1
|
Kim O, Okamoto Y, Kaufmann WA, Brose N, Shigemoto R, Jonas P. Presynaptic cAMP-PKA-mediated potentiation induces reconfiguration of synaptic vesicle pools and channel-vesicle coupling at hippocampal mossy fiber boutons. PLoS Biol 2024; 22:e3002879. [PMID: 39556620 PMCID: PMC11573138 DOI: 10.1371/journal.pbio.3002879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/04/2024] [Indexed: 11/20/2024] Open
Abstract
It is widely believed that information storage in neuronal circuits involves nanoscopic structural changes at synapses, resulting in the formation of synaptic engrams. However, direct evidence for this hypothesis is lacking. To test this conjecture, we combined chemical potentiation, functional analysis by paired pre-postsynaptic recordings, and structural analysis by electron microscopy (EM) and freeze-fracture replica labeling (FRL) at the rodent hippocampal mossy fiber synapse, a key synapse in the trisynaptic circuit of the hippocampus. Biophysical analysis of synaptic transmission revealed that forskolin-induced chemical potentiation increased the readily releasable vesicle pool size and vesicular release probability by 146% and 49%, respectively. Structural analysis of mossy fiber synapses by EM and FRL demonstrated an increase in the number of vesicles close to the plasma membrane and the number of clusters of the priming protein Munc13-1, indicating an increase in the number of both docked and primed vesicles. Furthermore, FRL analysis revealed a significant reduction of the distance between Munc13-1 and CaV2.1 Ca2+ channels, suggesting reconfiguration of the channel-vesicle coupling nanotopography. Our results indicate that presynaptic plasticity is associated with structural reorganization of active zones. We propose that changes in potential nanoscopic organization at synaptic vesicle release sites may be correlates of learning and memory at a plastic central synapse.
Collapse
Affiliation(s)
- Olena Kim
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Yuji Okamoto
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Walter A. Kaufmann
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
2
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|
3
|
Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened Hippocampal β-Adrenergic Receptor Function Drives Synaptic Potentiation and Supports Learning and Memory in the TgF344-AD Rat Model during Prodromal Alzheimer's Disease. J Neurosci 2021; 41:5747-5761. [PMID: 33952633 PMCID: PMC8244969 DOI: 10.1523/jneurosci.0119-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023] Open
Abstract
The central noradrenergic (NA) system is critical for the maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer's disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathologic tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus is heavily innervated by LC-NA axons, where released NE acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex to facilitate long-term synaptic plasticity and memory formation. These synapses experience dysfunction in early AD before cognitive impairment. In the TgF344-AD rat model of AD, degeneration of LC-NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6- to 9-month-old wild-type and TgF344-AD rats, we discovered that the loss of LC-NA axons coincides with the heightened β-AR function at medial perforant path-dentate granule cell synapses that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory.SIGNIFICANCE STATEMENT The locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer's disease (AD) pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β-adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.
Collapse
Affiliation(s)
- Anthoni M Goodman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Bethany M Langner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Nateka Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Capri Alex
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| |
Collapse
|
4
|
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373:711-727. [PMID: 29470647 DOI: 10.1007/s00441-018-2800-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue "Hippocampal structure and function," we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.
Collapse
Affiliation(s)
- Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
5
|
Locus Coeruleus and Dopamine-Dependent Memory Consolidation. Neural Plast 2017; 2017:8602690. [PMID: 29123927 PMCID: PMC5662828 DOI: 10.1155/2017/8602690] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/06/2017] [Accepted: 06/18/2017] [Indexed: 12/12/2022] Open
Abstract
Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5 receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5 receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC.
Collapse
|
6
|
Giorgi FS, Ryskalin L, Ruffoli R, Biagioni F, Limanaqi F, Ferrucci M, Busceti CL, Bonuccelli U, Fornai F. The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer's Disease. Front Neuroanat 2017; 11:80. [PMID: 28974926 PMCID: PMC5610679 DOI: 10.3389/fnana.2017.00080] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.
Collapse
Affiliation(s)
- Filippo S Giorgi
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Riccardo Ruffoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | | | - Ubaldo Bonuccelli
- Section of Neurology, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of PisaPisa, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy.,I.R.C.C.S. I.N.M. NeuromedPozzilli, Italy
| |
Collapse
|
7
|
Roschlau C, Hauber W. Effects of dorsal hippocampus catecholamine depletion on paired-associates learning and place learning in rats. Behav Brain Res 2017; 323:124-132. [PMID: 28153394 DOI: 10.1016/j.bbr.2017.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
Growing evidence suggests that the catecholamine (CA) neurotransmitters dopamine and noradrenaline support hippocampus-mediated learning and memory. However, little is known to date about which forms of hippocampus-mediated spatial learning are modulated by CA signaling in the hippocampus. Therefore, in the current study we examined the effects of 6-hydroxydopamine-induced CA depletion in the dorsal hippocampus on two prominent forms of hippocampus-based spatial learning, that is learning of object-location associations (paired-associates learning) as well as learning and choosing actions based on a representation of the context (place learning). Results show that rats with CA depletion of the dorsal hippocampus were able to learn object-location associations in an automated touch screen paired-associates learning (PAL) task. One possibility to explain this negative result is that object-location learning as tested in the touchscreen PAL task seems to require relatively little hippocampal processing. Results further show that in rats with CA depletion of the dorsal hippocampus the use of a response strategy was facilitated in a T-maze spatial learning task. We suspect that impaired hippocampus CA signaling may attenuate hippocampus-based place learning and favor dorsolateral striatum-based response learning.
Collapse
Affiliation(s)
- Corinna Roschlau
- Department Animal Physiology, University of Stuttgart, D-70550 Stuttgart, Germany
| | - Wolfgang Hauber
- Department Animal Physiology, University of Stuttgart, D-70550 Stuttgart, Germany.
| |
Collapse
|
8
|
Genestine M, Lin L, Durens M, Yan Y, Jiang Y, Prem S, Bailoor K, Kelly B, Sonsalla PK, Matteson PG, Silverman J, Crawley JN, Millonig JH, DiCicco-Bloom E. Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior. Hum Mol Genet 2015. [PMID: 26220976 DOI: 10.1093/hmg/ddv301] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40 -: 75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5 -: 15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthieu Genestine
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Lulu Lin
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Madel Durens
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Yan Yan
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers
| | - Yiqin Jiang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Kunal Bailoor
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brian Kelly
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Patricia K Sonsalla
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Rutgers
| | - Paul G Matteson
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jill Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacqueline N Crawley
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, Graduate School of Biological Sciences, Rutgers, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA and
| |
Collapse
|
9
|
Holmes PV, Reiss JI, Murray PS, Dishman RK, Spradley JM. Chronic exercise dampens hippocampal glutamate overflow induced by kainic acid in rats. Behav Brain Res 2015; 284:19-23. [DOI: 10.1016/j.bbr.2015.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 11/16/2022]
|
10
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
11
|
Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24:845-58. [PMID: 23183712 PMCID: PMC3948488 DOI: 10.1093/cercor/bhs362] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays an essential role in the enablement of cognition. It adds color to experience-dependent information storage, conferring salience to the memories that result. At the synaptic level, experience-dependent information storage is enabled by synaptic plasticity, and given its importance for memory formation, it is not surprising that DA comprises a key neuromodulator in the enablement of synaptic plasticity, and particularly of plasticity that persists for longer periods of time: Analogous to long-term memory. The hippocampus, that is a critical structure for the synaptic processing of semantic, episodic, spatial, and declarative memories, is specifically affected by DA, with the D1/D5 receptor proving crucial for hippocampus-dependent memory. Furthermore, D1/D5 receptors are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus. They also facilitate the expression of persistent forms of synaptic plasticity, and given reports that both long-term potentiation and long-term depression encode different aspects of spatial representations, this suggests that D1/D5 receptors can drive the nature and qualitative content of stored information in the hippocampus. In light of these observations, we propose that D1/D5 receptors gate hippocampal long-term plasticity and memory and are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus.
Collapse
Affiliation(s)
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty,Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
12
|
Kunzler J, Braun K, Bock J. Early life stress and sex-specific sensitivity of the catecholaminergic systems in prefrontal and limbic regions of Octodon degus. Brain Struct Funct 2013; 220:861-8. [PMID: 24343570 DOI: 10.1007/s00429-013-0688-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/06/2013] [Indexed: 01/09/2023]
Abstract
Previous work in the precocious rodent Octodon degus has shown that exposure to early life stress (ELS) (induced by repeated parental separation) results in changes of excitatory, inhibitory and modulatory transmitter systems in prefrontal and limbic regions of the male brain. The aim of this study was to test the hypothesis that catecholaminergic fibers and dopamine transporters (DAT) are differentially vulnerable towards ELS-induced neuronal changes in male and female brains. The brains of adult male and female animals exposed to repeated early life stress (1 h/day separation from the family from P1 to P21) and control animals were compared and the densities of tyrosine hydroxylase (TH)-immunoreactive structures were quantified in prefrontal cortical regions. In the nucleus accumbens (NAc) and striatum, DAT-immunoreactivity as well as TH immunoreactivity was measured. Layer II of the prelimbic cortex displayed reduced TH-fiber densities in ELS males compared to control males; this effect was not seen in females. In contrast, layer V/VI of the lateral orbitofrontal cortex displayed elevated fiber densities in ELS males compared to controls; again this difference was not observed in females. The same trend was observed for layer III/IV of the ventral orbitofrontal cortex. No sex-specific effects in response to ELS were observed for DAT, whose density was elevated in the NAc of ELS males and females. These results are in line with our working hypothesis that ELS affects the development of catecholaminergic systems and we show here that ELS-induced differences of TH-immunoreactive fibers were more pronounced in male brains than in female brains.
Collapse
Affiliation(s)
- Jan Kunzler
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
13
|
Braun K, Seidel K, Holetschka R, Groeger N, Poeggel G. Paternal deprivation alters the development of catecholaminergic innervation in the prefrontal cortex and related limbic brain regions. Brain Struct Funct 2012; 218:859-72. [PMID: 22706761 DOI: 10.1007/s00429-012-0434-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/22/2012] [Indexed: 01/11/2023]
Abstract
The impact of paternal care on the development of catecholaminergic fiber innervations in the prefrontal cortex, nucleus accumbens, hippocampus and the amygdala was quantitatively investigated in the biparental Octodon degus. Two age (juvenile, adult) and rearing groups: (1) degus reared without father and (2) degus raised by both parents were compared. Juvenile father-deprived animals showed significantly elevated densities of TH-immunoreactive fibers in all analyzed regions, except in the orbitofrontal cortex, as compared to biparentally reared animals. This difference between the two rearing groups was still evident in adulthood in the prelimbic and infralimbic cortices and in the hippocampal formation. Interestingly, the elevated TH fiber density in both nucleus accumbens subregions was reversed in adulthood, i.e. adult father-deprived animals showed strongly reduced TH fiber densities as compared to biparentally reared animals. We show here that paternal care plays a critical role in the functional maturation of catecholaminergic innervation patterns in prefrontal and limbic brain circuits.
Collapse
Affiliation(s)
- Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute for Biology, Otto-von-Guericke University, Leipziger Str 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Walling SG, Brown RA, Miyasaka N, Yoshihara Y, Harley CW. Selective wheat germ agglutinin (WGA) uptake in the hippocampus from the locus coeruleus of dopamine-β-hydroxylase-WGA transgenic mice. Front Behav Neurosci 2012; 6:23. [PMID: 22654744 PMCID: PMC3361128 DOI: 10.3389/fnbeh.2012.00023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/10/2012] [Indexed: 11/22/2022] Open
Abstract
We generated transgenic mice in which a trans-synaptic tracer, wheat germ agglutinin (WGA), was specifically expressed in the locus coeruleus (LC) neurons under the control of the dopamine-β-hydroxylase (DBH) gene promoter. WGA protein was produced in more than 95% of the tyrosine hydroxylase (TH)-positive LC neurons sampled. Transynaptic transfer of WGA was most evident in CA3 neurons of the hippocampus, but appeared absent in CA1 neurons. Faint but significant WGA immunoreactivity was observed surrounding the nuclei of dentate granule cells. Putative hilar mossy cells, identified by the presence of calretinin in the ventral hippocampus, appeared uniformly positive for transynaptically transferred WGA protein. GAD67-positive interneurons in the hilar and CA3 regions tended to be WGA-positive, although a subset of them did not show WGA co-localization. The same mixed WGA uptake profile was apparent when examining co-localization with parvalbumin. The selective uptake of WGA by dentate granule cells, mossy cells, and CA3 pyramidal neurons is consistent with evidence for a large proportion of conventional synapses adjacent to LC axonal varicosities in these regions. The lack of WGA uptake in the CA1 region and its relatively sparse innervation by DBH-positive fibers suggest that a majority of the TH-positive classical synapses revealed by electron microscopy in that region may be producing dopamine. The overall pattern of WGA uptake in these transgenic mice implies a selective role for the granule cell-mossy cell-CA3 network in processing novelty or the salient environmental contingency changes signaled by LC activity.
Collapse
Affiliation(s)
- Susan G Walling
- Department of Psychology, Memorial University of Newfoundland, St. John's NL, Canada
| | | | | | | | | |
Collapse
|
15
|
Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. J Neurosci 2010; 30:2547-58. [PMID: 20164340 DOI: 10.1523/jneurosci.3857-09.2010] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Elevated oxidative stress and alteration in antioxidant systems, including glutathione (GSH) decrease, are observed in schizophrenia. Genetic and functional data indicate that impaired GSH synthesis represents a susceptibility factor for the disorder. Here, we show that a genetically compromised GSH synthesis affects the morphological and functional integrity of hippocampal parvalbumin-immunoreactive (PV-IR) interneurons, known to be affected in schizophrenia. A GSH deficit causes a selective decrease of PV-IR interneurons in CA3 and dendate gyrus (DG) of the ventral but not dorsal hippocampus and a concomitant reduction of beta/gamma oscillations. Impairment of PV-IR interneurons emerges at the end of adolescence/early adulthood as oxidative stress increases or cumulates selectively in CA3 and DG of the ventral hippocampus. Such redox dysregulation alters stress and emotion-related behaviors but leaves spatial abilities intact, indicating functional disruption of the ventral but not dorsal hippocampus. Thus, a GSH deficit affects PV-IR interneuron's integrity and neuronal synchrony in a region- and time-specific manner, leading to behavioral phenotypes related to psychiatric disorders.
Collapse
|
16
|
Abstract
The dentate gyrus is the first stage of the intrahippocampal, excitatory, trisynaptic loop, and a primary target of the majority of entorhinal afferents that terminate in a laminar fashion on granule cell dendrites and carry sensory information of multiple modalities about the external world. The electric activity of the trisynaptic pathway is controlled mainly by different types of local, GABAergic interneurons, and subcortical and commissural afferents. In this chapter we will outline the origin and postsynaptic targets in the dentate gyrus of chemically identified subcortical inputs. These systems are afferents originating from the medial septum/diagonal band of Broca GABAergic and cholinergic neurons, neurochemically distinct types of neurons located in the supramammillary area, serotonergic fibers from the median raphe, noradrenergic afferents from the pontine nucleus, locus ceruleus, dopamine axons originating in the ventral tegmental area, and the commissural projection system. Because of the physiological implications, these afferents are discussed in the context of the glutamatergic innervation of the dentate gyrus. One common feature of the extrinsic dentate afferent systems is that they originate from a relatively small number of neurons. However, the majority of these afferents are able to exert a powerful control over the electrical activity of the hippocampus. This strong influence is due to the fact that the majority of the extrinsic afferents terminate on a relatively small, but specific, populations of neurons that are able to control large areas of the hippocampal formation.
Collapse
Affiliation(s)
- Csaba Leranth
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, FMB 312, New Haven, CT 06520, USA.
| | | |
Collapse
|
17
|
Abstract
Norepinephrine's role in the dentate gyrus is assessed based on a review of what is known about its innervation and receptor patterns and its functional effects at both cellular and behavioral levels. The data support seven hypotheses: (1) Norepinephrine's functional actions are primarily mediated by beta adrenoceptors and include electrophysiological enhancement of responses to excitatory input and glycogenolytic metabolic support of excitatory synaptic activity. (2) At the cellular level, locus coeruleus burst release of norepinephrine transiently inhibits feedforward interneurons and either excites or inhibits subpopulations of feedback interneurons. Consistent with reduced feedforward inhibition, granule cell firing is transiently increased. Concomitant EEG effects include transient increases in theta power and decreases in beta and gamma power. (3) Norepinephrine selectively promotes the processing of medial perforant path spatial input. This effect is mediated both through short- and long-term potentiation of cell excitability and through delayed potentiation of synaptic input. A critical level of norepinephrine release is required for long-term effects to norepinephrine alone. Norepinephrine release switches early phase frequency-induced long-term potentiation of perforant path input to an enduring late phase form and can reinstate decayed long-term potentiation. Norepinephrine also promotes frequency-induced potentiation of granule cell output at the mossy fiber to CA3 connection. (4) Local increases in norepinephrine accompany glutamate release and release of other neurotransmitters providing a mechanism for norepinephrine enhancement effects independent of locus coeruleus firing. (5) Stimuli, such as novelty and reward and punishment, which activate locus coeruleus neurons, enhance responses to medial perforant path input and engage late phase frequency-induced long-term potentiation through beta adrenoceptor activation. (6) Behavioral studies are consistent with the mechanistic evidence for a norepinephrine role in promoting learning and memory and assisting retrieval. (7) The overall profile suggests lower levels of norepinephrine may facilitate pattern completion or memory retrieval while higher levels would recruit global remapping and promote long-term episodic memory.
Collapse
Affiliation(s)
- Carolyn W Harley
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
18
|
Gos T, Becker K, Bock J, Malecki U, Bogerts B, Poeggel G, Braun K. Early neonatal and postweaning social emotional deprivation interferes with the maturation of serotonergic and tyrosine hydroxylase-immunoreactive afferent fiber systems in the rodent nucleus accumbens, hippocampus and amygdala. Neuroscience 2006; 140:811-21. [PMID: 16632206 DOI: 10.1016/j.neuroscience.2006.02.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 12/23/2005] [Accepted: 02/24/2006] [Indexed: 11/26/2022]
Abstract
The impact of early emotional experience on the development of serotonergic and dopaminergic fiber innervation of the nucleus accumbens, hippocampal formation and the amygdala was quantitatively investigated in the precocious rodent Octodon degus. Two animal groups were compared: 1) degus which were repeatedly separated from their parents during the first three postnatal weeks, after weaning they were individually reared in chronic social isolation and 2) controls which were reared undisturbed with their families. In the deprived animals 5-hydroxytryptamine-immunoreactive fiber densities were increased in the core region of the nucleus accumbens (up to 126%), in the central nucleus of the amygdala (up to 112%) and in the outer subregion of the dentate gyrus stratum moleculare (up to 149%), whereas decreased fiber densities were detected in the dentate subgranular layer (down to 86%) and in the stratum lacunosum of the hippocampal cornu ammonis region 1 (down to 86%). Tyrosine hydroxylase-immunoreactive fiber densities were increased in the core (up to 115%) and shell region (up to 113%) of the nucleus accumbens of deprived animals, whereas decreased fiber densities (down to 84%) were observed in the hilus of the dentate gyrus. In the stratum granulosum and subgranular layer the fiber densities increased up to 168% and 127% respectively. In summary, these results indicate that the postnatal establishment of the monoaminergic innervation of limbic areas is modulated in response to early emotional experience, and that this environmental morphological adaptation is highly region specific.
Collapse
Affiliation(s)
- T Gos
- Institute of Forensic Medicine, Medical University of Gdansk, ul. Debowa 23, 80-204, Gdansk, Poland
| | | | | | | | | | | | | |
Collapse
|
19
|
Nitz D, McNaughton B. Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J Neurophysiol 2003; 91:863-72. [PMID: 14523073 DOI: 10.1152/jn.00614.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parallel recordings of hippocampal principal cells and interneurons were obtained as rats foraged in familiar and adjacent, novel environments. Firing rates of each cell type were assessed as a function of spatial location. Many CA1 interneurons exhibited large decreases in activity in the novel compared with the familiar environment. Dentate gyrus interneurons, however, were much more likely to exhibit large increases in firing in the novel environment. Neither effect was correlated with basic interneuron discharge properties such as degree of theta modulation, baseline firing rate or degree of spatially modulated discharge. Both CA1 and dentate gyrus interneuron rate changes extended into regions of the familiar environment bordering the novel environment. Principal cells in CA1 and dentate gyrus exhibited similar patterns of place specific activity each being indicative of incorporation of novel spatial information into the spatial representation of the familiar environment. The data indicate that inhibitory networks in the CA1 and dentate gyrus areas are modulated in a divergent fashion during the acquisition of novel spatial information and that interneuron activities can be used to detect those regions of an environment subject to redistribution of principal cell spatial activity patterns.
Collapse
Affiliation(s)
- Douglas Nitz
- Department of Neural Systems, Memory, and Aging, University of Arizona, Tucson, Arizona 85724, USA.
| | | |
Collapse
|
20
|
Adams CE, Broide RS, Chen Y, Winzer-Serhan UH, Henderson TA, Leslie FM, Freedman R. Development of the alpha7 nicotinic cholinergic receptor in rat hippocampal formation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:175-87. [PMID: 12480132 DOI: 10.1016/s0165-3806(02)00547-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The alpha7 nicotinic receptor has been implicated in the regulation of a variety of developmental processes. The goal of the present study was to assess whether the alpha7 receptor might participate in the regulation of hippocampal ontogeny by describing the spatiotemporal development of alpha7 mRNA and alpha-bungarotoxin binding in rat hippocampal formation. Message for the alpha7 receptor was initially observed in the hippocampal neuroepithelium at embryonic day 13 and in the anlage of the hippocampal formation on embryonic day 14. Binding of alpha-bungarotoxin was initially seen on embryonic day 15 in the dorsal portion of the anlage of stratum oriens and stratum radiatum-lacunosum moleculare, but was never observed in the neuroepithelium. Dramatic elevations in both alpha7 mRNA and alpha-bungarotoxin binding were observed in most regions of the hippocampal formation neonatally. The levels of both alpha7 message and protein gradually decreased during the first three postnatal weeks to adult levels in most regions. The lack of alpha-bungarotoxin binding in the neuroepithelium suggests that the alpha7 receptor does not influence neurogenesis. The early appearance and complex, prolonged pattern of development of the alpha7 receptor suggest that it may influence processes as diverse as cell migration, dendritic elaboration and apoptosis during hippocampal maturation.
Collapse
Affiliation(s)
- Catherine E Adams
- VAMC Department of Psychiatry, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C268-71, Denver, CO 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang GS, Chang NC, Wu SC, Chang AC. Regulated expression of ?2B adrenoceptor during development. Dev Dyn 2002; 225:142-52. [PMID: 12242714 DOI: 10.1002/dvdy.10141] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are three subtypes of alpha2 adrenoceptor, i.e., alpha2A, alpha2B, and alpha2C, mediating the specific effect of epinephrine and norepinephrine in various tissues by means of G protein-coupled signal transduction pathways. In an attempt to delineate the regulatory mechanism of the alpha2B receptor subtype (encoded by subtype gene Adra2b) expression in the central nervous system (CNS), we have established transgenic (Tg) mice lines in which the transgene (NN-lacZ) was composed of the promoter region of Adra2b (NcoI fragment, 4.7 kb immediately upstream from receptor coding region) and a reporter gene lacZ (encoding beta-galactosidase). The selective expression of alpha2B in brain as indexed by beta-galactosidase, under the direction of this promoter region, may be traced in situ by using X-gal staining. The expression pattern of Adra2b-NN-lacZ in CNS of Tg mice during development was examined. The temporal course of examination was from gestation day 9.5 (E9.5) to postnatal day 28 (P28). Significant X-gal staining was detected in the dorsal root ganglion and cranial nerves V and VII at E12.5. By E18.5, expression was noted in the cerebral cortex, anterior olfactory nucleus, hypothalamus, brainstem, and cerebellar Purkinje cells, among others, and persisted through postnatal development. Adra2b-NN-directed reporter expression was detected in the hippocampal dentate gyrus first at P4. The temporal course of expression up to P28 in this area is in accordance with the developmental profiles of granule neurons of dentate gyrus. From P7 on, transgene expression was detected in additional brain areas, including the septum and thalamus. The expression correlates well with the noradrenergic innervations as evidenced by colocalization by using tyrosine hydroxylase or dopamine-beta-hydroxylase immunocytochemistry.
Collapse
Affiliation(s)
- Guey-Shin Wang
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
22
|
Leslie FM, Gallardo KA, Park MK. Nicotinic acetylcholine receptor-mediated release of [3H]norepinephrine from developing and adult rat hippocampus: direct and indirect mechanisms. Neuropharmacology 2002; 42:653-61. [PMID: 11985823 DOI: 10.1016/s0028-3908(02)00019-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The primary role of nicotinic acetylcholine receptors in adult and developing brain is to modulate neurotransmission. Using in vitro neurotransmitter release, we have examined mechanisms underlying nicotine-induced [(3)H]norepinephrine release from developing and adult rat hippocampus. At birth, nicotine significantly stimulated hippocampal [(3)H]norepinephrine release with a monotonic increase in maximal drug effect over the first ten postnatal days. No developmental changes in agonist or antagonist potency were observed. Comparison of synaptosomal and slice preparations, as well as examination of the effects of tetrodotoxin, indicated that at least two nicotinic acetylcholine receptor populations regulated [(3)H]norepinephrine release from neonatal and adult hippocampus; one localized on noradrenergic terminals, the other on adjacent cells. To further characterize the indirect mechanism of nicotine action in the adult, we examined the effects of pharmacological blockade of various neurotransmitter systems that provide excitatory input to hippocampal noradrenergic terminals. Whereas glutamate and muscarinic receptor blockade was ineffective, the GABA-A receptor antagonists, bicuculline and picrotoxin, inhibited the indirect component of nicotine-mediated [(3)H]norepinephrine release. Furthermore, pentobarbital, an allosteric effector at GABA-A receptors, potentiated the effect of submaximal concentrations of nicotine. These findings are consistent with the hypothesis that nicotine-induced GABA release serves as an additional stimulus for [(3)H]norepinephrine secretion within rat hippocampus.
Collapse
Affiliation(s)
- F M Leslie
- Department of Pharmacology, College of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
23
|
Hajós-Korcsok E, Sharp T. Electrical stimulation of the dorsal and median raphe nuclei increases extracellular noradrenaline in rat hippocampus: Evidence for a 5-HT-independent mechanism. Pharmacol Biochem Behav 2002; 71:807-13. [PMID: 11888571 DOI: 10.1016/s0091-3057(01)00718-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies have used raphe stimulation combined with in vivo measurements of extracellular dopamine to investigate interactions between the 5-hydroxytryptamine (5-HT) and dopamine systems. Here we have tested whether the same approach can be used to investigate interactions between the 5-HT and noradrenaline systems. Electrical stimulation of the dorsal raphe nucleus (DRN) or median raphe nucleus (MRN) was performed in anaesthetised rats implanted with microdialysis probes in the hippocampus and locus coeruleus (LC). DRN stimulation (3, 5 and 10 Hz) evoked a frequency-dependent increase in extracellular noradrenaline in the hippocampus. MRN stimulation had a similar effect. Both DRN and MRN stimulations enhanced extracellular 5-HT levels in the LC and previous studies have demonstrated that extracellular 5-HT also increases in the hippocampus. However, the increase in hippocampal noradrenaline evoked by DRN stimulation was not altered by 5-HT neuronal lesions, which reduced 5-HT metabolite levels by 90%. In conclusion, electrical stimulation of the midbrain raphe increases extracellular noradrenaline in the hippocampus, however, experiments in 5-HT-lesioned animals suggest that this response is not mediated by 5-HT. Although raphe stimulation may be useful to investigate interactions between 5-HT and dopamine, our data indicate that the same approach may not be feasible for 5-HT and noradrenaline.
Collapse
Affiliation(s)
- Eva Hajós-Korcsok
- University Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Road, OX2 6HE, Oxford, UK.
| | | |
Collapse
|
24
|
Naeve GS, Vana AM, Eggold JR, Kelner GS, Maki R, Desouza EB, Foster AC. Expression profile of the copper homeostasis gene, rAtox1, in the rat brain. Neuroscience 1999; 93:1179-87. [PMID: 10473283 DOI: 10.1016/s0306-4522(99)00175-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In humans the regulation of cellular copper homeostasis is essential for proper organ development and function. A novel cytosolic protein, named Atox 1, was recently identified in yeast that functions in shuttling intracellular mononuclear copper [Cu(I)] to copper-requiring proteins. Atox 1 and its human homolog, hAtox1, are members of an emerging family of proteins termed copper chaperones that are involved in the maintenance of copper homeostasis. Northern blot analysis demonstrates that Atox 1 is widely expressed at varying levels in a variety of rat tissues including brain. Using in situ hybridization histochemistry, we characterized the expression profile for the rat homolog of Atox1 (rAtox1) in the normal adult rat brain. There is widespread expression within the brain that appears to be primarily neuronal. The highest levels of Atox1 message consists of distinct neuronal subtypes that are also characterized by their high levels of metals like copper, iron, and zinc, which include the pyramidal neurons of the cerebral cortex and hippocampus in addition to the neurons of the locus coeruleus. The high levels of a metal chaperone like Atox1 in subsets of neurons that also sequester metals suggests that Atox1 may be important in maintaining the functionality of metal requiring enzymes. A detailed analysis of the restricted expression profile for a novel copper chaperone, rAtox1, is described in the adult rat CNS. Further analysis shows that Atoxl expression is associated with neuronal populations that sequester copper.
Collapse
Affiliation(s)
- G S Naeve
- Department of Neuroscience, San Diego, CA 92121-1102, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Affiliation(s)
- T F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
27
|
Abstract
In this report, we have tested the hypothesis that brain-derived neurotrophic factor (BDNF) is an anterograde neurotrophic factor in the CNS and have focused on central noradrenergic neurons that synthesize BDNF. Double-label immunocytochemistry for BDNF and dopamine-beta-hydroxylase (DBH), a marker for noradrenergic neurons, demonstrated that BDNF is partially localized to noradrenergic nerve fibers and terminals in the adult rat brain. To test the functional importance of this anterograde BDNF, we analyzed transgenic mice carrying a DBH-BDNF minigene. Increased synthesis of BDNF in noradrenergic neurons of DBH-BDNF mice caused elevated TrkB tyrosine kinase activation throughout postnatal life in the neocortex, a noradrenergic target region. This afferently regulated increase in TrkB receptor activity led to long-lasting alterations in cortical morphology. To determine whether noradrenergic neuron-expressed BDNF also anterogradely regulated neuronal survival, we examined a second noradrenergic target, neonatal facial motoneurons. One week after axotomy, 72% of facial motoneurons were lost in control animals, whereas only 30-35% were lost in DBH-BDNF transgenic mice. Altogether, these results indicate that BDNF is anterogradely transported to fibers and terminals of noradrenergic neurons, that anterogradely secreted BDNF causes activation of TrkB in target regions, and that this secretion has functional consequences for target neuron survival and differentiation. This presynaptic secretion of BDNF may provide a cellular mechanism for modulating neural circuitry, in either the developing or mature nervous system.
Collapse
|
28
|
Affiliation(s)
- P S Buckmaster
- Department of Neurological Surgery, University of Washington, Seattle 98195
| | | |
Collapse
|