1
|
Jiang Q, Bakhurin KI, Hughes RN, Lu B, Ruan S, Yin HH. GABAergic neurons in the ventral tegmental area represent and regulate force vectors. Cell Rep 2025; 44:115313. [PMID: 39937645 DOI: 10.1016/j.celrep.2025.115313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, contains mostly dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction signal, which is used in computing a reward prediction error. In this study, by using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we identify distinct populations of VTA GABA neurons that exhibit precise force tuning independently of learning, reward prediction, and outcome valence. Their activity usually precedes force exertion, and selective optogenetic manipulations of these neurons systematically modulate force exertion without influencing reward prediction. Together, these findings show that VTA GABA neurons can continuously regulate force vectors during motivated behavior.
Collapse
Affiliation(s)
- Qiaochu Jiang
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | - Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Bryan Lu
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Shaolin Ruan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Jiang Q, Bakhurin KI, Hughes RN, Lu B, Ruan S, Yin HH. GABAergic neurons from the ventral tegmental area represent and regulate force vectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.07.627361. [PMID: 39713374 PMCID: PMC11661075 DOI: 10.1101/2024.12.07.627361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, consists predominantly of dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction, which is used in computing a reward prediction error. In this study, using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we discovered distinct populations of VTA GABA neurons that exhibited precise force tuning independently of learning, reward prediction, and outcome valence. Their activity usually preceded force exertion, and selective optogenetic manipulations of these neurons systematically modulated force exertion without influencing reward prediction. Together, these findings show that VTA GABA neurons continuously regulate force vectors during motivated behavior.
Collapse
|
3
|
Wilke SA, Lavi K, Byeon S, Donohue KC, Sohal VS. Convergence of Clinically Relevant Manipulations on Dopamine-Regulated Prefrontal Activity Underlying Stress Coping Responses. Biol Psychiatry 2022; 91:810-820. [PMID: 35090617 PMCID: PMC11182612 DOI: 10.1016/j.biopsych.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Depression is pleiotropic and influenced by diverse genetic, environmental, and pharmacological factors. Identifying patterns of circuit activity on which many of these factors converge would be important, because studying these patterns could reveal underlying pathophysiological processes and/or novel therapies. Depression is commonly assumed to involve changes within prefrontal circuits, and dopamine D2 receptor (D2R) agonists are increasingly used as adjunctive antidepressants. Nevertheless, how D2Rs influence disease-relevant patterns of prefrontal circuit activity remains unknown. METHODS We used brain slice calcium imaging to measure how patterns of prefrontal activity are modulated by D2Rs, antidepressants, and manipulations that increase depression susceptibility. To validate the idea that prefrontal D2Rs might contribute to antidepressant responses, we used optogenetic and genetic manipulations to test how dopamine, D2Rs, and D2R+ neurons contribute to stress-coping behavior. RESULTS Patterns of positively correlated activity in prefrontal microcircuits are specifically enhanced by D2R stimulation as well as by two mechanistically distinct antidepressants, ketamine and fluoxetine. Conversely, this D2R-driven effect was disrupted in two etiologically distinct depression models, a genetic susceptibility model and mice that are susceptible to chronic social defeat. Phasic stimulation of dopaminergic afferents to the prefrontal cortex and closed-loop stimulation of D2R+ neurons increased effortful responses to tail suspension stress, whereas prefrontal D2R deletion reduced the duration of individual struggling episodes. CONCLUSIONS Correlated prefrontal microcircuit activity represents a point of convergence for multiple depression-related manipulations. Prefrontal D2Rs enhance this activity. Through this mechanism, prefrontal D2Rs may promote network states associated with antidepressant actions and effortful responses to stress.
Collapse
Affiliation(s)
- Scott A Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Karen Lavi
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Sujin Byeon
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Kevin C Donohue
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Vikaas S Sohal
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
4
|
Pischedda F, Piccoli G. LRRK2 at the pre-synaptic site: A 16-years perspective. J Neurochem 2021; 157:297-311. [PMID: 33206398 DOI: 10.1111/jnc.15240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a common neurodegenerative disorder and is clinically characterized by bradykinesia, rigidity, and resting tremor. Missense mutations in the leucine-rich repeat protein kinase-2 gene (LRRK2) are a recognized cause of inherited Parkinson's disease. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence indicates that LRRK2 orchestrates diverse aspects of membrane trafficking, such as membrane fusion and vesicle formation and transport along actin and tubulin tracks. In the present review, we focus on the special relation between LRRK2 and synaptic vesicles. LRRK2 binds and phosphorylates key actors within the synaptic vesicle cycle. Accordingly, alterations in dopamine and glutamate transmission have been described upon LRRK2 manipulations. However, the different modeling strategies and phenotypes observed require a critical approach to decipher the outcome of LRRK2 at the pre-synaptic site.
Collapse
Affiliation(s)
- Francesca Pischedda
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Giovanni Piccoli
- CIBIO, Università degli Studi di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| |
Collapse
|
5
|
Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 2018; 1713:16-31. [PMID: 30513287 DOI: 10.1016/j.brainres.2018.11.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
Decades of research suggest that the mesocortical dopamine system exerts powerful control over mPFC physiology and function. Indeed, dopamine signaling in the medial prefrontal cortex (mPFC) is implicated in a vast array of processes, including working memory, stimulus discrimination, stress responses, and emotional and behavioral control. Consequently, even slight perturbations within this delicate system result in profound disruptions of mPFC-mediated processes. Many neuropsychiatric disorders are associated with dysregulation of mesocortical dopamine, including schizophrenia, depression, attention deficit hyperactivity disorder, post-traumatic stress disorder, among others. Here, we review the anatomy and functions of the mesocortical dopamine system. In contrast to the canonical role of striatal dopamine in reward-related functions, recent work has revealed that mesocortical dopamine fine-tunes distinct efferent projection populations in a manner that biases subsequent behavior towards responding to stimuli associated with potentially aversive outcomes. We propose a framework wherein dopamine can serve as a signal for switching mPFC states by orchestrating how information is routed to the rest of the brain.
Collapse
Affiliation(s)
- Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
|
7
|
London ED, Kohno M, Morales AM, Ballard ME. Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res 2014; 1628:174-85. [PMID: 25451127 DOI: 10.1016/j.brainres.2014.10.044] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
Despite aggressive efforts to contain it, methamphetamine use disorder continues to be major public health problem; and with generic behavioral therapies still the mainstay of treatment for methamphetamine abuse, rates of attrition and relapse remain high. This review summarizes the findings of structural, molecular, and functional neuroimaging studies of methamphetamine abusers, focusing on cortical and striatal abnormalities and their potential contributions to cognitive and behavioral phenotypes that can serve to promote compulsive drug use. These studies indicate that individuals with a history of chronic methamphetamine abuse often display several signs of corticostriatal dysfunction, including abnormal gray- and white-matter integrity, monoamine neurotransmitter system deficiencies, neuroinflammation, poor neuronal integrity, and aberrant patterns of brain connectivity and function, both when engaged in cognitive tasks and at rest. More importantly, many of these neural abnormalities were found to be linked with certain addiction-related phenotypes that may influence treatment response (e.g., poor self-control, cognitive inflexibility, maladaptive decision-making), raising the possibility that they may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Edythe D London
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024; Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90024; Departments of Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90024.
| | - Milky Kohno
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Angelica M Morales
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Michael E Ballard
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
8
|
Chou JS, Chen CY, Chen YL, Weng YH, Yeh TH, Lu CS, Chang YM, Wang HL. (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse. Neurobiol Dis 2014; 68:190-9. [DOI: 10.1016/j.nbd.2014.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 11/28/2022] Open
|
9
|
Wassum KM, Ostlund SB, Loewinger GC, Maidment NT. Phasic mesolimbic dopamine release tracks reward seeking during expression of Pavlovian-to-instrumental transfer. Biol Psychiatry 2013; 73:747-55. [PMID: 23374641 PMCID: PMC3615104 DOI: 10.1016/j.biopsych.2012.12.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Recent theories addressing mesolimbic dopamine's role in reward processing emphasize two apparently distinct functions, one in reinforcement learning (i.e., prediction error) and another in incentive motivation (i.e., the invigoration of reward seeking elicited by reward-paired cues). Here, we evaluate the latter. METHODS Using fast-scan cyclic voltammetry, we monitored, in real time, dopamine release in the nucleus accumbens core of rats (n = 9) during a Pavlovian-to-instrumental transfer task in which the effects of a reward-predictive cue on an independently trained instrumental action were assessed. Voltammetric data were parsed into slow and phasic components to determine whether these forms of dopamine signaling were differentially related to task performance. RESULTS We found that a reward-paired cue, which increased reward-seeking actions, induced an increase in phasic mesolimbic dopamine release and produced slower elevations in extracellular dopamine. Interestingly, phasic dopamine release was temporally related to and positively correlated with lever-press activity generally, while slow dopamine changes were not significantly related to such activity. Importantly, the propensity of the reward-paired cue to increase lever pressing was predicted by the amplitude of phasic dopamine release events, indicating a possible mechanism through which cues initiate reward-seeking actions. CONCLUSIONS These data suggest that those phasic mesolimbic dopamine release events thought to signal reward prediction error may also be related to the incentive motivational impact of reward-paired cues on reward-seeking actions.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
10
|
Panin F, Cathala A, Piazza PV, Spampinato U. Coupled intracerebral microdialysis and electrophysiology for the assessment of dopamine neuron function in vivo. J Pharmacol Toxicol Methods 2012; 65:83-92. [DOI: 10.1016/j.vascn.2012.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
|
11
|
Dutra SJ, Stoeckel LE, Carlini SV, Pizzagalli DA, Evins AE. Varenicline as a smoking cessation aid in schizophrenia: effects on smoking behavior and reward sensitivity. Psychopharmacology (Berl) 2012; 219:25-34. [PMID: 21695488 PMCID: PMC3267781 DOI: 10.1007/s00213-011-2373-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/26/2011] [Indexed: 12/15/2022]
Abstract
RATIONALE Smoking rates are up to five times higher in people with schizophrenia than in the general population, placing these individuals at high risk for smoking-related health problems. Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, is a promising aid for smoking cessation in this population. To maximize treatment efficacy while minimizing risks, it is critical to identify reliable predictors of positive response to varenicline in smokers with schizophrenia. OBJECTIVES Negative symptoms of schizophrenia are related to dysfunctions in the brain reward system, are associated with nicotine dependence, and may be improved by nicotine or nicotinic receptor agonists, suggesting that smoking cessation may be especially difficult for patients with substantial negative symptoms. The purpose of the study was to evaluate negative symptoms as predictors of response to varenicline. METHODS Patients with schizophrenia (N = 53) completed a 12-week smoking cessation trial combining varenicline with cognitive behavioral therapy. Negative symptoms were assessed via the Scale for the Assessment of Negative Symptoms (Andreasen 1983). Outcomes included smoking abstinence as assessed by self-report and expired carbon monoxide. Change in performance on a probabilistic reward task was used as an index of change in reward sensitivity during treatment. RESULTS At week 12, 32 participants met criteria for 14-day point-prevalence abstinence. Patients with lower baseline symptoms of affective flattening (more typical affect) were more likely to achieve smoking abstinence and demonstrated larger increases in reward sensitivity during treatment. CONCLUSIONS These data suggest that affective flattening symptoms in smokers with schizophrenia may predict response to varenicline.
Collapse
Affiliation(s)
- Sunny J Dutra
- Department of Psychology, Yale University, P.O. Box 208205, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
12
|
Cucchiaroni ML, Freestone PS, Berretta N, Viscomi MT, Bisicchia E, Okano H, Molinari M, Bernardi G, Lipski J, Mercuri NB, Guatteo E. Properties of dopaminergic neurons in organotypic mesencephalic-striatal co-cultures - evidence for a facilitatory effect of dopamine on the glutamatergic input mediated by α-1 adrenergic receptors. Eur J Neurosci 2011; 33:1622-36. [DOI: 10.1111/j.1460-9568.2011.07659.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Pattison LP, Bonin KD, Hemby SE, Budygin EA. Speedball induced changes in electrically stimulated dopamine overflow in rat nucleus accumbens. Neuropharmacology 2010; 60:312-7. [PMID: 20869972 DOI: 10.1016/j.neuropharm.2010.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/26/2022]
Abstract
Cocaine/heroin combinations (speedball) induce a synergistic elevation in extracellular dopamine concentrations ([DA](e)) in the nucleus accumbens (NAc) that can explain the increased abuse liability of speedball. To further delineate the mechanism of this neurochemical synergism, in vivo fast-scan cyclic voltammetry (FSCV) was used to compare NAc DA release and reuptake kinetic parameters following acute administration of cocaine, heroin and speedball in drug-naïve rats. These parameters were extracted from accumbal DA overflow induced by electrical stimulation of the ventral tegmental area. Evoked DA efflux was increased following both cocaine and speedball delivery, whereas heroin did not significantly change evoked DA release from baseline. DA efflux was significantly greater following cocaine compared to speedball. However, DA transporter (DAT) apparent affinity (K(m)) values were similarly elevated following cocaine and speedball administration, but unaffected by heroin. Neither drug induced substantial changes in the maximal reuptake rate (V(max)). These data, combined with published microdialysis and electrophysiological results, indicate that the combination of cocaine-induced competitive inhibition of DAT and the increase in the DA release elicited by heroin is responsible for the synergistic increase in ([DA](e)) induced by speedball.
Collapse
Affiliation(s)
- Lindsey P Pattison
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | | | | | | |
Collapse
|
14
|
Antipsychotic drug-induced increases in ventral tegmental area dopamine neuron population activity via activation of the nucleus accumbens-ventral pallidum pathway. Int J Neuropsychopharmacol 2010; 13:845-60. [PMID: 19751544 PMCID: PMC2909348 DOI: 10.1017/s1461145709990599] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acute administration of antipsychotic drugs increases dopamine (DA) neuron activity and DA release via D2 receptor blockade. However, it is unclear whether the DA neuron activation produced by antipsychotic drugs is due to feedback from post-synaptic blockade or is due to an action on DA neuron autoreceptors. This was evaluated using two drugs: the first-generation antipsychotic drug haloperidol that has potent D2 blocking properties, and the second-generation drug sertindole, which is unique in that it is reported to fail to reverse the apomorphine-induced decrease in firing rate typically associated with DA neuron autoreceptor stimulation. Using single-unit extracellular recordings from ventral tegmental area (VTA) DA neurons in anaesthetized rats, both drugs were found to significantly increase the number of spontaneously active DA neurons (population activity). Apomorphine administered within 10 min either before or after sertindole reversed the sertindole-induced increase in population activity, but had no effect when administered 1 h after sertindole. Moreover, both sertindole- and haloperidol-induced increase in population activity was prevented when nucleus accumbens feedback was interrupted by local infusion of the GABAA antagonist bicuculline into the ventral pallidum. Taken together, these data suggest that antipsychotics increase DA neuron population activity via a common action on the nucleus accumbens-ventral pallidum-VTA feedback pathway and thus provide further elucidation on the mechanism by which antipsychotic drugs affect DA neuron activity. This provides an important insight into the relationship between altered DA neuron activity and potential antipsychotic efficacy.
Collapse
|
15
|
Sharma JC, Bachmann CG, Linazasoro G. Classifying risk factors for dyskinesia in Parkinson's disease. Parkinsonism Relat Disord 2010; 16:490-7. [PMID: 20598622 DOI: 10.1016/j.parkreldis.2010.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/01/2010] [Accepted: 06/06/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Currently there is no classification of risk factors applicable to an individual patient with Parkinson's disease for the development of dyskinesia. METHODS We conducted literature search to identify and classifying risk factors into groups - (a) intrinsic vs extrinsic and (b) modifiable vs non-modifiable. RESULTS Younger age, young age of onset and severity of PD are major intrinsic non-modifiable risk factors for dyskinesia, female gender is another factor but not independent of other factors. Genetic expression and plasticity may determine pre-disposition to age of onset of PD and dyskinesia, these are currently non-modifiable factors arising due to an interaction of intrinsic and extrinsic factors. Lower initial body weight and weight loss during the course of the disease increase the risk of dyskinesia. Levodopa dose per kilogram body weight is a more significant risk factor than absolute levodopa dose. Early use of longer acting non-levodopa (i.e. dopamine agonists) medications delays the onset of dyskinesia. Interaction between body weight, levodopa dose and mode and duration of drug delivery is a significant modifiable factor. CONCLUSION Dyskinesia in PD arises as a consequence of the interaction of intrinsic versus extrinsic and modifiable versus non-modifiable factors. Identification and manipulation of modifiable factors for an individual patient may reduce the risk and burden of dyskinesia. Adjustment of levodopa dose according to body weight during the course of the disease seems to be a significant modifiable risk factor for dyskinesia.
Collapse
Affiliation(s)
- J C Sharma
- Consultant Physician and Honorary Professor, Sherwood Forest hospitals NHS Trust, University of Nottingham, UK.
| | | | | |
Collapse
|
16
|
Dopamine signaling in the nucleus accumbens of animals self-administering drugs of abuse. Curr Top Behav Neurosci 2010; 3:29-71. [PMID: 21161749 DOI: 10.1007/7854_2009_27] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abuse of psychoactive substances can lead to drug addiction. In animals, addiction is best modeled by drug self-administration paradigms. It has been proposed that the crucial common denominator for the development of drug addiction is the ability of drugs of abuse to increase extracellular concentrations of dopamine in the nucleus accumbens (NAcc). Studies using in vivo microdialysis and chronoamperometry in the behaving animal have demonstrated that drugs of abuse increase tonic dopamine concentrations in the NAcc. However, it is known that dopamine neurons respond to reward-related stimuli on a subsecond timescale. Thus, it is necessary to collect neurochemical information with this level of temporal resolution, as achieved with in vivo fast-scan cyclic voltammetry (FSCV), to fully understand the role of phasic dopamine release in normal behavior and drug addiction. We review studies that investigated the effects of drugs of abuse on NAcc dopamine levels in freely moving animals using in vivo microdialysis, chronoamperometry, and FSCV. After a brief introduction of dopamine signal transduction and anatomy and a section on current theories on the role of dopamine in natural goal-directed behavior, a discussion of techniques for the in vivo assessment of extracellular dopamine in behaving animals is presented. Then, we review studies using these techniques to investigate changes in phasic and tonic dopamine signaling in the NAcc during (1) response-dependent and -independent administration of abused drugs, (2) the presentation of drug-conditioned stimuli and operant behavior in self-administration paradigms, (3) drug withdrawal, and (4) cue-induced reinstatement of drug seeking. These results are then integrated with current ideas on the role of dopamine in addiction with an emphasis on a model illustrating phasic and tonic NAcc dopamine signaling during different stages of drug addiction. This model predicts that phasic dopamine release in response to drug-related stimuli will be enhanced over stimuli associated with natural reinforcers, which may result in aberrant goal-directed behaviors contributing to drug addiction.
Collapse
|
17
|
Zellner MR, Ranaldi R. How conditioned stimuli acquire the ability to activate VTA dopamine cells: a proposed neurobiological component of reward-related learning. Neurosci Biobehav Rev 2009; 34:769-80. [PMID: 19914285 DOI: 10.1016/j.neubiorev.2009.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 02/04/2023]
Abstract
The ability to learn about conditioned stimuli (CS) associated with rewards is a crucial adaptive mechanism. Activity in the mesocorticolimbic dopamine (DA) system, as well as in the ventral tegmental area (VTA), is correlated with responding to and learning about CSs. The mechanism by which VTA neurons become activated by signals associated with conditioned stimuli is not fully understood. Our model suggests that NMDA receptor stimulation in the VTA allows originally weak glutamate signals carrying information about environmental stimuli, coincident with strong excitation correlated with primary rewards, to be strengthened and thereby acquire the ability to activate VTA neurons in themselves, producing approach. Furthermore, once synaptic strengthening occurs, the model suggests that NMDA receptor stimulation in VTA is not necessary for the expression of reward-related learning. In this review we survey evidence that VTA cells respond to cues associated with primary rewards, that this responding is acquired, and that the VTA possesses the attributes to function as a site of integration of signals of primary and conditioned stimuli.
Collapse
Affiliation(s)
- Margaret R Zellner
- Laboratory of Neurobiology & Behavior, The Rockefeller University, New York, NY, United States
| | | |
Collapse
|
18
|
Can cellular models revolutionize drug discovery in Parkinson's disease? Biochim Biophys Acta Mol Basis Dis 2009; 1792:1043-51. [PMID: 19733239 DOI: 10.1016/j.bbadis.2009.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/21/2009] [Accepted: 08/26/2009] [Indexed: 02/08/2023]
Abstract
The study of mechanisms that underlie Parkinson's disease (PD), as well as translational drug development, has been hindered by the lack of appropriate models. Both cell culture systems and animal models have limitations, and to date none faithfully recapitulate all of the clinical and pathological phenotypes of the disease. In this review we examine the various cell culture model systems of PD, with a focus on different stem cell models that can be used for investigating disease mechanisms as well as drug discovery for PD. We conclude with a discussion of recent discoveries in the field of stem cell biology that have led to the ability to reprogram somatic cells to a pluripotent state via the use of a combination of genetic factors; these reprogrammed cells are termed "induced pluripotent stem cells" (iPSCs). This groundbreaking technique allows for the derivation of patient-specific cell lines from individuals with sporadic forms of PD and also those with known disease-causing mutations. Such cell lines have the potential to serve as a human cellular model of neurodegeneration and PD when differentiated into dopaminergic neurons. The hope is that these iPSC-derived dopaminergic neurons can be used to replicate the key molecular aspects of neural degeneration associated with PD. If so, this approach could lead to transformative new tools for the study of disease mechanisms. In addition, such cell lines can be potentially used for high-throughput drug screening. While not the focus of this review, ultimately it is envisioned that techniques for reprogramming of somatic cells may be optimized to a point sufficient to provide potential new avenues for stem cell-based restorative therapies.
Collapse
|
19
|
Nair SG, Adams-Deutsch T, Epstein DH, Shaham Y. The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking. Prog Neurobiol 2009; 89:18-45. [PMID: 19497349 PMCID: PMC2745723 DOI: 10.1016/j.pneurobio.2009.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 04/09/2009] [Accepted: 05/26/2009] [Indexed: 12/15/2022]
Abstract
Relapse to old, unhealthy eating habits is a major problem in human dietary treatments. The mechanisms underlying this relapse are unknown. Surprisingly, until recently this clinical problem has not been systematically studied in animal models. Here, we review results from recent studies in which a reinstatement model (commonly used to study relapse to abused drugs) was employed to characterize the effect of pharmacological agents on relapse to food seeking induced by either food priming (non-contingent exposure to small amounts of food), cues previously associated with food, or injections of the pharmacological stressor yohimbine. We also address methodological issues related to the use of the reinstatement model to study relapse to food seeking, similarities and differences in mechanisms underlying reinstatement of food seeking versus drug seeking, and the degree to which the reinstatement procedure provides a suitable model for studying relapse in humans. We conclude by discussing implications for medication development and future research. We offer three tentative conclusions: (1)The neuronal mechanisms of food-priming- and cue-induced reinstatement are likely different from those of reinstatement induced by the pharmacological stressor yohimbine. (2)The neuronal mechanisms of reinstatement of food seeking are possibly different from those of ongoing food-reinforced operant responding. (3)The neuronal mechanisms underlying reinstatement of food seeking overlap to some degree with those of reinstatement of drug seeking.
Collapse
Affiliation(s)
- Sunila G. Nair
- Behavioral Neuroscience Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| | - Tristan Adams-Deutsch
- Behavioral Neuroscience Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| | - David H. Epstein
- Clinical Pharmacology and Therapeutics Research Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, NIDA/IRP, 251 Bayview Boulevard, Baltimore, MD, 21224
| |
Collapse
|
20
|
Di Giovanni G, Shi WX. Effects of scopolamine on dopamine neurons in the substantia nigra: role of the pedunculopontine tegmental nucleus. Synapse 2009; 63:673-80. [PMID: 19360852 DOI: 10.1002/syn.20650] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous neurochemical and behavioral studies suggest that muscarinic receptor antagonism has an excitatory effect on the nigrostriatal dopamine (DA) system. Using in vivo extracellular single unit recording, this study examined whether blockade of the muscarinic receptor by scopolamine alters the firing properties of DA neurons in the substantia nigra (SN). Scopolamine was administered either systemically or locally to DA neurons using microiontophoresis. Surprisingly, scopolamine did not cause any significant change in either the firing rate or pattern of the spontaneously active DA neurons. However, systemic injection of scopolamine significantly increased the number of active DA neurons in the SN. Local infusion of scopolamine into the pedunculopontine tegmental nucleus (PPT) mimicked the effect induced by systemically administered scopolamine, significantly increasing the number of active DA neurons without altering the firing rate and pattern. These results suggest that the reported increase in striatal DA release induced by scopolamine is in part mediated by activation of silent nigral DA neurons. The experiments with PPT local infusion further suggest that part of the effect of scopolamine may be due to its blockade of the inhibitory muscarinic autoreceptors on PPT cholinergic cells. The latter effect may lead to activation of quiescent DA neurons by increasing acetylcholine (ACh) release in the SN or in other brain areas providing inputs to DA neurons. Further understanding of the mechanism of action of scopolamine may help us further understand the role of ACh in both the pathophysiology and treatment of DA-related disorders including schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana G Pagano, Università degli Studi di Palermo, Palermo, Italy.
| | | |
Collapse
|
21
|
Jenner P. Preventing and controlling dyskinesia in Parkinson's disease-A view of current knowledge and future opportunities. Mov Disord 2008; 23 Suppl 3:S585-98. [DOI: 10.1002/mds.22022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
22
|
Cholinergic modulation of midbrain dopaminergic systems. ACTA ACUST UNITED AC 2008; 58:265-71. [DOI: 10.1016/j.brainresrev.2008.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
23
|
Rodriguez M, Gonzalez S, Morales I, Sabate M, Gonzalez-Hernandez T, Gonzalez-Mora JL. Nigrostriatal cell firing action on the dopamine transporter. Eur J Neurosci 2007; 25:2755-65. [PMID: 17561841 DOI: 10.1111/j.1460-9568.2007.05510.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of nigrostriatal cell firing on the dopamine transporter (DAT) activity of the rat striatum was studied in vivo with amperometric methods. Data were obtained after preventing dopamine (DA) release with alpha-methyl-L-tyrosine and replenishing extracellular DA with local injections. The DA cell stimulation, which under basal conditions increased extracellular DA, decreased DA after this pre-treatment, suggesting that firing activity facilitates the DA cell uptake of DA under these circumstances (drain response). Cocaine and GBR13069 markedly decreased the drain response, suggesting that it is dependent on DAT activation. Data obtained after haloperidol and apomorphine administration showed that the drain response was facilitated by pre-synaptic DA receptor stimulation but that receptors are not a necessary requirement. Two components in the drain response were observed, one with a short latency and duration that needed high-frequency stimuli, and the other with a long latency and duration that was even induced by low-frequency stimuli. This is the first evidence showing that DAT can be activated by the firing activity in nigrostriatal cells in a direct way and without the participation of pre-synaptic DA receptors.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, 38320 Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
24
|
Windels F, Kiyatkin EA. Dopamine action in the substantia nigra pars reticulata: iontophoretic studies in awake, unrestrained rats. Eur J Neurosci 2006; 24:1385-94. [PMID: 16987223 DOI: 10.1111/j.1460-9568.2006.05015.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) neurons located in the substantia nigra pars compacta release DA not only via axonal terminals, affecting neurotransmission within the striatum, but also via dendrites, some of which densely protrude into the substantia nigra pars reticulata (SNr). Although the interaction of dendritically released DA with somatodendritic autoreceptors regulates DA cell activity, released DA may also affect SNr neurons. These cells, however, lack postsynaptic DA receptors, making it unclear how locally released DA modulates their activity. Although previous work in brain slices suggests that DA might modulate the activity of GABA inputs, thus affecting SNr neurons indirectly, it remains unclear how increased or decreased DA release might affect these cells exposed to normal afferent inputs. To explore this issue, we examined the effects of iontophoretic DA and amphetamine on SNr neurons in awake, unrestrained rats. DA had no consistent effects on SNr cells but amphetamine, known to induce DA release, dose-dependently inhibited most of them. This effect was blocked by SCH23390, a selective D1 receptor blocker, which itself strongly increased neuronal discharge rate. As GABA input is a major factor regulating the activity of SNr neurons, our data suggest that dendritically released DA, by interacting with D1 receptors on striato-nigral and pallido-nigral afferents, is able to decrease this input, thus releasing SNr neurons from tonic, GABA-mediated inhibition. Surprisingly, a full DA receptor blockade (SCH23390 + eticlopride) did not result in the expected increase in SNr discharge rate, suggesting that other mechanisms are responsible for behavioral abnormalities following acute disruption of DA transmission.
Collapse
Affiliation(s)
- François Windels
- Cellular Neurobiology Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
25
|
Eells JB, Misler JA, Nikodem VM. Reduced tyrosine hydroxylase and GTP cyclohydrolase mRNA expression, tyrosine hydroxylase activity, and associated neurochemical alterations in Nurr1-null heterozygous mice. Brain Res Bull 2006; 70:186-95. [PMID: 16782508 DOI: 10.1016/j.brainresbull.2006.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/05/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
The nuclear receptor Nurr1 is essential for the development of midbrain dopamine neurons and appears to be an important regulator of dopamine levels as adult Nurr1-null heterozygous (+/-) mice have reduced mesolimbic/mesocortical dopamine levels. The mechanism(s) through which reduced Nurr1 expression affects dopamine levels has not been determined. Quantitative real-time PCR revealed a significant reduction in tyrosine hydroxylase (TH) and GTP cyclohydrolase (GTPCH) mRNA in ventral midbrain of +/- mice as compared to wild-type mice (+/+). The effect on TH expression was only observed at birth, while reduced GTP cyclohydrolase was also observed in the adult ventral tegemental area. No differences in dopamine transporter, vesicular monoamine transporter, dopamine D2 receptor or aromatic amino acid decarboxylase were observed. Since TH and GTPCH are both involved in dopamine synthesis, regulation of in vivo TH activity was measured in these mice. In vivo TH activity was reduced in nucleus accumbens and striatum of the +/- mice (24.7% and 15.7% reduction, respectively). In the striatum, gamma-butyrolactone exacerbated differences on +/- striatal TH activity (29.8% reduction) while haloperidol equalized TH activity between the +/+ and +/-. TH activity in the nucleus accumbens was significantly reduced in all conditions measured. Furthermore, dopamine levels in the striatum of +/- mice were significantly reduced after inhibition of dopamine synthesis or after haloperidol treatment but not under basal conditions while dopamine levels in the nucleus accumbens were reduced under basal conditions. Based on these data the +/- genotype results in changes in gene expression and impairs dopamine synthesis which can affect the maintenance of dopamine levels, although with differential effects between mesolimbic/mesocortical and nigrostriatal dopamine neurons. Together, these data suggest that Nurr1 may function to modify TH and GTPCH expression and dopamine synthesis.
Collapse
Affiliation(s)
- Jeffrey B Eells
- National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
26
|
Abstract
Recent important advancements in genomic research have opened the way to new strategies for public health management. One of these questions pertains to how individual genetic variation may be associated with individual variability in response to drug treatment. The field of pharmacogenetics may have a profound impact on treatment of complex psychiatric disorders like schizophrenia. However, pharmacogenetic studies in schizophrenia have produced conflicting results. The first studies examined potential associations between clinical response and drug receptor genes. Subsequent studies have tried to use more objective phenotypes still in association with drug receptor genes. More recently, other studies have sought the association between putative causative or modifier genes and intermediate phenotypes. Thus, conflicting results may be at least in part explained by variability and choice of the phenotype, by choice of candidate genes, or by the relatively little knowledge about the neurobiology of this disorder. We propose that choosing intermediate phenotypes that allow in vivo measurement of specific neuronal functions may be of great help in reducing several of the potential confounds intrinsic to clinical measurements. Functional neuroimaging is ideally suited to address several of these potential confounds, and it may represent a powerful strategy to investigate the relationship between behavior, brain function, genes, and individual variability in the response to treatment with antipsychotic drugs in schizophrenia. Preliminary evidence with potential susceptilibity genes such as COMT, DISC1, and GRM3 support these assumptions.
Collapse
Affiliation(s)
- Giuseppe Blasi
- />Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University of Bari, 70125 Bari, Italy
- />Clinical Brain Disorders Branch, Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, 20892 Bethesda, MD
| | - Alessandro Bertolino
- />Psychiatric Neuroscience Group, Department of Neurological and Psychiatric Sciences, University of Bari, 70125 Bari, Italy
- />Clinical Brain Disorders Branch, Gene, Cognition and Psychosis Program, National Institute of Mental Health, National Institutes of Health, 20892 Bethesda, MD
- />Department of Neuroradiology, IRCCSS “Casa Sollievo della Sofferenza,”, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
27
|
Abstract
In anesthetized animals, dopamine neurons fire in tonic and phasic firing modes hypothesized to be regulated by dissociable circuit mechanisms. Salient events critical to learning, reward processing, and attentional selection elicit transient phasic bursts. It is unclear, however, how burst activity contributes to sustained firing patterns in awake animals and if behavioral conditions known to affect dopaminergic neurotransmission change impulse activity levels. Acute stress is known to increase extracellular dopamine in the striatum and the prefrontal cortex. In this study, we have used multiunit recording to define and follow activity patterns in single dopaminergic neurons across days and to determine how restraint, a model of acute stress, changes tonic and phasic firing patterns. Long-term recording shows that a population of 23 putative dopamine neurons has heterogeneous firing profiles under baseline conditions. In all, 62% showed significant burst activity under resting conditions, while others showed predominantly regular (17%) or random (21%) activity patterns. Restraint increased mean firing rate in all dopamine neurons, but preferentially increased burst firing in neurons with higher burst rates under resting conditions. Finally, we show that increased burst firing can persist 24 h after a single exposure to stress. These data indicate that subsets of dopamine neurons may be sensitive to circuit mechanisms activated by stress and that persistent changes in burst firing may be evidence of synaptic plasticity. Furthermore, increased burst firing may be a mechanism through which stress augments extracellular dopamine in selected terminal regions.
Collapse
Affiliation(s)
- Kristin K Anstrom
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
28
|
Lévesque M, Parent A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci U S A 2005; 102:11888-93. [PMID: 16087877 PMCID: PMC1187973 DOI: 10.1073/pnas.0502710102] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current model of basal ganglia rests on the idea that the striatofugal system is composed of two separate (direct and indirect) pathways originating from distinct cell populations in the striatum. The striatum itself is divided into two major compartments, the striosomes and the matrix, which differ by their neurochemical makeup and input/output connections. Here, neurons located in either striosomes or the extrastriosomal matrix in squirrel monkeys were injected with biotin dextran amine, and their labeled axons were entirely reconstructed with a camera lucida. Twenty-four of 27 reconstructed axons arborized into the three main striatal targets (external pallidum, globus pallidus, and substantia nigra pars reticulata), a finding that is at odds with the concept of a dual striatofugal system. Axons of striosomal neurons formed several columnar terminal fields in the substantia nigra pars reticulata. These data indicate that the substantia nigra pars compacta is neither the only nor the main target of striosomal neurons, a finding that calls for a reevaluation of the organization of the striatonigral projection system.
Collapse
Affiliation(s)
- Martin Lévesque
- Centre de Recherche Université Laval Robert-Giffard, 2601 de la Canardière, Beauport, QC, Canada G1J 2G3
| | | |
Collapse
|
29
|
Binda AV, Kabbani N, Levenson R. Regulation of dense core vesicle release from PC12 cells by interaction between the D2 dopamine receptor and calcium-dependent activator protein for secretion (CAPS). Biochem Pharmacol 2005; 69:1451-61. [DOI: 10.1016/j.bcp.2005.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
|
30
|
Wörgötter F, Porr B. Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 2005; 17:245-319. [PMID: 15720770 DOI: 10.1162/0899766053011555] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In this review, we compare methods for temporal sequence learning (TSL) across the disciplines machine-control, classical conditioning, neuronal models for TSL as well as spike-timing-dependent plasticity (STDP). This review introduces the most influential models and focuses on two questions: To what degree are reward-based (e.g., TD learning) and correlation-based (Hebbian) learning related? and How do the different models correspond to possibly underlying biological mechanisms of synaptic plasticity? We first compare the different models in an open-loop condition, where behavioral feedback does not alter the learning. Here we observe that reward-based and correlation-based learning are indeed very similar. Machine control is then used to introduce the problem of closed-loop control (e.g., actor-critic architectures). Here the problem of evaluative (rewards) versus nonevaluative (correlations) feedback from the environment will be discussed, showing that both learning approaches are fundamentally different in the closed-loop condition. In trying to answer the second question, we compare neuronal versions of the different learning architectures to the anatomy of the involved brain structures (basal-ganglia, thalamus, and cortex) and the molecular biophysics of glutamatergic and dopaminergic synapses. Finally, we discuss the different algorithms used to model STDP and compare them to reward-based learning rules. Certain similarities are found in spite of the strongly different timescales. Here we focus on the biophysics of the different calcium-release mechanisms known to be involved in STDP.
Collapse
Affiliation(s)
- Florentin Wörgötter
- Department of Psychology, University of Stirling, Stirling FK9 4LA, Scotland.
| | | |
Collapse
|
31
|
Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. ACTA ACUST UNITED AC 2005; 21:139-70. [PMID: 15464348 DOI: 10.1016/j.cogbrainres.2004.06.012] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2004] [Indexed: 11/16/2022]
Abstract
Humans and other animals demonstrate the ability to perceive and respond to temporally relevant information with characteristic behavioral properties. For example, the response time distributions in peak-interval timing tasks are well described by Gaussian functions, and superimpose when scaled by the criterion duration. This superimposition has been referred to as the scalar property and results from the fact that the standard deviation of a temporal estimate is proportional to the duration being timed. Various psychological models have been proposed to account for such responding. These models vary in their success in predicting the temporal control of behavior as well as in the neurobiological feasibility of the mechanisms they postulate. A review of the major interval timing models reveals that no current model is successful on both counts. The neurobiological properties of the basal ganglia, an area known to be necessary for interval timing and motor control, suggests that this set of structures act as a coincidence detector of cortical and thalamic input. The hypothesized functioning of the basal ganglia is similar to the mechanisms proposed in the beat frequency timing model [R.C. Miall, Neural Computation 1 (1989) 359-371], leading to a reevaluation of its capabilities in terms of behavioral prediction. By implementing a probabilistic firing rule, a dynamic response threshold, and adding variance to a number of its components, simulations of the striatal beat frequency model were able to produce output that is functionally equivalent to the expected behavioral response form of peak-interval timing procedures.
Collapse
Affiliation(s)
- Matthew S Matell
- Department of Psychology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
| | | |
Collapse
|
32
|
Jomphe C, Bourque MJ, Fortin GD, St-Gelais F, Okano H, Kobayashi K, Trudeau LE. Use of TH-EGFP transgenic mice as a source of identified dopaminergic neurons for physiological studies in postnatal cell culture. J Neurosci Methods 2005; 146:1-12. [PMID: 15935217 DOI: 10.1016/j.jneumeth.2005.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/10/2004] [Accepted: 10/14/2004] [Indexed: 11/25/2022]
Abstract
The physiological and pharmacological properties of dopaminergic neurons in the brain are of major interest. Although much has been learned from cell culture studies, the physiological properties of these neurons remain difficult to study in such models because they are usually in minority and are difficult to distinguish from other non-dopaminergic neurons. Here we have taken advantage of a recently engineered transgenic mouse model expressing enhanced green fluorescence protein (EGFP) under the control of the tyrosine hydroxylase promoter to establish a more effective dopaminergic neuron cell culture model. We first evaluated the specificity of the EGFP expression. Although ectopic expression of EGFP was found in cultures derived from postnatal day 0 pups, this decreased over time in culture such that after 2 weeks, approximately 70% of EGFP-expressing neurons were dopaminergic. We next sought to validate this dopaminergic neuron culture model. We evaluated whether EGFP-expressing dopaminergic neurons displayed some of the well-established properties of dopaminergic neurons. Autoreceptor stimulation inhibited the activity of dopaminergic neurons while neurotensin receptor activation produced the opposite effect. Confocal imaging of the synaptic vesicle optical tracer FM4-64 in EGFP-expressing dopaminergic neurons demonstrated the feasibility of high resolution monitoring of the activity of single terminals established by these neurons. Together, this work provides evidence that primary cultures of postnatal TH-EGFP mice currently represent an excellent model to study the properties of these cells in culture.
Collapse
Affiliation(s)
- C Jomphe
- Department of Pharmacology, Faculty of Medicine, Centre de Recherche en Sciences Neurologiques, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montréal, Que., Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
33
|
Cebrián C, Parent A, Prensa L. Patterns of axonal branching of neurons of the substantia nigra pars reticulata and pars lateralis in the rat. J Comp Neurol 2005; 492:349-69. [PMID: 16217789 DOI: 10.1002/cne.20741] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Axons from neurons of the rat substantia nigra pars reticulata (SNr) and pars lateralis (SNl) were traced after injecting their cell body with biotinylated dextran amine. Thirty-two single axons were reconstructed from serial sagittal sections with a camera lucida, whereas four other SNr axons were reconstructed in the coronal plane to determine whether they innervate the contralateral hemisphere. Four distinct types of SNr projection neurons were identified based on their main axonal targets: type I neurons that project to the thalamus; type II neurons that target the thalamus, the superior colliculus (SC), and the pedunculopontine tegmental nucleus (PPTg); type III neurons that project to the periaqueductal gray matter and the thalamus; and type IV neurons that target the deep mesencephalic nucleus (DpMe) and the SC. The axons of the SNl showed the same branching patterns as SNr axons of types I, II, and IV. The coronal reconstructions demonstrated that SNr neurons innervate the thalamus, the SC, and the DpMe bilaterally. At the thalamic level, SNr and SNl axons targeted preferentially the ventral medial, ventral lateral, paracentral, parafascicular, and mediodorsal nuclei. Axons reaching the SC arborized selectively within the deep layers of this structure. Our results reveal that the SNr and SNl harbor several subtypes of projection neurons endowed with a highly patterned set of axon collaterals. This organization allows single neurons of these output structures of the basal ganglia to exert a multifaceted influence on a wide variety of diencephalic and midbrain structures.
Collapse
Affiliation(s)
- Carolina Cebrián
- División de Neurociencias, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31080 Pamplona, Spain
| | | | | |
Collapse
|
34
|
Tavakoli-Nezhad M, Pitts DK. Postnatal Inorganic Lead Exposure Reduces Midbrain Dopaminergic Impulse Flow and Decreases Dopamine D1 Receptor Sensitivity in Nucleus Accumbens Neurons. J Pharmacol Exp Ther 2004; 312:1280-8. [PMID: 15550573 DOI: 10.1124/jpet.104.076166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lead treatment via drinking water for 3 to 6 weeks at 250 ppm was found to significantly decrease the number of spontaneously active dopamine (DA) neurons in both the substantia nigra and ventral tegmental area that were recorded using standard extracellular electrophysiological recording techniques. Lead exposure did not affect the discharge rate or discharge pattern of these DA neurons. No significant decrease in the number of tyrosine hydroxylase immunopositive cells was detected in lead-treated animals relative to controls even though the length of lead exposure was extended beyond that of the electrophysiological studies. The significant lead-induced decrease in spontaneously active cells observed in the electrophysiological studies was, therefore, not due to cell death. An acute drug challenge with the DA receptor agonist apomorphine at a dose known to hyperpolarize midbrain DA neurons (50 mug/kg i.v.) was used to determine whether hyperpolarization would normalize the number of spontaneously active DA neurons. The results suggest that depolarization inactivation was most likely not the cause for this lead effect. The D(1) receptor agonist SKF-38393 [1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol] was iontophoretically applied to type I nucleus accumbens (Nacb) neurons. The results demonstrated that type I Nacb neurons have a significantly lower basal discharge rate in lead-treated animals relative to controls and that the Nacb DA D(1) receptors were significantly less sensitive to SKF-38393 in the lead-treated animals. Therefore, lead exposure decreases DA neuron impulse flow presynaptically and decreases DA D(1) receptor sensitivity postsynaptically in the nucleus accumbens.
Collapse
Affiliation(s)
- Mahboubeh Tavakoli-Nezhad
- Dept. Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48202, USA
| | | |
Collapse
|
35
|
Ojima T, Ito C, Sakurai E, Sakurai E, Watanabe T, Yanai K. Effects of serotonin–dopamine antagonists on prepulse inhibition and neurotransmitter contents in the rat cortex. Neurosci Lett 2004; 366:130-4. [PMID: 15276232 DOI: 10.1016/j.neulet.2004.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 05/05/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Perospirone is a serotonin-dopamine antagonist (SDA) recently developed in Japan as an atypical antipsychotic to be used in the treatment of schizophrenia. The amines and amino acids in the cortex are assumed to play an important role in the cognitive dysfunction of schizophrenia. To investigate the acute effect of perospirone on cognition, we compared perospirone to risperidone and haloperidol by assessing their influence on prepulse inhibition (PPI). Moreover, we studied the effects of these drugs on amine and amino acid contents in the rat cortex. Perospirone had a significant influence: PPI, dopamine turnover and glycine contents increased statistically and serotonin decreased statistically in comparison to control levels. Our results suggest that, of the three antipsychotic drugs, only perospirone promotes cognition, and this ability is associated with increase in dopamine turnover, reduction in serotonin turnover and increase in glycine contents.
Collapse
Affiliation(s)
- Terumasa Ojima
- Department of Pharmacology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Brancucci A, Berretta N, Mercuri NB, Francesconi W. Presynaptic modulation of spontaneous inhibitory postsynaptic currents by gamma-hydroxybutyrate in the substantia nigra pars compacta. Neuropsychopharmacology 2004; 29:537-43. [PMID: 14603269 DOI: 10.1038/sj.npp.1300344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulation of GABA release from the inhibitory input to dopamine cells in the substantia nigra pars compacta (SNc) plays a key role in different reward-related behaviors. Gamma-hydroxybutyrate (GHB) has therapeutical properties in various psychiatric disorders, especially in alcohol abuse. GHB is also used as a drug of abuse, which induces sedation and euphoria. Using whole-cell patch-clamp recordings, we studied the effects of GHB on GABA release in the SNc by recording spontaneous inhibitory postsynaptic currents (sIPSCs) in brain slices of 21- to 25-day-old rats. We found that GHB depressed the frequency and amplitude of sIPSCs, while the frequency and the amplitude of miniature inhibitory postsynaptic currents (mIPSCs), recorded in the presence of TTX, were not affected. However, in the presence of high extracellular potassium (15 mM), which increases the contribution of voltage-dependent calcium channels, GHB induced a reduction in the frequency of the mIPSCs without any effect on their amplitude. All of these effects were GABA(B)-independent and they were blocked by the GHB receptor antagonist NCS-382. The present results indicate that GHB inhibits spontaneous inhibitory synaptic transmission recorded from dopaminergic neurons in the SNc likely by reducing voltage-dependent calcium influx involved in presynaptic GABA release.
Collapse
Affiliation(s)
- Alfredo Brancucci
- Dipartimento di Fisiologia e Biochimica 'G Moruzzi', Università di Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
37
|
Nakamura M, Jang IS, Ishibashi H, Watanabe S, Akaike N. Possible roles of kainate receptors on GABAergic nerve terminals projecting to rat substantia nigra dopaminergic neurons. J Neurophysiol 2003; 90:1662-70. [PMID: 12789017 DOI: 10.1152/jn.01165.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAergic afferent inputs are thought to play an important role in the control of the firing pattern of substantia nigra pars compacta (SNc) dopaminergic neurons. We report here the actions of presynaptic kainite (KA) receptors in GABAergic transmission of rat SNc dopaminergic neurons. In mechanically dissociated rat SNc dopaminergic neurons attached with native presynaptic nerve terminals, GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded by use of conventional whole cell patch recording mode. In the voltage-clamp condition, KA (3 microM) significantly increased GABAergic mIPSC frequency without affecting the current amplitude. This facilitatory effect of KA was not affected in the presence of 20 microM GYKI52466, a selective AMPA receptor antagonist, but was completely inhibited in the presence of 20 microM CNQX, an AMPA/KA receptor antagonist. Presynaptic KA receptors on GABAergic terminals were mainly permeable to Na+ but impermeable to Ca2+ because KA-induced facilitation of mIPSC frequency was completely suppressed in either Na+-free or Ca2+-free external solutions, and in the presence of 200 microM Cd2+, a general voltage-dependent Ca2+ channel blocker. In the slice preparation, KA increased GABAergic spontaneous mIPSC frequency, but significantly suppressed evoked IPSC (eIPSC) amplitude. However, this inhibitory action on eIPSCs was reversed by 10 microM CGP55845, a selective GABAB receptor antagonist, implicating the possible involvement of GABAB autoreceptors in KA-induced modulation of GABAergic transmission. Thus presynaptic KA receptors on GABAergic nerve terminals synapsing onto SNc neurons may play functional roles contributing the fine control of neuronal excitability and firing pattern of SNc.
Collapse
Affiliation(s)
- Michiko Nakamura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
38
|
Cheng JJ, de Bruin JPC, Feenstra MGP. Dopamine efflux in nucleus accumbens shell and core in response to appetitive classical conditioning. Eur J Neurosci 2003; 18:1306-14. [PMID: 12956729 DOI: 10.1046/j.1460-9568.2003.02849.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine transmission within the nucleus accumbens has been implicated in associative reinforcement learning. We investigated the effect of appetitive classical conditioning on dopamine efflux in the rat nucleus accumbens shell and core, as dopamine may be differentially activated by conditioned and unconditioned stimuli (CS, US) in these subregions. After implantation of microdialysis cannulae, rats were food restricted and trained for three consecutive days with three acquisition sessions per day. A 10-s noise (CS) was immediately followed by the delivery of two reward pellets (US) for the conditioned group (paired presentation), whereas conditioned stimuli and unconditioned stimuli were presented at random for the control group (unpaired presentation). On the fourth day, all rats were given a further CS + US session and two CS-alone sessions, and extracellular dopamine concentrations were measured (7.5 min/per sample). Behavioural measures (number of nose pokes, latency to nose poke after conditioned stimuli onset, locomotor activity) demonstrated that the paired groups showed a high level of conditioning. CS + US presentation increased dopamine equally in both shell and core of the paired and unpaired groups. CS alone presentation induced a conditioned dopamine release only in the paired groups. No significant difference was found between shell and core. Unlike previous conditioning paradigms involving either a more salient US (foot shock, addictive drug) or a more complex CS, the present paradigm, using normal reward pellets as US and a discrete auditory stimulus as CS, did not lead to differential responses in dopamine efflux in shell and core subregions of the nucleus accumbens.
Collapse
Affiliation(s)
- J J Cheng
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam ZO, the Netherlands
| | | | | |
Collapse
|
39
|
Garris PA, Budygin EA, Phillips PEM, Venton BJ, Robinson DL, Bergstrom BP, Rebec GV, Wightman RM. A role for presynaptic mechanisms in the actions of nomifensine and haloperidol. Neuroscience 2003; 118:819-29. [PMID: 12710989 DOI: 10.1016/s0306-4522(03)00005-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Psychomotor stimulants and neuroleptics exert multiple effects on dopaminergic signaling and produce the dopamine (DA)-related behaviors of motor activation and catalepsy, respectively. However, a clear relationship between dopaminergic activity and behavior has been very difficult to demonstrate in the awake animal, thus challenging existing notions about the mechanism of these drugs. The present study examined whether the drug-induced behaviors are linked to a presynaptic site of action, the DA transporter (DAT) for psychomotor stimulants and the DA autoreceptor for neuroleptics. Doses of nomifensine (7 mg/kg i.p.), a DA uptake inhibitor, and haloperidol (0.5 mg/kg i.p.), a dopaminergic antagonist, were selected to examine characteristic behavioral patterns for each drug: stimulant-induced motor activation in the case of nomifensine and neuroleptic-induced catalepsy in the case of haloperidol. Presynaptic mechanisms were quantified in situ from extracellular DA dynamics evoked by electrical stimulation and recorded by voltammetry in the freely moving animal. In the first experiment, the maximal concentration of electrically evoked DA ([DA](max)) measured in the caudate-putamen was found to reflect the local, instantaneous change in presynaptic DAT or DA autoreceptor activity according to the ascribed action of the drug injected. A positive temporal association was found between [DA](max) and motor activation following nomifensine (r=0.99) and a negative correlation was found between [DA](max) and catalepsy following haloperidol (r=-0.96) in the second experiment. Taken together, the results suggest that a dopaminergic presynaptic site is a target of systemically applied psychomotor stimulants and regulates the postsynaptic action of neuroleptics during behavior. This finding was made possible by a voltammetric microprobe with millisecond temporal resolution and its use in the awake animal to assess release and uptake, two key mechanisms of dopaminergic neurotransmission. Moreover, the results indicate that presynaptic mechanisms may play a more important role in DA-behavior relationships than is currently thought.
Collapse
Affiliation(s)
- P A Garris
- Cellular and Integrative Physiology Section, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Garris PA, Rebec GV. Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res 2002; 137:47-63. [PMID: 12445715 DOI: 10.1016/s0166-4328(02)00284-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advances in electrophysiology and voltammetry permit monitoring of dopamine (DA) neuronal activity in real time in the brain of awake animals. Studies using these approaches demonstrate that behaviorally relevant events elicit characteristic patterns of electrical activity in midbrain DA neurons as well as large, transient changes in extracellular DA in the nucleus accumbens (NAc). In addition to providing insight into the role of the DA system in the processing of motor, motivational, and sensory information, the new findings also shed light on fast DA neurotransmission in a behavioral context. This report, (1). summarizes the information obtained by electrophysiological and real-time voltammetric approaches and (2). describes a general model of phasic DA signaling in the NAc that links the observed changes in DA electrical activity and extracellular dynamics. The analysis demonstrates that the behaviorally evoked DA transients are governed by similar mechanisms as those produced by short trains of electrical stimulation. Thus, action potential-dependent release and presynaptic uptake are primary determinants of functional DA levels in the brain during behavior. Interestingly, the model predicts that the same burst of electrical activity generated at DA cell bodies produces markedly different DA dynamics in forebrain projection fields. The distinct changes result from heterogeneous release and uptake rates and may underlie region-specific effects of DA. Auto- and heteroreceptors, as well as other sites of presynaptic control, could further modulate the DA transients.
Collapse
Affiliation(s)
- Paul A Garris
- Department of Biological Sciences, Illinois State University, 244 SLB, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
41
|
Kiyatkin EA. Dopamine in the nucleus accumbens: cellular actions, drug- and behavior-associated fluctuations, and a possible role in an organism's adaptive activity. Behav Brain Res 2002; 137:27-46. [PMID: 12445714 DOI: 10.1016/s0166-4328(02)00283-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review expounds the idea that the analysis of dopamine (DA) action on target cells under behaviorally relevant conditions and behavior-related changes in DA activity can offer new information to clarify the functional significance of mesocorticolimbic DA. In contrast to the traditional association of DA with certain behavioral processes and mechanisms (activation, arousal, conditioning, motivation, reinforcement, sensorimotor integration, etc.), evaluation of DA activity during well-controlled behaviors established by different reinforcers can provide important clues for determining the role of DA in the development and regulation of goal-directed behavior. This review summarizes the results of our microiontophoretic studies of striatal neurons in awake, unrestrained rats, particularly the action of DA on spontaneously active and glutamate (GLU)-stimulated cells, the pattern of DA-GLU interaction, and the role of tonic DA release in regulating the activity and afferent responsiveness of these units. We present the results of our iontophoretic studies of ventral tegmental area (VTA) neurons in freely moving animals suggesting the complexity and limitations in their identification as DA- and non-DA cells under behaviorally relevant conditions. We also consider technical and methodological problems related to electrophysiological and electrochemical evaluation of DA transmission in behaving animals. Finally, we discuss parallels and differences in the activity of presumed DA VTA neurons and changes of nucleus accumbens DA-dependent electrochemical signal during heroin self-administration (SA) behavior.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224 USA.
| |
Collapse
|
42
|
Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 2002. [PMID: 12122086 DOI: 10.1523/jneurosci.22-14-06272.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Receptor-mediated feedback control plays an important role in dopamine (DA) neurotransmission. Recent evidence suggests that release and uptake, key mechanisms determining brain extracellular levels of the neurotransmitter, are governed by presynaptic autoreceptors. The goal of this study was to investigate whether autoreceptors regulate both mechanisms concurrently. Extracellular DA in the caudate-putamen and nucleus accumbens, evoked by electrical stimulation of the medial forebrain bundle, was monitored in the anesthetized rat by real-time voltammetry. Effects of the D2 antagonist haloperidol (0.5 mg/kg, i.p.) on evoked DA levels were measured to evaluate autoreceptor control mechanisms. Two strategies were used to resolve individual contributions of release and uptake to the robust increases in DA signals observed after acute haloperidol challenge in naive animals: pretreatment with 3beta-(p-chlorophenyl)tropan-2beta-carboxylic acid p-isothiocyanatophenylmethyl ester hydrochloride (RTI-76; 100 nmol, i.c.v.), an irreversible inhibitor of the DA transporter, and kinetic analysis of extracellular DA dynamics. RTI-76 effectively removed the uptake component from recorded signals. In RTI-76-pretreated rats, haloperidol induced only modest increases in DA elicited by low frequencies and had little or no effect at high frequencies. These results suggest that D2 antagonism alters uptake at all frequencies but only release at low frequencies. Kinetic analysis similarly demonstrated that haloperidol decreased V(max) for DA uptake and increased DA release at low (10-30 Hz) but not high (40-60 Hz) stimulus frequencies. We conclude that presynaptic DA autoreceptors concurrently downregulate release and upregulate uptake, and that the mechanisms are also independently controlled during neurotransmission.
Collapse
|
43
|
van Hoof JJM. The abnormal development of drive and guidance mechanisms in the brain: the pathogenesis of schizophrenia. Acta Neuropsychiatr 2002; 14:134-46. [PMID: 26984155 DOI: 10.1034/j.1601-5215.2001.140307.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND It remains a mystery as to how genetic and environmental factors cause schizophrenia. OBJECTIVE To develop a pathophysiological model of schizophrenia that has greater explanatory power than existing hypotheses of the disorder. METHOD Published findings on schizophrenia are integrated with more recent data from human and animal studies of striatal and cerebellar functions. RESULTS The analysis shows that during phylo- and ontogenesis two primarily motor-control mechanisms are applied at the intentional (limbic) level of functioning to organize emotional and cognitive behavior: one for initiating and dosing (drive) and the other for the representational guidance (guidance) of both movements and intentions. The intentional drive and guidance mechanisms are organized through a ventral, respectively, a dorsal cortical-subcortical circuitry. CONCLUSIONS A deficient implementation of these mechanisms at the limbic domain manifests itself as schizophrenia, whereby the heterogeneity in symptomatology is explained by the extent of the remaining cerebral activity and by the degree of indirect activation of these systems. In general, activation manifests itself as positive symptomatology and the absence of such activation as negative symptomatology. The model provides a more comprehensive explanation for existing clinical and epidemiological data than do the current alternatives. It is compatible with the major prevailing views on the illness, such as the theories that regard this as a progressive neurodevelopmental, or a connectivity disorder, or one resulting from a deficient cerebral lateralization, or an interrupted cortico-thalamo-cerebello-cortical circuitry. The model fits with recent theories in evolutionary psychology and evolutionary psychiatry.
Collapse
|
44
|
Joel D, Niv Y, Ruppin E. Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 2002; 15:535-47. [PMID: 12371510 DOI: 10.1016/s0893-6080(02)00047-3] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A large number of computational models of information processing in the basal ganglia have been developed in recent years. Prominent in these are actor-critic models of basal ganglia functioning, which build on the strong resemblance between dopamine neuron activity and the temporal difference prediction error signal in the critic, and between dopamine-dependent long-term synaptic plasticity in the striatum and learning guided by a prediction error signal in the actor. We selectively review several actor-critic models of the basal ganglia with an emphasis on two important aspects: the way in which models of the critic reproduce the temporal dynamics of dopamine firing, and the extent to which models of the actor take into account known basal ganglia anatomy and physiology. To complement the efforts to relate basal ganglia mechanisms to reinforcement learning (RL), we introduce an alternative approach to modeling a critic network, which uses Evolutionary Computation techniques to 'evolve' an optimal RL mechanism, and relate the evolved mechanism to the basic model of the critic. We conclude our discussion of models of the critic by a critical discussion of the anatomical plausibility of implementations of a critic in basal ganglia circuitry, and conclude that such implementations build on assumptions that are inconsistent with the known anatomy of the basal ganglia. We return to the actor component of the actor-critic model, which is usually modeled at the striatal level with very little detail. We describe an alternative model of the basal ganglia which takes into account several important, and previously neglected, anatomical and physiological characteristics of basal ganglia-thalamocortical connectivity and suggests that the basal ganglia performs reinforcement-biased dimensionality reduction of cortical inputs. We further suggest that since such selective encoding may bias the representation at the level of the frontal cortex towards the selection of rewarded plans and actions, the reinforcement-driven dimensionality reduction framework may serve as a basis for basal ganglia actor models. We conclude with a short discussion of the dual role of the dopamine signal in RL and in behavioral switching.
Collapse
Affiliation(s)
- Daphna Joel
- Department of Psychology, Tel-Aviv University, Ramat-Aviv, Israel.
| | | | | |
Collapse
|
45
|
Mottola DM, Kilts JD, Lewis MM, Connery HS, Walker QD, Jones SR, Booth RG, Hyslop DK, Piercey M, Wightman RM, Lawler CP, Nichols DE, Mailman RB. Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D2 receptors linked to adenylate cyclase. J Pharmacol Exp Ther 2002; 301:1166-78. [PMID: 12023552 DOI: 10.1124/jpet.301.3.1166] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dihydrexidine (DHX), the first high-affinity D(1) dopamine receptor full agonist, is only 10-fold selective for D(1) versus D(2) receptors, having D(2) affinity similar to the prototypical agonist quinpirole. The D(2) functional properties of DHX and its more D(2) selective analog N-n-propyl-dihydrexidine (PrDHX) were explored in rat brain and pituitary. DHX and PrDHX had binding characteristics to D(2) receptors in rat striatum typical of D(2) agonists, binding to both high- and low-affinity sites and being sensitive to guanine-nucleotides. Consistent with these binding data, both DHX and PrDHX inhibited forskolin-stimulated cAMP synthesis in striatum with a potency and intrinsic activity equivalent to that of quinpirole. Unexpectedly, however, DHX and PrDHX had little functional effect at D(2) receptors expressed on dopaminergic neurons that mediate inhibition of cell firing, dopamine release, or dopamine synthesis. Quantitative receptor competition autoradiography demonstrated that DHX bound to D(2) receptors in striatum (predominantly postsynaptic receptor sites) with equal affinity as D(2) sites in the substantia nigra (autoreceptor sites). The data from these experiments, coupled with what is known about the location of specific dopamine receptor isoforms, lead to the hypothesis that DHX, after binding to D(2L) and D(2S) receptors, causes agonist-typical functional changes only at some of these receptors. This phenomenon (herein termed "functional selectivity") suggests that drugs may be targeted not only at specific receptor isoforms but also at separate functions mediated by a single isoform, yielding novel approaches to drug discovery.
Collapse
Affiliation(s)
- David M Mottola
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Intravenous heroin self-administration in trained rats was accompanied by robust brain hyperthermia (+2.0-2.5 degrees C); parallel changes were found in the dorsal and ventral striatum, mediodorsal thalamus, and deep temporal muscle. Temperature began to increase at variable latency after a signal of drug availability, increased reliably (approximately 0.4 degrees C) before the first lever press for heroin, increased further (approximately 1.2 degrees C) after the first heroin injection, and rose more slowly after the second and third injections to stabilize at an elevated plateau (39-40 degrees C) for the remainder of the session. Brain and body temperature declined slowly when drug self-administration was terminated; naloxone precipitated a much more rapid decrease to baseline levels. Changes in temperature were similar across repeated daily sessions, except for the increase associated with the first self-administration of each session, which had progressively shorter latency and greater acceleration. Despite consistent biphasic fluctuations in movement activity associated with heroin self-administrations (gradual increase preceding the lever press, followed by an abrupt hypodynamia after drug infusion), mean brain temperature was very stable at an elevated plateau. Only mean muscle temperature showed evidence of biphasic fluctuations (+/-0.2 degrees C) that were time locked to and correlated with lever pressing and associated movements. Drug- and behavior-related changes in brain temperature thus appear to reflect some form of neuronal activation, and, because temperature is a factor capable of affecting numerous neural functions, it may be an important variable in the control of behavior by drugs of abuse.
Collapse
|
47
|
Maloney KJ, Mainville L, Jones BE. c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 2002; 15:774-8. [PMID: 11886456 DOI: 10.1046/j.1460-9568.2002.01907.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Evidence suggests that dopaminergic neurons of the ventral mesencephalic tegmentum (VMT) could be important for paradoxical sleep (PS). Here, we examined whether dopamine (DA) and adjacent gamma-aminobutyric acid (GABA)-synthesizing neurons are active in association with PS recovery as compared to PS deprivation or control conditions in different groups of rats by using c-Fos expression as a reflection of neural activity, combined with dual immunostaining for tyrosine hydroxylase (TH) or glutamic acid decarboxylase (GAD). Numbers of TH+/c-Fos+ neurons in the substantia nigra (SN) were not significantly different across groups, whereas those in the ventral tegmental area (VTA) were significantly different and greatest in PS recovery. Numbers of GAD+/c-Fos+ neurons in both VTA and SN were greatest in PS recovery. Thus, DA neuronal activity does not appear to be suppressed by local GABAergic neuronal activity during PS but might be altered in pattern by this inhibitory as well as other excitatory, particularly cholinergic, inputs such as to allow DA VTA neurons to become maximally active during PS and thereby contribute to the unique physiological and cognitive aspects of that state.
Collapse
Affiliation(s)
- Karen J Maloney
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
48
|
The nigrostriatal pathway in the rat: A single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci 2001. [PMID: 11549735 DOI: 10.1523/jneurosci.21-18-07247.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons from dorsal/ventral tiers of substantia nigra pars compacta (SNc), ventral tegmental area (VTA), and retrorubral field (RRF) were traced after injecting their cell body with biotinylated dextran amine. Fifty-three single axons were reconstructed from serial sagittal sections with a camera lucida, and mu-opiate receptor immunostaining served to differentiate the striosome/matrix striatal compartments. Most dorsal tier SNc axons terminate within the matrix of the dorsal striatum, but their patterns of arborization vary markedly; some axons innervate one specific matriceal area, whereas others arborize in multiple discontinuous loci. Some dorsal tier SNc axons also project to both striosomes and matrix. Other dorsal tier SNc axons, as well as VTA axons, innervate the ventral striatum and send collaterals to striosomes lying ventrally in the dorsal striatum or to the ventral sector of the subcallosal streak (SS). Ventral tier SNc axons arborize principally in striosomes, but some ramify in both compartments or in striosomes and the SS. Ventral tier neurons that form deep clusters in substantia nigra pars reticulata innervate principally the matrix and the SS. The amygdala and ventral pallidum receive secondary collaterals from striatal axons of dorsal/ventral tier neurons or RRF neurons. The subthalamic nucleus receives collaterals from striatal axons of SNc clustered neurons, whereas the globus pallidus gets collaterals from striatal axons of dorsal/ventral tier SNc neurons. These findings reveal that the nigrostriatal pathway is composed of several neuronal subsystems, each endowed with a widely distributed axonal arborization that allows them to exert a multifaceted influence on striatal and/or extrastriatal structures.
Collapse
|
49
|
Garzón M, Pickel VM. Plasmalemmal mu-opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area. Synapse 2001; 41:311-28. [PMID: 11494402 DOI: 10.1002/syn.1088] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Opiate-evoked reward and motivated behaviors reflect, in part, the enhanced release of dopamine produced by activation of the mu-opioid receptor (muOR) in the ventral tegmental area (VTA). We examined the functional sites for muOR activation and potential interactions with dopaminergic neurons within the rat VTA by using electron microscopy for the immunocytochemical localization of antipeptide antisera raised against muOR and tyrosine hydroxylase (TH), the synthesizing enzyme for catecholamines. The cellular and subcellular distribution of muOR was remarkably similar in the two major VTA subdivisions, the paranigral (VTApn) and parabrachial (VTApb) nuclei. In each region, somatodendritic profiles comprised over 50% of the labeled structures. MuOR immunolabeling was often seen at extrasynaptic/perisynaptic sites on dendritic plasma membranes, and 10% of these dendrites contained TH. MuOR-immunoreactivity was also localized to plasma membranes of axon terminals and small unmyelinated axons, none of which contained TH. The muOR-immunoreactive axon terminals formed either symmetric or asymmetric synapses that are typically associated with inhibitory and excitatory amino acid transmitters. Their targets included unlabeled (30%), muOR-labeled (25%), and TH-labeled (45%) dendrites. Our results suggest that muOR agonists in the VTA affect dopaminergic transmission mainly indirectly through changes in the postsynaptic responsivity and/or presynaptic release from neurons containing other neurotransmitters. They also indicate, however, that muOR agonists directly affect a small population of dopaminergic neurons expressing muOR on their dendrites in VTA and/or terminals in target regions.
Collapse
Affiliation(s)
- M Garzón
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
50
|
Kiyatkin EA, Rebec GV. Impulse activity of ventral tegmental area neurons during heroin self-administration in rats. Neuroscience 2001; 102:565-80. [PMID: 11226694 DOI: 10.1016/s0306-4522(00)00492-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To assess the pattern of mesocorticolimbic dopamine activity associated with drug-seeking and drug-taking behavior, we recorded impulse activity of ventral tegmental area neurons during intravenous heroin self-administration in trained rats. Although these neurons had considerable variability, two major groups-units with triphasic long-duration spikes and biphasic short-duration spikes-were identified. Relative to a slow and irregular basal activity of long-spike units, the first self-administration of each session was preceded by a phasic neuronal activation and followed by a more sustained drug-induced activation that reached a maximum at the time of the second self-injection. After each subsequent heroin self-injection, the discharge rate transiently decreased, correlating with the blockade of preceding motor activation and the appearance of freezing, but slowly and gradually increased again in parallel with searching behavior, reaching a maximum at the time of the next self-injection. Passive drug injections in either drug-naive, freely moving or drug-experienced, anesthetized rats caused much smaller, tonic increases in activity of long-spike units; these monophasic increases changed into biphasic responses with repeated injections. Although short-spike units had highly varying discharge rate and showed phasic activation during movement, during heroin self-injections they generally mimicked the activity pattern seen in long-spike units. Our results indicate that in behaving animals indirect "identification" of dopamine cells based on their distinctive electrophysiological features is more complex than in vitro and in anesthetized preparations. With respect to long-spike units, a candidate group of presumed dopamine neurons, our data agree with the view that mesocorticolimbic dopamine activation is important for the activational and/or motivational aspects of heroin-taking behavior and suggest the role of an abrupt termination of dopamine activation for drug reinforcement (reward). Although the neurochemical nature of long- and short-spike units is obviously different, similar changes in their activity may indicate that they are regulated by similar afferent inputs and that these inputs change similarly during drug-taking behavior.
Collapse
Affiliation(s)
- E A Kiyatkin
- Program in Neural Science, Department of Psychology, Indiana University, Bloomington, USA.
| | | |
Collapse
|