1
|
Fatema N, Li X, Gan Q, Fan C. Characterizing lysine acetylation of glucokinase. Protein Sci 2024; 33:e4845. [PMID: 37996965 PMCID: PMC10731539 DOI: 10.1002/pro.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Glucokinase (GK) catalyzes the phosphorylation of glucose to form glucose-6-phosphate as the substrate of glycolysis for energy production. Acetylation of lysine residues in Escherichia coli GK has been identified at multiple sites by a series of proteomic studies, but the impact of acetylation on GK functions remains largely unknown. In this study, we applied the genetic code expansion strategy to produce site-specifically acetylated GK variants which naturally exist in cells. Enzyme assays and kinetic analyses showed that lysine acetylation decreases the GK activity, mostly resulting from acetylation of K214 and K216 at the entrance of the active site, which impairs the binding of substrates. We also compared results obtained from the glutamine substitution method and the genetic acetyllysine incorporation approach, showing that glutamine substitution is not always effective for mimicking acetylated lysine. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to determine acetylation and deacetylation mechanisms, which showed that E. coli GK could be acetylated by acetyl-phosphate without enzymes and deacetylated by CobB deacetylase.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Xinyu Li
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | - Qinglei Gan
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| | - Chenguang Fan
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
- Department of Chemistry and BiochemistryUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
2
|
Herrera-Morandé A, Vallejos-Baccelliere G, Cea PA, Zamora RA, Cid D, Maturana P, González-Ordenes F, Castro-Fernández V, Guixé V. Kinetic characterization and phylogenetic analysis of human ADP-dependent glucokinase reveal new insights into its regulatory properties. Arch Biochem Biophys 2023; 741:109602. [PMID: 37084804 DOI: 10.1016/j.abb.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Although ADP-dependent sugar kinases were first described in archaea, at present, the presence of an ADP-dependent glucokinase (ADP-GK) in mammals is well documented. This enzyme is mainly expressed in hematopoietic lineages and tumor tissues, although its role has remained elusive. Here, we report a detailed kinetic characterization of the human ADP-dependent glucokinase (hADP-GK), addressing the influence of a putative signal peptide for endoplasmic reticulum (ER) destination by characterizing a truncated form. The truncated form revealed no significant impact on the kinetic parameters, showing only a slight increase in the Vmax value, higher metal promiscuity, and the same nucleotide specificity as the full-length enzyme. hADP-GK presents an ordered sequential kinetic mechanism in which MgADP is the first substrate to bind and AMP is the last product released, being the same mechanism described for archaeal ADP-dependent sugar kinases, in agreement with the protein topology. Substrate inhibition by glucose was observed due to sugar binding to nonproductive species. Although Mg2+ is an essential component for kinase activity, it also behaves as a partial mixed-type inhibitor for hADP-GK, mainly by decreasing the MgADP affinity. Regarding its distribution, phylogenetic analysis shows that ADP-GK´s are present in a wide diversity of eukaryotic organisms although it is not ubiquitous. Eukaryotic ADP-GKs sequences cluster into two main groups, showing differences in the highly conserved sugar-binding motif reported for archaeal enzymes [NX(N)XD] where a cysteine residue is found instead of asparagine in a significant number of enzymes. Site directed mutagenesis of the cysteine residue by asparagine produces a 6-fold decrease in Vmax, suggesting a role for this residue in the catalytic process, probably by facilitating the proper orientation of the substrate to be phosphorylated.
Collapse
Affiliation(s)
- Alejandra Herrera-Morandé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Gabriel Vallejos-Baccelliere
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Pablo A Cea
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo A Zamora
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Dixon Cid
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Felipe González-Ordenes
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Castro-Fernández
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Moalic Y, Hartunians J, Dalmasso C, Courtine D, Georges M, Oger P, Shao Z, Jebbar M, Alain K. The Piezo-Hyperthermophilic Archaeon Thermococcus piezophilus Regulates Its Energy Efficiency System to Cope With Large Hydrostatic Pressure Variations. Front Microbiol 2021; 12:730231. [PMID: 34803948 PMCID: PMC8595942 DOI: 10.3389/fmicb.2021.730231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Deep-sea ecosystems share a common physical parameter, namely high hydrostatic pressure (HHP). Some of the microorganisms isolated at great depths have a high physiological plasticity to face pressure variations. The adaptive strategies by which deep-sea microorganisms cope with HHP variations remain to be elucidated, especially considering the extent of their biotopes on Earth. Herein, we investigated the gene expression patterns of Thermococcus piezophilus, a piezohyperthermophilic archaeon isolated from the deepest hydrothermal vent known to date, under sub-optimal, optimal and supra-optimal pressures (0.1, 50, and 90 MPa, respectively). At stressful pressures [sub-optimal (0.1 MPa) and supra-optimal (90 MPa) conditions], no classical stress response was observed. Instead, we observed an unexpected transcriptional modulation of more than a hundred gene clusters, under the putative control of the master transcriptional regulator SurR, some of which are described as being involved in energy metabolism. This suggests a fine-tuning effect of HHP on the SurR regulon. Pressure could act on gene regulation, in addition to modulating their expression.
Collapse
Affiliation(s)
- Yann Moalic
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Jordan Hartunians
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Cécile Dalmasso
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Myriam Georges
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Philippe Oger
- Université de Lyon, INSA Lyon, CNRS UMR 5240, Villeurbanne, France
| | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France.,Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography SOA, Xiamen, China
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, UMR 6197, IUEM, Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E, Plouzané, France
| |
Collapse
|
4
|
Isolation and thermo-acclimation of thermophilic bacteria in hyperthermophilic fermentation system. Bioprocess Biosyst Eng 2021; 45:75-85. [PMID: 34564754 DOI: 10.1007/s00449-021-02640-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Hyperthermophilic microorganisms play a key role in the hyper-thermophilic composting (HTC) technique. However, little information is available about the hyperthermophilic microorganisms prevalent in HTC systems, except for the Calditerricola satsumensis, Calditerricola yamamurae, and Thermaerobacter. To obtain effective hyper-thermophilic microorganisms, a continuous thermo-acclimation of the suitable thermophilic microorganisms was demonstrated in this study. Bacillus thermoamylovorans with high-temperature endurance (70 °C) were newly isolated from sludge composting, and an adequate slow heating rate (2 °C per cycle) was applied to further improve its thermostability. Finally, a strain with a maximum growth temperature of 80 °C was obtained. Moreover, structural and hydrophobic changes in cell proteins, the special amino acid content ratio, and the membrane permeability of the thermophilic bacterium after thermo-acclimation were evaluated for improved thermostability. In addition, the acclimated hyperthermophilic bacterium was further inoculated into the HTC system, and an excellent performance with a maximum operating temperature of 82 °C was observed.
Collapse
|
5
|
Courtine D, Vince E, Maignien L, Philippon X, Gayet N, Shao Z, Alain K. Thermococcus camini sp. nov., a hyperthermophilic and piezophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 2021; 71. [PMID: 34236955 DOI: 10.1099/ijsem.0.004853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A coccoid-shaped, strictly anaerobic, hyperthermophilic and piezophilic organoheterotrophic archaeon, strain Iri35cT, was isolated from a hydrothermal chimney rock sample collected at a depth of 2300 m at the Mid-Atlantic Ridge (Rainbow vent field). Cells of strain Iri35cT grew at NaCl concentrations ranging from 1-5 % (w/v) (optimum 2.0 %), from pH 5.0 to 9.0 (optimum 7.0-7.5), at temperatures between 50 and 90 °C (optimum 75-80 °C) and at pressures from 0.1 to at least 50 MPa (optimum: 10-30 MPa). The novel isolate grew on complex organic substrates, such as yeast extract, tryptone, peptone or beef extract, preferentially in the presence of elemental sulphur or l-cystine; however, these molecules were not necessary for growth. Its genomic DNA G+C content was 54.63 mol%. The genome has been annotated and the metabolic predictions are in accordance with the metabolic characteristics of the strain and of Thermococcales in general. Phylogenetic analyses based on 16S rRNA gene sequences and concatenated ribosomal protein sequences showed that strain Iri35cT belongs to the genus Thermococcus, and is closer to the species T. celericrescens and T. siculi. Average nucleotide identity scores and in silico DNA-DNA hybridization values between the genome of strain Iri35cT and the genomes of the type species of the genus Thermococcus were below the species delineation threshold. Therefore, and considering the phenotypic data presented, strain Iri35cT is suggested to represent a novel species, for which the name Thermococcus camini sp. nov. is proposed, with the type strain Iri35cT (=UBOCC M-2026T=DSM 111003T).
Collapse
Affiliation(s)
- Damien Courtine
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Aix Marseille Univ, CNRS, INSERM, CIML, Turing Centre for Living Systems, Marseille, France
| | - Erwann Vince
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Loïs Maignien
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | - Xavier Philippon
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| | | | - Zongze Shao
- IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China
| | - Karine Alain
- Univ Brest, CNRS, Ifremer, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d'Urville, F-29280 Plouzané, France.,IRP 1211 MicrobSea, Sino-French Laboratory of Deep-Sea Microbiology, LM2E (Plouzané, France)-KLAMBR, Xiamen, PR China
| |
Collapse
|
6
|
Usvalampi A, Li H, Frey AD. Production of Glucose 6-Phosphate From a Cellulosic Feedstock in a One Pot Multi-Enzyme Synthesis. Front Bioeng Biotechnol 2021; 9:678038. [PMID: 34150734 PMCID: PMC8206812 DOI: 10.3389/fbioe.2021.678038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/07/2021] [Indexed: 12/04/2022] Open
Abstract
Glucose 6-phosphate is the phosphorylated form of glucose and is used as a reagent in enzymatic assays. Current production occurs via a multi-step chemical synthesis. In this study we established a fully enzymatic route for the synthesis of glucose 6-phosphate from cellulose. As the enzymatic phosphorylation requires ATP as phosphoryl donor, the use of a cofactor regeneration system is required. We evaluated Escherichia coli glucokinase and Saccharomyces cerevisiae hexokinase (HK) for the phosphorylation reaction and Pseudomonas aeruginosa polyphosphate kinase 2 (PPK2) for ATP regeneration. All three enzymes were characterized in terms of temperature and pH optimum and the effects of substrates and products concentrations on enzymatic activities. After optimization of the conditions, we achieved a 85% conversion of glucose into glucose 6-phosphate using the HK/PPK2 activities within a 24 h reaction resulting in 12.56 g/l of glucose 6-phosphate. Finally, we demonstrated the glucose 6-phosphate formation from microcrystalline cellulose in a one-pot reaction comprising Aspergillus niger cellulase for glucose release and HK/PPK2 activities. We achieved a 77% conversion of released glucose into glucose 6-phosphate, however at the expense of a lower glucose 6-phosphate yield of 1.17 g/l. Overall, our study shows an alternative approach for synthesis of glucose 6-phosphate that can be used to valorize biomass derived cellulose.
Collapse
Affiliation(s)
- Anne Usvalampi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - He Li
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Alexander D Frey
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
7
|
Shakir NA, Aslam M, Bibi T, Rashid N. ADP-dependent glucose/glucosamine kinase from Thermococcus kodakarensis: cloning and characterization. Int J Biol Macromol 2021; 173:168-179. [PMID: 33444657 DOI: 10.1016/j.ijbiomac.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/15/2022]
Abstract
The genome sequence of Thermococcus kodakarensis contains an open reading frame, TK1110, annotated as ADP-dependent glucokinase. The encoding gene was expressed in Escherichia coli and the gene product, TK-GLK, was produced in soluble and active form. The recombinant enzyme was extremely thermostable. Thermostability was increased significantly in the presence of ammonium sulfate. ADP was the preferred co-factor for TK-GLK, which could be replaced with CDP but with a 60% activity. TK-GLK was a metal ion-dependent enzyme which exhibited glucokinase, glucosamine kinase and glucose 6-phosphatase activities. It catalyzed the phosphorylation of both glucose and glucosamine with nearly the same rate and affinity. The apparent Km values for glucose and glucosamine were 0.48 ± 0.03 and 0.47 ± 0.09 mM, respectively. The catalytic efficiency (kcat/Km) values against these two substrates were 6.2 × 105 ± 0.25 and 5.8 × 105 ± 0.75 M-1 s-1. The apparent Km value for dephosphorylation of glucose 6-phosphate was ~14-fold higher than that of glucose phosphorylation. Similarly, catalytic efficiency (kcat/Km) for phosphatase reaction was ~19-fold lower than that for the kinase reaction. To the best of our knowledge, this is the first report that describes the reversible nature of a euryarchaeal ADP-dependent glucokinase.
Collapse
Affiliation(s)
- Nisar Ahmed Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Tahira Bibi
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
8
|
Tokarz P, Wiśniewska M, Kamiński MM, Dubin G, Grudnik P. Crystal structure of ADP-dependent glucokinase from Methanocaldococcus jannaschii in complex with 5-iodotubercidin reveals phosphoryl transfer mechanism. Protein Sci 2018; 27:790-797. [PMID: 29352744 DOI: 10.1002/pro.3377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 11/11/2022]
Abstract
ADP-dependent glucokinase (ADPGK) is an alternative novel glucose phosphorylating enzyme in a modified glycolysis pathway of hyperthermophilic Archaea. In contrast to classical ATP-dependent hexokinases, ADPGK utilizes ADP as a phosphoryl group donor. Here, we present a crystal structure of archaeal ADPGK from Methanocaldococcus jannaschii in complex with an inhibitor, 5-iodotubercidin, d-glucose, inorganic phosphate, and a magnesium ion. Detailed analysis of the architecture of the active site allowed for confirmation of the previously proposed phosphorylation mechanism and the crucial role of the invariant arginine residue (Arg197). The crystal structure shows how the phosphate ion, while mimicking a β-phosphate group, is positioned in the proximity of the glucose moiety by arginine and the magnesium ion, thus providing novel insights into the mechanism of catalysis. In addition, we demonstrate that 5-iodotubercidin inhibits human ADPGK-dependent T cell activation-induced reactive oxygen species (ROS) release and downstream gene expression, and as such it may serve as a model compound for further screening for hADPGK-specific inhibitors.
Collapse
Affiliation(s)
- Piotr Tokarz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7, Krakow, 30-387, Poland.,Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| | - Magdalena Wiśniewska
- Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7, Krakow, 30-387, Poland.,Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| | - Przemysław Grudnik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7, Krakow, 30-387, Poland.,Malopolska Center of Biotechnology, Jagiellonian University in Krakow, ul. Gronostajowa 7a, Krakow, 30-387, Poland
| |
Collapse
|
9
|
Bibi T, Ali M, Rashid N, Muhammad MA, Akhtar M. Enhancement of gene expression in Escherichia coli and characterization of highly stable ATP-dependent glucokinase from Pyrobaculum calidifontis. Extremophiles 2017; 22:247-257. [DOI: 10.1007/s00792-017-0993-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
|
10
|
|
11
|
Biochemistry and regulatory functions of bacterial glucose kinases. Arch Biochem Biophys 2015; 577-578:1-10. [DOI: 10.1016/j.abb.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022]
|
12
|
Rivas-Pardo JA, Alegre-Cebollada J, Ramírez-Sarmiento CA, Fernandez JM, Guixé V. Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization. ACS NANO 2015; 9:3996-4005. [PMID: 25840594 PMCID: PMC4467879 DOI: 10.1021/nn507480v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Enzyme-substrate binding is a dynamic process intimately coupled to protein structural changes, which in turn changes the unfolding energy landscape. By the use of single-molecule force spectroscopy (SMFS), we characterize the open-to-closed conformational transition experienced by the hyperthermophilic adenine diphosphate (ADP)-dependent glucokinase from Thermococcus litoralis triggered by the sequential binding of substrates. In the absence of substrates, the mechanical unfolding of TlGK shows an intermediate 1, which is stabilized in the presence of Mg·ADP(-), the first substrate to bind to the enzyme. However, in the presence of this substrate, an additional unfolding event is observed, intermediate 1*. Finally, in the presence of both substrates, the unfolding force of intermediates 1 and 1* increases as a consequence of the domain closure. These results show that SMFS can be used as a powerful experimental tool to investigate binding mechanisms of different enzymes with more than one ligand, expanding the repertoire of protocols traditionally used in enzymology.
Collapse
Affiliation(s)
- Jaime Andrés Rivas-Pardo
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jorge Alegre-Cebollada
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
| | - César A. Ramírez-Sarmiento
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Julio M. Fernandez
- Department of Biological Sciences, Columbia University, Northwest Corner Building, 550 West 120 Street, New York, New York 10027, USA
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| |
Collapse
|
13
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
14
|
Haloferax volcanii N-glycosylation: delineating the pathway of dTDP-rhamnose biosynthesis. PLoS One 2014; 9:e97441. [PMID: 24831810 PMCID: PMC4022621 DOI: 10.1371/journal.pone.0097441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/20/2014] [Indexed: 11/19/2022] Open
Abstract
In the halophilic archaea Haloferax volcanii, the surface (S)-layer glycoprotein can be modified by two distinct N-linked glycans. The tetrasaccharide attached to S-layer glycoprotein Asn-498 comprises a sulfated hexose, two hexoses and a rhamnose. While Agl11-14 have been implicated in the appearance of the terminal rhamnose subunit, the precise roles of these proteins have yet to be defined. Accordingly, a series of in vitro assays conducted with purified Agl11-Agl14 showed these proteins to catalyze the stepwise conversion of glucose-1-phosphate to dTDP-rhamnose, the final sugar of the tetrasaccharide glycan. Specifically, Agl11 is a glucose-1-phosphate thymidylyltransferase, Agl12 is a dTDP-glucose-4,6-dehydratase and Agl13 is a dTDP-4-dehydro-6-deoxy-glucose-3,5-epimerase, while Agl14 is a dTDP-4-dehydrorhamnose reductase. Archaea thus synthesize nucleotide-activated rhamnose by a pathway similar to that employed by Bacteria and distinct from that used by Eukarya and viruses. Moreover, a bioinformatics screen identified homologues of agl11-14 clustered in other archaeal genomes, often as part of an extended gene cluster also containing aglB, encoding the archaeal oligosaccharyltransferase. This points to rhamnose as being a component of N-linked glycans in Archaea other than Hfx. volcanii.
Collapse
|
15
|
Rivas-Pardo JA, Herrera-Morande A, Castro-Fernandez V, Fernandez FJ, Vega MC, Guixé V. Crystal structure, SAXS and kinetic mechanism of hyperthermophilic ADP-dependent glucokinase from Thermococcus litoralis reveal a conserved mechanism for catalysis. PLoS One 2013; 8:e66687. [PMID: 23818958 PMCID: PMC3688580 DOI: 10.1371/journal.pone.0066687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/10/2013] [Indexed: 11/18/2022] Open
Abstract
ADP-dependent glucokinases represent a unique family of kinases that belong to the ribokinase superfamily, being present mainly in hyperthermophilic archaea. For these enzymes there is no agreement about the magnitude of the structural transitions associated with ligand binding and whether they are meaningful to the function of the enzyme. We used the ADP-dependent glucokinase from Thermococcus litoralis as a model to investigate the conformational changes observed in X-ray crystallographic structures upon substrate binding and to compare them with those determined in solution in order to understand their interplay with the glucokinase function. Initial velocity studies indicate that catalysis follows a sequential ordered mechanism that correlates with the structural transitions experienced by the enzyme in solution and in the crystal state. The combined data allowed us to resolve the open-closed conformational transition that accounts for the complete reaction cycle and to identify the corresponding clusters of aminoacids residues responsible for it. These results provide molecular bases for a general mechanism conserved across the ADP-dependent kinase family.
Collapse
Affiliation(s)
| | - Alejandra Herrera-Morande
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, España
| | | | | | | | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Schut GJ, Boyd ES, Peters JW, Adams MWW. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 2012; 37:182-203. [PMID: 22713092 DOI: 10.1111/j.1574-6976.2012.00346.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 12/01/2022] Open
Abstract
Hydrogen production is a vital metabolic process for many anaerobic organisms, and the enzyme responsible, hydrogenase, has been studied since the 1930s. A novel subfamily with unique properties was recently recognized, represented by the 14-subunit membrane-bound [NiFe] hydrogenase from the archaeon Pyrococcus furiosus. This so-called energy-converting hydrogenase links the thermodynamically favorable oxidation of ferredoxin with the formation of hydrogen and conserves energy in the form of an ion gradient. It is therefore a simple respiratory system within a single complex. This hydrogenase shows a modular composition represented by a Na(+)/H(+) antiporter domain (Mrp) and a [NiFe] hydrogenase domain (Mbh). An analysis of the large number of microbial genome sequences available shows that homologs of Mbh and Mrp tend to be clustered within the genomes of a limited number of archaeal and bacterial species. In several instances, additional genes are associated with the Mbh and Mrp gene clusters that encode proteins that catalyze the oxidation of formate, CO or NAD(P)H. The Mbh complex also shows extensive homology to a number of subunits within the NADH quinone oxidoreductase or complex I family. The respiratory-type membrane-bound hydrogenase complex appears to be closely related to the common ancestor of complex I and [NiFe] hydrogenases in general.
Collapse
Affiliation(s)
- Gerrit J Schut
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
17
|
Nakamura T, Kashima Y, Mine S, Oku T, Uegaki K. Crystallization and preliminary crystallographic analysis of a putative glucokinase/hexokinase from Thermus thermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1559-62. [PMID: 22139166 PMCID: PMC3232139 DOI: 10.1107/s1744309111041145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022]
Abstract
Glucokinase/hexokinase catalyzes the phosphorylation of glucose to glucose 6-phosphate, which is the first step of glycolysis. The open reading frame TTHA0299 of the extreme thermophile Thermus thermophilus encodes a putative glucokinase/hexokinase which contains the consensus sequence for proteins from the repressors, open reading frames and sugar kinases family. In this study, the glucokinase/hexokinase from T. thermophilus was purified and crystallized using polyethylene glycol 8000 as a precipitant. Diffraction data were collected and processed to 2.02 Å resolution. The crystal belonged to space group P2(1), with unit-cell parameters a = 70.93, b = 138.14, c = 75.16 Å, β = 95.41°.
Collapse
Affiliation(s)
- Tsutomu Nakamura
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
| | - Yasuhiro Kashima
- Thermostable Enzyme Laboratory Co. Ltd, Kobe, Hyogo 650-0047, Japan
| | - Shouhei Mine
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
| | - Takashi Oku
- Thermostable Enzyme Laboratory Co. Ltd, Kobe, Hyogo 650-0047, Japan
| | - Koichi Uegaki
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
18
|
Merino F, Rivas-Pardo JA, Caniuguir A, García I, Guixé V. Catalytic and regulatory roles of divalent metal cations on the phosphoryl-transfer mechanism of ADP-dependent sugar kinases from hyperthermophilic archaea. Biochimie 2011; 94:516-24. [PMID: 21906652 DOI: 10.1016/j.biochi.2011.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
In some archaea, glucose degradation proceeds through a modified version of the Embden-Meyerhof pathway where glucose and fructose-6-P phosphorylation is carried out by kinases that use ADP as the phosphoryl donor. Unlike their ATP-dependent counterparts these enzymes have been reported as non-regulated. Based on the three dimensional structure determination of several ADP-dependent kinases they can be classified as members of the ribokinase superfamily. In this work, we have studied the role of divalent metal cations on the catalysis and regulation of ADP-dependent glucokinases and phosphofructokinase from hyperthermophilic archaea by means of initial velocity assays as well as molecular dynamics simulations. The results show that a divalent cation is strictly necessary for the activity of these enzymes and they strongly suggest that the true substrate is the metal-nucleotide complex. Also, these enzymes are promiscuous in relation to their metal usage where the only considerations for metal assisted catalysis seem to be related to the ionic radii and coordination geometry of the cations. Molecular dynamics simulations strongly suggest that this metal is bound to the highly conserved NXXE motif, which constitutes one of the signatures of the ribokinase superfamily. Although free ADP cannot act as a phosphoryl donor it still can bind to these enzymes with a reduced affinity, stressing the importance of the metal in the proper binding of the nucleotide at the active site. Also, data show that the binding of a second metal to these enzymes produces a complex with a reduced catalytic constant. On the basis of these findings and considering evolutionary information for the ribokinase superfamily, we propose that the regulatory metal acts by modulating the energy difference between the protein-substrates complex and the reaction transition state, which could constitute a general mechanism for the metal regulation of the enzymes that belong this superfamily.
Collapse
Affiliation(s)
- Felipe Merino
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | | | | | | | | |
Collapse
|
19
|
Novel metabolic pathways in Archaea. Curr Opin Microbiol 2011; 14:307-14. [PMID: 21612976 DOI: 10.1016/j.mib.2011.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/18/2011] [Indexed: 11/24/2022]
Abstract
The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea.
Collapse
|
20
|
Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ. Major players on the microbial stage: why archaea are important. MICROBIOLOGY-SGM 2011; 157:919-936. [PMID: 21330437 DOI: 10.1099/mic.0.047837-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As microbiology undergoes a renaissance, fuelled in part by developments in new sequencing technologies, the massive diversity and abundance of microbes becomes yet more obvious. The Archaea have traditionally been perceived as a minor group of organisms forced to evolve into environmental niches not occupied by their more 'successful' and 'vigorous' counterparts, the bacteria. Here we outline some of the evidence gathered by an increasingly large and productive group of scientists that demonstrates not only that the Archaea contribute significantly to global nutrient cycling, but also that they compete successfully in 'mainstream' environments. Recent data suggest that the Archaea provide the major routes for ammonia oxidation in the environment. Archaea also have huge economic potential that to date has only been fully realized in the production of thermostable polymerases. Archaea have furnished us with key paradigms for understanding fundamentally conserved processes across all domains of life. In addition, they have provided numerous exemplars of novel biological mechanisms that provide us with a much broader view of the forms that life can take and the way in which micro-organisms can interact with other species. That this information has been garnered in a relatively short period of time, and appears to represent only a small proportion of what the Archaea have to offer, should provide further incentives to microbiologists to investigate the underlying biology of this fascinating domain.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alison D Walters
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Chitvan Bochiwal
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Juliet M Borgia
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Thomas Dickinson
- Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
21
|
Pérez-Pomares F, Díaz S, Bautista V, Pire C, Bravo G, Esclapez J, Zafrilla B, Bonete MJ. Identification of several intracellular carbohydrate-degrading activities from the halophilic archaeon Haloferax mediterranei. Extremophiles 2009; 13:633-41. [DOI: 10.1007/s00792-009-0246-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
22
|
Chou CJ, Jenney FE, Adams MW, Kelly RM. Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels. Metab Eng 2008; 10:394-404. [DOI: 10.1016/j.ymben.2008.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 06/20/2008] [Indexed: 11/25/2022]
|
23
|
The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation. Arch Microbiol 2008; 190:231-45. [DOI: 10.1007/s00203-008-0375-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/14/2008] [Accepted: 04/20/2008] [Indexed: 11/25/2022]
|
24
|
Molecular and functional characterization of D-3-phosphoglycerate dehydrogenase in the serine biosynthetic pathway of the hyperthermophilic archaeon Sulfolobus tokodaii. Arch Biochem Biophys 2007; 470:120-8. [PMID: 18054776 DOI: 10.1016/j.abb.2007.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/21/2022]
Abstract
A gene (ST1218) encoding a D-3-phosphoglycerate dehydrogenase (PGDH; EC 1.1.1.95) homolog was found in the genome of Sulfolobus tokodaii strain 7 by screening a database of enzymes likely to contribute to l-serine biosynthesis in hyperthermophilic archaea. After expressing the gene in Escherichia coli, the PGDH activity of the recombinant enzyme was assessed. Homogeneous PGDH was obtained using conventional chromatography steps, though during the purification an unexpected decline in enzyme activity was observed if the enzyme was stored in plastic tubes, but not in glass ones. The purified enzyme was a homodimer with a subunit molecular mass of about 35kDa and was highly thermostable. It preferably acted as an NAD-dependent D-3-phosphoglycerate (3PGA) dehydrogenase. Although NADP had no activity as the electron acceptor, both NADPH and NADH acted as electron donors. Kinetic analyses indicated that the enzyme reaction proceeds via a Theorell-Chance Bi-Bi mechanism. Unlike E. coli PGDH, the S. tokodaii enzyme was not inhibited by l-serine. In addition, both the NAD-dependent 3PGA oxidation and the reverse reaction were enhanced by phosphate and sulfate ions, while NADPH-dependent 3-phosphohydroxypyruvate (PHP) reduction was inhibited. Thus S. tokodaii PGDH appears to be subject to a novel regulatory mechanism not seen elsewhere. A database analysis showed that ST1218 gene forms a cluster with ST1217 gene, and a functional analysis of the ST1217 product expressed in E. coli revealed that it possesses l-glutamate-PHP aminotransferase activity. Taken together, our findings represent the first example of a phosphorylated serine pathway in a hyperthermophilic archaeon.
Collapse
|
25
|
Chou CJ, Shockley KR, Conners SB, Lewis DL, Comfort DA, Adams MWW, Kelly RM. Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 2007; 73:6842-53. [PMID: 17827328 PMCID: PMC2074980 DOI: 10.1128/aem.00597-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoside linkage (cellobiose versus maltose) dramatically influenced bioenergetics to different extents and by different mechanisms in the hyperthermophilic archaeon Pyrococcus furiosus when it was grown in continuous culture at a dilution rate of 0.45 h(-1) at 90 degrees C. In the absence of S(0), cellobiose-grown cells generated twice as much protein and had 50%-higher specific H(2) generation rates than maltose-grown cultures. Addition of S(0) to maltose-grown cultures boosted cell protein production fourfold and shifted gas production completely from H(2) to H(2)S. In contrast, the presence of S(0) in cellobiose-grown cells caused only a 1.3-fold increase in protein production and an incomplete shift from H(2) to H(2)S production, with 2.5 times more H(2) than H(2)S formed. Transcriptional response analysis revealed that many genes and operons known to be involved in alpha- or beta-glucan uptake and processing were up-regulated in an S(0)-independent manner. Most differentially transcribed open reading frames (ORFs) responding to S(0) in cellobiose-grown cells also responded to S(0) in maltose-grown cells; these ORFs included ORFs encoding a membrane-bound oxidoreductase complex (MBX) and two hypothetical proteins (PF2025 and PF2026). However, additional genes (242 genes; 108 genes were up-regulated and 134 genes were down-regulated) were differentially transcribed when S(0) was present in the medium of maltose-grown cells, indicating that there were different cellular responses to the two sugars. These results indicate that carbohydrate characteristics (e.g., glycoside linkage) have a major impact on S(0) metabolism and hydrogen production in P. furiosus. Furthermore, such issues need to be considered in designing and implementing metabolic strategies for production of biofuel by fermentative anaerobes.
Collapse
Affiliation(s)
- Chung-Jung Chou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ohshima T, Kawakami R, Kanai Y, Goda S, Sakuraba H. Gene expression and characterization of 2-keto-3-deoxygluconate kinase, a key enzyme in the modified Entner-Doudoroff pathway of the aerobic and acidophilic hyperthermophile Sulfolobus tokodaii. Protein Expr Purif 2007; 54:73-8. [PMID: 17407821 DOI: 10.1016/j.pep.2007.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/09/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
2-Keto-3-deoxygluconate kinase (KDGK) catalyzes the ATP-dependent phosphorylation of 2-keto-3-deoxygluconate, a key intermediate in the modified (semi-phosphorylative) Entner-Doudoroff (ED) glucose metabolic pathway. We identified the gene (ORF ID: ST2478) encoding KDGK in the hyperthermophilic archaeon Sulfolobus tokodaii based on the structure of a gene cluster in a genomic database and functionally expressed it in Escherichia coli. The expressed protein was purified from crude extract by heat treatment and two conventional column chromatography steps, and the partial amino acid sequence in the N-terminal region of the purified enzyme (MAKLIT) was identical to that obtained from the gene sequence. The purified enzyme was extremely thermostable and retained full activity after heating at 80 degrees C for 1 h. The enzyme utilized ATP or GTP, but not ADP or AMP, as a phosphoryl donor and 2-keto-3-deoxy-D-gluconate or 2-keto-D-gluconate as a phosphoryl acceptor. Divalent cations including Mg(2+), Co(2+), Ni(2+), Zn(2+) or Mn(2+) were required for activity, and the apparent Km values for KDG and ATP at 50 degrees C were 0.027 mM and 0.057 mM, respectively. The presence of KDGK means that the hyperthermophilic archaeon S. tokodaii metabolizes glucose via both modified (semi-phosphorylative) and non-phosphorylative ED pathways.
Collapse
Affiliation(s)
- Toshihisa Ohshima
- Microbial Genetics Division, Institute of Genetic Resources, Kyushu University, 6-10-1 Hakozaki Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
27
|
Ying X, Wang Y, Badiei HR, Karanassios V, Ma K. Purification and characterization of an iron-containing alcohol dehydrogenase in extremely thermophilic bacterium Thermotoga hypogea. Arch Microbiol 2007; 187:499-510. [PMID: 17294170 DOI: 10.1007/s00203-007-0217-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90 degrees C. It uses carbohydrates and peptides as carbon and energy sources to produce acetate, CO(2), H(2), L-alanine and ethanol as end products. Alcohol dehydrogenase activity was found to be present in the soluble fraction of T. hypogea. The alcohol dehydrogenase was purified to homogeneity, which appeared to be a homodimer with a subunit molecular mass of 40 +/- 1 kDa revealed by SDS-PAGE analyses. A fully active enzyme contained iron of 1.02 +/- 0.06 g-atoms/subunit. It was oxygen sensitive; however, loss of enzyme activity by exposure to oxygen could be recovered by incubation with dithiothreitol and Fe(2+). The enzyme was thermostable with a half-life of about 10 h at 70 degrees C, and its catalytic activity increased along with the rise of temperature up to 95 degrees C. Optimal pH values for production and oxidation of alcohol were 8.0 and 11.0, respectively. The enzyme had a broad specificity to use primary alcohols and aldehydes as substrates. Apparent K (m) values for ethanol and 1-butanol were much higher than that of acetaldehyde and butyraldehyde. It was concluded that the physiological role of this enzyme is likely to catalyze the reduction of aldehydes to alcohols.
Collapse
Affiliation(s)
- Xiangxian Ying
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 Canada
| | | | | | | | | |
Collapse
|
28
|
Imanaka H, Yamatsu A, Fukui T, Atomi H, Imanaka T. Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Mol Microbiol 2006; 61:898-909. [PMID: 16879645 DOI: 10.1111/j.1365-2958.2006.05287.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have carried out a genetic analysis on pyruvate kinase (PykTk) and phosphoenolpyruvate synthase (PpsTk) in the hyperthermophilic archaeon, Thermococcus kodakarensis. In principle, both enzymes can catalyse the final step of the modified Embden-Meyerhof (EM) pathway found in Thermococcales, the conversion of phosphoenolpyruvate (PEP) to pyruvate, with the former utilizing ADP, while the latter is dependent on AMP and phosphate. Enzyme activities and transcript levels of both PykTk and PpsTk increased in T. kodakarensis under glycolytic conditions when compared with cells grown on pyruvate or amino acids. Using KW128, a tryptophan auxotrophic mutant with a trpE gene disruption, as a host strain, we obtained mutant strains with single gene disruptions in either the pykTk (Deltapyk strain) or ppsTk (Deltapps strain) gene. Specific growth rates and cell yields were examined in various media and compared with the host KW128 strain. The results indicated that both enzymes participated in pyruvate metabolism, but were not essential. In the presence of maltooligosaccharides, the Deltapyk strain displayed a 15% decrease in growth rate compared with the host strain, indicating that PykTk does participate in glycolysis. However an even more dramatic effect was observed in the Deltapps strain in that the strain could not grow at all on maltooligosaccharides. The results clearly indicate that, in contrast to the conventional EM pathway dependent on pyruvate kinase, PEP synthase is the essential enzyme for the glycolytic conversion of PEP to pyruvate in T. kodakarensis. The physiological roles of the two enzymes under various growth conditions are discussed.
Collapse
Affiliation(s)
- Hiroyuki Imanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
29
|
Schreiner ME, Fiur D, Holátko J, Pátek M, Eikmanns BJ. E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 2005; 187:6005-18. [PMID: 16109942 PMCID: PMC1196148 DOI: 10.1128/jb.187.17.6005-6018.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1p enzyme is an essential part of the pyruvate dehydrogenase complex (PDHC) and catalyzes the oxidative decarboxylation of pyruvate with concomitant acetylation of the E2p enzyme within the complex. We analyzed the Corynebacterium glutamicum aceE gene, encoding the E1p enzyme, and constructed and characterized an E1p-deficient mutant. Sequence analysis of the C. glutamicum aceE gene and adjacent regions revealed that aceE is not flanked by genes encoding other enzymes of the PDHC. Transcriptional analysis revealed that aceE from C. glutamicum is monocistronic and that its transcription is initiated 121 nucleotides upstream of the translational start site. Inactivation of the chromosomal aceE gene led to the inability to grow on glucose and to the absence of PDHC and E1p activities, indicating that only a single E1p enzyme is present in C. glutamicum and that the PDHC is essential for the growth of this organism on carbohydrate substrates. Surprisingly, the E1p enzyme of C. glutamicum showed up to 51% identity to homodimeric E1p proteins from gram-negative bacteria but no similarity to E1 alpha- or beta-subunits of heterotetrameric E1p enzymes which are generally assumed to be typical for gram-positives. To investigate the distribution of E1p enzymes in bacteria, we compiled and analyzed the phylogeny of 46 homodimeric E1p proteins and of 58 alpha-subunits of heterotetrameric E1p proteins deposited in public databases. The results revealed that the distribution of homodimeric and heterotetrameric E1p subunits in bacteria is not in accordance with the rRNA-based phylogeny of bacteria and is more heterogeneous than previously assumed.
Collapse
Affiliation(s)
- Mark E Schreiner
- Department of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany
| | | | | | | | | |
Collapse
|
30
|
Siebers B, Schönheit P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 2005; 8:695-705. [PMID: 16256419 DOI: 10.1016/j.mib.2005.10.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/13/2005] [Indexed: 11/29/2022]
Abstract
Sugar-utilizing hyperthermophilic and halophilic Archaea degrade glucose and glucose polymers to acetate or to CO2 using O2, nitrate, sulfur or sulfate as electron acceptors. Comparative analyses of glycolytic pathways in these organisms indicate a variety of differences from the classical Emden-Meyerhof and Entner-Doudoroff pathways that are operative in Bacteria and Eukarya, respectively. The archaeal pathways are characterized by the presence of numerous novel enzymes and enzyme families that catalyze, for example, the phosphorylation of glucose and of fructose 6-phosphate, the isomerization of glucose 6-phosphate, the cleavage of fructose 1,6-bisphosphate, the oxidation of glyceraldehyde 3-phosphate and the conversion of acetyl-CoA to acetate. Recent major advances in deciphering the complexity of archaeal central carbohydrate metabolism were gained by combination of classical biochemical and genomic-based approaches.
Collapse
Affiliation(s)
- Bettina Siebers
- Universität Duisburg-Essen, Campus Essen, FB Biologie und Geografie, Mikrobiologie, Universitätsstr.5, D-45117 Essen, Germany
| | | |
Collapse
|
31
|
Hummel CS, Lancaster KM, Crane EJ. Determination of coenzyme A levels in Pyrococcus furiosus and other Archaea: implications for a general role for coenzyme A in thermophiles. FEMS Microbiol Lett 2005; 252:229-34. [PMID: 16213671 DOI: 10.1016/j.femsle.2005.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/18/2005] [Accepted: 09/01/2005] [Indexed: 11/22/2022] Open
Abstract
Physiologically significant levels of intracellular coenzyme A were identified in Pyrococcus furiosus, Thermococcus litoralis, and Sulfolobus solfataricus, suggesting a role for CoA as an important low molecular mass thiol in the thermophilic Archaea. In P. furiosus, cells grown in the presence of sulfur showed significantly higher levels of oxidized CoA compared with those grown in the absence of S(0). T. litoralis showed strikingly similar CoA levels, although with low disulfide levels in both the presence and absence of S(0). S. solfataricus showed similarly high levels of CoA thiol, with correspondingly low levels of the CoA disulfide. These results are consistent with the identification of a coenzyme A disulfide reductase (CoADR) in P. furiosus and horikoshii as well as the presence of CoADR homologues in the genomes of S. solfataricus and T. kodakaraensis.
Collapse
Affiliation(s)
- Charles S Hummel
- Department of Chemistry, Pomona College, Claremont, CA 91711, USA
| | | | | |
Collapse
|
32
|
Lunin VV, Li Y, Schrag JD, Iannuzzi P, Cygler M, Matte A. Crystal structures of Escherichia coli ATP-dependent glucokinase and its complex with glucose. J Bacteriol 2004; 186:6915-27. [PMID: 15466045 PMCID: PMC522197 DOI: 10.1128/jb.186.20.6915-6927.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular glucose in Escherichia coli cells imported by phosphoenolpyruvate-dependent phosphotransferase system-independent uptake is phosphorylated by glucokinase by using ATP to yield glucose-6-phosphate. Glucokinases (EC 2.7.1.2) are functionally distinct from hexokinases (EC 2.7.1.1) with respect to their narrow specificity for glucose as a substrate. While structural information is available for ADP-dependent glucokinases from Archaea, no structural information exists for the large sequence family of eubacterial ATP-dependent glucokinases. Here we report the first structure determination of a microbial ATP-dependent glucokinase, that from E. coli O157:H7. The crystal structure of E. coli glucokinase has been determined to a 2.3-A resolution (apo form) and refined to final Rwork/Rfree factors of 0.200/0.271 and to 2.2-A resolution (glucose complex) with final Rwork/Rfree factors of 0.193/0.265. E. coli GlK is a homodimer of 321 amino acid residues. Each monomer folds into two domains, a small alpha/beta domain (residues 2 to 110 and 301 to 321) and a larger alpha+beta domain (residues 111 to 300). The active site is situated in a deep cleft between the two domains. E. coli GlK is structurally similar to Saccharomyces cerevisiae hexokinase and human brain hexokinase I but is distinct from the ADP-dependent GlKs. Bound glucose forms hydrogen bonds with the residues Asn99, Asp100, Glu157, His160, and Glu187, all of which, except His160, are structurally conserved in human hexokinase 1. Glucose binding results in a closure of the small domains, with a maximal Calpha shift of approximately 10 A. A catalytic mechanism is proposed that is consistent with Asp100 functioning as the general base, abstracting a proton from the O6 hydroxyl of glucose, followed by nucleophilic attack at the gamma-phosphoryl group of ATP, yielding glucose-6-phosphate as the product.
Collapse
Affiliation(s)
- Vladimir V Lunin
- Biotechnology Research Institute, NRCC, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2 Canada
| | | | | | | | | | | |
Collapse
|
33
|
Sakuraba H, Kawakami R, Takahashi H, Ohshima T. Novel archaeal alanine:glyoxylate aminotransferase from Thermococcus litoralis. J Bacteriol 2004; 186:5513-8. [PMID: 15292154 PMCID: PMC490878 DOI: 10.1128/jb.186.16.5513-5518.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel alanine:glyoxylate aminotransferase was found in a hyperthermophilic archaeon, Thermococcus litoralis. The amino acid sequence of the enzyme did not show a similarity to any alanine:glyoxylate aminotransferases reported so far. Homologues of the enzyme appear to be present in almost all hyperthermophilic archaea whose whole genomes have been sequenced.
Collapse
Affiliation(s)
- Haruhiko Sakuraba
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|