1
|
Boschen KE, Dragicevich CJ, Fish EW, Hepperla AJ, Simon JM, Parnell SE. Gastrulation-stage alcohol exposure induces similar rates of craniofacial malformations in male and female C57BL/6J mice. Birth Defects Res 2024; 116:e2292. [PMID: 38116840 PMCID: PMC10872400 DOI: 10.1002/bdr2.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Prenatal alcohol exposure during gastrulation (embryonic day [E] 7 in mice, ~3rd week of human pregnancy) impairs eye, facial, and cortical development, recapitulating birth defects characteristic of Fetal Alcohol Syndrome (FAS). However, it is not known whether the prevalence or severity of craniofacial features associated with FAS is affected by biological sex. METHODS The current study administered either alcohol (2.9 g/kg, two i.p. doses, 4 hr apart) or vehicle to pregnant C57BL/6J females on E7, prior to gonadal sex differentiation, and assessed fetal morphology at E17. RESULTS Whereas sex did not affect fetal size in controls, alcohol-exposed females were smaller than both control females and alcohol-treated males. Alcohol exposure increased the incidence of eye defects to a similar degree in males and females. Together, these data suggest that females might be more sensitive to the general developmental effects of alcohol, but not effects specific to the craniofacies. Whole transcriptomic analysis of untreated E7 embryos found 214 differentially expressed genes in females vs. males, including those in pathways related to cilia and mitochondria, histone demethylase activity, and pluripotency. CONCLUSION Gastrulation-stage alcohol induces craniofacial malformations in male and female mouse fetuses at similar rates and severity, though growth deficits are more prevalent females. These findings support the investigation of biological sex as a contributing factor in prenatal alcohol studies.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Constance J. Dragicevich
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W. Fish
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Austin J. Hepperla
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Knabe W, Washausen S. Editorial: Apoptosis and Senescence in Vertebrate Development. Front Cell Dev Biol 2022; 9:834517. [PMID: 35071249 PMCID: PMC8766831 DOI: 10.3389/fcell.2021.834517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
3
|
Boschen KE, Fish EW, Parnell SE. Prenatal alcohol exposure disrupts Sonic hedgehog pathway and primary cilia genes in the mouse neural tube. Reprod Toxicol 2021; 105:136-147. [PMID: 34492310 PMCID: PMC8529623 DOI: 10.1016/j.reprotox.2021.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Neurulation-stage alcohol exposure (NAE; embryonic day [E] 8-10) is associated with midline craniofacial and CNS defects that likely arise from disruption of morphogen pathways, such as Sonic hedgehog (Shh). Notably, midline anomalies are also a hallmark of genetic ciliopathies such as Joubert syndrome. We tested whether NAE alters Shh pathway signaling and the number and function of primary cilia, organelles critical for Shh pathway transduction. Female C57BL/6 J mice were administered two doses of alcohol (2.9 g/kg/dose) or vehicle on E9. Embryos were collected 6, 12, or 24 h later, and changes to Shh, cell cycle genes, and primary cilia were measured in the rostroventral neural tube (RVNT). Within the first 24 h post-NAE, reductions in Shh pathway and cell cycle gene expression and the ratio of Gli3 forms in the full-length activator state were observed. RVNT volume and cell layer width were reduced at 12 h. In addition, altered expression of multiple cilia-related genes was observed at 6 h post-NAE. As a further test of cilia gene-ethanol interaction, mice heterozygous for Kif3a exhibited perturbed behavior during adolescence following NAE compared to vehicle-treated mice, and Kif3a heterozygosity exacerbated the hyperactive effects of NAE on exploratory activity. These data demonstrate that NAE downregulates the Shh pathway in a region of the neural tube that gives rise to alcohol-sensitive brain structures and identifies disruption of primary cilia function, or a "transient ciliopathy", as a possible cellular mechanism of prenatal alcohol pathogenesis.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Eric W Fish
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Scott E Parnell
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Parnell SE, Riley EP, Warren KR, Mitchell KT, Charness ME. The contributions of Dr. Kathleen K. Sulik to fetal alcohol spectrum disorders research and prevention. Alcohol 2018; 69:15-24. [PMID: 29571046 DOI: 10.1016/j.alcohol.2017.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/17/2022]
Abstract
Dr. Kathleen Sulik (Kathy) has spent 35 years studying fetal alcohol syndrome (FAS) and fetal alcohol spectrum disorders (FASD). Beginning with her landmark 1981 Science paper describing the early gestational window when alcohol can cause the craniofacial malformations characteristic of FAS, Kathy has contributed a vast amount of research furthering our knowledge of FASD. After her seminal work that definitively demonstrated that alcohol is the causative factor in FAS, she and her lab went on to explore and define the stage-dependent effects of early gestational alcohol exposure on the face and brain in numerous different ways throughout her career. She explored and discovered numerous mechanisms of alcohol's effects on the embryo, as well as describing several genetic factors that can modify susceptibility to developmental alcohol exposure. She did not restrict her research to the face and brain; her lab described in intricate detail the effects of developmental alcohol exposure on many different organs, including the heart, ears, kidneys, and limbs. In addition to her research, and in conjunction with NIAAA and the National Organization on Fetal Alcohol Syndrome (NOFAS), Kathy developed several FASD prevention curricula that are still in use today. Finally, as part of her drive to eradicate FAS and FASD, Kathy labored tirelessly with public policy makers to change how FASD is viewed by the public, how FASD is identified in affected individuals, and how FASD is studied by researchers. While no article could fully cover Kathy's contributions to FASD research and prevention, or her other contributions to embryology and teratology, this review will attempt to illustrate some of the highlights of Kathy's remarkable career.
Collapse
|
5
|
Fish EW, Murdaugh LB, Sulik KK, Williams KP, Parnell SE. Genetic vulnerabilities to prenatal alcohol exposure: Limb defects in sonic hedgehog and GLI2 heterozygous mice. Birth Defects Res 2017; 109:860-865. [PMID: 28504423 DOI: 10.1002/bdr2.1026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Genetic factors influence the physical and neurobehavioral manifestations of prenatal alcohol exposure (PAE). Animal models allow the investigation of specific genes that confer vulnerability to, or protection from, birth defects associated with fetal alcohol spectrum disorders (FASDs). The objective of the present experiments was to determine if genetic alterations in the Sonic Hedgehog (Shh) signaling pathways affect the vulnerability to PAE-induced skeletal defects involving the forelimbs and/or hindlimbs. METHOD Wild-type C57BL/6J female mice were bred with males in which one copy of the Shh or Gli2 genes had been knocked out, to produce litters with both wild-type (+/+) and heterozygous (+/-) embryos. Alcohol doses (two injections of 2.9 g/kg, 4 hours apart) or vehicles were administered starting at gestational day (GD) 9.25, 9.5, or 9.75, a critical exposure time for inducing limb defects. Limb defects were examined at GD 17 using a dysmorphology scale based on abnormalities ranging from increased interdigital spacing to the deletion of multiple fingers and the ulna. RESULTS Alcohol treatment caused a high incidence of forelimb defects, particularly on the right side, that was higher in Shh+/- and Gli2+/- fetuses compared to wild-type fetuses. Dysmorphology scores were also significantly higher in the Shh+/- and Gli2+/- mice. CONCLUSIONS These results extend previous findings demonstrating enhanced sensitivity to PAE-induced craniofacial dysmorphology and support the hypothesis that genetic alterations in the Shh signaling pathway influences the vulnerability to alcohol-induced birth defects. Moreover, these results emphasize the importance of understanding the interactions between genes and prenatal exposure to alcohol or other teratogens. Birth Defects Research 109:860-865, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Laura B Murdaugh
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen K Sulik
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| | - Kevin P Williams
- Department of Pharmaceutical Sciences, BRITE Institute, North Carolina Central University, Durham, North Carolina
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
7
|
Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate. PLoS One 2015; 10:e0120517. [PMID: 25793997 PMCID: PMC4368540 DOI: 10.1371/journal.pone.0120517] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE), clefts of the lip with or without cleft palate (CL/P), and clefts of the secondary palate only (CPO). Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD) 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in “non-syndromic” orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug.
Collapse
|
8
|
Parnell SE, Holloway HE, Baker LK, Styner MA, Sulik KK. Dysmorphogenic effects of first trimester-equivalent ethanol exposure in mice: a magnetic resonance microscopy-based study. Alcohol Clin Exp Res 2014; 38:2008-14. [PMID: 24931007 PMCID: PMC4107075 DOI: 10.1111/acer.12464] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/09/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND The first trimester of human development and the equivalent developmental period in animal models is a time when teratogenic ethanol (EtOH) exposure induces the major structural birth defects that fall within fetal alcohol spectrum disorder (FASD). Previous FASD research employing an acute high dose maternal intraperitoneal EtOH treatment paradigm has identified sensitive periods for a number of these defects. Extending this work, this investigation utilized high resolution magnetic resonance microscopy (MRM)-based analyses to examine the dysmorphology resulting from maternal dietary EtOH intake occurring during selected first trimester-equivalent time periods. METHODS Female C57Bl/6J mice were acclimated to a liquid 4.8% EtOH (v/v)-containing diet, then bred while on standard chow. Dams were again provided the EtOH-containing liquid diet for a period that extended either from the beginning of gestational day (GD) 7 to the end of GD 11 or from the beginning of GD 12 to the end of GD 16. On GD 17, a subset of fetuses was selected for MRM-based analyses. Group comparisons were made for litter characteristics and gross dysmorphology, as well as whole and regional brain volumes. RESULTS EtOH-induced stage of exposure-dependent structural brain abnormalities were observed. The GD 7 to 11 EtOH-exposed group presented with a significant decrease in cerebellar volume and an increase in septal volume, while GD 12 to 16 EtOH treatment resulted in a reduction in right hippocampal volume accompanied by enlarged pituitaries. Additionally, the GD 12 to 16 EtOH exposure caused a high incidence of edema/fetal hydrops. CONCLUSIONS These results illustrate the teratogenic impact of maternal dietary EtOH intake occurring at time periods approximately equivalent to weeks 3 through 6 (GD 7 to 11 in mice) and weeks 7 through 12 (GD 12 to 16 in mice) of human gestation, further documenting EtOH's stage of exposure-dependent neuroteratogenic end points and highlighting the vulnerability of selected brain regions during the first trimester. Additionally they suggest that clinical attention should be paid to fetal hydrops as a likely component of FASD.
Collapse
Affiliation(s)
- Scott E. Parnell
- University of North Carolina - Bowles Center for Alcohol Studies, Chapel Hill, North Carolina, United States
- University of North Carolina - Department of Cell Biology and Physiology, Chapel Hill, North Carolina, United States
| | - Hunter E. Holloway
- University of North Carolina - Bowles Center for Alcohol Studies, Chapel Hill, North Carolina, United States
| | - Lorinda K. Baker
- University of North Carolina - Bowles Center for Alcohol Studies, Chapel Hill, North Carolina, United States
| | - Martin A. Styner
- University of North Carolina - Department of Psychiatry, Chapel Hill, North Carolina, United States
- University of North Carolina - Department of Computer Science, Chapel Hill, North Carolina, United States
- University of North Carolina - Carolina Institute for Developmental Disabilities, Chapel Hill, North Carolina, United States
| | - Kathleen K. Sulik
- University of North Carolina - Bowles Center for Alcohol Studies, Chapel Hill, North Carolina, United States
- University of North Carolina - Department of Cell Biology and Physiology, Chapel Hill, North Carolina, United States
- University of North Carolina - Carolina Institute for Developmental Disabilities, Chapel Hill, North Carolina, United States
| |
Collapse
|
9
|
Sulik KK. Fetal alcohol spectrum disorder: pathogenesis and mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:463-75. [PMID: 25307590 DOI: 10.1016/b978-0-444-62619-6.00026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This chapter provides an overview of animal model-based studies that have generated information critical to our understanding of the pathogenesis and mechanisms underlying alcohol-induced birth defects, in particular those involving the brain. Focus is placed on the developing organism itself, rather than the mother, placenta, or other extraembryonic tissues. Components of the cascades of alcohol-induced damage that are considered herein are excessive cell death, changes in the cell cycle and proliferation, cell migration, cell morphogenesis, and gene expression as well as free radical damage and interference with cell signaling. The roles played by one or more of these various factors in the genesis of structural and functional birth defects are dependent upon alcohol exposure patterns and dosage, the involved tissue, and the prenatal stage(s) at the time of exposure. Technologic advances and rapidly increasing knowledge in the fields of genetics, cell, developmental, and neurobiology are critical to accurately piecing together experimental evidence in refining our understanding of the genesis of alcohol-induced birth defects, to the planning and execution of future studies, and to applying the knowledge gained to diminish the severity or occurrence of fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Kathleen K Sulik
- Department of Cell Biology and Physiology and Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Gilliam D, Valdez N, Branson S, Dixon A, Downing C. Maternal effects on ethanol teratogenesis in a cross between A/J and C57BL/6J mice. Alcohol 2011; 45:441-9. [PMID: 21641750 DOI: 10.1016/j.alcohol.2011.02.308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/04/2011] [Accepted: 02/16/2011] [Indexed: 10/18/2022]
Abstract
Genetic factors influence adverse pregnancy outcome in both humans and animal models. Animal research reveals that both the maternal and fetal genetic profiles are important for determining the risk of physical birth defects and prenatal mortality. Using a reciprocal-cross breeding design, we investigated whether the mother's genes may be more important than fetal genes in determining risk for ethanol teratogenesis. Examination of possible synergistic genetic effects on ethanol teratogenesis was made possible by using two mouse strains known to be susceptible to specific malformations. Inbred A/J (A) and C57BL/6J (B6) mice were mated to produce four fetal genotype groups: the true-bred AċA and B6ċB6 genotypes and the genetically identical AċB6 and B6ċA genotypes (the F(1) genotype). Dams were administered either 5.8 g/kg ethanol or an isocaloric amount of maltose-dextrin on day 9 of pregnancy. Fetuses were removed by laparotomy on gestation day 18, weighed, and assessed for digit, vertebral, and kidney malformations. Digit malformations in the genetically identical F(1) ethanol-exposed litters showed a pattern consistent with a maternal genetic effect (AċB6 [2%] and B6ċA [30%]). In contrast, vertebral malformations were similar in all ethanol-exposed litters (AċA [26%], AċB6 [18%], B6ċA [22%], and B6ċB6 [33%]). The percentage of malformations did not differ between male and female fetuses, indicating sex-linked factors are not responsible for the maternal effect. Ethanol exposure decreased litter weights but did not affect litter mortality compared with maltose-exposed controls. This study supports the idea that genes influence malformation risk following in utero alcohol exposure. Specifically, maternal genes influence risk more than fetal genes for some teratogenic outcomes. No evidence supported synergistic genetic effects on ethanol teratogenesis. This research supports the conclusion that uterine environment contributes to determining risk of Fetal Alcohol Spectrum Disorder.
Collapse
|
11
|
Parnell SE, Sulik KK, Dehart DB, Chen SY. Reduction of ethanol-induced ocular abnormalities in mice through dietary administration of N-acetylcysteine. Alcohol 2010; 44:699-705. [PMID: 21112471 DOI: 10.1016/j.alcohol.2010.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 05/07/2010] [Accepted: 05/12/2010] [Indexed: 02/05/2023]
Abstract
N-acetylcysteine (NAC) is a derivative of the amino acid l-cysteine, which, previously, has been shown to protect against ethanol-induced apoptosis during early development. Ongoing research demonstrates that NAC is also proving clinically beneficial in reducing oxidative stress-mediated lung, liver, and kidney damage, with protection likely resulting from a NAC-mediated increase in glutathione levels. In the present study, the hypothesis that coadministration of NAC and ethanol by means of liquid diet on days 7 and 8 of pregnancy in mice would reduce ethanol's teratogenicity was tested. For this work, adult nonpregnant female mice were acclimated to a liquid diet containing ethanol for 16 days, withdrawn from the ethanol, bred, and then returned to the liquid diet containing 4.8% ethanol and/or either 0.5 or 1-mg NAC/mL diet on their seventh and eighth days of pregnancy. At the concentrations used, the mice received NAC dosages of approximately 300 or 600 mg/kg/day and achieved peak blood ethanol concentrations (BEC) that averaged approximately 200mg/dL. There was no difference in BEC between the ethanol-alone and ethanol plus 600 mg/kg NAC group. After maternal euthanasia, gestational day (GD) 14 fetuses were removed, fixed, weighed, and examined for the presence and severity of ocular abnormalities, a readily assessed endpoint that results from GD 7 and 8 ethanol exposures. Although the lower dosage of NAC (300 mg/kg) resulted in a decrease in the incidence of ocular defects in both the left and right eyes, this reduction was not statistically significant. However, doubling the NAC concentration did yield a significant change; as compared with the group treated with ethanol alone, the incidence of ocular abnormalities was diminished by 22%. These results show the potential of an orally administered compound with proven clinical efficacy to reduce ethanol's teratogenic effects and support the premise that oxidative damage plays an important mechanistic role in fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Scott E Parnell
- Bowles Center for Alcohol Studies and Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
12
|
Sulik KK. Perspectives on R.E. Shenefelt's 1972 Teratology publication entitled "Morphogenesis of malformations in hamsters caused by retinoic acid: relation to dose and stage at treatment". ACTA ACUST UNITED AC 2010; 89:275-8. [PMID: 20803687 DOI: 10.1002/bdrb.20253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kathleen K Sulik
- Department of Cell and Developmental Biology and Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, North Carolina 27599-7178, USA.
| |
Collapse
|
13
|
Godin EA, O'Leary-Moore SK, Khan AA, Parnell SE, Ament JJ, Dehart DB, Johnson BW, Allan Johnson G, Styner MA, Sulik KK. Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 7. Alcohol Clin Exp Res 2010; 34:98-111. [PMID: 19860813 PMCID: PMC3506027 DOI: 10.1111/j.1530-0277.2009.01071.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND This magnetic resonance microscopy (MRM)-based report is the second in a series designed to illustrate the spectrum of craniofacial and central nervous system (CNS) dysmorphia resulting from single- and multiple-day maternal ethanol treatment. The study described in this report examined the consequences of ethanol exposure on gestational day (GD) 7 in mice, a time in development when gastrulation and neural plate development begins; corresponding to the mid- to late third week postfertilization in humans. Acute GD 7 ethanol exposure in mice has previously been shown to result in CNS defects consistent with holoprosencephaly (HPE) and craniofacial anomalies typical of those in Fetal Alcohol Syndrome (FAS). MRM has facilitated further definition of the range of GD 7 ethanol-induced defects. METHODS C57Bl/6J female mice were intraperitoneally (i.p.) administered vehicle or 2 injections of 2.9 g/kg ethanol on day 7 of pregnancy. Stage-matched control and ethanol-exposed GD 17 fetuses selected for imaging were immersion fixed in a Bouins/Prohance solution. MRM was conducted at either 7.0 Tesla (T) or 9.4 T. Resulting 29 microm isotropic spatial resolution scans were segmented and reconstructed to provide 3D images. Linear and volumetric brain measures, as well as morphological features, were compared for control and ethanol-exposed fetuses. Following MRM, selected specimens were processed for routine histology and light microscopic examination. RESULTS Gestational day 7 ethanol exposure resulted in a spectrum of median facial and forebrain deficiencies, as expected. This range of abnormalities falls within the HPE spectrum; a spectrum for which facial dysmorphology is consistent with and typically is predictive of that of the forebrain. In addition, other defects including median facial cleft, cleft palate, micrognathia, pituitary agenesis, and third ventricular dilatation were identified. MRM analyses also revealed cerebral cortical dysplasia/heterotopias resulting from this acute, early insult and facilitated a subsequent focused histological investigation of these defects. CONCLUSIONS Individual MRM scans and 3D reconstructions of fetal mouse brains have facilitated demonstration of a broad range of GD 7 ethanol-induced morphological abnormality. These results, including the discovery of cerebral cortical heterotopias, elucidate the teratogenic potential of ethanol insult during the third week of human prenatal development.
Collapse
Affiliation(s)
- Elizabeth A Godin
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schreiner CM, Bell SM, Scott WJ. Microarray analysis of murine limb bud ectoderm and mesoderm after exposure to cadmium or acetazolamide. ACTA ACUST UNITED AC 2009; 85:588-98. [PMID: 19274763 DOI: 10.1002/bdra.20577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND A variety of drugs, environmental chemicals, and physical agents induce a common limb malformation in the offspring of pregnant mice exposed on day 9 of gestation. This malformation, postaxial, right-sided forelimb ectrodactyly, is thought to arise via an alteration of hedgehog signaling. METHODS We have studied two of these teratogens, acetazolamide and cadmium, using the technique of microarray analysis of limb bud ectoderm and mesoderm to search for changes in gene expression that could indicate a common pathway to postaxial limb reduction. RESULTS Results indicated a generalized up-regulation of gene expression after exposure to acetazolamide but a generalized down-regulation due to cadmium exposure. An intriguing observation was a cadmium-induced reduction of Mt1 and Mt2 expression in the limb bud mesoderm indicating a lowering of embryonic zinc. CONCLUSIONS We propose that these two teratogens and others (valproic acid and ethanol) lower sonic hedgehog signaling by perturbation of zinc function in the sonic hedgehog protein.
Collapse
Affiliation(s)
- Claire M Schreiner
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
15
|
Parnell SE, O'Leary-Moore SK, Godin EA, Dehart DB, Johnson BW, Allan Johnson G, Styner MA, Sulik KK. Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8. Alcohol Clin Exp Res 2009; 33:1001-11. [PMID: 19302087 PMCID: PMC2748865 DOI: 10.1111/j.1530-0277.2009.00921.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Magnetic resonance microscopy (MRM), magnetic resonance imaging (MRI) at microscopic levels, provides unprecedented opportunities to aid in defining the full spectrum of ethanol's insult to the developing brain. This is the first in a series of reports that, collectively, will provide an MRM-based atlas of developmental stage-dependent structural brain abnormalities in a Fetal Alcohol Spectrum Disorders (FASD) mouse model. The ethanol exposure time and developmental stage examined for this report is gestational day (GD) 8 in mice, when the embryos are at early neurulation stages; stages present in humans early in the fourth week postfertilization. METHODS For this study, pregnant C57Bl/6J mice were administered an ethanol dosage of 2.8 g/kg intraperitoneally at 8 days, 0 hour and again at 8 days, 4 hours postfertilization. On GD 17, fetuses that were selected for MRM analyses were immersion fixed in a Bouin's/Prohance solution. Control fetuses from vehicle-treated dams were stage-matched to those that were ethanol-exposed. The fetal mice were scanned ex vivo at 7.0 T and 512 x 512 x 1024 image arrays were acquired using 3-D spin warp encoding. The resulting 29 microm (isotropic) resolution images were processed using ITK-SNAP, a 3-D segmentation/visualization tool. Linear and volume measurements were determined for selected brain, head, and body regions of each specimen. Comparisons were made between control and treated fetuses, with an emphasis on determining (dis)proportionate changes in specific brain regions. RESULTS As compared with controls, the crown-rump lengths of stage-matched ethanol-exposed GD 17 fetuses were significantly reduced, as were brain and whole body volumes. Volume reductions were notable in every brain region examined, with the exception of the pituitary and septal region, and were accompanied by increased ventricular volumes. Disproportionate regional brain volume reductions were most marked on the right side and were significant for the olfactory bulb, hippocampus, and cerebellum; the latter being the most severely affected. Additionally, the septal region and the pituitary were disproportionately large. Linear measures were consistent with those of volume. Other dysmorphologic features noted in the MR scans were choanal stenosis and optic nerve coloboma. CONCLUSIONS This study demonstrates that exposure to ethanol occurring in mice at stages corresponding to the human fourth week postfertilization results in structural brain abnormalities that are readily identifiable at fetal stages of development. In addition to illustrating the utility of MR microscopy for analysis of an FASD mouse model, this work provides new information that confirms and extends human clinical observations. It also provides a framework for comparison of structural brain abnormalities resulting from ethanol exposure at other developmental stages and dosages.
Collapse
Affiliation(s)
- Scott E Parnell
- The Bowles Center for Alcohol Studies, and Neurodevelopmental Disorders Research Center, University of North Carolina, Chapel Hill, NC 27599-7178, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wentzel P, Eriksson UJ. Genetic influence on dysmorphogenesis in embryos from different rat strains exposed to ethanol in vivo and in vitro. Alcohol Clin Exp Res 2008; 32:874-87. [PMID: 18371156 DOI: 10.1111/j.1530-0277.2008.00647.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The aim was to investigate the susceptibility of embryos from 2 rat strains (U and H) to a 48 hours ethanol exposure in early pregnancy, both in vivo and in vitro. METHODS The embryos were studied on gestational days 9 to 11. We used 1 ethanol dose in vivo (6 g/kg x 2), 3 different ethanol concentrations in vitro (88 mM, 132 mM, 176 mM) and also attempted to diminish the teratogenic effect in vitro by supplying the antioxidant N-acetylcysteine (NAC, 0.5 mM) to the culture medium. RESULTS The U embryos were more damaged by ethanol than the H embryos, both in vivo and in vitro. NAC addition diminished, but failed to completely normalize, the embryonic maldevelopment. Ethanol increased the Bax/Bcl-2 ratio in the U embryos both in vivo and in vitro, but not in the H embryos. Furthermore, ethanol caused increased Caspase-3 immunostaining in U embryos, but not in H embryos. Ethanol exposure in vivo did not alter CuZnSOD and MnSOD mRNA levels in U and H embryos. In vitro, however, the ethanol-exposed U embryos increased their CuZnSOD and MnSOD mRNA levels, whereas the CuZnSOD mRNA was unchanged and MnSOD mRNA decreased in the H embryos, in neither strain did NAC exert any effect. The U embryos increased catalase gene expression in response to ethanol in vivo, but decreased catalase mRNA levels in vitro, changes normalized by NAC. The H embryos did not alter catalase mRNA levels in vivo, but increased gene expression in vitro, with no NAC effect. Ethanol affected the gene expression of the other ROS scavenging enzymes and the developmental genes studied - Bmp-4, Ret, Shh, Pax-6 - similarly in the 2 strains. CONCLUSIONS The findings support a role for genetic predisposition, oxidative stress, and apoptosis in ethanol teratogenicity, and suggest that the teratogenic predisposition of the more susceptible U rats may reside, at least in part, in the regulation of the ROS scavenging enzymes in the U embryos.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala Universitet, Uppsala, Sweden.
| | | |
Collapse
|
17
|
Johnson CS, Zucker RM, Hunter ES, Sulik KK. Perturbation of retinoic acid (RA)-mediated limb development suggests a role for diminished RA signaling in the teratogenesis of ethanol. ACTA ACUST UNITED AC 2007; 79:631-41. [PMID: 17676605 DOI: 10.1002/bdra.20385] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND A proposed mechanism for ethanol teratogenicity entails ethanol-mediated reductions in retinoic acid (RA). This premise was investigated utilizing a mouse model, with limb reduction defects as the teratogenic end point. METHODS Ethanol, Disulfiram, or BMS-189453 was administered to C57BL/6J mice on the 9(th) day of pregnancy. Forelimb morphology was assessed on gestation day 18 using Alcian blue and Alizarin red staining. Nile blue sulfate or LysoTracker Red (LTR) vital staining identified cell death in the limb bud. The ability of RA to prevent ethanol-induced cell death was assessed by coadministration followed by laser scanning confocal microscopic examination of LTR-staining. In situ hybridization and qPCR were used to examine gene expression in treated limb buds. RESULTS Ethanol, Disulfiram, and BMS-189453 resulted in postaxial ectrodactyly, intermediate ectrodactyly, and other digital defects. Excessive Nile blue sulfate staining was evident in the presumptive AER following each of the three exposures. Ethanol-induced LTR staining was prevented by RA supplementation. Both in situ hybridization and qPCR illustrated decreases in Shh and Tbx5 in ethanol-exposed embryos as compared to control. CONCLUSIONS Contrary to studies of prolonged RA deficiency, acute exposure to functional antagonists of RA results in limb defects that are morphologically similar to those caused by ethanol. The rescue of ethanol-induced cell death by RA and similar changes in Shh transcription further suggest that RA contributes to ethanol-induced limb dysmorphology. Moreover, the repression of key mediators of limb development soon after ethanol exposure adds to the existing knowledge of the pathogenic effects of ethanol.
Collapse
Affiliation(s)
- Corey S Johnson
- The Department of Cell and Developmental Biology, and Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
18
|
Parnell SE, Dehart DB, Wills TA, Chen SY, Hodge CW, Besheer J, Waage-Baudet HG, Charness ME, Sulik KK. Maternal oral intake mouse model for fetal alcohol spectrum disorders: ocular defects as a measure of effect. Alcohol Clin Exp Res 2006; 30:1791-8. [PMID: 17010146 DOI: 10.1111/j.1530-0277.2006.00212.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND This work was conducted in an effort to establish an oral intake model system in which the effects of ethanol insult that occur during early stages of embryogenesis can be easily examined and in which agents that may modulate ethanol's teratogenicity can be readily tested in vivo. The model system described utilizes the alcohol deprivation effect to obtain teratogenic levels of maternal ethanol intake on days 7 and 8 of pregnancy in C57Bl/6J mice. Ocular defects including microphthalmia and uveal coloboma, which have previously been shown to result from ethanol administered by gavage or via intraperitoneal injection on these days, served as the developmental end point for this study. The ocular defects are readily identifiable and their degree of severity is expected to correlate with concurrently developing defects of the central nervous system (CNS). METHODS Female C57Bl/6J mice were maintained on an ethanol-containing (4.8% v/v) liquid diet for 14 days and then mated during a subsequent abstinence period. Mice were then reexposed to ethanol on days 7 and 8 of pregnancy only. Control as well as ethanol-exposed dams were killed on their 14th day of pregnancy. Fetuses were then weighed, measured for crown rump length, photographed, and analyzed for ocular abnormalities. Globe size, palpebral fissure length, and pupil size and shape were noted for both the right and left eyes of all fetuses and informative comparisons were made. RESULTS This exposure paradigm resulted in peak maternal blood alcohol concentrations that ranged from 170 to 220 mg/dL on gestational day (GD) 8. Compared with the GD 14 fetuses from the normal control group, the pair-fed, acquisition controls, as well as the ethanol-exposed fetuses, were developmentally delayed and had reduced weights. Confirming previous studies, comparison of similarly staged control and treated GD 8 embryos illustrated reductions in the size of the forebrain in the latter. Subsequent ocular malformations were noted in 33% of the right eyes and 25% of the left eyes of the 103 GD 14 ethanol-exposed fetuses examined. This incidence of defects is twice that observed in the control groups. Additionally, it was found that the palpebral fissure length is directly correlated with globe size. CONCLUSIONS The high incidence of readily identifiable ocular malformations produced by oral ethanol intake in this model and their relevance to human fetal alcohol spectrum disorders (FASD) makes this an excellent system for utilization in experiments involving factors administered to the embryo that might alter ethanol's teratogenic effects. Additionally, the fact that early ethanol insult yields ocular and forebrain abnormalities that are developmentally associated allows efficient specimen selection for subsequent detailed analyses of CNS effects in this in vivo mammalian FASD model.
Collapse
Affiliation(s)
- Scott E Parnell
- Bowles Center for Alcohol Studies, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Marinho SA, Sala MA, Lopes RA, de Moraes Grisi MF, Novaes AB, de Souza SLS, Taba M. Teratogenic Effects of the Interaction Acetylsalicylic Acid (ASA) and Ethanol: Morphologic and Morphometric Evaluation of the Lingual Epithelium in Rat Fetuses. Anat Histol Embryol 2006; 36:14-8. [PMID: 17266661 DOI: 10.1111/j.1439-0264.2006.00712.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of the present work was to evaluate the teratogenic effects of the interaction between acetylsalicylic acid (ASA) and ethanol on the epithelium of the lingual mucosa in rat fetuses. On the 10th pregnancy day, a single intraperitoneal ethanol dose (2.96 g/kg body weight) (Group I), ASA (200 mg/kg body weight) (Group II) and ASA plus ethanol, in the same doses (Group III), or saline (Group IV - control), were administrated. The epithelial alterations were assessed by means of histological and morphometric methods, on posterior dorsal, anterior dorsal and ventral regions of the tongue. ASA reduced, in rat fetuses, the ethanol deleterious effects on nuclear size in the epithelial prickle cell of the lingual mucosa. On the other hand, ASA did not influence the effects of ethanol in both epithelial layers of the lingual mucosa, when the nuclear shape, cell volume or epithelial layers thickness were evaluated.
Collapse
Affiliation(s)
- S A Marinho
- Department of Oral and Maxillofacial Surgery, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Margret CP, Chappell TD, Li CX, Jan TA, Matta SG, Elberger AJ, Waters RS. Prenatal alcohol exposure (PAE) reduces the size of the forepaw representation in forepaw barrel subfield (FBS) cortex in neonatal rats: relationship between periphery and central representation. Exp Brain Res 2006; 172:387-96. [PMID: 16424976 DOI: 10.1007/s00221-005-0339-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Prenatal alcohol exposure (PAE) alters limb development that may lead to structural and functional abnormalities of the limb reported in children diagnosed with Fetal Alcohol Spectrum Disorder. To determine whether PAE alters the central representation of the forelimb we used the rodent barrel cortex as our model system where it was possible to visualize and quantitatively measure the size of the forepaw representation in the forepaw barrel subfield (FBS) in first somatosensory cortex. In the present study, we examined the effects of PAE on pattern and size of the forepaw and forepaw representation in FBS in neonatal rats at gestational day 32 that corresponds to postnatal day 9. Pregnant Sprague-Dawley rats were chronically intubated with binge doses of ethanol (6 g/kg) from gestational day 1 through gestational day 20. The offspring of the ethanol treated dams comprised the ethanol (EtOH) group. The effect of PAE on the EtOH group was compared with a nutritional-controlled pairfed (PF) group and a normal chowfed (CF) group. The ventral (glabrous) surface area of the forepaw digits, length of digit 2 through digit 5, and the corresponding glabrous forepaw digit representations in the FBS were measured and compared between treatment groups. In rats exposed to in utero alcohol, the sizes of the overall glabrous forepaw and forepaw digits were significantly reduced in EtOH pups compared to CF and PF pups; overall glabrous forepaw area was 11% smaller than CF controls. Glabrous digit lengths were also smaller in EtOH rats compared to CF controls and significantly smaller in digit 2 through digit 4. The glabrous digit representation in FBS was 18% smaller in the EtOH group when compared to the CF treatment. However, PAE did not produce malformations in the forepaw or alter the pattern of the forepaw representation in FBS; instead, PAE significantly reduced both body and brain weights compared to controls. Unexpectedly, little or no correlation was observed between the size of the glabrous forepaw compared to the size of the glabrous forepaw representation in the FBS for any of the treatment groups. The present findings of PAE-related alterations in sensory periphery and the central cortical representation may underlie deficits in sensorimotor integration reported among children with Fetal Alcohol Spectrum Disorder.
Collapse
Affiliation(s)
- Cecilia P Margret
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Chrisman K, Kenney R, Comin J, Thal T, Suchocki L, Yueh YG, Gardner DP. Gestational ethanol exposure disrupts the expression of FGF8 and Sonic hedgehog during limb patterning. ACTA ACUST UNITED AC 2004; 70:163-71. [PMID: 15108242 DOI: 10.1002/bdra.20019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ethanol is known to induce a wide variety of gestational anomalies, including skeletal malformations. Gestational ethanol exposure in mice has been shown to induce postaxial digit loss (ectrodactyly). How ethanol induces limb malformations is not understood. To better understand how ethanol effects limb development, we have utilized a transgenic line of mice that expresses beta-galactosidase in the apical ectodermal ridge (AER) of the limbs throughout gestation. METHODS Pregnant female mice were injected with 2.9, 3.4, or 3.9 gm/kg ethanol at E9.3 and E9.5; embryos were isolated at E11.25, stained for beta-galactosidase activity, and evaluated for AER defects. Based upon the pattern of defects seen, expression of FGF8 in the AER and Sonic hedgehog in the postaxial mesoderm was evaluated by in situ hybridization. RESULTS Two distinct phenotypes were seen in response to ethanol that were dose dependent. At 2.9 gm/kg ethanol, the most prevalent phenotype was a mislocalization of the AER to regions both dorsal and ventral to the midline. A higher dosage of 3.4 gm/kg ethanol did not increase the mislocalization phenotype, but resulted in a higher frequency of postaxial loss of the AER and associated mesenchymal tissue. The highest dosage utilized (3.9 gm/kg) resulted in a high frequency of both preaxial and postaxial loss of the AER. Through in situ hybridization, we found that ethanol exposure resulted in a concomitant reduction in FGF8 expression in the AER and Sonic hedgehog expression from the zone of polarizing activity (ZPA). CONCLUSIONS We propose a model where ethanol disrupts the AER/ZPA positive feedback loop to induce postaxial malformations. Preaxial malformations seen at higher ethanol dosage suggest FGF8 as a critical target of ethanol in producing limb defects.
Collapse
Affiliation(s)
- Kimberly Chrisman
- Basic Sciences Department, Midwestern University, Glendale, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen SY, Dehart DB, Sulik KK. Protection from ethanol‐induced limb malformations by the superoxide dismutase/catalase mimetic, EUK‐134. FASEB J 2004; 18:1234-6. [PMID: 15208273 DOI: 10.1096/fj.03-0850fje] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Based on previous in vitro studies that have illustrated prevention of ethanol-induced cell death by antioxidants, using an in vivo model, we have tested the anti-teratogenic potential of a potent synthetic superoxide dismutase plus catalase mimetic, EUK-134. The developing limb of C57BL/6J mice, which is sensitive to ethanol-induced reduction defects, served as the model system. On their ninth day of pregnancy, C57BL/6J mice were administered ethanol (two intraperitoneal doses of 2.9 g/kg given 4 h apart) alone or in combination with EUK-134 (two doses of 10 mg/kg). Pregnant control mice were similarly treated with either vehicle or EUK-134, alone. Within 15 h of the initial ethanol exposure, excessive apoptotic cell death was observed in the apical ectodermal ridge (AER) of the newly forming forelimb buds. Forelimb defects, including postaxial ectrodactyly, metacarpal, and ulnar deficiencies, occurred in 67.3% of the ethanol-exposed fetuses that were examined at 18 days of gestation. The right forelimbs were preferentially affected. No limb malformations were observed in control fetuses. Cell death in the AER of embryos concurrently exposed to ethanol and EUK-134 was notably reduced compared with that in embryos from ethanol-treated dams. Additionally, the antioxidant treatment reduced the incidence of forelimb malformations to 35.9%. This work illustrates that antioxidants can significantly improve the adverse developmental outcome that results from ethanol exposure in utero, diminishing the incidence and severity of major malformations that result from exposure to this important human teratogen.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Bowles Center for Alcohol Studies and Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | |
Collapse
|
23
|
Johnson CS, Blanton MR, Hunter ES. Effects of ethanol and hydrogen peroxide on mouse limb bud mesenchyme differentiation and cell death. In Vitro Cell Dev Biol Anim 2004. [PMID: 15311970 DOI: 10.1290/0312095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxygen species (ROS) is produced in adult and embryonic tissues by ethanol exposure, this investigation examines the possibility that ethanol-induced cell death in the limb is a result of ROS. Using an in vitro primary culture of limb mesenchyme, the effects of hydrogen peroxide (H2O2) and ethanol on cell death and differentiation were examined. In addition, a dichlorofluorescein diacetate assay was performed to determine the relative intracellular ROS levels after exposure to several concentrations of ethanol and H2O2. Exposure of 1 to 100 microM H2O2 resulted in a 1.08-1.21 times control increase in cartilage matrix accumulation. Cell death was increased 1.69-2.76 times the untreated control value. Production of ROS ranged from 1.25-1.51 times untreated controls. Ethanol exposure of 0.25 to 1.00% (v/v) did not affect cartilage matrix accumulation but resulted in an increase of cell death (1.45-2.31 times untreated control). Intracellular ROS levels after ethanol exposure increased 1.08-1.15 times control but were lower than that produced by 1 microM H2O2. On the basis of the correlation between ROS level produced by H2O2, it was concluded that ethanol-induced cell death in limb mesenchyme is a result of a non-ROS-mediated mechanism. Therefore, in addition to ethanol-induced cell death mediated by ROS reported in the literature, ethanol-induced cell death can be induced in limb mesenchyme by mechanisms that are not dependent upon ROS.
Collapse
Affiliation(s)
- Corey S Johnson
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
24
|
Johnson CS, Blanton MR, Hunter ES. EFFECTS OF ETHANOL AND HYDROGEN PEROXIDE ON MOUSE LIMB BUD MESENCHYME DIFFERENTIATION AND CELL DEATH. ACTA ACUST UNITED AC 2004; 40:108-12. [PMID: 15311970 DOI: 10.1290/1543-706x(2004)040<0108:eoeahp>2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many of the morphological defects associated with embryonic alcohol exposure are a result of cell death. During limb development, ethanol administration produces cell death in the limb and digital defects, including postaxial ectrodactyly. Because an accumulation of reactive oxygen species (ROS) is produced in adult and embryonic tissues by ethanol exposure, this investigation examines the possibility that ethanol-induced cell death in the limb is a result of ROS. Using an in vitro primary culture of limb mesenchyme, the effects of hydrogen peroxide (H2O2) and ethanol on cell death and differentiation were examined. In addition, a dichlorofluorescein diacetate assay was performed to determine the relative intracellular ROS levels after exposure to several concentrations of ethanol and H2O2. Exposure of 1 to 100 microM H2O2 resulted in a 1.08-1.21 times control increase in cartilage matrix accumulation. Cell death was increased 1.69-2.76 times the untreated control value. Production of ROS ranged from 1.25-1.51 times untreated controls. Ethanol exposure of 0.25 to 1.00% (v/v) did not affect cartilage matrix accumulation but resulted in an increase of cell death (1.45-2.31 times untreated control). Intracellular ROS levels after ethanol exposure increased 1.08-1.15 times control but were lower than that produced by 1 microM H2O2. On the basis of the correlation between ROS level produced by H2O2, it was concluded that ethanol-induced cell death in limb mesenchyme is a result of a non-ROS-mediated mechanism. Therefore, in addition to ethanol-induced cell death mediated by ROS reported in the literature, ethanol-induced cell death can be induced in limb mesenchyme by mechanisms that are not dependent upon ROS.
Collapse
Affiliation(s)
- Corey S Johnson
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
25
|
Wilkemeyer MF, Chen SY, Menkari CE, Brenneman DE, Sulik KK, Charness ME. Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced developmental toxicity. Proc Natl Acad Sci U S A 2003; 100:8543-8. [PMID: 12808140 PMCID: PMC166265 DOI: 10.1073/pnas.1331636100] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NAPVSIPQ (NAP), an active fragment of the glial-derived activity-dependent neuroprotective protein, is protective at femtomolar concentrations against a wide array of neural insults and prevents ethanol-induced fetal wastage and growth retardation in mice. NAP also antagonizes ethanol inhibition of L1-mediated cell adhesion (ethanol antagonism). We performed an Ala scanning substitution of NAP to determine the role of ethanol antagonism and neuroprotection in NAP prevention of ethanol embryotoxicity. The Ser-Ile-Pro region of NAP was crucial for both ethanol antagonism and protection of cortical neurons from tetrodotoxin toxicity (neuroprotection). Ala replacement of either Ser-5 or Pro-7 (P7A-NAP) abolished NAP neuroprotection but minimally changed the efficacy of NAP ethanol antagonism. In contrast, Ala replacement of Ile-6 (I6A-NAP) caused a decrease in potency (>2 logarithmic orders) with only a small reduction (<10%) in the efficacy of NAP neuroprotection but markedly reduced the efficacy (50%) and the potency (5 logarithmic orders) of NAP ethanol antagonism. Ethanol significantly reduced the number of paired somites in mouse whole-embryo culture; this effect was prevented significantly by 100 pM NAP or by 100 pM P7A-NAP, but not by 100 pM I6A-NAP. The structure-activity relation for NAP prevention of ethanol embryotoxicity was similar to that for NAP ethanol antagonism and different from that for NAP neuroprotection. These findings support the hypothesis that NAP antagonism of ethanol inhibition of L1 adhesion plays a central role in NAP prevention of ethanol embryotoxicity and highlight the potential importance of ethanol effects on L1 in the pathophysiology of fetal alcohol syndrome.
Collapse
Affiliation(s)
- Michael F. Wilkemeyer
- Neurology Service, Veterans Affairs Boston
Healthcare System, West Roxbury, MA 02132;
Department of Neurology, Harvard Medical
School, Boston, MA 02115; Department of
Neurology, Brigham and Women's Hospital, Boston, MA 02115;
Bowles Center for Alcohol Studies, University of
North Carolina, Chapel Hill, NC 27599; Department
of Cell and Developmental Biology, University of North Carolina School of
Medicine, Chapel Hill, NC 27599; and Section on
Developmental and Molecular Pharmacology, National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Shao-yu Chen
- Neurology Service, Veterans Affairs Boston
Healthcare System, West Roxbury, MA 02132;
Department of Neurology, Harvard Medical
School, Boston, MA 02115; Department of
Neurology, Brigham and Women's Hospital, Boston, MA 02115;
Bowles Center for Alcohol Studies, University of
North Carolina, Chapel Hill, NC 27599; Department
of Cell and Developmental Biology, University of North Carolina School of
Medicine, Chapel Hill, NC 27599; and Section on
Developmental and Molecular Pharmacology, National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Carrie E. Menkari
- Neurology Service, Veterans Affairs Boston
Healthcare System, West Roxbury, MA 02132;
Department of Neurology, Harvard Medical
School, Boston, MA 02115; Department of
Neurology, Brigham and Women's Hospital, Boston, MA 02115;
Bowles Center for Alcohol Studies, University of
North Carolina, Chapel Hill, NC 27599; Department
of Cell and Developmental Biology, University of North Carolina School of
Medicine, Chapel Hill, NC 27599; and Section on
Developmental and Molecular Pharmacology, National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Douglas E. Brenneman
- Neurology Service, Veterans Affairs Boston
Healthcare System, West Roxbury, MA 02132;
Department of Neurology, Harvard Medical
School, Boston, MA 02115; Department of
Neurology, Brigham and Women's Hospital, Boston, MA 02115;
Bowles Center for Alcohol Studies, University of
North Carolina, Chapel Hill, NC 27599; Department
of Cell and Developmental Biology, University of North Carolina School of
Medicine, Chapel Hill, NC 27599; and Section on
Developmental and Molecular Pharmacology, National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Kathleen K. Sulik
- Neurology Service, Veterans Affairs Boston
Healthcare System, West Roxbury, MA 02132;
Department of Neurology, Harvard Medical
School, Boston, MA 02115; Department of
Neurology, Brigham and Women's Hospital, Boston, MA 02115;
Bowles Center for Alcohol Studies, University of
North Carolina, Chapel Hill, NC 27599; Department
of Cell and Developmental Biology, University of North Carolina School of
Medicine, Chapel Hill, NC 27599; and Section on
Developmental and Molecular Pharmacology, National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Michael E. Charness
- Neurology Service, Veterans Affairs Boston
Healthcare System, West Roxbury, MA 02132;
Department of Neurology, Harvard Medical
School, Boston, MA 02115; Department of
Neurology, Brigham and Women's Hospital, Boston, MA 02115;
Bowles Center for Alcohol Studies, University of
North Carolina, Chapel Hill, NC 27599; Department
of Cell and Developmental Biology, University of North Carolina School of
Medicine, Chapel Hill, NC 27599; and Section on
Developmental and Molecular Pharmacology, National Institute of Child Health
and Human Development, National Institutes of Health, Bethesda, MD 20892
- To whom correspondence should be addressed at: Department of Neurology (127),
Harvard Medical School, Veterans Affairs Boston Healthcare System, 1400 VFW
Parkway, West Roxbury, MA 02132. E-mail:
| |
Collapse
|
26
|
Shum L, Coleman CM, Hatakeyama Y, Tuan RS. Morphogenesis and dysmorphogenesis of the appendicular skeleton. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:102-22. [PMID: 12955856 DOI: 10.1002/bdrc.10012] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cartilage patterning and differentiation are prerequisites for skeletal development through endochondral ossification (EO). Multipotential mesenchymal cells undergo a complex process of cell fate determination to become chondroprogenitors and eventually differentiate into chondrocytes. These developmental processes require the orchestration of cell-cell and cell-matrix interactions. In this review, we present limb bud development as a model for cartilage patterning and differentiation. We summarize the molecular and cellular events and signaling pathways for axis patterning, cell condensation, cell fate determination, digit formation, interdigital apoptosis, EO, and joint formation. The interconnected nature of these pathways underscores the effects of genetic and teratogenic perturbations that result in skeletal birth defects. The topics reviewed also include limb dysmorphogenesis as a result of genetic disorders and environmental factors, including FGFR, GLI3, GDF5/CDMP1, Sox9, and Cbfa1 mutations, as well as thalidomide- and alcohol-induced malformations. Understanding the complex interactions involved in cartilage development and EO provides insight into mechanisms underlying the biology of normal cartilage, congenital disorders, and pathologic adult cartilage.
Collapse
Affiliation(s)
- Lillian Shum
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Building 50, Room 1503, MSC 8022, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- S Y Chen
- University of North Carolina Bowles Center for Alcohol Studies, and Department of Cell Biology and Anatomy, University of North Carolina School of Medicine, Chapel Hill North Carolina 27599, USA
| | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND Cadmium is a well-known animal teratogen. Caffeine is an alkaloid widely consumed by humans. Interactions between teratogens and nonteratogenic doses of other agents are becoming widely studied, as they may shed light on understanding mechanisms of teratogenicity or possible prevention of teratogenic effects. METHODS C57BL/6JBK mice were injected intraperitoneally (ip) with cadmium sulfate (Cd) at 0, 1.00 (LDCd), 2.50 (MDCd), or 5.00 (HDCd) mg/kg, immediately followed by subcutaneous (sc) administration of 0 or 50 mg/kg caffeine (CAFF) on gestation day (GD) 9. Fetuses were examined on GD 18 for ectrodactyly and other gross morphological malformations. RESULTS Amelioration of cadmium-induced forelimb ectrodactyly by CAFF was seen in both the high-dose cadmium (HDCd = 65.4%, HDCd+CAFF = 39.2%) and medium-dose cadmium (MDCd = 46.2%, MDCd+ CAFF = 20.8%) treatment groups (P < 0.025). Bilateral expression of ectrodactyly was also decreased in the presence of caffeine. A statistically significant reduction in Cd-induced abnormalities, including: eye, abdominal, and other skeletal defects, was not seen with caffeine addition, although they did trend downward in the caffeine-supplemented groups. Litter size, fetal weight, fetal mortality, and dam weight also were not affected by co-treatment with caffeine. CONCLUSIONS This study provides evidence that a subteratogenic dose of caffeine can ameliorate cadmium-induced forelimb ectrodactyly in the Cd-sensitive C57BL/6J inbred mouse strain.
Collapse
Affiliation(s)
- J Lutz
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA
| | | |
Collapse
|
29
|
Seto ML, Nunes ME, MacArthur CA, Cunningham ML. Pathogenesis of ectrodactyly in the Dactylaplasia mouse: aberrant cell death of the apical ectodermal ridge. TERATOLOGY 1997; 56:262-70. [PMID: 9408977 DOI: 10.1002/(sici)1096-9926(199710)56:4<262::aid-tera5>3.0.co;2-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dactylaplasia, or Dac, was recently mapped to the distal portion of mouse chromosome 19 and shown to be inherited as an autosomal semi-dominant trait characterized by missing central digital rays. The most common locus for human split hand split foot malformation, also typically characterized by missing central digital rays, is 10q25, a region of synteny to the Dac locus. The Dac mouse appears to be an ideal genotypic and phenotypic model for this human malformation syndrome. Several genes lie in this region of synteny, however, only Fibroblast Growth Factor 8, or Fgf-8, has been implicated to have a role in limb development. We demonstrate that the developmental mechanism underlying loss of central rays in Dac limbs is dramatic cell death of the apical ectodermal ridge, or AER. This cell death pattern is apparent in E10.5-11.5 Dac limb buds stained with the supravital dye Nile Blue Sulfate. We demonstrate that Fgf8 expression in wild type limbs colocalizes spatially and temporally with AER cell death in Dac limbs. Furthermore, in our mapping panel, there is an absence of recombinants between Fgf-8 and the Dac locus in 133 backcross progeny with a median linkage estimate of approximately 0.5 cM. Thus, our results demonstrate that cell death of the AER in Dac limbs silences the role of the AER as key regulator of limb outgrowth, and that Fgf-8 is a strong candidate for the cause of the Dac phenotype.
Collapse
Affiliation(s)
- M L Seto
- Department of Pediatrics, University of Washington, School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
30
|
Rifas L, Towler DA, Avioli LV. Gestational exposure to ethanol suppresses msx2 expression in developing mouse embryos. Proc Natl Acad Sci U S A 1997; 94:7549-54. [PMID: 9207129 PMCID: PMC23859 DOI: 10.1073/pnas.94.14.7549] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ethanol acts as a teratogen in developing fetuses causing abnormalities of the brain, heart, craniofacial bones, and limb skeletal elements. To assess whether some teratogenic actions of ethanol might occur via dysregulation of msx2 expression, we examined msx2 expression in developing mouse embryos exposed to ethanol on embryonic day (E) 8 of gestation and subjected to whole mount in situ hybridization on E11-11.5 using a riboprobe for mouse msx2. Control mice exhibited expression of msx2 in developing brain, the developing limb buds and apical ectodermal ridge, the lateral and nasal processes, olfactory pit, palatal shelf of the maxilla, the eye, the lens of the eye, otic vesicle, prevertebral bodies (notochord), and endocardial cushion. Embryos exposed to ethanol in utero were significantly smaller than their normal counterparts and did not exhibit expression of msx2 in any structures. Similarly, msx2 expression, as determined by reverse transcription-PCR and Northern blot hybridization, was reduced approximately 40-50% in fetal mouse calvarial osteoblastic cells exposed to 1% ethanol for 48 hr while alkaline phosphatase was increased by 2-fold and bone morphogenetic protein showed essentially no change. Transcriptional activity of the msx2 promoter was specifically suppressed by alcohol in MC3T3-E1 osteoblasts. Taken together, these data demonstrate that fetal alcohol exposure decreases msx2 expression, a known regulator of osteoblast and myoblast differentiation, and suggest that one of the "putative" mechanisms for fetal alcohol syndrome is the inhibition of msx2 expression during key developmental periods leading to developmental retardation, altered craniofacial morphogenesis, and cardiac defects.
Collapse
Affiliation(s)
- L Rifas
- Department of Internal Medicine, Divisions of Bone and Mineral Diseases and Molecular Pharmacology, Washington University School of Medicine and Barnes-Jewish Hospital North, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
31
|
Dangata YY, Kaufman MH. Morphometric analysis of the postnatal mouse optic nerve following prenatal exposure to alcohol. J Anat 1997; 191 ( Pt 1):49-56. [PMID: 9279658 PMCID: PMC1467658 DOI: 10.1046/j.1469-7580.1997.19110049.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pregnant female mice were divided on day 12 post coitum into a control and an experimental group. The experimental group was given a single intraperitoneal dose of 0.015 ml/g body weight of 25% solution of alcohol in distilled water while the control group was exposed to a similar weight related dose of normal saline. The optic nerves were isolated from the offspring of both control and experimental groups at wk 2, 3 and 5 (i.e. during the juvenile period of postnatal development) and analysed by light and electron microscopy. Although in both groups the optic nerve grew in size rapidly during the period studied, the rate of growth in the experimental groups lagged behind that of the controls. The difference was initially significant but tailed off, so that by wk 5 it was no longer significant. The time of initial onset and progression of myelinogenesis in the optic nerve of alcohol exposed mice also lagged behind that of controls. In both groups the size distribution of the myelinated nerve fibres in the optic nerve was unimodal with a positive skewing for all ages. The spectrum of size distribution of the nerve fibres was, however, broader in controls than in the corresponding experimental groups. With increasing age the proportion of small and medium size fibres was greater in the experimental group than in the controls, while for the large diameter fibres the reverse was observed. It is suggested that this study may shed light on the teratogenic effect of 'binge' drinking during pregnancy and that it is the critical period when exposure occurs that is more important than the duration of administration.
Collapse
Affiliation(s)
- Y Y Dangata
- Department of Anatomy, University Medical School, Edinburgh, UK
| | | |
Collapse
|
32
|
Abstract
The deleterious effects of prenatal ethanol exposure have been extensively documented in clinical and experimental studies. This paper provides an overview of work conducted with mice to examine the myriad of adverse consequences that result from embryonic/fetal exposure to ethanol. All of the hallmark features of the clinical fetal alcohol syndrome have been demonstrated in mice, including prenatal and postnatal growth retardation, structural malformations and behavioral abnormalities associated with central nervous system dysfunction. As expected, the severity and profile of effects is related to both dosage level and timing of exposure. In addition, these effects have been demonstrated following acute and chronic exposure, with a variety of routes of administration employed. Furthermore, a number of strains have been used in these studies and the variant response (susceptibility) to the teratogenic actions of ethanol exhibited among different mouse strains support the notion that genetic factors govern, at least in part, vulnerability to these effects of ethanol. More recent studies using mouse models have focused on examining potential mechanisms underlying the full spectrum of ethanol's teratogenic actions.
Collapse
Affiliation(s)
- H C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA
| | | | | |
Collapse
|
33
|
Padmanabhan R, Pallot DJ. Aspirin-alcohol interaction in the production of cleft palate and limb malformations in the TO mouse. TERATOLOGY 1995; 51:404-17. [PMID: 7502240 DOI: 10.1002/tera.1420510606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Our objective in the present study was to determine the effects of alcohol on stages when the limb buds and renal primordia develop in the TO mouse and to see if aspirin pretreatment would prevent these organ systems from being malformed as was shown by Randall et al. ('91) in the C57 mice. On one of days 9-12 of gestation, groups of TO mice were injected intraperitoneally (IP) with a single dose of 200 mg/kg of aspirin, or a proportionate volume of physiological saline. An hour later, half of the aspirin-treated animals received a single dose of 0.03 ml/g of freshly prepared 25% (v/v) solution of absolute alcohol and the other half received a proportionate volume of saline. Half of the saline-treated animals received a single dose of 0.03 ml/g of saline or a proportionate volume of alcohol solution. All animals were killed on day 18 of gestation. Alcohol significantly increased embryonic resorption and caused remarkable intrauterine growth retardation (IUGR). It also induced arched palate, cleft palate and deformities of the digits with haematomas in a modest number of embryos. Aspirin alone did not have any teratogenic effects. Pretreatment with aspirin significantly augmented alcohol-induced resorption, IUGR, cleft palate and digital malformations associated with haematomas. Chronological observations on the development of the treated limbs showed the occurrence of vascular stasis, haematomas, edema and cell death at early stages. Subsequently, digital rays were either destroyed (ectrodactyly) or remained hypoplastic (brachydactyly). It appears that limb development in the aspirin- and alcohol-treated TO mouse embryos is largely affected by vascular disruption. These data provide further evidence to our earlier observation that alcohol and aspirin interact in the production of malformations and that the teratogenic effects of alcohol in the TO mouse are possibly not mediated via treatment related prostaglandin elevation.
Collapse
Affiliation(s)
- R Padmanabhan
- Department of Anatomy, Faculty of Medicine and Health Sciences, UAE University, AL Ain, United Arab Emirates
| | | |
Collapse
|
34
|
Robin NH, Zackai EH. Unusual craniofacial dysmorphia due to prenatal alcohol and cocaine exposure. TERATOLOGY 1994; 50:160-4. [PMID: 7801303 DOI: 10.1002/tera.1420500210] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- N H Robin
- Division of Human Genetics and Molecular Biology, Children's Hospital of Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
35
|
Kotch LE, Sulik KK. Patterns of ethanol-induced cell death in the developing nervous system of mice; neural fold states through the time of anterior neural tube closure. Int J Dev Neurosci 1992; 10:273-9. [PMID: 1414440 DOI: 10.1016/0736-5748(92)90016-s] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vital staining and routine histological analyses of mouse embryos 12 h after acute maternal ethanol administration (2.9 g/kg) illustrated that selected neuronal cell populations are killed. At the time of treatment, embryos had 5-15 somite pairs, corresponding to the developmental stages occurring in humans during the fourth week of post-fertilization; i.e. when neural folds are present and neural tube fusion begins. Affected cell populations in embryos having 6-26 somite pairs (up to the stage of anterior neuropore closure) were in discrete locations in the alar and basal plates of the rhombencephalon, in the otic placode/vesicle, and in the regions of the epibranchial placodes, olfactory placodes and trigeminal ganglion. The potential basis for the vulnerability of these cell populations to ethanol-induced cell death is discussed. Our understanding of the scope of ethanol-induced CNS damage is dependent upon further defining ethanol-sensitive cell populations at all stages of CNS development.
Collapse
Affiliation(s)
- L E Kotch
- Department of Cell Biology and Anatomy, School of Medicine, University of North Carolina, Chapel Hill 27599
| | | |
Collapse
|