1
|
Asim M, Qianqian G, Waris A, Wang H, Lai Y, Chen X. Unraveling the role of cholecystokinin in epilepsy: Mechanistic insight into neuroplasticity. Neurochem Int 2024; 180:105870. [PMID: 39343303 DOI: 10.1016/j.neuint.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Epilepsy is a disorder characterized by an imbalance between excitability and inhibition, leading to uncontrolled hyperexcitability of neurons in the central nervous system. Despite the prevalence of epileptic seizures, the underlying mechanisms driving this hyperexcitability remain poorly understood. This review article aims to enhance our understanding of the mechanisms of epilepsy, with a specific focus on the role of cholecystokinin (CCK) in this debilitating disease. We will begin with an introduction to the topic, followed by an examination of the role of GABAergic neurons and the synaptic plasticity mechanisms associated with seizures. As we delve deeper, we will elucidate how CCK and its receptors contribute to seizure behavior. Finally, we will discuss the CCK-dependent synaptic plasticity mechanisms and highlight their potential implications in seizure activity. Through a comprehensive examination of these aspects, this review provides valuable insights into the involvement of CCK and its receptors in epilepsy. By improving our understanding of the mechanisms underlying this condition, particularly the role of CCK, we aim to contribute to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
2
|
Asim M, Wang H, Waris A, Qianqian G, Chen X. Cholecystokinin neurotransmission in the central nervous system: Insights into its role in health and disease. Biofactors 2024. [PMID: 38777339 DOI: 10.1002/biof.2081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Cholecystokinin (CCK) plays a key role in various brain functions, including both health and disease states. Despite the extensive research conducted on CCK, there remain several important questions regarding its specific role in the brain. As a result, the existing body of literature on the subject is complex and sometimes conflicting. The primary objective of this review article is to provide a comprehensive overview of recent advancements in understanding the central nervous system role of CCK, with a specific emphasis on elucidating CCK's mechanisms for neuroplasticity, exploring its interactions with other neurotransmitters, and discussing its significant involvement in neurological disorders. Studies demonstrate that CCK mediates both inhibitory long-term potentiation (iLTP) and excitatory long-term potentiation (eLTP) in the brain. Activation of the GPR173 receptor could facilitate iLTP, while the Cholecystokinin B receptor (CCKBR) facilitates eLTP. CCK receptors' expression on different neurons regulates activity, neurotransmitter release, and plasticity, emphasizing CCK's role in modulating brain function. Furthermore, CCK plays a pivotal role in modulating emotional states, Alzheimer's disease, addiction, schizophrenia, and epileptic conditions. Targeting CCK cell types and circuits holds promise as a therapeutic strategy for alleviating these brain disorders.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Pak Shek Kok, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Pak Shek Kok, Hong Kong
| |
Collapse
|
3
|
Abstract
Molecular genetics has led to major advances in the study of neurological disease over the last 2 decades. Initial advances were made in understanding specific mutations that were associated with disease, such as epilepsy and other neurological conditions. In addition to specific mutations, recent research has focused on long-lasting or permanent changes in genetic expression as an underlying substrate of acquired diseases such as epilepsy. In symptomatic epilepsy, normal brain tissue is permanently altered and develops spon taneous recurrent seizures. Evidence indicates that long-lasting changes in gene expression at both tran scriptional and post-transcriptional levels are associated with epileptogenesis. The expression of transcription factors and other regulatory proteins represent a molecular mechanism for mediating these changes. Understanding the effects of severe environmental stresses on the multiple sites of transcriptional and post-transcriptional regulation of gene expression is likely to provide important insights into the devel opment of altered neuronal function in a number of important disease states, including epilepsy. NEURO SCIENTIST 5:86-99, 1999
Collapse
Affiliation(s)
- Robert J. Delorenzo
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| | - T. Allen Morris
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| |
Collapse
|
4
|
Liu YQ, Yu F, Liu WH, He XH, Peng BW. Dysfunction of hippocampal interneurons in epilepsy. Neurosci Bull 2014; 30:985-998. [PMID: 25370443 DOI: 10.1007/s12264-014-1478-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
Gamma-amino-butyric acid (GABA)-containing interneurons are crucial to both development and function of the brain. Down-regulation of GABAergic inhibition may result in the generation of epileptiform activity. Loss, axonal sprouting, and dysfunction of interneurons are regarded as mechanisms involved in epileptogenesis. Recent evidence suggests that network connectivity and the properties of interneurons are responsible for excitatory-inhibitory neuronal circuits. The balance between excitation and inhibition in CA1 neuronal circuitry is considerably altered during epileptic changes. This review discusses interneuron diversity, the causes of interneuron dysfunction in epilepsy, and the possibility of using GABAergic neuronal progenitors for the treatment of epilepsy.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wan-Hong Liu
- Department of Immunology, Wuhan University, Wuhan, 430071, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bi-Wen Peng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Drexel M, Puhakka N, Kirchmair E, Hörtnagl H, Pitkänen A, Sperk G. Expression of GABA receptor subunits in the hippocampus and thalamus after experimental traumatic brain injury. Neuropharmacology 2014; 88:122-33. [PMID: 25229716 PMCID: PMC4239297 DOI: 10.1016/j.neuropharm.2014.08.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury is a major cause of death and disability worldwide and often associated with post-traumatic epilepsy. We recently demonstrated that TBI induces acquired GABAA receptors channelopathy that associates with hyperexcitability in granule cell layer (GCL). We now assessed the expression of GABAA and GABAB receptor subunit mRNAs between 6 h and 6 months post-TBI in the hippocampus and thalamus. The expression of major GABAA receptor subunit mRNAs (α1, α2, α5, β2, β3, γ2 and δ) was, often bilaterally, down-regulated in the GCL and in the CA3 pyramidal cells. Instead, expression of α4 (GCL, CA3, CA1), α5 (CA1) and γ2 (GCL, CA3, CA1) mRNA was up-regulated after 10 d and/or 4 months. Many of these changes were reversible. In the thalamus, we found decreases in α1, α4, β2, γ2 and δ mRNAs in the laterodorsal thalamus and in the area combining the posterior thalamic nuclear group, ventroposterolateral and ventroposteromedial complex at 6 h to 4 months post-TBI. Unlike in the hippocampus, thalamic subunit down-regulations were irreversible and limited to the ipsilateral side. However, contralaterally there was up-regulation of the subunits δ and α4 6 h and 4 months after TBI, respectively. PCR array analysis suggested a mild long-lasting GABAA receptor channelopathy in the GCL and thalamus after TBI. Whereas TBI induces transient changes in the expression of GABAA receptor subunits in the hippocampus (presumably representing compensatory mechanisms), alterations of GABAA receptor subunit mRNAs in the thalamus are long-lasting and related to degeneration of receptor-containing neurons in thalamo-cortical relay nuclei. This article is part of the Special Issue entitled ‘GABAergic Signaling in Health and Disease’. GABAA receptor subunits are permanently lost in thalamic nuclei on the side of TBI. They are only transiently decreased in hippocampal subfields bilaterally. Subunit α4 is up-regulated in the thalamus and hippocampus contralateral to TBI. Efficacy of neurosteroids in preventing secondary epilepsy after TBI is suggested.
Collapse
Affiliation(s)
- Meinrad Drexel
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - Elke Kirchmair
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Heide Hörtnagl
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, PO Box 1777, FI-70211 Kuopio, Finland
| | - Günther Sperk
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Sun C, Sun J, Erisir A, Kapur J. Loss of cholecystokinin-containing terminals in temporal lobe epilepsy. Neurobiol Dis 2013; 62:44-55. [PMID: 24051276 DOI: 10.1016/j.nbd.2013.08.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 11/30/2022] Open
Abstract
Altered GABA-mediated inhibition is proposed to play a role in the pathogenesis of epilepsy. Previous studies have demonstrated a loss of somatostatin-containing GABAergic interneurons innervating granule cells in epileptic animals. However, the reorganization of synapses between interneurons and granule cells has not been investigated. We studied synapse organization in an animal model of temporal lobe epilepsy (TLE) using continuous hippocampal stimulation. The distribution of axon terminals and inhibitory synapses on granule cell dendrites was studied using a combination of immunohistochemistry and pre-embedding electron microscopy techniques. A whole-cell patch-clamp technique was applied to study the functional changes in GABAergic input from different interneurons. In epileptic animals, the density of cholecystokinin (CCK)-immunoreactive (IR) fibers and α2 subunit containing GABAA receptors in the inner molecular layer of the dentate gyrus was reduced. Quantitative immuno-electron microscopy study revealed that the ratio of CCK-containing symmetric synapses to the total symmetric synapses was reduced. The frequency of GABAergic synaptic currents (sIPSC) was decreased and their amplitude was increased. The inhibitory effect of the activation of cannabinoid 1 (CB1) receptors was also reduced in epileptic animals. Isolation of CCK- and parvalbumin (PV)-containing GABAergic inputs by N- and P/Q-type calcium channel blockers respectively suggested that GABA release from CCK-containing interneurons was selectively reduced in epileptic rats. This study found that there was a loss of CCK-containing GABAergic synapses to granule cells both morphologically and functionally. These studies add to our understanding of the mechanisms that contribute to altering GABAergic inhibition of granule cells in TLE.
Collapse
Affiliation(s)
- Chengsan Sun
- Department of Neurology, University of Virginia, Health Sciences Center, PO Box 800394, Charlottesville, VA 22908, USA; Department of Psychology, University of Virginia, PO Box 400400, Charlottesville, VA 22904, USA
| | - Jianli Sun
- Department of Neurology, University of Virginia, Health Sciences Center, PO Box 800394, Charlottesville, VA 22908, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, PO Box 400400, Charlottesville, VA 22904, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Health Sciences Center, PO Box 800394, Charlottesville, VA 22908, USA; Department of Neuroscience, PO Box 801392, Charlottesville, VA 22908, USA.
| |
Collapse
|
7
|
Wyeth MS, Zhang N, Houser CR. Increased cholecystokinin labeling in the hippocampus of a mouse model of epilepsy maps to spines and glutamatergic terminals. Neuroscience 2011; 202:371-83. [PMID: 22155653 DOI: 10.1016/j.neuroscience.2011.11.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/24/2011] [Indexed: 12/01/2022]
Abstract
The neuropeptide cholecystokinin (CCK) is abundant in the CNS and is expressed in a subset of inhibitory interneurons, particularly in their axon terminals. The expression profile of CCK undergoes numerous changes in several models of temporal lobe epilepsy. Previous studies in the pilocarpine model of epilepsy have shown that CCK immunohistochemical labeling is substantially reduced in several regions of the hippocampal formation, consistent with decreased CCK expression as well as selective neuronal degeneration. However, in a mouse pilocarpine model of recurrent seizures, increases in CCK-labeling also occur and are especially striking in the hippocampal dendritic layers of strata oriens and radiatum. Characterizing these changes and determining the cellular basis of the increased labeling were the major goals of the current study. One possibility was that the enhanced CCK labeling could be associated with an increase in GABAergic terminals within these regions. However, in contrast to the marked increase in CCK-labeled structures, labeling of GABAergic axon terminals was decreased in the dendritic layers. Likewise, cannabinoid receptor 1-labeled axon terminals, many of which are CCK-containing GABAergic terminals, were also decreased. These findings suggested that the enhanced CCK labeling was not due to an increase in GABAergic axon terminals. The subcellular localization of CCK immunoreactivity was then examined using electron microscopy, and the identities of the structures that formed synaptic contacts were determined. In pilocarpine-treated mice, CCK was observed in dendritic spines and these were proportionally increased relative to controls, whereas the proportion of CCK-labeled terminals forming symmetric synapses was decreased. In addition, CCK-positive axon terminals forming asymmetric synapses were readily observed in these mice. Double labeling with vesicular glutamate transporter 1 and CCK revealed colocalization in numerous terminals forming asymmetric synapses, confirming the glutamatergic identity of these terminals. These data raise the possibility that expression of CCK is increased in hippocampal pyramidal cells in mice with recurrent, spontaneous seizures.
Collapse
Affiliation(s)
- M S Wyeth
- Department of Neurobiology, CHS 73-235, David Geffen School of Medicine at the University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1763, USA
| | | | | |
Collapse
|
8
|
Wei X, Zhang Z, Zhao L, Si J. CCK-8S inhibited the NMDA-activated current of cultured hippocampal neuron under normal and ethanol exposure conditions. Neurosci Lett 2009; 449:34-7. [DOI: 10.1016/j.neulet.2008.10.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/26/2008] [Accepted: 10/21/2008] [Indexed: 11/26/2022]
|
9
|
Mitrirattanakul S, López-Valdés HE, Liang J, Matsuka Y, Mackie K, Faull KF, Spigelman I. Bidirectional alterations of hippocampal cannabinoid 1 receptors and their endogenous ligands in a rat model of alcohol withdrawal and dependence. Alcohol Clin Exp Res 2007; 31:855-67. [PMID: 17386072 DOI: 10.1111/j.1530-0277.2007.00366.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The hippocampus is strongly implicated in memory processes and contains high concentrations of both cannabinoid receptors and their endogenous ligands. Chronic alcohol consumption impairs a variety of cognitive and performance tasks, including memory and learning. As the activation of cannabinoid receptors by their endogenous ligands modulates hippocampal neurotransmission, we hypothesized that the impaired memory and learning in alcoholism may be due to alterations in the hippocampal endocannabinoid system. METHODS We used the rat chronic intermittent ethanol (CIE) model for alcohol withdrawal and dependence which involves intermittent episodes of ethanol intoxication (60 doses) and withdrawal (approximating binge drinking episodes in humans). We measured the levels of cannabinoid 1 receptor (CB1R) protein (Western blot using a C-terminal-directed antibody), CB1R mRNA (real-time RT-PCR), CB1R localization (immunocytochemistry), tissue levels of the endocannabinoids N-arachidonoylethanolamine/anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and function (patch-clamp recordings of depolarization-induced suppression of inhibition (DSI), as well as effects of CB1R agonist WIN 55,212-2 on inhibitory currents) in the hippocampus of CIE rats and their saline-treated controls. RESULTS Results were obtained in saline and CIE-treated rats after 2 and 40 days of withdrawal (DW) from their respective treatments. In 2 DW CIE rats, CB1R mRNA and protein levels were decreased by 27% (p<0.05) compared with saline controls. Surprisingly, in 40 DW CIE rats, CB1R mRNA increased by 100% and protein increased by 21%, confirmed by immunohistochemistry. Hippocampal [2-AG] increased in both 2 and 40 DW CIE rats; [AEA] increased only at 40 DW. Hippocampal DSI of CIE rats was significantly reduced at 2 DW but not at 40 DW. The CB1R agonist WIN 55,212-2 (0.5 microM) produced a significantly greater decrease in the frequency of spontaneous inhibitory currents from saline-treated rats compared with CIE rats at 2 DW, but not at 40 DW. CONCLUSIONS These data demonstrate that CIE treatment and withdrawal transiently down-regulates hippocampal CB1 Rs followed by a long-term up-regulation, including increased levels of endogenous cannabinoids. These findings are consistent with our hypothesis and suggest that long-term up-regulation of hippocampal CB1Rs may contribute to the long-term cognitive impairments in alcoholism. The data further suggest that the effectiveness of CB1R blockade in decreasing alcohol consumption may be greater after protracted abstinence from alcohol.
Collapse
Affiliation(s)
- Somsak Mitrirattanakul
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, California 90095-1668, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Bausch SB. Axonal sprouting of GABAergic interneurons in temporal lobe epilepsy. Epilepsy Behav 2005; 7:390-400. [PMID: 16198153 DOI: 10.1016/j.yebeh.2005.07.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 07/23/2005] [Indexed: 11/23/2022]
Abstract
Temporal lobe epilepsy is one of the most common forms of epilepsy. Numerous contributing factors and compensatory mechanisms have been associated with temporal lobe epilepsy. One feature found in both humans and animal models is sprouting of hippocampal principal cell axons, which suggests that axonal sprouting may be a general phenomenon associated with temporal lobe epilepsy. This article highlights the evidence showing that hippocampal GABAergic interneurons also undergo axonal sprouting in temporal lobe epilepsy. The caveats and unanswered questions associated with the current data and the potential physiological consequences of reorganizations in GABAergic circuits are discussed.
Collapse
Affiliation(s)
- Suzanne B Bausch
- Department of Pharmacology, Program in Neuroscience, Uniformed Services University, Room C2007, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
11
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 613] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
12
|
Sperk G, Furtinger S, Schwarzer C, Pirker S. GABA and its receptors in epilepsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:92-103. [PMID: 15250588 DOI: 10.1007/978-1-4757-6376-8_7] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the mammalian brain. It acts through 2 classes of receptors, GABAA receptors that are ligand-operated ion channels and the G-protein-coupled metabotropic GABAB receptors. Impairment of GABAergic transmission by genetic mutations or application of GABA receptor antagonists induces epileptic seizures, whereas drugs augmenting GABAergic transmission are used for antiepileptic therapy. In animal epilepsy models and in tissue from patients with temporal lobe epilepsy, loss in subsets of hippocampal GABA neurons is observed. On the other hand, electrophysiological and neurochemical studies indicate a compensatory increase in GABAergic transmission at certain synapses. Also, at the level of the GABAA receptor, neurodegeneration-induced loss in receptors is accompanied by markedly altered expression of receptor subunits in the dentate gyrus and other parts of the hippocampal formation, indicating altered physiology and pharmacology of GABAA receptors. Such mechanisms may be highly relevant for seizure induction, augmentation of endogenous protective mechanisms, and resistance to antiepileptic drug therapy. Other studies suggest a role of GABAB receptors in absence seizures. Presynaptic GABAB receptors suppress neurotransmitter release. Depending on whether this action is exerted in GABAergic or glutamatergic neurons, there may be anticonvulsant or proconvulsant actions.
Collapse
Affiliation(s)
- Günther Sperk
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
13
|
Bräuer AU, Savaskan NE, Plaschke M, Ninnemann O, Nitsch R. Cholecystokinin expression after hippocampal deafferentiation: molecular evidence revealed by differential display-reverse transcription-polymerase chain reaction. Neuroscience 2003; 121:111-21. [PMID: 12946704 DOI: 10.1016/s0306-4522(03)00336-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cortical information flow via the perforant path represents a major excitatory projection to the hippocampus. Lesioning this projection leads to massive degeneration and subsequently to reorganization in its termination zones as well as in primary non-affected subfields of the hippocampus. The molecular mechanisms and factors which are involved in the postlesional events are poorly defined. Using a differential display reverse transcription-polymerase chain reaction (DDRT-PCR) strategy, we located one band which occurred only in control hippocampus lanes and almost disappeared in the lanes of lesioned hippocampi. By sequencing, we identified the corresponding gene as cholecystokinin (CCK). Northern blot analysis confirmed a decreased transcription of CCK after lesion. In situ hybridization analysis was performed for localization and quantification of altered CCK transcription. We noted a significant downregulation of CCK transcription in the hippocampus (20%) and in the contralateral cortex (12%) 1-day after lesion (dal) and an increased signal in the ipsilateral cortex (10.5%). This pattern was altered, showing upregulation of CCK mRNA expression, reaching its highest level of 70% above control levels at 5 dal. In the hippocampus, the control level was reached again at 21 dal, whereas the cortex reached the control level at 10 dal. In comparison, the mRNA transcripts of the receptors CCK(A) and CCK(B) remained unchanged. Since CCK-containing neurons are involved in the modulation of pyramidal and granule cell excitability, our data indicate a time course correlation between CCK mRNA expression and postlesional axonal sprouting response in the hippocampus.
Collapse
Affiliation(s)
- A U Bräuer
- Department of Cell and Neurobiology, Oskar-Hertwig House, Humboldt University Medical School Charité, Philippstrasse 12, Philippstrasse 12, D-10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Epilepsy is a devastating disease affecting more than 1% of the population. Yet, if one considers the neurobiological substrates of this disease, what is revealed is an array of phenomenon that exemplify the remarkable capacity for the brain to change its basic structure and function, that is, neural plasticity. Some of these alterations are transient and merely impressive for their extent, or for their robust nature across animal models and human epilepsy. Others are notable for their persistence, often enduring for months or years. As an example, the dentate gyrus, and specifically the principal cell of the dentate gyrus, the granule cell, is highlighted. This area of the brain and this particular cell type, for reasons that are currently unclear, hold an uncanny capacity to change after seizures. For those interested in plasticity, it is suggested that perhaps the best examples for studying plasticity lie in the field of epilepsy.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, NY 10993-1195, USA.
| |
Collapse
|
15
|
Abstract
Cholecystokinin (CCK) is a neuropeptide expressed in the small intestine and in the central and peripheral nervous system. CCK gene expression is both spatially and temporally regulated. In neurons CCK production is increased by growth factors, cyclic adenosine 3', 5'-monophosphate (cAMP), dopamine, estrogen, and injury situations, while intestinal CCK expression is mainly regulated by food intake. The function of the proximal CCK promoter has been examined by transfection of human CCK-CAT reporter constructs in cultured cells, DNase I footprinting and gel shift assays. These studies have led to the identification of regulatory elements and transcription factors important for basal and stimulated gene expression and depicted the signaling pathways involved in growth factor and cAMP induced CCK transcription. The review outlines the current knowledge of the regulation of CCK transcription and describes the role of putative transcription factors in tissue-specific CCK gene expression.
Collapse
Affiliation(s)
- T V Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
16
|
Takeda K, Nakata K, Takahashi S, Chikuma T, Kato T. Effect of pentylenetetrazol treatment on cholecystokinin mRNA and peptide levels in rat hippocampus and cortex. Brain Res 1998; 779:320-3. [PMID: 9473710 DOI: 10.1016/s0006-8993(97)01179-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
After treatment with pentylenetetrazol (PTZ), cholecystokinin (CCK) mRNA and CCK-like immunoreactivity (CCK-LI) levels were determined in rat hippocampus and cortex at different time points. In the temporal cortex treatment with 60 mg/kg PTZ, i.p., induced increases of CCK mRNA and CCK-LI levels at 2 days after the injection. In the hippocampus, a similar increase of CCK mRNA level was observed on the second day. By contrast, in the frontal cortex, CCK-LI level was increased at 10 days after the treatment with PTZ. These data show that PTZ increases both CCK mRNA and CCK-LI levels in these rat brain regions at different time.
Collapse
Affiliation(s)
- K Takeda
- Research and Development Department, Dainabot, Chiba, Japan
| | | | | | | | | |
Collapse
|
17
|
Takeda K, Nakata K, Chikuma T, Ito T, Kato T. Chemical kindling induced by pentylenetetrazol changes cholecystokinin mRNA and peptide levels in rat frontal cortex. Neurosci Lett 1997; 234:115-8. [PMID: 9364511 DOI: 10.1016/s0304-3940(97)00677-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Kindling model is useful to study the mechanism of learning and memory. Cholecystokinin (CCK) mRNA and CCK-like immunoreactivity (CCK-LI) levels in the hippocampus and frontal cortex of chemically kindled rats were determined at different time points. In the frontal cortex, chronic treatment with pentylenetetrazol (PTZ) (40 mg/kg per day for 8 days) increased CCK mRNA level at 7 days, and decreased CCK-LI level at 2 and 7 days after the last injection. However, neither CCK mRNA nor CCK-LI levels in the hippocampus changed. These results suggest that PTZ-induced kindling increases CCK mRNA expression and CCK-LI release in the frontal cortex.
Collapse
Affiliation(s)
- K Takeda
- Research and Development Department, Dainabot Co. Ltd., Chiba, Japan
| | | | | | | | | |
Collapse
|
18
|
Senatorov VV, Trudeau VL, Hu B. Expression of cholecystokinin messenger RNA in reciprocally-connected auditory thalamus and cortex in the rat. Neuroscience 1997; 79:915-21. [PMID: 9219954 DOI: 10.1016/s0306-4522(97)00045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholecystokinin exerts a potent antiepileptic action in mammalian auditory system and undergoes seizure-mediated up-regulation. The present study investigated cholecystokinin messenger RNA expression in the reciprocally-connected auditory thalamus and cortex in the rat. Immunofluorescence in situ hybridization was performed using a 24-base cholecystokinin-messenger RNA oligonucleotide probe. Corticothalamic projection neurons were identified by means of the retrograde fluorescent tracer rhodamine latex microspheres injected into the medial geniculate body. In our experiments, cholecystokinin messenger RNA transcripts were found in about 80% of neurons located within the reciprocally-connected regions of the medial geniculate body and the auditory cortices. These observations provide evidence of cholecystokinin production in the reciprocally-connected regions of the auditory thalamus and cortex, the structures which jointly create the thalamo-corticothalamic circuit which has been implicated in seizure genesis.
Collapse
Affiliation(s)
- V V Senatorov
- Loeb Research Institute, Ottawa Civic Hospital/University of Ottawa, Ontario, Canada
| | | | | |
Collapse
|
19
|
Burazin TC, Gundlach AL. Rapid but transient increases in cholecystokinin mRNA levels in cerebral cortex following amygdaloid-kindled seizures in the rat. Neurosci Lett 1996; 209:65-8. [PMID: 8734911 DOI: 10.1016/0304-3940(96)12603-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholecystokinin-octapeptide (CCK-8S) is widely distributed in neurones of the central nervous system, where it is thought to act as a transmitter or modulator. CCK-8S has been shown to exert anti-convulsant activity in animal seizure models and changes in cortical and hippocampal CCK-immunoreactivity and preproCCK messenger RNA (mRNA) have been reported following electrically- and chemically-induced seizures. In the present study, the spatiotemporal effect of amygdaloid-kindled seizures on levels of preproCCK messenger RNA in rat brain were determined using quantitative in situ hybridization histochemistry. Stimulation-evoked seizures produced bilateral increases (45-70%) in preproCCK mRNA throughout layers II-III of the cerebral cortex. These increases were rapidly induced, occurring 30-60 min after the last stage 5 seizure, but transient, as no significant changes were detected after 2 h, or subsequently at 24 or 72 h, or 2-8 weeks, post-stimulation. Rapid changes in the relative levels of preproCCK mRNA, post-seizure, suggest a possible stabilization of preproCCK transcripts and increased production of CCK-8S peptide, which may be involved in anticonvulsant mechanisms in response to the acute seizures.
Collapse
Affiliation(s)
- T C Burazin
- University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | |
Collapse
|
20
|
Zhang LX, Smith MA, Kim SY, Rosen JB, Weiss SR, Post RM. Changes in cholecystokinin mRNA expression after amygdala kindled seizures: an in situ hybridization study. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:278-84. [PMID: 8717364 DOI: 10.1016/0169-328x(95)00230-p] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholecystokinin (CCK) can be a potent anticonvulsant neuropeptide in certain seizure models. Therefore, we examined whether seizures produced by electrical kindling of the amygdala or electroconvulsive seizures (ECS) would affect the expression of CCK mRNA in rat brain. Following a single kindled seizure, CCK mRNA expression was decreased about 20-58% in the amygdala. In contrast, after multiple consecutive kindled seizures, CCK mRNA expression was increased in the amygdala, cerebral cortex, CA1 pyramidal cell layer of the hippocampus and dentate hilus. A single ECS produced no effect on CCK mRNA expression, but multiple ECS increased expression in the interneurons of the hippocampus 24 h after the last seizure. Since seizures produced by ECS can be anticonvulsant to further ECS or kindled seizures, the CCK increases in the hippocampus may represent a compensatory anticonvulsant adaptation observed in both models. Overall, the kindling-induced alterations in CCK expression appear to be more complex involving multiple brain regions and distinct temporal properties.
Collapse
Affiliation(s)
- L X Zhang
- Biological Psychiatry Branch, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
21
|
Schwarzer C, Williamson JM, Lothman EW, Vezzani A, Sperk G. Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience 1995; 69:831-45. [PMID: 8596652 DOI: 10.1016/0306-4522(95)00268-n] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Somatostatin-, neuropeptide Y-, neurokinin B- and cholecystokinin-containing neurons were investigated in the rat hippocampus in two chronic models of temporal lobe epilepsy, i.e. 30 days after rapid kindling or electrically induced status epilepticus (post-status epilepticus). After rapid kindling, somatostatin immunoreactivity was strongly increased in interneurons and in the outer and middle molecular layer of the dentate gyrus. In four of six post-status epilepticus rats (status epilepticus I rats), somatostatin immunoreactivity was slightly increased in the dorsal but decreased in the ventral dentate gyrus and molecular layer. Somatostatin immunoreactivity decreased in neurons of the dorsal hilus in the two other post-status epilepticus rats investigated, while a complete loss was found in the respective ventral extension (status epilepticus-II rats). These changes were associated with a different extent of neurodegeneration as assessed by Nissl staining. Similarly, neuropeptide Y immunoreactivity was enhanced in neurons of the hilus and in the middle and outer molecular layer of the dentate gyrus in the dorsal hippocampus of rapidly kindled and status epilepticus-I rats. Neuropeptide Y and neurokinin B immunoreactivity was enhanced in the mossy fibers of all post-status epilepticus rats, but not in the rapidly kindled rats. In status epilepticus-II rats, neuropeptide Y-and neurokinin B-positive fibers were also detected in the infrapyramidal region of the stratum oriens of CA3 and in the inner molecular layer of the dentate gyrus in the dorsal and ventral hippocampus respectively, labeling presumably sprouted mossy fibers. Increased staining of neuropeptide Y and neurokinin B was found in the alveus after rapid kindling. Cholecystokinin immunoreactivity was markedly increased in the cerebral cortex, Ammon's horn and the molecular layer of the dentate gyrus in the ventral hippocampus of rapidly kindled and post-status epilepticus rats. The lasting changes in the immunoreactive pattern of various peptides in the hippocampus may reflect functional modifications in the corresponding peptide-containing neurons. These changes may be involved in chronic epileptogenesis, which evolves in response to limbic seizures.
Collapse
Affiliation(s)
- C Schwarzer
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|
22
|
Pratt JA, Brett RR. The benzodiazepine receptor inverse agonist FG 7142 induces cholecystokinin gene expression in rat brain. Neurosci Lett 1995; 184:197-200. [PMID: 7715845 DOI: 10.1016/0304-3940(94)11205-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of acute administration of the anxiogenic benzodiazepine receptor ligand, N-methyl-beta-carboline-3-carboxamide (FG 7142) and of a single exposure to the elevated plus-maze test of anxiety on preprocholecystokinin mRNA levels in rat brain were examined using the technique of in situ hybridisation. Administration of FG 7142 (10 mg/kg i.p.), but not elevated plus-maze exposure, increased cholecystokinin (CCK) mRNA levels in the basolateral amygdala and the CA3 pyramidal cell layer of the hippocampus. Neither stimulus produced changes in thalamic structures. These data suggest that drug-induced anxiety can induce CCK gene expression in brain structures previously implicated in anxiety.
Collapse
Affiliation(s)
- J A Pratt
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
23
|
Gruber B, Greber S, Rupp E, Sperk G. Differential NPY mRNA expression in granule cells and interneurons of the rat dentate gyrus after kainic acid injection. Hippocampus 1994; 4:474-82. [PMID: 7874238 DOI: 10.1002/hipo.450040409] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using in situ hybridization histochemistry neuropeptide Y (NPY) mRNA expression was investigated after intraperitoneal injection of kainic acid (KA) and after local application of KA or quinolinic acid into the dentate gyrus of the rat. Enhanced concentrations of NPY mRNA were observed in interneurons of the hilus, including presumptive fusiform neurons and pyramidal-shaped basket cells already 4 hours after initiation of limbic seizures by KA (10 mg/kg, i.p.). Increased NPY expression persisted in neurons resistant to seizure-induced cell death (6-48 h after i.p. KA). Exceptionally high hybridization signals were found in interneurons of the hilus and the CA1 and CA3 sectors 8 months after KA-induced limbic seizures. In the granule cell layer only a transient but pronounced increase in NPY mRNA was observed 12-24 h after injection. Only moderate changes were observed in this cell layer at later intervals. Anticonvulsant treatment with thiopental, after a brief period of generalized seizures, prevented the increase in NPY mRNA in granule cells but not in interneurons. No change in NPY message was found also in granule cells of rats which responded with mild "wet dog shake" behavior but not with motor seizures to KA injection. Local injections of low doses of KA (0.05-0.2 nmol) or quinolinic acid (6.5-100 nmol) into the dentate gyrus of the hippocampus under deep thiopental anesthesia, after 24 h, resulted in increased concentrations of NPY message in interneurons of the ipsilateral, but not of the contralateral hilus and not in granule cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Gruber
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- G Sperk
- Department of Pharmacology, University of Innsbruck, Austria
| |
Collapse
|
25
|
Mahata SK, Gruber B, Mahata M, Röder C, Fischer-Colbrie R, Sperk G. Kainic acid seizures in the rat: differential expression of chromogranin A, carboxypeptidase H and peptidylglycine alpha-amidating monooxigenase in subfields of the hippocampal formation. Acta Neuropathol 1993; 86:590-5. [PMID: 8310814 DOI: 10.1007/bf00294297] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Using in situ hybridization histochemistry concentrations of mRNAs encoding chromogranin A (ChA), carboxypeptidase H (CPH) and peptidylglycine alpha-amidating monooxigenase (PAM) have been investigated in the hippocampus after kainic acid (KA)-induced limbic seizures in the rat. Increased concentrations (by 150%) of ChA and CPH mRNAs were found in the granule cell layer 24 h after KA injection. At the same time PAM mRNA levels were only slightly elevated (by 50%). Whereas the increases in CPH and PAM transcripts were only transient, ChA mRNA concentrations in the granule cell layer were elevated up to 2 months after the initial seizures. In contrast, in the pyramidal cell layers of all hippocampal subfields (CA1 to CA3) ChA mRNA concentrations were significantly reduced (by 40-70%) 1-60 days after KA. PAM and CPH messages were slightly reduced in the pyramidal cell layer of CA1 but not in CA2 and CA3. The experiments demonstrate that KA-induced limbic seizures cause sustained changes in the expression of ChA mRNA. At the same time the expression of two enzymes involved in post-translational processing of neuropeptides, PAM and CPH, becomes only transiently altered. Synthesis of ChA may be regulated differently in the strata granulosum and pyramidale during epileptic seizures.
Collapse
Affiliation(s)
- S K Mahata
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|