1
|
Hao Y, Ji H, Gao L, Qu Z, Zhao Y, Chen J, Wang X, Ma X, Zhang G, Zhang T. Self-assembled carrier-free formulations based on medicinal and food active ingredients. Biomater Sci 2024; 12:6253-6273. [PMID: 39523875 DOI: 10.1039/d4bm00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The popularity of medicinal plants, which have a unique system and are mostly used in compound form for the prevention and treatment of a wide range of diseases, is growing worldwide. In recent years, with advances in chemical separation and structural analysis techniques, many of the major bioactive molecules of medicinal plants have been identified. However, the active ingredients in medicinal plants often possess chemical characteristics, including poor water solubility, stability and bioavailability, which limit their therapeutic applications. To address this problem, self-assembly of small molecules from medicinal food sources provides a new strategy. Driven by various types of acting forces, medicinal small molecules with modifiable groups, multiple sites of action, hydrophobic side chains, and rigid backbones with self-assembly properties are able to form various supramolecular network hydrogels, nanoparticles, micelles, and other self-assemblies. This review first summarizes the forms of self-assemblies such as supramolecular network hydrogels, nanoparticles, and micelles at the level of the action site, and discusses the recent studies on the active ingredients in medicinal plants that can be used for self-assembly, in addition to summarizing the advantages of self-assemblies for a variety of disease applications, including wound healing, antitumor, anticancer, and diabetes mellitus. Finally, the problems of self-assemblers and the possible directions for future development are presented. We firmly believe that self-assemblers have the potential to develop effective compounds from drug-food homologous plants, providing valuable information for drug research and new strategies and perspectives for the modernization of Chinese medicine.
Collapse
Affiliation(s)
- Yuan Hao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Haixia Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Li Gao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Zhican Qu
- Shanxi Nanolattix Health Technology Co., Ltd, Taiyuan 030051, Shanxi, China
| | - Yinghu Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Jiahui Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xintao Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xiaokai Ma
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Guangyu Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Taotao Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| |
Collapse
|
2
|
Abdelrahman N, Drescher S, Ann Dailey L, Klang V. Investigation of keratolytic impact of synthetic bolalipids on skin penetration of a model hydrophilic permeant. Eur J Pharm Biopharm 2024; 203:114433. [PMID: 39098617 DOI: 10.1016/j.ejpb.2024.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Synthetic single-chain bolalipids (SSCBs) are novel excipients in drug delivery, with potential as stabilizers or solubilizers. However, their impact on skin barrier function has not been comprehensively studied. Therefore, two SSCBs (PC-C24-PC and PC-C32-PC) were studied in aqueous systems for their impact on penetration of a model permeant into porcine skin. Concentrations of 0.05 - 5 % w/w were tested; PC-C24-PC formulations were low-viscosity liquids while PC-C32-PC formed viscous dispersions to gels at room temperature. Formulations were compared for their ability to enhance sodium fluorescein penetration (SF, 0.1 % w/w) into skin via tape stripping. Using NIR-densitometry, the effect of SSCB formulations on corneocyte cohesion was evaluated. Data were compared with phospholipid mixture Lipoid S-75, sodium dodecyl sulfate (SDS), and polyethylene glycol 12-hydroxystearate (PEG-HS), and distilled water as negative control. Contrary to the hypothesis, both SSCBs failed to increase SF penetration into the stratum corneum, but rather showed a significant decrease in penetration depth compared to water. Both SSCBs exhibited a keratolytic effect at 5 % w/w, leading to substantial removal of proteins from the skin surface. Consequently, SSCBs may not enhance penetration of hydrophilic drugs into skin, but could be used as keratolytic agents.
Collapse
Affiliation(s)
- Namarig Abdelrahman
- University of Vienna, Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, 1090, Vienna, Austria
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Lea Ann Dailey
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
3
|
Cenciarelli F, Pieraccini S, Masiero S, Falini G, Giuri D, Tomasini C. Experimental Correlation between Apparent p Ka and Gelation Propensity in Amphiphilic Hydrogelators Derived from l-Dopa. Biomacromolecules 2024; 25:5058-5067. [PMID: 39013138 DOI: 10.1021/acs.biomac.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
We report the gelation propensity of three gelators derived from l-dihydroxyphenylalanine (l-Dopa), where the amino group is derivatized with three different fatty acids (lauric acid, palmitic acid, and azelaic acid). The long aliphatic side chains should introduce additional van der Waals interactions among the molecules, contributing to the self-assembly process. The hydrogels have been prepared with the pH change method, and both the hydrogels and the corresponding aerogels have been analyzed using several techniques. In any case, Lau-Dopa provides stronger hydrogels compared with the other gelators. This property may be ascribed to its tendency to efficiently form supramolecular β-sheet structures, as outlined by the ECD, IR, and SEM analyses. Moreover, the preliminary measurement of the apparent pKa displays for Lau-Dopa two plateaux, as previously observed for, one at about pH 12 and a second one at pH 7.5. Thus, its pKa results in two apparent pKa shifts of ∼8.5 and ∼4 pH units above the theoretical pKa, as a consequence of a multistep self-assembly pathway that correlates, in the final β-sheet-based hydrogel, with a high degree of order and stability.
Collapse
Affiliation(s)
- Fabia Cenciarelli
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Silvia Pieraccini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Stefano Masiero
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| |
Collapse
|
4
|
Yang X, Ma L, Lu K, Zhao D. Mechanism of Peptide Self-assembly and Its Study in Biomedicine. Protein J 2024; 43:464-476. [PMID: 38676873 DOI: 10.1007/s10930-024-10200-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The development of peptide-based materials is one of the most challenging aspects of biomaterials research in recent years. The assembly of peptides is mainly controlled by forces such as hydrogen bonding, hydrophobic interaction, electrostatic interaction, and π-π accumulation. Peptides have unique advantages such as simple structure, easy synthesis, good biocompatibility, non-toxicity, easy modification, etc. These factors make peptides turn into ideal biomedical materials, and they have a broad application prospect in biomedical materials, and thus have received wide attention. In this review, the mechanism and classification of peptide self-assembly and its applications in biomedicine and hydrogels were introduced.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Borsdorf L, Herkert L, Bäumer N, Rubert L, Soberats B, Korevaar PA, Bourque C, Gatsogiannis C, Fernández G. Pathway-Controlled Aqueous Supramolecular Polymerization via Solvent-Dependent Chain Conformation Effects. J Am Chem Soc 2023; 145:8882-8895. [PMID: 37053499 DOI: 10.1021/jacs.2c12442] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Solute-solvent interactions play a critical role in multiple fields, including biology, materials science, and (physical) organic, polymer, and supramolecular chemistry. Within the growing field of supramolecular polymer science, these interactions have been recognized as an important driving force for (entropically driven) intermolecular association, particularly in aqueous media. However, to date, solute-solvent effects remain poorly understood in the context of complex self-assembly energy landscapes and pathway complexity. Herein, we unravel the role of solute-solvent interactions in controlling chain conformation effects, allowing energy landscape modulation and pathway selection in aqueous supramolecular polymerization. To this end, we have designed a series of oligo(phenylene ethynylene) (OPE)-based bolaamphiphilic Pt(II) complexes OPE2-4 bearing solubilizing triethylene glycol (TEG) chains of equal length on both molecule ends, but a different size of the hydrophobic aromatic scaffold. Strikingly, detailed self-assembly studies in aqueous media disclose a different tendency of the TEG chains to fold back and enwrap the hydrophobic molecular component depending on both the size of the core and the volume fraction of the co-solvent (THF). The relatively small hydrophobic component of OPE2 can be readily shielded by the TEG chains, leading to only one aggregation pathway. In contrast, the decreased capability of the TEG chains to effectively shield larger hydrophobic cores (OPE3 and OPE4) enables different types of solvent quality-dependent conformations (extended, partly back-folded and back-folded), which in turn induce various controllable aggregation pathways with distinct morphologies and mechanisms. Our results shed light on previously underappreciated solvent-dependent chain conformation effects and their role in governing pathway complexity in aqueous media.
Collapse
Affiliation(s)
- Lorenz Borsdorf
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Lorena Herkert
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Bäumer
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Llorenç Rubert
- Department of Chemistry, Universitat de les Iles Balears, Cra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Iles Balears, Cra. Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Cole Bourque
- Westfälische Wilhelms-Universität Münster, Institute of Medical Physics and Biophysics, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Christos Gatsogiannis
- Westfälische Wilhelms-Universität Münster, Institute of Medical Physics and Biophysics, Busso-Peus-Straße 10, 48149 Münster, Germany
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
6
|
Saci F, Roelants SLKW, Soetaert W, Baccile N, Davidson P. Lyotropic Liquid-Crystalline Phases of Sophorolipid Biosurfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8564-8574. [PMID: 35793459 DOI: 10.1021/acs.langmuir.2c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological amphiphiles derived from natural resources are presently being investigated in the hope that they will someday replace current synthetic surfactants, which are known pollutants of soils and water resources. Sophorolipids constitute one of the main classes of glycosylated biosurfactants that have attracted interest because they are synthesized by non-pathogenic yeasts from glucose and vegetable oils at high titers. In this work, the self-assembly properties of several sophorolipids in water at high concentrations (20-80 wt %), a range so far mostly uncharted, have been investigated by polarized-light microscopy and X-ray scattering. Some of these compounds were found to show lyotropic liquid-crystalline behavior as they display lamellar or hexagonal columnar mesophases. X-ray scattering data shows that the structure of the lamellar phase is almost fully interdigitated, which is likely due to the packing difference between the bulky hydrophilic tails and the more compact aliphatic chains. A tentative representation of the molecular organization of the columnar phase is also given. Moreover, some of these compounds display thermotropic liquid-crystalline behavior, either pure or in aqueous mixtures. In addition, small domains of the lamellar phase can easily be aligned by applying onto them a moderate a.c. electric field, which is a rather unusual feature for lyotropic liquid crystals. Altogether, our work explored the self-assembly liquid-crystalline behavior of sophorolipids at high concentration, which could shed light on the conditions of their potential industrial applications as well as on their biological function.
Collapse
Affiliation(s)
- Fella Saci
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizenkaai 1, 9042 Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Bio Base Europe Pilot Plant, Rodenhuizenkaai 1, 9042 Ghent, Belgium
| | - Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, F-75005 Paris, France
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Saclay, Centre National de la Recherche Scientifique, 91405 Orsay, France
| |
Collapse
|
7
|
Baccile N, Poirier A, Seyrig C, Le Griel P, Perez J, Hermida-Merino D, Pernot P, Roelants SL, Soetaert W. Chameleonic Amphiphile: the Unique Multiple Self-Assembly Properties of a Natural Glycolipid in Excess of Water. J Colloid Interface Sci 2022; 630:404-415. [DOI: 10.1016/j.jcis.2022.07.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
|
8
|
Li F, Harvey RD, Modicano P, Hamdi F, Kyrilis F, Müller S, Gruhle K, Kastritis P, Drescher S, Dailey LA. Investigating bolalipids as solubilizing agents for poorly soluble drugs: Effects of alkyl chain length on solubilization and cytotoxicity. Colloids Surf B Biointerfaces 2022; 212:112369. [PMID: 35123195 DOI: 10.1016/j.colsurfb.2022.112369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Synthetic single-chain bolalipids with symmetrical headgroups have shown potential in various pharmaceutical applications, such as the stabilization of liposome bilayers. Despite their amphiphilic character, synthetic bolalipids have not yet been investigated for their suitability as solubilizing agents for poorly soluble drug compounds. In this study, three synthetic single-chain bolalipids with increasing alkyl chain lengths (C22, C24 and C26) were investigated. All three bolalipids were able to achieve an increased solubility of the model drug, mefenamic acid, by approximately 180% in a pH 7.4 buffer compared to only a 102-105% increase achieved by sodium dodecyl sulfate (SDS) or the non-ionic surfactant pegylated hydroxystearate (PEG-HS). Subsequently, interfacial activity of bolalipids and their ability to destabilize liposomal bilayers were investigated. The C22 bolalipid exhibited a consistently lower interfacial activity, which was consistent with its significantly lower cytotoxicity in the macrophage-like cell line, J774. A1, compared to C24 and C26 counterparts. The mean IC50 values of the bolalipids tested (0.035-0.093 mM) were approximately 4-100-fold lower than that of SDS (0.401 mM) or PEG-HS (0.922 mM), with the mechanism of toxicity linked to increased cell membrane permeability, as is expected for surfactants. In summary, evidence from this study shows that decreasing the length of the bolalipid alkyl linker from C26 to C22 resulted in a significantly decreased cytotoxicity with no loss in drug solubilization efficiency.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Richard D Harvey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Paola Modicano
- Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Farzad Hamdi
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Fotios Kyrilis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Sindy Müller
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Panagiotis Kastritis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| |
Collapse
|
9
|
Ortega KJ, Lucas NT, Bagshaw SA, Hayman AR. Synthesis of ω‐Amino‐Functionalized Alkyl Quaternary Ammonium Surfactants. ChemistrySelect 2021. [DOI: 10.1002/slct.202103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenneth J. Ortega
- Department of Chemistry University of Otago Dunedin 9016 New Zealand
| | - Nigel T. Lucas
- Department of Chemistry University of Otago Dunedin 9016 New Zealand
| | - Stephen A. Bagshaw
- Inflexion Scientific 47 A Farnham St Mornington Wellington 6021 New Zealand
| | - Alan R. Hayman
- Department of Chemistry University of Otago Dunedin 9016 New Zealand
| |
Collapse
|
10
|
Vijay R, Mendhi J, Prasad K, Xiao Y, MacLeod J, Ostrikov K(K, Zhou Y. Carbon Nanomaterials Modified Biomimetic Dental Implants for Diabetic Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2977. [PMID: 34835740 PMCID: PMC8625459 DOI: 10.3390/nano11112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Dental implants are used broadly in dental clinics as the most natural-looking restoration option for replacing missing or highly diseased teeth. However, dental implant failure is a crucial issue for diabetic patients in need of dentition restoration, particularly when a lack of osseointegration and immunoregulatory incompetency occur during the healing phase, resulting in infection and fibrous encapsulation. Bio-inspired or biomimetic materials, which can mimic the characteristics of natural elements, are being investigated for use in the implant industry. This review discusses different biomimetic dental implants in terms of structural changes that enable antibacterial properties, drug delivery, immunomodulation, and osseointegration. We subsequently summarize the modification of dental implants for diabetes patients utilizing carbon nanomaterials, which have been recently found to improve the characteristics of biomimetic dental implants, including through antibacterial and anti-inflammatory capabilities, and by offering drug delivery properties that are essential for the success of dental implants.
Collapse
Affiliation(s)
- Renjini Vijay
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Jayanti Mendhi
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Karthika Prasad
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2600, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kostya (Ken) Ostrikov
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
11
|
Large area layered ultrathin films of metal-diacid via liquid/liquid interfacial self-assembly. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Wang S, Liu F, Ma N, Li Y, Jing Q, Zhou X, Xia Y. Mechanistic process understanding of the self-assembling behaviour of asymmetric bolaamphiphilic short-peptides and their templating for silica and titania nanomaterials. NANOSCALE 2021; 13:13318-13327. [PMID: 34477738 DOI: 10.1039/d1nr01661j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Investigation of the self-assembly of peptides is critically important to clarify certain biophysical phenomena, fulfill some biological functions, and construct functional materials. However, it is still a challenge to precisely predict the self-assembled structures of peptides because of their complicated driving forces and various assembling pathways. In this work, to elucidate the effects of noncovalent interactions including hydrogen bonding, molecular geometry, and hydrophobic and electrostatic interactions on the peptide self-assembly, a series of asymmetric bolaamphiphilic short peptides consisting of Ac-EI3K-NH2 (EI3K), Ac-EI4K-NH2 (EI4K), Ac-KI3E-NH2 (KI3E) and Ac-KI4E-NH2 (KI4E) were designed and their self-assembling behaviors at different solution pH values were investigated systematically. The peptides self-assembled into twisted nanofibers under most conditions except for EI4K in a strongly alkaline solution and KI4E under a strongly acidic condition, in which they self-assembled into nanotubes via helical monolayer nanosheet intermediates. In particular, KI4E nanotubes are formed under acidic conditions, and its diameters are ∼500 nm much greater than most of the self-assembled structures from bolaamphiphilic peptides. Moreover, reversible morphological transition between the nanotubes and twisted nanofibers was observed with the change in solution pH. Such tunable self-assembled structures and switchable surface properties of the asymmetric bolaamphiphilic short-peptides allow them to be used as templates to construct advanced materials. Silica and titania nanomaterials faithful to the peptide templates in morphology were prepared at ambient temperature. This work clearly elucidates the effects of noncovalent interactions on the peptide self-assembly and also provides new insights into the design and preparation of complicated inorganic materials from tunable organic templates.
Collapse
Affiliation(s)
- Shengjie Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum, Qingdao 266580, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hughes JR, Miller AS, Wallace CE, Vemuri GN, Iovine PM. Biomedically Relevant Applications of Bolaamphiphiles and Bolaamphiphile-Containing Materials. Front Chem 2021; 8:604151. [PMID: 33553103 PMCID: PMC7855593 DOI: 10.3389/fchem.2020.604151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Peter M. Iovine
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Wagalgave SM, Aljabri MD, Bhamidipati K, Shejule DA, Nadimetla DN, Al Kobaisi M, Puvvada N, Bhosale SV, Bhosale SV. Characteristics of the pH-regulated aggregation-induced enhanced emission (AIEE) and nanostructure orchestrate via self-assembly of naphthalenediimide–tartaric acid bola-amphiphile: role in cellular uptake. NEW J CHEM 2021. [DOI: 10.1039/d0nj05845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A naphthalene diimide–tartaric acid conjugate was successfully synthesized, and the influence of tartaric acid on the self-assembly of the NDI–TA scaffold was explored.
Collapse
Affiliation(s)
- Sopan M. Wagalgave
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | - Mahmood D. Aljabri
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Keerti Bhamidipati
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Deepak A. Shejule
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Dinesh N. Nadimetla
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Mohammad Al Kobaisi
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Nagaprasad Puvvada
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | | |
Collapse
|
15
|
Seyrig C, Kignelman G, Thielemans W, Le Griel P, Cowieson N, Perez J, Baccile N. Stimuli-Induced Nonequilibrium Phase Transitions in Polyelectrolyte-Surfactant Complex Coacervates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8839-8857. [PMID: 32702994 DOI: 10.1021/acs.langmuir.0c01177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte-surfactant complexes (PESCs) are important soft colloids with applications in the fields of personal care, cosmetics, pharmaceutics, and much more. If their phase diagrams have long been studied under pseudoequilibrium conditions, and often inside the micellar or vesicular regions, understanding the effect of nonequilibrium conditions, applied at phase boundaries, on the structure of PESCs generates an increasing interest. In this work we cross the micelle-vesicle and micelle-fiber phase boundaries in an isocompositional surfactant-polyelectrolyte aqueous system through a continuous and rapid variation of pH. We employ two microbial glycolipid biosurfactants in the presence of polyamines, both systems being characterized by their responsiveness to pH. We show that complex coacervates (Co) are always formed in the micellar region of both glycolipids' phase diagram and that their phase behavior drives the PESC stability and structure. However, for glycolipid forming single-wall vesicles, we observe an isostructural and isodimensional transition between complex coacervates and a multilamellar walls vesicle (MLWV) phase. For the fiber-forming glycolipid, on the contrary, the complex coacervate disassembles into free polyelectrolyte coexisting with the equilibrium fiber phase. Last but not least, this work also demonstrates the use of microbial glycolipid biosurfactants in the development of sustainable PESCs.
Collapse
Affiliation(s)
- Chloé Seyrig
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Gertrude Kignelman
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Patrick Le Griel
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Nathan Cowieson
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom
| | - Javier Perez
- SWING, Synchrotron Soleil, BP 48, 91192 Gif-sur-Yvette, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| |
Collapse
|
16
|
Ben Messaoud G, Le Griel P, Hermida-Merino D, Baccile N. Effects of pH, temperature and shear on the structure-property relationship of lamellar hydrogels from microbial glucolipids probed by in situ rheo-SAXS. SOFT MATTER 2020; 16:2540-2551. [PMID: 32095796 DOI: 10.1039/c9sm02494h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipid lamellar hydrogels are a class of soft materials composed of a defectuous lipid lamellar phase, where defects are classically stabilized by polymer or surfactant inclusions in lipid membranes. We have recently shown that bolaform microbial glucolipids, composed of a single glucose headgroup and a C18:0 fatty acid, with the carboxylic acid group located opposite to glucose, spontaneously form lamellar hydrogels at room temperature below pH 8. In this work, we combine rheology with small angle X-ray scattering (SAXS), rheo-SAXS, to correlate, in situ, the structural and mechanical properties of microbial glycolipid lamellar hydrogels upon application of three different stimuli: pH, temperature and a shear rate. In all cases we find unusual structural features of the lamellar phase if compared to classical phospholipid lamellar structures: reducing pH from alkaline to acidic induces a sol-to-gel transition during which an increasing elastic modulus is associated with an oscillatory evolution of lamellar d(100) spacing; temperature above Tm and increasing shear induce the formation of spherulitic crumpled domains, instead of a classically-expected lamellar-to-vesicle or lamellar-to-onion phase transitions.
Collapse
Affiliation(s)
- Ghazi Ben Messaoud
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | | | | | | |
Collapse
|
17
|
Lee S, Trinh TH, Yoo M, Shin J, Lee H, Kim J, Hwang E, Lim YB, Ryou C. Self-Assembling Peptides and Their Application in the Treatment of Diseases. Int J Mol Sci 2019; 20:E5850. [PMID: 31766475 PMCID: PMC6928719 DOI: 10.3390/ijms20235850] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Self-assembling peptides are biomedical materials with unique structures that are formed in response to various environmental conditions. Governed by their physicochemical characteristics, the peptides can form a variety of structures with greater reactivity than conventional non-biological materials. The structural divergence of self-assembling peptides allows for various functional possibilities; when assembled, they can be used as scaffolds for cell and tissue regeneration, and vehicles for drug delivery, conferring controlled release, stability, and targeting, and avoiding side effects of drugs. These peptides can also be used as drugs themselves. In this review, we describe the basic structure and characteristics of self-assembling peptides and the various factors that affect the formation of peptide-based structures. We also summarize the applications of self-assembling peptides in the treatment of various diseases, including cancer. Furthermore, the in-cell self-assembly of peptides, termed reverse self-assembly, is discussed as a novel paradigm for self-assembling peptide-based nanovehicles and nanomedicines.
Collapse
Affiliation(s)
- Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Trang H.T. Trinh
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Miryeong Yoo
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Junwu Shin
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Hakmin Lee
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Jaehyeon Kim
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| | - Euimin Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (E.H.); (Y.-b.L.)
| | - Yong-beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (E.H.); (Y.-b.L.)
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Gyeonggi-do 15588, Korea; (S.L.); (M.Y.); (J.S.); (H.L.); (J.K.)
| |
Collapse
|
18
|
Nayak N, Gopidas KR. Self-Assembly of a β-Cyclodextrin Bis-Inclusion Complex into a Highly Crystalline Fiber Network. An Effective Strategy for Null Aggregate Design. J Phys Chem B 2019; 123:8131-8139. [DOI: 10.1021/acs.jpcb.9b05430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nagaraj Nayak
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| | - Karical Raman Gopidas
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, India
| |
Collapse
|
19
|
Fan P, Wang Y, Shen J, Jiang L, Zhuang W, Han Y, Zhang H. Self-assembly behaviors of C18 fatty acids in arginine aqueous solution affected by external conditions. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018; 4:E62. [PMID: 30674838 PMCID: PMC6209281 DOI: 10.3390/gels4030062] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is commonly associated with limited effectiveness and unwanted side effects in normal cells and tissues, due to the lack of specificity of therapeutic agents to cancer cells when systemically administered. In brain tumors, the existence of both physiological barriers that protect tumor cells and complex resistance mechanisms to anticancer drugs are additional obstacles that hamper a successful course of chemotherapy, thus resulting in high treatment failure rates. Several potential surrogate therapies have been developed so far. In this context, hydrogel-based systems incorporating nanostructured drug delivery systems (DDS) and hydrogel nanoparticles, also denoted nanogels, have arisen as a more effective and safer strategy than conventional chemotherapeutic regimens. The former, as a local delivery approach, have the ability to confine the release of anticancer drugs near tumor cells over a long period of time, without compromising healthy cells and tissues. Yet, the latter may be systemically administered and provide both loading and targeting properties in their own framework, thus identifying and efficiently killing tumor cells. Overall, this review focuses on the application of hydrogel matrices containing nanostructured DDS and hydrogel nanoparticles as potential and promising strategies for the treatment and diagnosis of glioblastoma and other types of brain cancer. Some aspects pertaining to computational studies are finally addressed.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Sandra Nunes
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - Tânia Cova
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| |
Collapse
|
21
|
Müller S, Meister A, Otto C, Hause G, Drescher S. Mixing behaviour of asymmetrical glycerol diether bolalipids with saturated and unsaturated phosphatidylcholines. Biophys Chem 2018; 238:39-48. [DOI: 10.1016/j.bpc.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
|
22
|
Dhasaiyan P, Prevost S, Baccile N, Prasad BLV. pH- and Time-Resolved in Situ SAXS Study of Self-Assembled Twisted Ribbons Formed by Elaidic Acid Sophorolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2121-2131. [PMID: 29257893 DOI: 10.1021/acs.langmuir.7b03164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conditions that favor the helical structure formation in structurally similar sophorolipids (SLs), that is, elaidic acid SLs (having a trans double bond between the C9 and C10 positions of the alkyl chain) and stearic acid SLs (no double bond), are presented here. The helical self-assembled structures formed by elaidic acid SLs were independent of pH and also were mediated by a micellar intermediate. On the other hand, the stearic acid SLs formed helical structures under low pH condition only. Astonishingly, the formation routes were found to be different, albeit the molecular geometry of both SLs is similar. Even if a conclusive mechanistic understanding must await further work, our studies strongly point out that the noncovalent weak interactions in elaidic acid SLs are able to overcome the electrostatic repulsions of the sophorolipid carboxylate groups at basic pH and facilitating the formation of helical structures. On the other hand, the hydrophobic interactions in stearic acid SLs endow the helical structures with extra stability, making them less vulnerable to dissolution upon heating.
Collapse
Affiliation(s)
- Prabhu Dhasaiyan
- Physical and Materials Chemistry Division, CSIR - National Chemical Laboratory , Pune - 411008, India
| | - Sylvain Prevost
- ESRF - The European Synchrotron , High Brilliance Beamline ID02, 38043 Grenoble, France
| | - Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris , LCMCP, F-75005 Paris, France
| | - Bhagavatula L V Prasad
- Physical and Materials Chemistry Division, CSIR - National Chemical Laboratory , Pune - 411008, India
| |
Collapse
|
23
|
Kameta N, Manaka Y, Akiyama H, Shimizu T. Bioreactors Based on Enzymes Encapsulated in Photoresponsive Transformable Nanotubes and Nanocoils End-Capped with Magnetic Nanoparticles. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Naohiro Kameta
- Nanomaterials Research Institute; Department of Materials and Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Yuichi Manaka
- Renewable Energy Research Center; Department of Energy and Environment; AIST; Koriyama Fukushima 963-0298 Japan
| | - Haruhisa Akiyama
- Research Institute for Sustainable Chemistry; Department of Materials and Chemistry; AIST; Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Toshimi Shimizu
- AIST-Fellow; AIST; Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
24
|
Yao L, He M, Li D, Liu H, Wu J, Xiao J. Self-assembling bolaamphiphile-like collagen mimetic peptides. NEW J CHEM 2018. [DOI: 10.1039/c8nj00119g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bolaamphiphile-like collagen mimetic peptides with charged aspartic acids at both terminals may provide a facile peptide-based approach to construct well-defined nanostructures.
Collapse
Affiliation(s)
- Linyan Yao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Manman He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Dongfang Li
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huanxiang Liu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jiang Wu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|