinflammation. Molecular hydrogen acts as an antioxidant and anti-inflammatory agent and has been shown to have preventive and therapeutic applicability in a wide range of diseases. Coral calcium hydride (CCH) is a newly identified hydrogen-rich powder which produces hydrogen gas gradually when exposed to water. Herein, we found that CCH pretreatment significantly attenuated METH-induced hyperthermia, and administration of CCH after METH exposure also inhibited METH-induced depression-like behaviors and reduced the hippocampal synaptic plasticity damage. Moreover, CCH effectively reduced the activity of lactate dehydrogenase and decreased malondialdehyde, TNF-α and IL-6 generation in hippocampus. These results suggest that CCH is an efficient hydrogen-rich agent, which has a potential therapeutic applicability in the treatment of METH abusers.
Collapse
Affiliation(s)
- Xintao Wang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bonan Tong
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Congcong Hou
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Zilu Zhang
- The First Clinical Medical College of Peking University Health Science Center, Peking University, Beijing, China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Zhiyu Ni
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- *Correspondence: Chunling Ma,
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- Di Wen,
| |
Collapse
|
14
|
He T, Li N, Shi P, Xu X, Nie J, Lu X, Yu P, Fan Y, Ge F, Guan X. Electroacupuncture alleviates spatial memory deficits in METH withdrawal mice by enhancing astrocyte-mediated glutamate clearance in the dCA1. Addict Biol 2022; 27:e13068. [PMID: 34128302 DOI: 10.1111/adb.13068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Methamphetamine (METH) elicits endogenous glutamate (Glu) in the brain, which could partially explain METH-induced memory deficits. Here, we investigated the therapeutic effects of electroacupuncture (EA) on spatial memory deficits in METH withdrawal mice and its potential synaptic mechanisms. We found that EA at acupoints 'Baihui' and 'Yintang' ameliorated the impaired spatial memory in METH withdrawal mice. In parallel, EA attenuated the Glu levels in vivo and suppressed the neuronal activities within dCA1 of METH withdrawal mice, as indicated by the decreasing c-Fos levels and the amplitude of mEPSP. In the dCA1, EA decreased A1-like astrocytes but increased astrocytic glutamatergic transporting molecules including glutamate transporter 1 and glutamine synthase. However, EA seemed to have no effects on presynaptic Glu transmission from the dCA3, as evidenced by the similiar levels of c-Fos in the dCA3 neurons, synaptic vesicular markers of dCA3 neural terminals and values of paired-pulse ratio in the dCA1 neurons between EA-treated and sham EA-treated METH withdrawal mice. These findings suggest that EA might normalize the dCA1 Glu levels at least in part through enhancing astrocyte-mediated Glu clearance. Taken together, astrocytes might be a novel target for developing therapeutic interventions against the impaired memory behaviours in METH users, and EA represents a promising non-invasive therapeutic strategy for the management of drug-caused memory deficits.
Collapse
Affiliation(s)
- Teng He
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| | - Nanqin Li
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| | - Pengbo Shi
- Department of Orthopedics The First Affiliated Hospital of Henan University of Chinese Medicine Zhengzhou China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| | - Jiaxun Nie
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| | - Xue Lu
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| | - Peiyao Yu
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
- Department of Physiology, College of Korean Medicine Daegu Haany University Gyeongsan South Korea
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
15
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Phillips TJ, Aldrich SJ. Peri-adolescent exposure to (meth)amphetamine in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:1-51. [PMID: 34801166 DOI: 10.1016/bs.irn.2021.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimentation with psychoactive drugs is often initiated in the peri-adolescent period, but knowledge of differences in the outcomes of peri-adolescent- vs adult-initiated exposure is incomplete. We consider the existing animal research in this area for (meth)amphetamines. Established for a number of phenotypes, is lower sensitivity of peri-adolescents than adults to acute effects of (meth)amphetamines, including neurotoxic effects of binge-level exposure. More variable are data for long-term consequences of peri-adolescent exposure on motivational and cognitive traits. Moreover, investigations often exclude an adult-initiated exposure group critical for answering questions about outcomes unique to peri-adolescent initiation. Despite this, it is clear from the animal research that (meth)amphetamine exposure during the peri-adolescent period, whether self- or other-administered, impacts brain motivational circuitry and cognitive function, and alters adult sensitivity to other drugs and natural rewards. Such consequences occurring in humans have the potential to predispose toward unfortunate and potentially disastrous family, social and livelihood outcomes.
Collapse
Affiliation(s)
- T J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - S J Aldrich
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
17
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
18
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
19
|
Chen G, Wei X, Xu X, Yu G, Yong Z, Su R, Tao L. Methamphetamine Inhibits Long-Term Memory Acquisition and Synaptic Plasticity by Evoking Endoplasmic Reticulum Stress. Front Neurosci 2021; 14:630713. [PMID: 33519373 PMCID: PMC7840888 DOI: 10.3389/fnins.2020.630713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Methamphetamine (MA), an illicit drug abused worldwide, leads to cognitive impairment and memory loss. However, the detailed mechanisms of MA-induced neurologic impairment are still unclear. The present study aimed to investigate the mechanisms of MA-induced inhibition of memory acquisition from the perspective of endoplasmic reticulum (ER) stress. ER stress, caused by the accumulation of wrongly folded proteins in the ER, is important for new protein synthesis, which further influence the formation of long-term memory. A subacute MA poisoning model of mice was established and several behavioral experiments were performed, including elevated plus maze, Morris water maze, electro-stimulus Y-maze, and novel object recognition tasks. The present results suggested that 4 days exposure to MA induced significant memory loss. Whereas, this damage to memory formation could be protected when mice were pre-treated with ER stress inhibitor, tauroursodeoxycholic acid (TUDCA). The results of Western blotting showed that subacute exposure to MA increased the expression levels of ER stress marker proteins, such as binding immunoglobulin protein, phosphorylated eukaryotic translation initiation factor 2α, cyclic AMP-dependent transcription factor (ATF)-4, ATF-6, and CCAAT-enhancer binding protein homologous protein. Meanwhile, the enhanced expression levels of these proteins were reversed by TUDCA, indicating that MA administration induced memory loss by evoking ER stress in the hippocampus. We also found that MA inhibited the induction of long-term potentiation (LTP) in the hippocampus. Nevertheless, LTP could be induced when mice were pre-treated with TUDCA. In conclusion, MA inhibited long-term memory acquisition and synaptic plasticity via ER stress.
Collapse
Affiliation(s)
- Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| | | | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zheng Yong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Grochecki P, Smaga I, Lopatynska-Mazurek M, Gibula-Tarlowska E, Kedzierska E, Listos J, Talarek S, Marszalek-Grabska M, Hubalewska-Mazgaj M, Korga-Plewko A, Dudka J, Marzec Z, Filip M, Kotlinska JH. Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis. Int J Mol Sci 2021; 22:E589. [PMID: 33435576 PMCID: PMC7827725 DOI: 10.3390/ijms22020589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Despite its widespread use, little is known regarding its long-term effects on cognitive function. Therefore, we assessed, for the first time, whether (A) repeated mephedrone (30 mg/kg, i.p., 10 days, once a day) exposure during adolescence (PND 40) induces deleterious effects on spatial memory and reversal learning (Barnes maze task) in adult (PND 71-84) rats and whether (B) these effects were comparable to amphetamine (2.5 mg/kg, i.p.). Furthermore, the influence of these drugs on MMP-9, NMDA receptor subunits (GluN1, GluN2A/2B) and PSD-95 protein expression were assessed in adult rats. The drug effects were evaluated at doses that per se induce rewarding/reinforcing effects in rats. Our results showed deficits in spatial memory (delayed effect of amphetamine) and reversal learning in adult rats that received mephedrone/amphetamine in adolescence. However, the reversal learning impairment may actually have been due to spatial learning rather than cognitive flexibility impairments. Furthermore, mephedrone, but not amphetamine, enhanced with delayed onset, MMP-9 levels in the prefrontal cortex and the hippocampus. Mephedrone given during adolescence induced changes in MMP-9 level and up-regulation of the GluN2B-containing NMDA receptor (prefrontal cortex and hippocampus) in young adult (PND 63) and adult (PND 87) rats. Finally, in adult rats, PSD-95 expression was increased in the prefrontal cortex and decreased in the hippocampus. In contrast, in adult rats exposed to amphetamine in adolescence, GluN2A subunit and PSD-95 expression were decreased (down-regulated) in the hippocampus. Thus, in mephedrone-but not amphetamine-treated rats, the deleterious effects on spatial memory were associated with changes in MMP-9 level. Because the GluN2B-containing NMDA receptor dominates in adolescence, mephedrone seems to induce more harmful effects on cognition than amphetamine does during this period of life.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Malgorzata Lopatynska-Mazurek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, 20-090 Lublin, Poland;
| | - Magdalena Hubalewska-Mazgaj
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | | | - Jaroslaw Dudka
- Department of Toxicology, Medical University, 20-090 Lublin, Poland;
| | - Zbigniew Marzec
- Department of Food and Nutrition, Medical University, 20-093 Lublin, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (I.S.); (M.H.-M.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; (P.G.); (M.L.-M.); (E.G.-T.); (E.K.); (J.L.); (S.T.)
| |
Collapse
|
21
|
Westbrook SR, Dwyer MR, Cortes LR, Gulley JM. Extended access self-administration of methamphetamine is associated with age- and sex-dependent differences in drug taking behavior and recognition memory in rats. Behav Brain Res 2020; 390:112659. [PMID: 32437887 PMCID: PMC7307427 DOI: 10.1016/j.bbr.2020.112659] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Individuals who begin drug use during early adolescence experience more adverse consequences compared to those initiating later, especially if they are female. The mechanisms for these age and gender differences remain obscure, but studies in rodents suggest that psychostimulants may disrupt the normal ontogeny of dopamine and glutamate systems in the prefrontal cortex (PFC). Here, we studied Sprague-Dawley rats of both sexes who began methamphetamine (METH, i.v.) self-administration in adolescence (postnatal [P] day 41) or adulthood (P91). Rats received seven daily 2-h self-administration sessions with METH or saccharin as the reinforcer, followed by 14 daily long access (LgA; 6 h) sessions. After 7 and 14 days of abstinence, novel object (NOR) or object-in-place (OiP) recognition was assessed. PFC and nucleus accumbens were collected 7 days after the final cognitive test and NMDA receptor subunits and dopamine D1 receptor expression was measured. We found that during LgA sessions, adolescent-onset rats escalated METH intake more rapidly than adult-onset rats, with adolescent-onset females earning the most infusions. Adolescent-onset rats with a history of METH self-administration exhibited modest deficits in OiP compared to their adult-onset counterparts, but there was no sex difference and self-administration groups did not differ from naïve control rats. All rats displayed intact novel object recognition memory. We found no group differences in D1 and NMDA receptor expression, suggesting no long-lasting alteration of ontogenetic expression profiles. Our findings suggest that adolescent-onset drug use is more likely to lead to compulsive-like patterns of drug-taking and modest dysfunction in PFC-dependent cognition.
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Megan R Dwyer
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Laura R Cortes
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
22
|
Schweppe CA, Burzynski C, Jayanthi S, Ladenheim B, Cadet JL, Gardner EL, Xi ZX, van Praag H, Newman AH, Keck TM. Neurochemical and behavioral comparisons of contingent and non-contingent methamphetamine exposure following binge or yoked long-access self-administration paradigms. Psychopharmacology (Berl) 2020; 237:1989-2005. [PMID: 32388619 PMCID: PMC7974824 DOI: 10.1007/s00213-020-05513-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Abuse of the psychostimulant methamphetamine (METH) can cause long-lasting damage to brain monoaminergic systems and is associated with profound mental health problems for users, including lasting cognitive impairments. Animal models of METH exposure have been useful in dissecting the molecular effects of the drug on cognition, but many studies use acute, non-contingent "binge" administrations of METH which do not adequately approximate human METH use. Long-term METH exposure via long-access (LgA) self-administration paradigms has been proposed to more closely reflect human use and induce cognitive impairments. OBJECTIVE To better understand the role of contingency and patterns of exposure in METH-induced cognitive impairments, we analyzed behavioral and neurochemical outcomes in adult male rats, comparing non-contingent "binge" METH administration with contingent (LgA) METH self-administration and non-contingent yoked partners. RESULTS Binge METH (40 mg/kg, i.p., over 1 day) dramatically altered striatal and hippocampal dopamine, DOPAC, 5-HT, 5-HIAA, BDNF, and TrkB 75 days after drug exposure. In contrast, 6-h LgA METH self-administration (cumulative 24.8-48.9 mg METH, i.v., over 16 days) altered hippocampal BDNF in both contingent and yoked animals but reduced striatal 5-HIAA in only contingent animals. Neurochemical alterations following binge METH administration were not accompanied by cognitive deficits in Morris water maze, novel object recognition, or Y-maze tests. However, contingent LgA METH self-administration resulted in impaired spatial memory in the water maze. CONCLUSIONS Overall, substantial differences in neurochemical markers between METH exposure and self-administration paradigms did not consistently translate to deficits in cognitive tasks, highlighting the complexity of correlating METH-induced neurochemical changes with cognitive outcomes.
Collapse
Affiliation(s)
- Catherine A. Schweppe
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA,Present address: Department of Neurology, University of California Los Angeles, 635 Charles E Young Drive South, Los Angeles, CA 90095, USA
| | - Caitlin Burzynski
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eliot L. Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA,Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Thomas M. Keck
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, 333 Cassell Drive, Baltimore, MD 21224, USA,Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA
| |
Collapse
|
23
|
LC3 and ATG5 overexpression and neuronal cell death in the prefrontal cortex of postmortem chronic methamphetamine users. J Chem Neuroanat 2020; 107:101802. [PMID: 32416129 DOI: 10.1016/j.jchemneu.2020.101802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH) abuse is accompanied by oxidative stress, METH-induced neurotoxicity, and apoptosis. Oxidative stress has devastating effects on the structure of proteins and cells. Autophagy is an evolutionarily conserved intracellular regulated mechanism for orderly degradation of dysfunctional proteins or removing damaged organelles. The precise role of autophagy in oxidative stress-induced apoptosis of dopaminergic neuronal cells caused by METH has not clarified completely. In this study, we sought to evaluate the effects of METH abuse on autophagy in the prefrontal cortex of postmortem users, mainly focusing on the ATG5 and LC3 during neuroinflammation. Postmortem molecular and histological examination was done for two groups containing 12 non-addicted and 14 METH addicted cases. ATG5 and LC3 expression were analyzed by real-time PCR and immunohistochemistry (IHC) methods. Histopathological analysis was performed by stereological cell counting of neuronal cells using Hematoxylin and Eosin (H & E) staining technique. In order to detect DNA damage in the prefrontal lobe, Tunnel staining was performed. Real-time PCR and IHC assay showed overexpression of ATG5 and LC3 protein in the prefrontal cortex of Meth users. The cell death and neuronal degeneration were increased significantly based on Tunel assay and the stereological analysis in the Prefrontal cortex. Chronic METH exposure probably induces ATG5 and LC3 overexpression and neuronal cell death in the Prefrontal cortex of the postmortem cases.
Collapse
|
24
|
Ding J, Hu S, Meng Y, Li C, Huang J, He Y, Qiu P. Alpha-Synuclein deficiency ameliorates chronic methamphetamine induced neurodegeneration in mice. Toxicology 2020; 438:152461. [PMID: 32278788 DOI: 10.1016/j.tox.2020.152461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
The α-Synuclein (α-syn) and tau have synergistic effects on neurodegenerative diseases induced by environmental factors or genetic mutation. Thus, we investigated the role of α-syn and tau in neurodegeneration induced by chronic methamphetamine (METH) exposure (1.0∼20.0 mg/kg/d body weight, for 14 consecutive days). Here, we present a mice model with evidences of α-syn and tau participating in toxicology in chronic METH. METH increased α-syn level in the stratum oriens, pyramidal layer, stratum radiatum and stratum moleculare of hippocampal CA1, CA2 and CA3, polymorph layer of hippocampal dentate gyrus (DG), and substantia nigra (SN). The subcellular locations of the upregulated α-syn were mainly found in mitochondria and axons. The METH upregulated α-syn may directly induce mitochondrial damage, myelin sheath destruction, and synaptic failure. Also, the excess α-syn might indirectly promote tau phosphorylation through tau kinase GSK3β and CDK5, leading to microtubule depolymerization and eventually fusion deficit of autophagosome and lysosome. In the in vitro experiment, the autophagic vacuoles failed to fuse with the lysosome. The neuropathology induced by both the direct and indirect effects of α-syn could be alleviated by α-syn knockout. Taking together, these results indicate that the α-syn mediates the neurodegenerative process induced by chronic METH and that reducing α-syn might be a potential approach to protect the toxic effects of METH and also be, to a broader view, of therapeutic value in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yunle Meng
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming 650000, Yunnan, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
25
|
Mahmoudiasl GR, Abbaszadeh HA, Rezaei-Tavirani M, Abdollahifar MA, Sadeghi Y, Khoramgah MS, Niknazar S, Darabi S. Postmortem Study of Molecular and Histological Changes in the CA1 Hippocampal Region of Chronic Methamphetamine User. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:2067-2082. [PMID: 32184870 PMCID: PMC7059073 DOI: 10.22037/ijpr.2019.15483.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methamphetamine (Meth) is recognized as one of the most important new distributed abused drug that causes severe damage to the different parts of the brain, especially hippocampus. Previous studies have demonstrated that Meth can induce apoptosis and cell death in the brain. In this study, we evaluated the long-term effects of Meth abuse in the CA1 region of postmortem hippocampus. Postmortem molecular and histological analysis was performed for five non-addicted subjects and five Meth addicted ones. Iba-1 (microglia) and glial fibrillary acidic protein, GFAP (astrocytes) expression were assayed by western blotting and immunohistochemistry (IHC) methods. Histopathological assessment was done with stereological counts of hippocampal cells stained with hematoxylin and eosin (H and E). Tunel staining was used to detect DNA damage in human brains. In addition, protein-protein interaction analysis network was investigated. Western blotting and immunohistochemistry assay showed overexpression of GFAP and Iba-1 protein in the CA1 hippocampal region of Meth users’ brain. Stereological analysis in the CA1 region revealed increased neuron degeneration. Furthermore, significant apoptosis and cell death were confirmed by Tunel assay in the hippocampus. The prominent role of TLR4, IL1B, CASP1, and NLRP3 in the molecular mechanism of Meth was highlighted via PPI network analysis. Chronic Meth use can induce GFAP and Iba-1 upregulation and neuronal apoptosis in the CA1 region of the postmortem hippocampus.
Collapse
Affiliation(s)
- Gholam-Reza Mahmoudiasl
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Khoramgah
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
26
|
Guerin AA, Bonomo Y, Lawrence AJ, Baune BT, Nestler EJ, Rossell SL, Kim JH. Cognition and Related Neural Findings on Methamphetamine Use Disorder: Insights and Treatment Implications From Schizophrenia Research. Front Psychiatry 2019; 10:880. [PMID: 31920743 PMCID: PMC6928591 DOI: 10.3389/fpsyt.2019.00880] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of methamphetamine (meth) use disorder, research on meth is disproportionately scarce compared to research on other illicit drugs. Existing evidence highlights cognitive deficits as an impediment against daily function and treatment of chronic meth use. Similar deficits are also observed in schizophrenia, and this review therefore draws on schizophrenia research by examining similarities and differences between the two disorders on cognition and related neural findings. While meth use disorder and schizophrenia are two distinct disorders, they are highly co-morbid and share impairments in similar cognitive domains and altered brain structure/function. This narrative review specifically identifies overlapping features such as deficits in learning and memory, social cognition, working memory and inhibitory/impulse control. We report that while working memory deficits are a core feature of schizophrenia, such deficits are inconsistently observed following chronic meth use. Similar structural and functional abnormalities are also observed in cortical and limbic regions between the two disorders, except for cingulate activity where differences are observed. There is growing evidence that targeting cognitive symptoms may improve functional outcome in schizophrenia, with evidence of normalized abnormal brain activity in regions associated with cognition. Considering the overlap between meth use disorder and schizophrenia, targeting cognitive symptoms in people with meth use disorder may also improve treatment outcome and daily function.
Collapse
Affiliation(s)
- Alexandre A. Guerin
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Yvonne Bonomo
- Department of Addiction Medicine, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Women’s Alcohol and Drug Service, Royal Women’s Hospital, Melbourne, VIC, Australia
| | - Andrew John Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | | | - Eric J. Nestler
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan L. Rossell
- Centre for Mental Health, Swinburne University of Technology, Melbourne, VIC, Australia
- Department of Psychiatry, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
27
|
Zhao J, Ying L, Liu Y, Liu N, Tu G, Zhu M, Wu Y, Xiao B, Ye L, Li J, Guo F, Zhang L, Wang H, Zhang L. Different roles of Rac1 in the acquisition and extinction of methamphetamine-associated contextual memory in the nucleus accumbens. Am J Cancer Res 2019; 9:7051-7071. [PMID: 31660086 PMCID: PMC6815963 DOI: 10.7150/thno.34655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/30/2019] [Indexed: 02/03/2023] Open
Abstract
Rationale: Repeated methamphetamine (METH) exposure induces long-term cognitive deficits and pathological drug-associated memory that can be disrupted by manipulating memory reconsolidation and extinction. The nucleus accumbens (NAc) is the key region of the brain reward system and predominantly consists of two subtypes of medium spiny neurons (MSNs) based on the expression of D1 or D2 dopamine receptors (D1-MSNs or D2-MSNs). Spine structural plasticity in the NAc is critical for the acquisition, reconsolidation and extinction of drug-associated memory. However, the molecular mechanisms underlying METH-associated memory and spine remodelling in each type of MSNs in the NAc remain unknown. Here, we explored whether Rac1 in the NAc mediates METH-associated contextual memory and spine remodelling. Methods: Pharmacological and genetic manipulations of Rac1 were used to investigate its role during the acquisition, reconsolidation and extinction of METH-associated contextual memory. Recombinant adeno-associated viruses expressing mCherry under the control of the dopamine D1 receptor gene promoter (Drd1-mCherry) or dopamine D2 receptor gene promoter (Drd2-mCherry) were used to specifically label D1-MSNs or D2-MSNs. Results: Using viral-mediated gene transfer, we demonstrated that decreased Rac1 activity was required for the acquisition of METH-associated contextual memory and the METH-induced increase in thin spine density, whereas increased Rac1 signalling was important for the extinction of METH-associated contextual memory and the related elimination of thin spines. Moreover, the increase of dendritic spines was both found in D1-MSNs and D2-MSNs during the acquisition process, but extinction training selectively decreased the spine density in D1-MSNs. Interestingly, Rac1 was responsible for METH-induced spine plasticity in D1-MSNs but not in D2-MSNs. Additionally, we found that microinjection of a Rac1 inhibitor or activator into the NAc was not sufficient to disrupt reconsolidation, and the pharmacological activation of Rac1 in the NAc facilitated the extinction of METH-associated contextual memory. Regarding cognitive memory, decreased Rac1 activity improved the METH-induced impairment in object recognition memory. Conclusion: Our findings indicate that Rac1 plays opposing roles in the acquisition and extinction of METH-associated contextual memory and reveal the cell-specific role of Rac1 in METH-associated spine remodelling, suggesting that Rac1 is a potential therapeutic target for reducing relapse in METH addiction and remediating METH-induced recognition memory impairment.
Collapse
|
28
|
Shahveisi K, Khazaie H, Farnia V, Khodamoradi M. REM sleep deprivation impairs retrieval, but not reconsolidation, of methamphetamine reward memory in male rats. Pharmacol Biochem Behav 2019; 185:172759. [PMID: 31415776 DOI: 10.1016/j.pbb.2019.172759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/06/2023]
Abstract
Susceptibility to interference can be a result of memory retrieval and reconsolidation. Given the fact that addiction develops through the neural mechanisms of learning and memory, it would not be surprising that a consolidated drug reward memory may also be susceptible to interference following retrieval/reconsolidation. Due to the critical role of sleep in memory consolidation, sleep deprivation (SD) has been shown to impair memory. Therefore, the major objective of this study was to investigate the effect of rapid eye movement (REM) sleep deprivation (RSD) on the retrieval and reconsolidation of methamphetamine (METH) reward memory in male rats. The animals were trained to acquire METH-induced CPP (2 mg/kg, i.p.). METH reward memory was then reactivated/retrieved in the drug-paired chamber during a drug-free (memory reactivation) session. A period of 48-h RSD paradigm using the multiple platform technique resulted in persistent deficits in the retrieval of METH reward memory. Nevertheless, the same protocol of RSD, which was conducted immediately after the memory reactivation, did not affect the reconsolidation of METH reward memory. Additionally, the RSD episode induced a temporary potentiation of METH-induced hyperlocomotion. Our findings would seem to suggest that sleep is involved in the retrieval, but not reconsolidation, of METH reward memory. The results may also demonstrate that RSD mimics the effects of METH on locomotor activity. The results of this study, therefore, support the idea that sleep is involved in the processing of METH reward memory which can be considered for further investigations to manage the relapse associated with drug-related memory.
Collapse
Affiliation(s)
- Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Farnia
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
29
|
Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, Dargahi L. Thyroid hormone treatment alleviates the impairments of neurogenesis, mitochondrial biogenesis and memory performance induced by methamphetamine. Neurotoxicology 2019; 74:7-18. [PMID: 31075280 DOI: 10.1016/j.neuro.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
Chronic use of methamphetamine (MA), a neurotoxic psychostimulant, leads to long-lasting cognitive dysfunctions in humans and animal models. Thyroid hormones (THs) have several physiological actions and are crucial for normal behavioral, intellectual and neurological development. Considering the importance of THs in the cognitive processes, the present study was designed to evaluate the therapeutic effects of THs on cognitive and neurological impairments induced by MA. Escalating doses of MA (1-10 mg/kg, IP) were injected twice daily for 10 consecutive days in rats and cognitive functions were evaluated using behavioral tests. The expression of factors involved in neurogenesis (NES and DCX), mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM), neuroinflammation (GFAP, Iba-1, and COX-2) as well as Reelin and NT-3 (synaptic plasticity and neurotrophic factor, respectively) was measured in the hippocampus of MA-treated animals. The effects of three different doses of T4 (20, 40 or 80 μg/kg; intraperitoneally) or T3 (20, 40 or 80 μg/rat; 2.5 μl/nostril; intranasal) treatment, once a day for one week after MA cessation, were assessed in MA-treated rats. After the last behavioral test, serum T4 and T3 levels were measured using radioimmunoassay. The results revealed that repeated escalating regimen of MA impaired cognitive functions concomitant with neurogenesis and synaptic plasticity impairments, mitochondrial dysfunction, and neuroinflammation. T4 or T3 treatment partially decreased the alterations induced by MA. These findings suggest that THs can be considered as potential candidates for the reduction of MA abuse related neurocognitive disturbances.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Seyedhosseini Tamijani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elmira Beirami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Khalifeh S, Khodamoradi M, Hajali V, Ghazvini H, Eliasy L, Kheradmand A, Farnia V, Akhtari J, Shahveisi K, Ghalehnoei H. Naloxone Ameliorates Spatial Memory Deficits and Hyperthermia Induced by a Neurotoxic Methamphetamine Regimen in Male Rats. Galen Med J 2019; 8:e1182. [PMID: 34466469 PMCID: PMC8343598 DOI: 10.31661/gmj.v0i0.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/13/2018] [Accepted: 09/03/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Methamphetamine (METH) as a synthetic psychostimulant is being increasingly recognized as a worldwide problem, which may induce memory impairment. On the other hand, it is well established that naloxone, an opiate antagonist, has some beneficial effects on learning and memory. The present research aimed at evaluating naloxone effects on spatial learning and memory impairment triggered by a neurotoxic regimen of METH in male rats. MATERIALS AND METHODS The animals received the subcutaneous (sc) regimen of METH (4×6 mg/kg at 2-h intervals), intraperitoneal (ip) naloxone (4×1 mg/kg at 2-h intervals), or normal saline at four events. The Nal-METH group of rats received four naloxone injections (1 mg/ kg, ip) 30 min before each METH injection (6 mg/kg, sc) at 2-h intervals. Seven days later, they were evaluated for spatial learning and memory in the Morris Water Maze (MWM) task. RESULTS METH regimen induced hyperthermia, as well as a poor performance, in the acquisition and retention phases of the task, indicating spatial learning and memory impairment compared to the controls. Naloxone administration (1 mg/kg, ip) before each METH injection led to significant attenuations of both hyperthermia and METH adverse effects on the rat performance in the MWM task. CONCLUSION The results revealed that pretreatment with the opiate antagonist naloxone could prevent METH adverse effects on body temperature and memory performance. It seems that the opioidergic system and hyperthermia may, at least partially, be involved in METH effects on spatial memory.
Collapse
Affiliation(s)
- Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Amiralmomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Khodamoradi
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Hajali
- Quchan Higher Health Education Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazvini
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lelia Eliasy
- Department of Anatomical Sciences, Golestan University of Medical Sciences, Golestan, Iran
| | - Afshin Kheradmand
- Department of Pharmacology and Toxicology, school of pharmacy, International campus, Iran University of medical sciences, Tehran, Iran
| | - Vahid Farnia
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javad Akhtari
- Immunogenetic Research Center, Mazandaran University of medical science, Sari, Iran
| | - Kaveh Shahveisi
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Ghalehnoei
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Shin EJ, Dang DK, Hwang YG, Tran HQ, Sharma N, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochem Int 2019; 124:162-170. [PMID: 30654115 DOI: 10.1016/j.neuint.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The abuse of methamphetamine (MA), an amphetamine (AMPH)-type stimulant, has been demonstrated to be associated with various neuropsychotoxicity, including memory impairment, psychiatric morbidity, and dopaminergic toxicity. Compelling evidence from preclinical studies has indicated that protein kinase C (PKC), a large family of serine/threonine protein kinases, plays an important role in MA-induced neuropsychotoxicity. PKC-mediated N-terminal phosphorylation of dopamine transporter has been identified as one of the prerequisites for MA-induced synaptic dopamine release. Consistently, it has been shown that PKC is involved in MA (or AMPH)-induced memory impairment and mania-like behaviors as well as MA drug dependence. Direct or indirect regulation of factors related to neuronal plasticity seemed to be critical for these actions of PKC. In addition, PKC-mediated mitochondrial dysfunction, oxidative stress or impaired antioxidant defense system has been suggested to play a role in psychiatric and cognitive disturbance induced by MA (or AMPH). In MA-induced dopaminergic toxicity, particularly PKCδ has been shown to trigger oxidative stress, mitochondrial dysfunction, pro-apoptotic changes, and neuroinflammation. Importantly, PKCδ may be a key mediator in the positive feedback loop composed of these detrimental events to potentiate MA-induced dopaminergic toxicity. This review outlines the role of PKC and its individual isozymes in MA-induced neuropsychotoxicity. Better understanding on the molecular mechanism of PKCs might provide a great insight for the development of potential therapeutic or preventive candidates for MA (or AMPH)-associated neuropsychotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Young Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University Venture Business Laboratory, Kanazawa, Ishikawa 920-1192, Japan
| | - Jean Lud Cadet
- NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
32
|
Yan P, Xu D, Ji Y, Yin F, Cui J, Su R, Wang Y, Zhu Y, Wei S, Lai J. LiCl Pretreatment Ameliorates Adolescent Methamphetamine Exposure-Induced Long-Term Alterations in Behavior and Hippocampal Ultrastructure in Adulthood in Mice. Int J Neuropsychopharmacol 2019; 22:303-316. [PMID: 30649326 PMCID: PMC6441133 DOI: 10.1093/ijnp/pyz001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adolescent methamphetamine exposure causes a broad range of neurobiological deficits in adulthood. Glycogen synthase kinase-3β is involved in various cognitive and behavioral processes associated with methamphetamine exposure. This study aims to investigate the protective effects of the glycogen synthase kinase-3β inhibitor lithium chloride on adolescent methamphetamine exposure-induced long-term alterations in emotion, cognition, behavior, and molecule and hippocampal ultrastructure in adulthood. METHODS A behavioral test battery was used to investigate the protective effects of lithium chloride on adolescent methamphetamine exposure-induced long-term emotional, cognitive, and behavioral impairments in mice. Western blotting and immunohistochemistry were used to detect glycogen synthase kinase-3β activity levels in the medial prefrontal cortex and dorsal hippocampus. Electron microscopy was used to analyze changes in synaptic ultrastructure in the dorsal hippocampus. Locomotor sensitization with a methamphetamine (1 mg/kg) challenge was examined 80 days after adolescent methamphetamine exposure. RESULTS Adolescent methamphetamine exposure induced long-term alterations in locomotor activity, novel spatial exploration, and social recognition memory; increases in glycogen synthase kinase-3β activity in dorsal hippocampus; and decreases in excitatory synapse density and postsynaptic density thickness in CA1. These changes were ameliorated by lithium chloride pretreatment. Adolescent methamphetamine exposure-induced working memory deficits in Y-maze spontaneous alternation test and anxiety-like behavior in elevated-plus maze test spontaneously recovered after long-term methamphetamine abstinence. No significant locomotor sensitization was observed after long-term methamphetamine abstinence. CONCLUSIONS Hyperactive glycogen synthase kinase-3β contributes to adolescent chronic methamphetamine exposure-induced behavioral and hippocampal impairments in adulthood. Our results suggest glycogen synthase kinase-3β may be a potential target for the treatment of deficits in adulthood associated with adolescent methamphetamine abuse.
Collapse
Affiliation(s)
- Peng Yan
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Xu
- Traditional Chinese Medicine Department, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuanyuan Ji
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jingjing Cui
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Rui Su
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yunpeng Wang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yongsheng Zhu
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuguang Wei
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| |
Collapse
|
33
|
Shaerzadeh F, Streit WJ, Heysieattalab S, Khoshbouei H. Methamphetamine neurotoxicity, microglia, and neuroinflammation. J Neuroinflammation 2018; 15:341. [PMID: 30541633 PMCID: PMC6292109 DOI: 10.1186/s12974-018-1385-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is subject to abuse worldwide. While the modulatory effects of METH on dopamine neurotransmission and its neurotoxicity in the central nervous system are well studied, METH’s effects on modulating microglial neuroimmune functions and on eliciting neuroinflammation to affect dopaminergic neurotoxicity has attracted considerable attention in recent years. The current review illuminates METH-induced neurotoxicity from a neuropathological perspective by summarizing studies reporting microglial activation after METH administration in rodents. Assessing microglial reactivity in terms of the cells’ morphology and immunophenotype offers an opportunity for comprehensive and objective assessment of the severity and nature of METH-induced neuronal perturbations in the CNS and can thus contribute to a better understanding of the nature of METH toxicity. We reach the conclusion here that the intensity of microglial activation reported in the majority of animal models after METH administration is quite modest, indicating that the extent of dopaminergic neuron damage directly caused by this neurotoxicant is relatively minor. Our conclusion stands in contrast to claims of excessive and detrimental neuroinflammation believed to contribute and exacerbate METH neurotoxicity. Thus, our analysis of published studies does not support the idea that suppression of microglial activity with anti-inflammatory agents could yield beneficial effects in terms of treating addiction disorders.
Collapse
Affiliation(s)
- Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, JHM Health Science Center, PO Box 100244, Gainesville, FL, 32610, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, JHM Health Science Center, PO Box 100244, Gainesville, FL, 32610, USA.
| | - Soomaayeh Heysieattalab
- Cognitive Neuroscience Division, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, JHM Health Science Center, PO Box 100244, Gainesville, FL, 32610, USA
| |
Collapse
|
34
|
Khalkhali M, Golshahi M, Hasandokht T, Kafie M, Zare R. Cognitive Functioning in Schizophrenia, Methamphetamine-induced Psychotic Disorder, and Healthy People: A Comparative Study. Adv Biomed Res 2018; 7:123. [PMID: 30211136 PMCID: PMC6124221 DOI: 10.4103/abr.abr_14_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Methamphetamine-induced psychotic disorder (MIP) cannot be easily differentiated from other psychotic disorders. Some studies have reported that patients with MIP and schizophrenia have differences in their cognitive functioning. We hypothesized that their performance would be different on neuropsychological tests which assess executive functions and visual memory. Materials and Methods: In a cross-sectional study, 30 patients with MIP, 31 patients with schizophrenia, and 31 healthy controls were assessed by Rey–Osterrieth complex figure (ROCF) test and visual search and attention test (VSAT). One-way analysis of variance was performed to compare the mean scores of tests. Tukey's HSD test was used for post hoc analysis. Results: Three groups had significant differences according to ROCF test (F = 15.76, P < 0.0001), VSAT (F = 39.78, P < 0.0001), left VSAT (F = 37.96, P < 0.0001), right VSAT (F = 40.40, P < 0.0001), and the time of the test administration (F = 3.26, P = 0.04). The post hoc analysis showed that the mean score of ROCF test and VSAT (total, right, and left) was significantly higher in the control group than in the other two groups. The time of administering the test in the control group was significantly shorter than in the MIP group (P < 0.03) and nonsignificantly shorter than in the schizophrenia group (P = 0.54). The mean score of right side VSAT was significantly higher in the MIP group than in the schizophrenia group. Conclusion: ROCF could not differentiate MIP from schizophrenia. The better performance of patients with MIP on right side VSAT that is reported in this and in the previous study needs to be reevaluated in more controlled studies.
Collapse
Affiliation(s)
- Mohammadrasoul Khalkhali
- Department of Psychiatry, Shafa Psychiatry Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahboobeh Golshahi
- Department of Psychiatry, Shafa Psychiatry Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Moosa Kafie
- Department of Psychology, University of Guilan, Rasht, Iran
| | - Roghaye Zare
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Salvatore MF, Nejtek VA, Khoshbouei H. Prolonged increase in ser31 tyrosine hydroxylase phosphorylation in substantia nigra following cessation of chronic methamphetamine. Neurotoxicology 2018; 67:121-128. [PMID: 29782882 PMCID: PMC6088751 DOI: 10.1016/j.neuro.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022]
Abstract
Methamphetamine (MA) exposure may increase the risk of motor or cognitive impairments similar to Parkinson's disease (PD) by middle age. Although damage to nigrostriatal or mesoaccumbens dopamine (DA) neurons may occur during or early after MA exposure, overt PD-like symptoms at a younger age may not manifest due to compensatory mechanisms to maintain DA neurotransmission. One possible compensatory mechanism is increased tyrosine hydroxylase (TH) phosphorylation. In the rodent PD 6-OHDA model, nigrostriatal lesion decreases TH protein in both striatum and substantia nigra (SN). However, DA loss in the SN is significantly less than that in the striatum. An increase in ser31 TH phosphorylation in the SN may increase TH activity in response to TH loss. To determine if similar compensatory mechanisms may be engaged in young mice after MA exposure, TH expression, phosphorylation, and DA tissue content were evaluated, along with dopamine transporter expression, 21 days after cessation of MA (24 mg/kg, daily, 14 days). DA tissue content was unaffected by the MA regimen in striatum, nucleus accumbens, SN, or ventral tegmental area (VTA), despite decreased TH protein in SN and VTA. In the SN, but not striatum, ser31 phosphorylation increased over 2-fold. This suggests that increased ser31 TH phosphorylation may be an inherent compensatory mechanism to attenuate DA loss against TH loss, similar to that in an established PD model. These results also indicate the somatodendritic compartments of DA neurons are more vulnerable to TH protein loss than terminal fields following MA exposure.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, United States; Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Vicki A Nejtek
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL, United States; Center for Addiction Research & Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Leeboonngam T, Pramong R, Sae-Ung K, Govitrapong P, Phansuwan-Pujito P. Neuroprotective effects of melatonin on amphetamine-induced dopaminergic fiber degeneration in the hippocampus of postnatal rats. J Pineal Res 2018; 64. [PMID: 29149481 DOI: 10.1111/jpi.12456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022]
Abstract
Chronic amphetamine (AMPH) abuse leads to damage of the hippocampus, the brain area associated with learning and memory process. Previous results have shown that AMPH-induced dopamine neurotransmitter release, reactive oxygen species formation, and degenerative protein aggregation lead to neuronal death. Melatonin, a powerful antioxidant, plays a role as a neuroprotective agent. The objective of this study was to investigate whether the protective effect of melatonin on AMPH-induced hippocampal damage in the postnatal rat acts through the dopaminergic pathway. Four-day-old postnatal rats were subcutaneously injected with 5-10 mg/kg AMPH and pretreated with 10 mg/kg melatonin prior to AMPH exposure for seven days. The results showed that melatonin decreased the AMPH-induced hippocampal neuronal degeneration in the dentate gyrus, CA1, and CA3. Melatonin attenuated the reduction in the expression of hippocampal synaptophysin, PSD-95, α-synuclein, and N-methyl-D-aspartate (NMDA) receptor protein and mRNA caused by AMPH. Melatonin attenuated the AMPH-induced reduction in dopamine transporter (DAT) protein expression in the hippocampus and the reduction in mRNA expression in the ventral tegmental area (VTA). Immunofluorescence demonstrated that melatonin not only prevented the AMPH-induced loss of DAT and NMDA receptor but also prevented AMPH-induced α-synuclein overexpression in the dentate gyrus, CA1, and CA3. Melatonin decreased the AMPH-induced reduction in the protein and mRNA of the NMDA receptor downstream signaling molecule, calcium/calmodulin-dependent protein kinase II (CaMKII), and the melatonin receptors (MT1 and MT2). This study showed that melatonin prevented AMPH-induced toxicity in the hippocampus of postnatal rats possibly via its antioxidative effect and mitochondrial protection.
Collapse
Affiliation(s)
- Tanawan Leeboonngam
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Ratchadaporn Pramong
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Kwankanit Sae-Ung
- Innovative Learning Center, Srinakharinwirot University, Bangkok, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom, Thailand
| | | |
Collapse
|
37
|
The Effects of Non-selective Dopamine Receptor Activation by Apomorphine in the Mouse Hippocampus. Mol Neurobiol 2018; 55:8625-8636. [DOI: 10.1007/s12035-018-0991-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
38
|
Avila JA, Zanca RM, Shor D, Paleologos N, Alliger AA, Figueiredo-Pereira ME, Serrano PA. Chronic voluntary oral methamphetamine induces deficits in spatial learning and hippocampal protein kinase Mzeta with enhanced astrogliosis and cyclooxygenase-2 levels. Heliyon 2018; 4:e00509. [PMID: 29560440 PMCID: PMC5857642 DOI: 10.1016/j.heliyon.2018.e00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/29/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022] Open
Abstract
Methamphetamine (MA) is an addictive drug with neurotoxic effects on the brain producing cognitive impairment and increasing the risk for neurodegenerative disease. Research has focused largely on examining the neurochemical and behavioral deficits induced by injecting relatively high doses of MA [30 mg/kg of body weight (bw)] identifying the upper limits of MA-induced neurotoxicity. Accordingly, we have developed an appetitive mouse model of voluntary oral MA administration (VOMA) based on the consumption of a palatable sweetened oatmeal mash containing a known amount of MA. This VOMA model is useful for determining the lower limits necessary to produce neurotoxicity in the short-term and long-term as it progresses over time. We show that mice consumed on average 1.743 mg/kg bw/hour during 3 hours, and an average of 5.23 mg/kg bw/day over 28 consecutive days on a VOMA schedule. Since this consumption rate is much lower than the neurotoxic doses typically injected, we assessed the effects of long-term chronic VOMA on both spatial memory performance and on the levels of neurotoxicity in the hippocampus. Following 28 days of VOMA, mice exhibited a significant deficit in short-term spatial working memory and spatial reference learning on the radial 8-arm maze (RAM) compared to controls. This was accompanied by a significant decrease in memory markers protein kinase Mzeta (PKMζ), calcium impermeable AMPA receptor subunit GluA2, and the post-synaptic density 95 (PSD-95) protein in the hippocampus. Compared to controls, the VOMA paradigm also induced decreases in hippocampal levels of dopamine transporter (DAT) and tyrosine hydroxylase (TH), as well as increases in dopamine 1 receptor (D1R), glial fibrillary acidic protein (GFAP) and cyclooxygenase-2 (COX-2), with a decrease in prostaglandins E2 (PGE2) and D2 (PGD2). These results demonstrate that chronic VOMA reaching 146 mg/kg bw/28d induces significant hippocampal neurotoxicity. Future studies will evaluate the progression of this neurotoxic state.
Collapse
Affiliation(s)
- Jorge A. Avila
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center of CUNY, New York, NY, USA
| | - Roseanna M. Zanca
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center of CUNY, New York, NY, USA
| | - Denis Shor
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| | - Nicholas Paleologos
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| | - Amber A. Alliger
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| | - Maria E. Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center of CUNY, New York, NY, USA
| | - Peter A. Serrano
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
- The Graduate Center of CUNY, New York, NY, USA
| |
Collapse
|
39
|
Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, Dargahi L. Effect of three different regimens of repeated methamphetamine on rats' cognitive performance. Cogn Process 2017; 19:107-115. [PMID: 28948389 DOI: 10.1007/s10339-017-0839-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
Neurocognitive impairment in response to methamphetamine (MA) has been proven in a variety of experimental and clinical studies. Elucidation of the underlying mechanisms of MA-induced cognitive deficits and finding preventive/therapeutic approaches need best-suited animal models. In modeling repeated MA exposure, while some believes that escalating doses simulate drug abuse conditions, others believe this regimen confers a preconditioning protection. The present study aimed to compare the effects of three different regimens of repeated MA administration on memory and cognitive function of adult rats. Rats in two different experimental groups were treated with escalating paradigms consisted of twice-daily i.p. injections; 1-4 mg/kg over 7 days or 1-10 mg/kg over 10 days. The third group received twice-daily doses of 15 mg/kg every other day over 14 days. Spatial working memory, novel object recognition task and anxiety-like behavior were measured sequentially in all MA-treated rats and vehicle-treated controls started from day 8 after last injection. All MA regimens decreased rates of spontaneous alternation in Y-maze and increased anxiety-like response. Short-term recognition memory was unchanged across all MA-treated animals, while long-term memory was impaired in the second and third MA regimen. Though MA deleterious effect especially in recognition memory is somehow dose dependent, preconditioning effect of increasing doses may be ruled out at least in the case of parameters measured here.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran.
| |
Collapse
|
40
|
Moszczynska A, Callan SP. Molecular, Behavioral, and Physiological Consequences of Methamphetamine Neurotoxicity: Implications for Treatment. J Pharmacol Exp Ther 2017; 362:474-488. [PMID: 28630283 PMCID: PMC11047030 DOI: 10.1124/jpet.116.238501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/09/2017] [Indexed: 04/28/2024] Open
Abstract
Understanding the relationship between the molecular mechanisms underlying neurotoxicity of high-dose methamphetamine (METH) and related clinical manifestations is imperative for providing more effective treatments for human METH users. This article provides an overview of clinical manifestations of METH neurotoxicity to the central nervous system and neurobiology underlying the consequences of administration of neurotoxic METH doses, and discusses implications of METH neurotoxicity for treatment of human abusers of the drug.
Collapse
Affiliation(s)
- Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Sean Patrick Callan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
41
|
Rorabaugh BR, Seeley SL, Stoops TS, D’Souza MS. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart. PLoS One 2017; 12:e0179129. [PMID: 28575091 PMCID: PMC5456396 DOI: 10.1371/journal.pone.0179129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.
Collapse
Affiliation(s)
- Boyd R. Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
- * E-mail:
| | - Sarah L. Seeley
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| | - Thorne S. Stoops
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| | - Manoranjan S. D’Souza
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Ohio Northern University, Ada, Ohio, United States of America
| |
Collapse
|
42
|
Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 2017; 40:403-428. [DOI: 10.1007/s12272-017-0897-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
43
|
Bagheri J, Rajabzadeh A, Baei F, Jalayeri Z, Ebrahimzadeh-bideskan A. The effect of maternal exposure to methamphetamine during pregnancy and lactation period on hippocampal neurons apoptosis in rat offspring. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1288141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Aliakbar Rajabzadeh
- Department of Anatomy and Cell Biology, School of Medicine and
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Baei
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Zahra Jalayeri
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Alireza Ebrahimzadeh-bideskan
- Department of Anatomy and Cell Biology, School of Medicine and
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem 2016; 23:515-33. [PMID: 27634143 PMCID: PMC5026208 DOI: 10.1101/lm.042192.116] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.
Collapse
Affiliation(s)
- Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
45
|
Wright J, Edwards J, Walker S. Exposures associated with clandestine methamphetamine drug laboratories in Australia. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:329-352. [PMID: 27428841 DOI: 10.1515/reveh-2016-0017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
The clandestine manufacture of methamphetamine in residential homes may represent significant hazards and exposures not only to those involved in the manufacture of the drugs but also to others living in the home (including children), neighbours and first responders to the premises. These hazards are associated with the nature and improper storage and use of precursor chemicals, intermediate chemicals and wastes, gases and methamphetamine residues generated during manufacture and the drugs themselves. Many of these compounds are persistent and result in exposures inside a home not only during manufacture but after the laboratory has been seized or removed. Hence new occupants of buildings formerly used to manufacture methamphetamine may be unknowingly exposed to these hazards. Children are most susceptible to these hazards and evidence is available in the literature to indicate that these exposures may result in immediate and long-term adverse health effects. The assessment of exposure within the home can be undertaken by measuring contaminant levels or collecting appropriate biological data from individuals exposed. To gain a better understanding of the available data and key issues associated with these approaches to the characterisation of exposure, a review of the published literature has been undertaken.
Collapse
|
46
|
Heysieattalab S, Naghdi N, Hosseinmardi N, Zarrindast MR, Haghparast A, Khoshbouei H. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens. Synapse 2016; 70:325-35. [PMID: 27029021 DOI: 10.1002/syn.21905] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023]
Abstract
Addictive drugs modulate synaptic transmission in the meso-corticolimbic system by hijacking normal adaptive forms of experience-dependent synaptic plasticity. Psychostimulants such as METH have been shown to affect hippocampal synaptic plasticity, albeit with a less understood synaptic mechanism. METH is one of the most addictive drugs that elicit long-term alterations in the synaptic plasticity in brain areas involved in reinforcement learning and reward processing. Dopamine transporter (DAT) is one of the main targets of METH. As a substrate for DAT, METH decreases dopamine uptake and increases dopamine efflux via the transporter in the target brain regions such as nucleus accumbens (NAc) and hippocampus. Due to cross talk between NAc and hippocampus, stimulation of NAc has been shown to alter hippocampal plasticity. In this study, we tested the hypothesis that manipulation of glutamatergic and GABA-ergic systems in the shell-NAc modulates METH-induced enhancement of long term potentiation (LTP) in the hippocampus. Rats treated with METH (four injections of 5 mg/kg) exhibited enhanced LTP as compared to saline-treated animals. Intra-NAc infusion of muscimol (GABA receptor agonist) decreased METH-induced enhancement of dentate gyrus (DG)-LTP, while infusion of AP5 (NMDA receptor antagonist) prevented METH-induced enhancement of LTP. These data support the interpretation that reducing NAc activity can ameliorate METH-induced hippocampal LTP through a hippocampus-NAc-VTA circuit loop. Synapse 70:325-335, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soomaayeh Heysieattalab
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, Florida, 323611
| |
Collapse
|
47
|
Zhu R, Yang T, Kobeissy F, Mouhieddine TH, Raad M, Nokkari A, Gold MS, Wang KK, Mechref Y. The Effect of Chronic Methamphetamine Exposure on the Hippocampal and Olfactory Bulb Neuroproteomes of Rats. PLoS One 2016; 11:e0151034. [PMID: 27082425 PMCID: PMC4833297 DOI: 10.1371/journal.pone.0151034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/23/2016] [Indexed: 01/23/2023] Open
Abstract
Nowadays, drug abuse and addiction are serious public health problems in the USA. Methamphetamine (METH) is one of the most abused drugs and is known to cause brain damage after repeated exposure. In this paper, we conducted a neuroproteomic study to evaluate METH-induced brain protein dynamics, following a two-week chronic regimen of an escalating dose of METH exposure. Proteins were extracted from rat brain hippocampal and olfactory bulb tissues and subjected to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. Both shotgun and targeted proteomic analysis were performed. Protein quantification was initially based on comparing the spectral counts between METH exposed animals and their control counterparts. Quantitative differences were further confirmed through multiple reaction monitoring (MRM) LC-MS/MS experiments. According to the quantitative results, the expression of 18 proteins (11 in the hippocampus and 7 in the olfactory bulb) underwent a significant alteration as a result of exposing rats to METH. 13 of these proteins were up-regulated after METH exposure while 5 were down-regulated. The altered proteins belonging to different structural and functional families were involved in processes such as cell death, inflammation, oxidation, and apoptosis.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Tianjiao Yang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
| | - Firas Kobeissy
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, United States of America
| | - Tarek H. Mouhieddine
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamad Raad
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amaly Nokkari
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mark S. Gold
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, United States of America
| | - Kevin K. Wang
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, United States of America
- * E-mail: (YM); (KKW)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States of America
- * E-mail: (YM); (KKW)
| |
Collapse
|
48
|
Heysieattalab S, Naghdi N, Zarrindast MR, Haghparast A, Mehr SE, Khoshbouei H. The effects of GABAA and NMDA receptors in the shell–accumbens on spatial memory of METH-treated rats. Pharmacol Biochem Behav 2016; 142:23-35. [DOI: 10.1016/j.pbb.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023]
|
49
|
Abstract
The view that anatomically distinct memory systems differentially contribute to the development of drug addiction and relapse has received extensive support. The present brief review revisits this hypothesis as it was originally proposed 20 years ago (1) and highlights several recent developments. Extensive research employing a variety of animal learning paradigms indicates that dissociable neural systems mediate distinct types of learning and memory. Each memory system potentially contributes unique components to the learned behavior supporting drug addiction and relapse. In particular, the shift from recreational drug use to compulsive drug abuse may reflect a neuroanatomical shift from cognitive control of behavior mediated by the hippocampus/dorsomedial striatum toward habitual control of behavior mediated by the dorsolateral striatum (DLS). In addition, stress/anxiety may constitute a cofactor that facilitates DLS-dependent memory, and this may serve as a neurobehavioral mechanism underlying the increased drug use and relapse in humans following stressful life events. Evidence supporting the multiple systems view of drug addiction comes predominantly from studies of learning and memory that have employed as reinforcers addictive substances often considered within the context of drug addiction research, including cocaine, alcohol, and amphetamines. In addition, recent evidence suggests that the memory systems approach may also be helpful for understanding topical sources of addiction that reflect emerging health concerns, including marijuana use, high-fat diet, and video game playing.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University , College Station, TX , USA
| | - Mark G Packard
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University , College Station, TX , USA
| |
Collapse
|
50
|
Vieira-Brock PL, McFadden LM, Nielsen SM, Smith MD, Hanson GR, Fleckenstein AE. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits. Int J Neuropsychopharmacol 2015; 18:pyv073. [PMID: 26164716 PMCID: PMC4675982 DOI: 10.1093/ijnp/pyv073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/23/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. METHODS Adolescent or adult male Sprague-Dawley rats received either nicotine water (10-75 μg/mL) or tap water for several weeks. Methamphetamine (4 × 7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. RESULTS Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. CONCLUSIONS Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which novel object recognition deficits are attenuated by nicotine in methamphetamine-treated rats.
Collapse
Affiliation(s)
- Paula L Vieira-Brock
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Lisa M McFadden
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Shannon M Nielsen
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Misty D Smith
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Glen R Hanson
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT
| | - Annette E Fleckenstein
- Department of Pharmacology and Toxicology (Dr Vieira-Brock, Dr McFadden, Ms Nielsen, Dr Smith, Dr Hanson, and Dr Fleckenstein), and School of Dentistry (Drs Smith, Hanson, and Fleckenstein), University of Utah, Salt Lake City, UT.
| |
Collapse
|