1
|
Ebrahimpour-Malekshah R, Amini A, Mostafavinia A, Ahmadi H, Zare F, Safaju S, Shahbazi A, Chien S, Rezaei F, Hasan A, Bayat M. The stereological, immunohistological, and gene expression studies in an infected ischemic wound in diabetic rats treated by human adipose-derived stem cells and photobiomodulation. Arch Dermatol Res 2023; 315:1717-1734. [PMID: 36808225 DOI: 10.1007/s00403-023-02563-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.
Collapse
Affiliation(s)
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomy, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sobhan Safaju
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Shahbazi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA
| | - Fatemehalsadat Rezaei
- College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY, 40536, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar.
- Biomedical Research Centre, Qatar University, 2713, Doha, Qatar.
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville, Noveratech LLC of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Peng Y, Jiang H, Zuo HD. Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells 2023; 15:548-560. [PMID: 37424946 PMCID: PMC10324504 DOI: 10.4252/wjsc.v15.i6.548] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that often involves progressive cartilage degeneration and bone destruction of subchondral bone. At present, clinical treatment is mainly for pain relief, and there are no effective methods to delay the progression of the disease. When this disease progresses to the advanced stage, the only treatment option for most patients is total knee replacement surgery, which causes patients great pain and anxiety. As a type of stem cell, mesenchymal stem cells (MSCs) have multidirectional differentiation potential. The osteogenic differentiation and chondrogenic differentiation of MSCs can play vital roles in the treatment of OA, as they can relieve pain in patients and improve joint function. The differentiation direction of MSCs is accurately controlled by a variety of signaling pathways, so there are many factors that can affect the differentiation direction of MSCs by acting on these signaling pathways. When MSCs are applied to OA treatment, the microenvironment of the joints, injected drugs, scaffold materials, source of MSCs and other factors exert specific impacts on the differentiation direction of MSCs. This review aims to summarize the mechanisms by which these factors influence MSC differentiation to produce better curative effects when MSCs are applied clinically in the future.
Collapse
Affiliation(s)
- Yi Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hou-Dong Zuo
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Chengdu Xinhua Hospital, Chengdu 610067, Sichuan Province, China
| |
Collapse
|
3
|
Rahman G, Frazier TP, Gimble JM, Mohiuddin OA. The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2022; 10:893992. [PMID: 35845419 PMCID: PMC9280640 DOI: 10.3389/fbioe.2022.893992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage is composed of chondrocytes surrounded by a porous permeable extracellular matrix. It has a limited spontaneous healing capability post-injury which, if left untreated, can result in severe osteochondral disease. Currently, osteochondral (OC) defects are treated by bone marrow stimulation, artificial joint replacement, or transplantation of bone, cartilage, and periosteum, while autologous osteochondral transplantation is also an option; it carries the risk of donor site damage and is limited only to the treatment of small defects. Allografts may be used for larger defects; however, they have the potential to elicit an immune response. A possible alternative solution to treat osteochondral diseases involves the use of stromal/stem cells. Human adipose-derived stromal/stem cells (ASCs) can differentiate into cartilage and bone cells. The ASC can be combined with both natural and synthetic scaffolds to support cell delivery, growth, proliferation, migration, and differentiation. Combinations of both types of scaffolds along with ASCs and/or growth factors have shown promising results for the treatment of OC defects based on in vitro and in vivo experiments. Indeed, these findings have translated to several active clinical trials testing the use of ASC-scaffold composites on human subjects. The current review critically examines the literature describing ASC-scaffold composites as a potential alternative to conventional therapies for OC tissue regeneration.
Collapse
Affiliation(s)
- Gohar Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | - Omair A. Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Wang N, Gan G, Yang J, Wang L. Barbaloin Promotes Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells: Involvement of Wnt/β-catenin Signaling Pathway. Curr Med Chem 2022; 29:6100-6111. [PMID: 35770399 DOI: 10.2174/0929867329666220629150656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Barbaloin, found in Aloe vera, exerts broad pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. This study aims to investigate the effects of barbaloin on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). METHODS Osteogenic induction of hBMSCs was performed in the presence or absence of barbaloin. Cell viability was determined by using the CCK-8 assay. The characteristic of hBMSCs was identified by using flow cytometry. Intracellular alkaline phosphatase (ALP) staining was performed to evaluate the ALP activity in hBMSCs. Alizarin Red S staining was performed to evaluate the matrix mineralization. The mRNA and protein levels of target genes were determined using qRT-PCR and western blotting, respectively. RESULTS Treatment with barbaloin (10 and 20 μg/mL) significantly increased cell viability of hBMSCs after 72 hours. In addition, treatment with barbaloin increased the mRNA expression levels of ALP and its activities. Treatment with barbaloin also increased matrix mineralization and the mRNA and protein levels of late-differentiated osteoblast marker genes BMP2, RUNX2, and SP7 in hBMSCs. The underlying mechanisms revealed that barbaloin increased the protein expressions of Wnt/β-catenin pathway-related biomarkers. CONCLUSION Barbaloin promotes osteogenic differentiation of hBMSCs by the regulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Nan Wang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Guoli Gan
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jihao Yang
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Medical Key Laboratory of Emergency and Trauma Research; No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Luyao Wang
- Stomatological Center, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
5
|
Abstract
In this review, the authors consider the substantial advances that have been made in recent years in stem cell-based periodontal regeneration. These advances involve identifying dental- and nondental-derived stem cells with the capacity to modulate periodontal regeneration, human clinical trials, and emerging concepts, including cell banking, good manufacturing processes, and overall clinical translation.
Collapse
|
6
|
Modular cell-assembled adipose matrix-derived bead foams as a mesenchymal stromal cell delivery platform for soft tissue regeneration. Biomaterials 2021; 275:120978. [PMID: 34182328 DOI: 10.1016/j.biomaterials.2021.120978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
With the goal of establishing a new clinically-relevant bioscaffold format to enable the delivery of high densities of human adipose-derived stromal cells (ASCs) for applications in soft tissue regeneration, a novel "cell-assembly" method was developed to generate robust 3-D scaffolds comprised of fused networks of decellularized adipose tissue (DAT)-derived beads. In vitro studies confirmed that the assembly process was mediated by remodelling of the extracellular matrix by the seeded ASCs, which were well distributed throughout the scaffolds and remained highly viable after 8 days in culture. The ASC density, sulphated glycosaminoglycan content and scaffold stability were enhanced under culture conditions that included growth factor preconditioning. In vivo testing was performed to compare ASCs delivered within the cell-assembled DAT bead foams to an equivalent number of ASCs delivered on a previously-established pre-assembled DAT bead foam platform in a subcutaneous implant model in athymic nude mice. Scaffolds were fabricated with human ASCs engineered to stably co-express firefly luciferase and tdTomato to enable long-term cell tracking. Longitudinal bioluminescence imaging showed a significantly stronger signal associated with viable human ASCs at timepoints up to 7 days in the cell-assembled scaffolds, although both implant groups were found to retain similar densities of human ASCs at 28 days. Notably, the infiltration of CD31+ murine endothelial cells was enhanced in the cell-assembled implants at 28 days. Moreover, microcomputed tomography angiography revealed that there was a marked reduction in vascular permeability in the cell-assembled group, indicating that the developing vascular network was more stable in the new scaffold format. Overall, the novel cell-assembled DAT bead foams represent a promising platform to harness the pro-regenerative paracrine functionality of human ASCs and warrant further investigation as a clinically-translational approach for volume augmentation.
Collapse
|
7
|
Lee J, Lee S, Kim SM, Shin H. Size-controlled human adipose-derived stem cell spheroids hybridized with single-segmented nanofibers and their effect on viability and stem cell differentiation. Biomater Res 2021; 25:14. [PMID: 33902733 PMCID: PMC8074457 DOI: 10.1186/s40824-021-00215-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fabrication of three-dimensional stem cell spheroids have been studied to improve stem cell function, but the hypoxic core and limited penetration of nutrients and signaling cues to the interior of the spheroid were challenges. The incorporation of polymers such as silica and gelatin in spheroids resulted in relatively relaxed assembly of composite spheroids, and enhancing transport of nutrient and biological gas. However, because of the low surface area between cells and since the polymers were heterogeneously distributed throughout the spheroid, these polymers cannot increase the cell to extracellular matrix interactions needed to support differentiation. METHODS We developed the stem cell spheroids that incorporate poly(ι-lactic acid) single-segmented fibers synthesized by electrospinning and physical and chemical fragmentation. The proper mixing ratio was 2000 cells/μg fibers (average length of the fibers was 50 μm - 100 μm). The SFs were coated with polydopamine to increase cell binding affinity and to synthesize various-sized spheroids. The function of spheroids was investigated by in vitro analysis depending on their sizes. For statistical analysis, Graphpad Prism 5 software (San Diego, CA, USA) was used to perform one-way analysis of variance ANOVA with Tukey's honest significant difference test and a Student's t-test (for two variables) (P < 0.05). RESULTS Spheroids of different sizes were created by modulating the amount of cells and fibers (0.063 mm2-0.322 mm2). The fibers in the spheroid were homogenously distributed and increased cell viability, while cell-only spheroids showed a loss of DNA contents, internal degradation, and many apoptotic signals. Furthermore, we investigated stemness and various functions of various-sized fiber-incorporated spheroids. In conclusion, the spheroid with the largest size showed the greatest release of angiogenic factors (released VEGF: 0.111 ± 0.004 pg/ng DNA), while the smallest size showed greater effects of osteogenic differentiation (mineralized calcium: 18.099 ± 0.271 ng/ng DNA). CONCLUSION The spheroids incorporating polydopamine coated single-segmented fibers showed enhanced viability regardless of sizes and increased their functionality by regulating the size of spheroids which may be used for various tissue reconstruction and therapeutic applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sung Min Kim
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Physical Education and Active Aging Industry, Hanyang University, Seoul, 04763, Republic of Korea.
- Center for Artificial Intelligence Muscle, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Ntege EH, Sunami H, Denda J, Futenma N, Shimizu Y. Effects of hydroxyapatite-coated nonwoven polyethylene/polypropylene fabric on non-mesodermal lineage-specific differentiation of human adipose-derived stem cells. BMC Res Notes 2020; 13:471. [PMID: 33028399 PMCID: PMC7542906 DOI: 10.1186/s13104-020-05315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 11/11/2022] Open
Abstract
Objective Compared to other stem cells, the multipotency of human adipose-derived mesenchymal stem cells (ASCs) is limited. Effective approaches that trigger or enhance lineage-specific transdifferentiation are highly envisaged in the improvement of ASCs-based cell therapies. Using Immunofluorescence assays and the secretion of cardiac troponin T (cTnT) protein, we studied the impact of two substrates: Hydroxyapatite (HAp)-coated nonwoven polyethylene (PET)/polypropylene (PP) fabric and glass surfaces, representing 3 dimensional (D) and 2 D environments respectively, on the induction of cardiomyocytes – a non-mesodermal cell type from ASCs for 1–5 weeks. Results ASCs were successfully isolated from human adipose tissue under cGMP conditions. Within 1–3 weeks, expression of cTnT in the induced 3D cultures was overall significantly higher (P < 0.021) than that in the induced 2D cultures or controls (P < 0.0009). Remarkably, after 3 weeks of culture, cTnT secretion in the induced 3D cultures gradually declined, nearly reaching levels observed in the 2D cultures. The results show that HAp-coated nonwoven PE/PP fabric could enhance lineage-specific differentiation of ASCs toward cardiac-like cells. However, the fabric might suppress growth of the transformed cells. These preliminary findings encourage further interest in validating the fabric’s potential in improving ASCs transdifferentiation.
Collapse
Affiliation(s)
- Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Junko Denda
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Naoko Futenma
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan.
| |
Collapse
|
9
|
Jankowski M, Dompe C, Sibiak R, Wąsiatycz G, Mozdziak P, Jaśkowski JM, Antosik P, Kempisty B, Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells 2020; 9:cells9081783. [PMID: 32726947 PMCID: PMC7463427 DOI: 10.3390/cells9081783] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) exhibiting mesenchymal stem cell (MSC) characteristics, have been extensively studied in recent years. Because they have been shown to differentiate into lineages such as osteogenic, chondrogenic, neurogenic or myogenic, the focus of most of the current research concerns either their potential to replace bone marrow as a readily available and abundant source of MSCs, or to employ them in regenerative and reconstructive medicine. There is close to consensus regarding the methodology used for ASC isolation and culture, whereas a number of molecular analyses implicates them in potential therapies of a number of pathologies. When it comes to clinical application, there is a range of examples of animal trials and clinical studies employing ASCs, further emphasizing the advancement of studies leading to their more widespread use. Nevertheless, in vitro studies will most likely continue to play a significant role in ASC studies, both providing the molecular knowledge of their ex vivo properties and possibly serving as an important step in purification and application of those cells in a clinical setting. Therefore, it is important to consider current methods of ASC isolation, culture, and processing. Furthermore, molecular analyses and cell surface properties of ASCs are essential for animal studies, clinical studies, and therapeutic applications of the MSC properties.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Claudia Dompe
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK
| | - Rafał Sibiak
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
| | - Grzegorz Wąsiatycz
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (G.W.); (P.A.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 601 77 Brno, Czech Republic
- Correspondence:
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (M.J.); (R.S.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
10
|
Kuterbekov M, Jonas AM, Glinel K, Picart C. Osteogenic Differentiation of Adipose-Derived Stromal Cells: From Bench to Clinics. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:461-474. [PMID: 32098603 DOI: 10.1089/ten.teb.2019.0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In addition to mesenchymal stem cells, adipose-derived stem/stromal cells (ASCs) are an attractive source for a large variety of cell-based therapies. One of their most important potential applications is related to the regeneration of bone tissue thanks to their capacity to differentiate in bone cells. However, this requires a proper control of their osteogenic differentiation, which depends not only on the initial characteristics of harvested cells but also on the conditions used for their culture. In this review, we first briefly describe the preclinical and clinical trials using ASCs for bone regeneration and present the quantitative parameters used to characterize the osteogenic differentiation of ASCs. We then focus on the soluble factors influencing the osteogenic differentiation of ACS, including the steroid hormones and various growth factors, notably the most osteoinductive ones, the bone morphogenetic proteins (BMPs). Impact statement Adipose-derived stromal/stem cells are reviewed for their use in bone regeneration.
Collapse
Affiliation(s)
- Mirasbek Kuterbekov
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France
| | - Alain M Jonas
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Picart
- Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France.,Biomimetism and Regenerative Medicine Lab, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Université Grenoble-Alpes/CEA/CNRS, Grenoble, France
| |
Collapse
|
11
|
Oliveira Spila DD, Maranhão RDPA, Ocarino NDM, de Lima JTB, Melo FG, Boeloni JN, Serakides R. Triiodothyronine Has No Enhancement Effect on the Osteogenic or Chondrogenic Differentiation of Equine Adipose Tissue Stem Cells. J Equine Vet Sci 2020; 86:102895. [PMID: 32067668 DOI: 10.1016/j.jevs.2019.102895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The effects of two concentrations of triiodothyronine (T3; 0.01 and 1,000 nM) on the osteogenic and chondrogenic differentiation abilities of equine adipose-derived mesenchymal stem cells (AD-MSCs) were evaluated. The osteogenic study evaluated the effect of T3 using alkaline phosphatase activity (ALP) assay; cell viability and density; and formation of mineralized nodules at Days 7, 14, and 21 in culture. The chondrogenic study tested the effect of T3 through ALP assay, mitochondrial metabolism, cell density, and periodic acid-Schiff-positive (PAS+) matrix percentage at Days 7 and 14. In both experiments, analysis of variance was used to compare averages through the Student-Newman-Keuls test. In the osteogenic study, no differences in any variable were detected between groups at Day 7. At Day 14, 0.01 nM T3 reduced cell density and the number of mineralized nodules despite the increase in ALP activity and mitochondrial metabolism (P < .05). ALP activity increased at 1,000 nM T3 concentration (P < .05). At Day 21, 0.01 nM T3 treatment increased ALP activity compared with control treatment (P < .05). At 1,000 nM concentration, T3 reduced mitochondrial metabolism and cell density (P < .05). In the chondrogenic study, the two T3 concentrations increased cell density compared with control treatment at Day 7. At Day 14, higher T3 concentration reduced mitochondrial metabolism, ALP activity, cell density, and PAS+ chondrogenic matrix percentage compared with control treatment (P < .05). Thus, T3 addition to equine AD-MSC cultures has no enhancement effect on osteogenic or chondrogenic differentiation and may, in fact, negatively affect cell density and matrix synthesis depending on hormone concentration and culture time.
Collapse
Affiliation(s)
- Débora de Oliveira Spila
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata de Pino Albuquerque Maranhão
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Tiburcio Barbosa de Lima
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fabrício Gomes Melo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jankerle Neves Boeloni
- Departamento de Medicina Veterinária do CCA/Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Rogéria Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Bartold M, Gronthos S, Haynes D, Ivanovski S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol 2019; 46 Suppl 21:12-32. [PMID: 30624807 DOI: 10.1111/jcpe.13053] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Physiological bone formation and bone regeneration occurring during bone repair can be considered distinct but similar processes. Mesenchymal stem cells (MSC) and associated biologic factors are crucial to both bone formation and bone regeneration. AIM To perform a narrative review of the current literature regarding the role of MSC and biologic factors in bone formation with the aim of discussing the clinical relevance of in vitro and in vivo animal studies. METHODS The literature was searched for studies on MSC and biologic factors associated with the formation of bone in the mandible and maxilla. The search specifically targeted studies on key aspects of how stem cells and biologic factors are important in bone formation and how this might be relevant to bone regeneration. The results are summarized in a narrative review format. RESULTS Different types of MSC and many biologic factors are associated with bone formation in the maxilla and mandible. CONCLUSION Bone formation and regeneration involve very complex and highly regulated cellular and molecular processes. By studying these processes, new clinical opportunities will arise for therapeutic bone regenerative treatments.
Collapse
Affiliation(s)
- Mark Bartold
- School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - David Haynes
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
13
|
Shridhar A, Amsden BG, Gillies ER, Flynn LE. Investigating the Effects of Tissue-Specific Extracellular Matrix on the Adipogenic and Osteogenic Differentiation of Human Adipose-Derived Stromal Cells Within Composite Hydrogel Scaffolds. Front Bioeng Biotechnol 2019; 7:402. [PMID: 31921807 PMCID: PMC6917659 DOI: 10.3389/fbioe.2019.00402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
While it has been postulated that tissue-specific bioscaffolds derived from the extracellular matrix (ECM) can direct stem cell differentiation, systematic comparisons of multiple ECM sources are needed to more fully assess the benefits of incorporating tissue-specific ECM in stem cell culture and delivery platforms. To probe the effects of ECM sourced from decellularized adipose tissue (DAT) or decellularized trabecular bone (DTB) on the adipogenic and osteogenic differentiation of human adipose-derived stem/stromal cells (ASCs), a novel detergent-free decellularization protocol was developed for bovine trabecular bone that complemented our established detergent-free decellularization protocol for human adipose tissue and did not require specialized equipment or prolonged incubation times. Immunohistochemical and biochemical characterization revealed enhanced sulphated glycosaminoglycan content in the DTB, while the DAT contained higher levels of collagen IV, collagen VI and laminin. To generate platforms with similar structural and biomechanical properties to enable assessment of the compositional effects of the ECM on ASC differentiation, micronized DAT and DTB were encapsulated with human ASCs within methacrylated chondroitin sulfate (MCS) hydrogels through UV-initiated crosslinking. High ASC viability (>90%) was observed over 14 days in culture. Adipogenic differentiation was enhanced in the MCS+DAT composites relative to the MCS+DTB composites and MCS controls after 14 days of culture in adipogenic medium. Osteogenic differentiation studies revealed a peak in alkaline phosphatase (ALP) enzyme activity at 7 days in the MCS+DTB group cultured in osteogenic medium, suggesting that the DTB had bioactive effects on osteogenic protein expression. Overall, the current study suggests that tissue-specific ECM sourced from DAT or DTB can act synergistically with soluble differentiation factors to enhance the lineage-specific differentiation of human ASCs within 3-D hydrogel systems.
Collapse
Affiliation(s)
- Arthi Shridhar
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Brian G. Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada
| | - Elizabeth R. Gillies
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Lauren E. Flynn
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Li J, Liu X, Crook JM, Wallace GG. Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110312. [PMID: 31761174 DOI: 10.1016/j.msec.2019.110312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/20/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022]
Abstract
The versatile properties of graphene-based materials are enabling various tissue regeneration, towards meeting an ever increasing demand for replacement tissues due to injury through trauma and disease. In particular, an innate ability for graphene to promote osteogenic differentiation of stem cells, combined with the potential to enhance the biological activity of cells through electrical stimulation (ES) using graphene, supports its use for osteoinduction or reconstruction. In this paper, we describe a miniaturized graphene-cellulose (G-C) scaffold-based device that incorporates electroactive G-C 'paper' within a polystyrene chamber for concomitant cell culture and ES. The G-C electrodes possessed lower impedance and higher charge injection capacity than gold (Au) electrodes, with high stability. By coupling ES with previously reported properties of the G-C scaffolds, we have advanced the platform for improved adipose derived stem cell (ADSC) support and osteogenic differentiation. We anticipate using the G-C scaffold-based ES device for in vitro modelling of osteogenic induction, bone tissue engineering and in vivo bone regeneration towards new therapeutic strategies for bone injury and disease. Furthermore, the device could reasonably be used for ES and culture of other cell types and engineering other tissues.
Collapse
Affiliation(s)
- Jianfeng Li
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia
| | - Xiao Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia.
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, 3065, Australia.
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, NSW, 2500, Australia.
| |
Collapse
|
15
|
Linh NTB, Abueva CDG, Jang DW, Lee BT. Collagen and bone morphogenetic protein-2 functionalized hydroxyapatite scaffolds induce osteogenic differentiation in human adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 2019; 108:1363-1371. [PMID: 31574204 DOI: 10.1002/jbm.b.34485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
Surface modification is one important way to fabricate successful biocompatible materials in bone tissue engineering. Hydroxyapatite (HAp) materials have received considerable attention as suitable bioceramics for manufacturing osseous implants because of their similarity to bone mineral in terms of chemical composition. In this study, the surface of porous HAp scaffold was modified by collagen treatment and bone morphogenetic protein-2 (BMP-2) conjugation. The surface modification did not affect the HAp scaffold's bulk properties. No significant difference in compressive strength was found among different scaffolds, with HAp, collagen modified HAp, and collagen-BMP-2-functionalized HAp having compressive strengths of 45.8 ± 3.12, 51.2 ± 4.09, and 50.7 ± 3.98 MPa, respectively. In vitro studies were performed to compare adhesion and osteogenic differentiation between human adipose-derived stem cells (hADSCs) with modified surfaces and those unmodified HAp surfaces. Collagen or BMP-2 alone was insufficient and that both collagen and BMP-2 are necessary to get the desired results. The findings suggest the possibility of using three-dimensional HAp scaffold treated with gold-standard collagen coating and highly researched BMP-2 growth factor as a platform to deliver hADSCs. Results of this study could be used to develop treatment strategy for regenerating completely transected models using more synergistic approaches.
Collapse
Affiliation(s)
- Nguyen T B Linh
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Ssangyoungdong, Cheonan-si, Chungnam, Republic of Korea
| | - Celine D G Abueva
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Ssangyoungdong, Cheonan-si, Chungnam, Republic of Korea
| | - Dong-Woo Jang
- InoBone Corporate R&D Center, Soonchunhyang University, Asan, Republic of Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Ssangyoungdong, Cheonan-si, Chungnam, Republic of Korea
| |
Collapse
|
16
|
Kuterbekov M, Machillot P, Baillet F, Jonas AM, Glinel K, Picart C. Design of experiments to assess the effect of culture parameters on the osteogenic differentiation of human adipose stromal cells. Stem Cell Res Ther 2019; 10:256. [PMID: 31412950 PMCID: PMC6694725 DOI: 10.1186/s13287-019-1333-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/27/2023] Open
Abstract
Background Human adipose-derived stromal cells (hASCs) have been gaining increasing popularity in regenerative medicine thanks to their multipotency, ease of collection, and efficient culture. Similarly to other stromal cells, their function is particularly sensitive to the culture conditions, including the composition of the culture medium. Given the large number of parameters that can play a role in their specification, the rapid assessment would be beneficial to allow the optimization of their culture parameters. Method Herein we used the design of experiments (DOE) method to rapidly screen the influence and relevance of several culture parameters on the osteogenic differentiation of hASCs. Specifically, seven cell culture parameters were selected for this study based on a literature review. These parameters included the source of hASCs (the different providers having different methods for processing the cells prior to their external use), the source of serum (fetal bovine serum vs. human platelet lysate), and several soluble osteoinductive factors, including dexamethasone and a potent growth factor, the bone morphogenetic protein-9 (BMP-9). The expression of alkaline phosphatase was quantified as a readout for the osteogenic differentiation of hASCs. Results The DOE analysis enabled to classify the seven studied parameters according to their relative influence on the osteogenic differentiation of hASCs. Notably, the source of serum was found to have a major effect on the osteogenic differentiation of hASCs as well as their origin (different providers) and the presence of L-ascorbate-2-phosphate and BMP-9. Conclusion The DOE-based screening is a valuable approach for the classification of the impact of several cell culture parameters on the osteogenic differentiation of hASCs. Electronic supplementary material The online version of this article (10.1186/s13287-019-1333-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mirasbek Kuterbekov
- Université catholique de Louvain, Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Croix du Sud 1, Box L7.04.02, 1348, Louvain-la-Neuve, Belgium.,CNRS, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France.,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Paul Machillot
- CNRS, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France.,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France
| | - Francis Baillet
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, 1130 rue de la Piscine, 38402, Saint-Martin d'Hères, France
| | - Alain M Jonas
- Université catholique de Louvain, Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Croix du Sud 1, Box L7.04.02, 1348, Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Université catholique de Louvain, Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Croix du Sud 1, Box L7.04.02, 1348, Louvain-la-Neuve, Belgium
| | - Catherine Picart
- CNRS, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France. .,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, 3 parvis Louis Néel, 38016, Grenoble, France.
| |
Collapse
|
17
|
Yaghoobi M, Hashemi-Najafabadi S, Soleimani M, Vasheghani-Farahani E. Osteogenic induction of human mesenchymal stem cells in multilayered electrospun scaffolds at different flow rates and configurations in a perfusion bioreactor. J Biosci Bioeng 2019; 128:495-503. [PMID: 31085079 DOI: 10.1016/j.jbiosc.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 01/06/2023]
Abstract
Electrospun scaffolds are potentially interesting in bone tissue engineering due to a strong structural similarity to the natural bone matrix. To investigate the osteogenic behavior of cells on the scaffolds, dynamic culture of cells is essential to simulate the biological environment. In the present study, human mesenchymal stem cells (hMSCs) were cultured on multilayer nanohydroxyapatite-polycaprolactone electrospun scaffolds at different configurations (horizontal with or without pressure and parallel with the medium flow) and flow rates in a perfusion bioreactor. Alkaline phosphatase (ALP) activity, cell viability, Ca deposition and RUNX2 expression were determined in three different dynamic states, and compared with static culture after 1, 3, 7, and 14 days. Among dynamic groups, RUNX2 gene expression upregulated more in a horizontal state at a low flow rate without mechanical pressure (LF) and parallel flow (PF), than static group on day 7. At a high flow rate with mechanical pressure, Ca deposition and ALP activity increased 2.34 and 1.7 folds more than in static culture over 7 days, respectively. Furthermore, ALP activity, Ca deposition and RUNX2 gene expression increased in PF samples. PF provided longer culture time with higher cell differentiation. Therefore, high flow rate with mechanical pressure and PF are suggested for producing differentiated cell structure for bone tissue engineering.
Collapse
Affiliation(s)
- Maliheh Yaghoobi
- Engineering Department, Faculty of Chemical Engineering, University of Zanjan, P.O. Box 45371-38791, Zanjan, Iran; Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran.
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115- 331, Tehran, Iran
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-114, Tehran, Iran
| |
Collapse
|
18
|
Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:380-390. [DOI: 10.1016/j.nano.2019.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/06/2018] [Accepted: 01/11/2019] [Indexed: 12/28/2022]
|
19
|
Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010174] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of proper cells for bone tissue engineering remains a major challenge worldwide. Cells play a pivotal role in the repair and regeneration of the bone tissue in vitro and in vivo. Currently, a large number of differentiated (somatic) and undifferentiated (stem) cells have been used for bone reconstruction alone or in combination with different biomaterials and constructs (e.g., scaffolds). Although the results of the cell transplantation without any supporting or adjuvant material have been very effective with regard to bone healing. Recent advances in bone scaffolding are now becoming new players affecting the osteogenic potential of cells. In the present study, we have critically reviewed all the currently used cell sources for bone reconstruction and discussed the new horizons that are opening up in the context of cell-based bone tissue engineering strategies.
Collapse
|
20
|
Shi B, Wei W, Qin X, Zhao F, Duan Y, Sun W, Li D, Cao Y. Mapping theme trends and knowledge structure on adipose-derived stem cells: a bibliometric analysis from 2003 to 2017. Regen Med 2018; 14:33-48. [PMID: 30547725 DOI: 10.2217/rme-2018-0117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To investigate the theme trends and knowledge structure of adipose-derived stem cells (ADSCs) related literatures by using bibliometric analysis. MATERIALS & METHODS Co-word analysis, strategic diagram and social network analysis were employed. RESULTS In line with strategic diagrams, ADSC differentiation and transplantation as main undeveloped themes in 2003-2007 were partially replaced by regeneration medicine and ADSCs for myocardial infarction in 2008 to 2012, and then partially replaced by miRNAs in ADSC genetics and nerve regeneration in 2013 to 2017. Based on social network analysis, regenerative medicine/methods, myocardial infarction/therapy, as well as miRNAs/genetics, and nerve regeneration/physiology were considered the emerging hot spots in 2008 to 2012 and 2013 to 2017. CONCLUSION The undeveloped themes and emerging hot spots could be considered as new research topics.
Collapse
Affiliation(s)
- Bei Shi
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China.,Functional Laboratory Center, College of Basic Medical Science, China Medical University, Shenyang 110122, PR China
| | - Wenjuan Wei
- Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.,Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Xin Qin
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China.,Biomedical Technology Cluster, Hong Kong Science and Technology Parks Corporation, 2 Science Park West Avenue, Hong Kong
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110004, PR China
| | - Yucen Duan
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| | - Weinan Sun
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| | - Da Li
- Centerof Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Yu Cao
- Department of Physiology, College of Life Science, China Medical University, Shenyang 110122, PR China
| |
Collapse
|
21
|
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19082200. [PMID: 30060511 PMCID: PMC6121360 DOI: 10.3390/ijms19082200] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala 133101, India.
| | - Rajni Dubey
- Graduate Institute Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yue-Hua Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Feng-Chou Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Basic medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
22
|
Elashry MI, Baulig N, Heimann M, Bernhardt C, Wenisch S, Arnhold S. Osteogenic differentiation of equine adipose tissue derived mesenchymal stem cells using CaCl 2. Res Vet Sci 2018; 117:45-53. [PMID: 29175012 DOI: 10.1016/j.rvsc.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 12/31/2022]
|
23
|
AlQaysi M, Aldaadaa A, Mordan N, Shah R, Knowles JC. Zinc and strontium based phosphate glass beads: a novel material for bone tissue engineering. ACTA ACUST UNITED AC 2017; 12:065011. [PMID: 28762960 DOI: 10.1088/1748-605x/aa8346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Degradable phosphate-based glasses that contain strontium, zinc and calcium were investigated to examine their function as an osteoconductive material. Glass beads of the general formula of (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) or (ZnO) were prepared by a melt quench technique followed by milling and spheroidisation. After performing x-ray diffraction on all the samples for glass structure evaluation, glass bead size distribution was initially measured by a scanning electron microscope (SEM). Then, some of these samples were immersed in deionised water to evaluate both the surface changes and measure the ion release rate, whereas other samples of glass beads were incubated in culture media to determine pH changes. Furthermore, human osteoblast-like osteosarcoma cells MG63 and human mesenchymal stem cells were seeded on the glass beads to determine their cytocompatibility via applying CCK assay, ALP assay and Ca assay. SEM images and fluorescence images of confocal microscopy were performed for the cellular studies. While mass degradation and ion release results displayed a significant increase with zinc and strontium incorporation within time, pH results showed an initial increase in pH followed by a decrease. Cellular studies emphasised that all formulations enhanced cellular proliferation. Phosphate glass beads with zinc content 5 mol% and strontium content of 17.5 mol%, (ZnO5) and (SrO17.5) respectively displayed more promising results although they were insignificantly different from that of control (p > 0.05). This may suggest their applicability in hard tissue engineering.
Collapse
Affiliation(s)
- Mustafa AlQaysi
- Division of Biomaterial and Tissue Engineering, UCL Eastman Dental Institute, 256 Grays Inn Rd, London, WC1X 8LD, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Amirpour N, Razavi S, Esfandiari E, Hashemibeni B, Kazemi M, Salehi H. Hanging drop culture enhances differentiation of human adipose-derived stem cells into anterior neuroectodermal cells using small molecules. Int J Dev Neurosci 2017; 59:21-30. [PMID: 28285945 DOI: 10.1016/j.ijdevneu.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 01/26/2023] Open
Abstract
Inspired by in vivo developmental process, several studies were conducted to design a protocol for differentiating of mesenchymal stem cells into neural cells in vitro. Human adipose-derived stem cells (hADSCs) as mesenchymal stem cells are a promising source for this purpose. At current study, we applied a defined neural induction medium by using small molecules for direct differentiation of hADSCs into anterior neuroectodermal cells. Anterior neuroectodermal differentiation of hADSCs was performed by hanging drop and monolayer protocols. At these methods, three small molecules were used to suppress the BMP, Nodal, and Wnt signaling pathways in order to obtain anterior neuroectodermal (eye field) cells from hADSCs. After two and three weeks of induction, the differentiated cells with neural morphology expressed anterior neuroectodermal markers such as OTX2, SIX3, β-TUB III and PAX6. The protein expression of such markers was confirmed by real time, RT-PCR and immunocytochemistry methods According to our data, it seems that the hanging drop method is a proper approach for neuroectodermal induction of hADSCs. Considering wide availability and immunosuppressive properties of hADSCs, these cells may open a way for autologous cell therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Noushin Amirpour
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batoul Hashemibeni
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
25
|
Mobini S, Leppik L, Thottakkattumana Parameswaran V, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 2017; 5:e2821. [PMID: 28097053 PMCID: PMC5237370 DOI: 10.7717/peerj.2821] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Background Electrical stimulation (ES) has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM-) and adipose tissue- (AT-) derived mesenchymal stem cells (MSCs) to direct current electrical stimulation (DC ES) and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.
Collapse
Affiliation(s)
- Sahba Mobini
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany.,School of Materials, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Vishnu Thottakkattumana Parameswaran
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Tsai CY, Lin CL, Cheng NC, Yu J. Effects of nano-grooved gelatin films on neural induction of human adipose-derived stem cells. RSC Adv 2017. [DOI: 10.1039/c7ra09020j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The extra cellular matrix (ECM) and cell–cell interactions facilitate the survival, self-renewing and differentiation capabilities of stem cells.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 106
- Taiwan
| | - Chih-Ling Lin
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 106
- Taiwan
| | - Nai-Chen Cheng
- Department of Surgery
- National Taiwan University Hospital
- Taipei City 10048
- Republic of China
| | - Jiashing Yu
- Department of Chemical Engineering
- National Taiwan University
- Taipei City 106
- Taiwan
| |
Collapse
|
27
|
Salehi H, Amirpour N, Niapour A, Razavi S. An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Rev Rep 2016; 12:26-41. [PMID: 26490462 DOI: 10.1007/s12015-015-9631-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.
Collapse
|
28
|
Malec K, Góralska J, Hubalewska-Mazgaj M, Głowacz P, Jarosz M, Brzewski P, Sulka GD, Jaskuła M, Wybrańska I. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells. Int J Nanomedicine 2016; 11:5349-5360. [PMID: 27789947 PMCID: PMC5072627 DOI: 10.2147/ijn.s116263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue.
Collapse
Affiliation(s)
- Katarzyna Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College
| | - Magdalena Hubalewska-Mazgaj
- Department of Genetic Research and Nutrigenomics, Malopolska Centre of Biotechnology, Jagiellonian University
| | - Paulina Głowacz
- Department of Clinical Biochemistry, Jagiellonian University Medical College
| | - Magdalena Jarosz
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University
| | - Pawel Brzewski
- Department of Dermatology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz D Sulka
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University
| | - Marian Jaskuła
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University
| | - Iwona Wybrańska
- Department of Clinical Biochemistry, Jagiellonian University Medical College
| |
Collapse
|
29
|
Arai Y, Park S, Choi B, Ko KW, Choi WC, Lee JM, Han DW, Park HK, Han I, Lee JH, Lee SH. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2016; 17:ijms17060963. [PMID: 27322256 PMCID: PMC4926495 DOI: 10.3390/ijms17060963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/09/2023] Open
Abstract
Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs.
Collapse
Affiliation(s)
- Yoshie Arai
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Sunghyun Park
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Won Chul Choi
- Department of Orthopedic Surgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Joong-Myung Lee
- Department of Orthopedic Surgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Dong-Wook Han
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 619-961, Korea.
| | - Hun-Kuk Park
- Department of Biomedical Engineering, Collage of Medicine, Kyung Hee University, Seoul 151-742, Korea.
| | - Inbo Han
- Department of Neurosurgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Gyeonggi-do 443-742, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| |
Collapse
|
30
|
Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices. Stem Cells Int 2016; 2016:9352598. [PMID: 26997959 PMCID: PMC4779529 DOI: 10.1155/2016/9352598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/11/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
Currently, autologous bone grafting represents the clinical gold standard in orthopaedic surgery. In certain cases, however, alternative techniques are required. The clinical utility of stem and stromal cells has been demonstrated for the repair and regeneration of craniomaxillofacial and long bone defects although clinical adoption of bone tissue engineering protocols has been very limited. Initial tissue engineering studies focused on the bone marrow as a source of cells for bone regeneration, and while a number of promising results continue to emerge, limitations to this technique have prompted the exploration of alternative cell sources, including adipose and muscle tissue. In this review paper we discuss the advantages and disadvantages of cell sources with a focus on adipose tissue and the bone marrow. Additionally, we highlight the relatively recent paradigm of developmental engineering, which promotes the recapitulation of naturally occurring developmental processes to allow the implant to optimally respond to endogenous cues. Finally we examine efforts to apply lessons from studies into different cell sources and developmental approaches to stimulate bone growth by use of decellularised hypertrophic cartilage templates.
Collapse
|
31
|
Lakhkar NJ, M Day R, Kim HW, Ludka K, Mordan NJ, Salih V, Knowles JC. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression. J Tissue Eng 2015; 6:2041731415617741. [PMID: 26668711 PMCID: PMC4674021 DOI: 10.1177/2041731415617741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022] Open
Abstract
In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5) that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.
Collapse
Affiliation(s)
- Nilay J Lakhkar
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Richard M Day
- UCL Division of Medicine, University College London, London, UK
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea ; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | | | - Nicola J Mordan
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - Vehid Salih
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK ; Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - Jonathan C Knowles
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK ; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
32
|
Walmsley GG, Atashroo DA, Maan ZN, Hu MS, Zielins ER, Tsai JM, Duscher D, Paik K, Tevlin R, Marecic O, Wan DC, Gurtner GC, Longaker MT. High-Throughput Screening of Surface Marker Expression on Undifferentiated and Differentiated Human Adipose-Derived Stromal Cells. Tissue Eng Part A 2015; 21:2281-91. [PMID: 26020286 DOI: 10.1089/ten.tea.2015.0039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue contains an abundant source of multipotent mesenchymal cells termed "adipose-derived stromal cells" (ASCs) that hold potential for regenerative medicine. However, the heterogeneity inherent to ASCs harvested using standard methodologies remains largely undefined, particularly in regards to differences across donors. Identifying the subpopulations of ASCs predisposed toward differentiation along distinct lineages holds value for improving graft survival, predictability, and efficiency. Human ASCs (hASCs) from three different donors were independently isolated by density-based centrifugation from adipose tissue and maintained in culture or differentiated along either adipogenic or osteogenic lineages using differentiation media. Undifferentiated and differentiated hASCs were then analyzed for the presence of 242 human surface markers by flow cytometry analysis. By comprehensively characterizing the surface marker profile of undifferentiated hASCs using flow cytometry, we gained novel insights into the heterogeneity underlying protein expression on the surface of cultured undifferentiated hASCs across different donors. Comparison of the surface marker profile of undifferentiated hASCs with hASCs that have undergone osteogenic or adipogenic differentiation allowed for the identification of surface markers that were upregulated and downregulated by osteogenic or adipogenic differentiation. Osteogenic differentiation induced upregulation of CD164 and downregulation of CD49a, CD49b, CD49c, CD49d, CD55, CD58, CD105, and CD166 while adipogenic differentiation induced upregulation of CD36, CD40, CD146, CD164, and CD271 and downregulation of CD49b, CD49c, CD49d, CD71, CD105, and CD166. These results lend support to the notion that hASCs isolated using standard methodologies represent a heterogeneous population and serve as a foundation for future studies seeking to maximize their regenerative potential through fluorescence-activated cell sorting-based selection before therapy.
Collapse
Affiliation(s)
- Graham G Walmsley
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - David A Atashroo
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Zeshaan N Maan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Michael S Hu
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Elizabeth R Zielins
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Jonathan M Tsai
- 2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Dominik Duscher
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Kevin Paik
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Ruth Tevlin
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Owen Marecic
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
33
|
Yang HJ, Kim KJ, Kim MK, Lee SJ, Ryu YH, Seo BF, Oh DY, Ahn ST, Lee HY, Rhie JW. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cells Tissues Organs 2015; 199:373-83. [PMID: 25823468 DOI: 10.1159/000369969] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Human adipose tissue-derived mesenchymal stem cells (AT-MSCs) from various sites are applied in tissue engineering and cell therapy. The condition of AT-MSCs depends on the donor's age, body mass index (BMI), and gender. AT-MSCs from 66 human donors were analyzed, and the cells were sorted according to donor age (10-19 years: n = 1; 20-29 years: n = 5; 30-39 years: n = 12; 40-49 years: n = 22; 50-59 years: n = 12; 60-69 years: n = 9, and 70 years or older: n = 5), BMI (under 25, 25-30, and over 30), and gender (19 males and 48 females). Additionally, AT-MSCs were compared to bone marrow MSCs and chorionic tissue-derived MSCs. We measured the MSC yield, growth rate, colony-forming units, multipotency, and surface antigens. AT-MSC proliferation was greater in cells isolated from individuals aged less than 30 years compared to the proliferation of AT-MSCs from those over 50 years old. BMI was correlated with osteogenic differentiation potency; increased BMI enhanced osteogenesis. Adipogenic differentiation was more strongly induced in cells isolated from donors aged less than 30 years compared to those isolated from other age groups. Also, a BMI above 30 was associated with enhanced adipogenic differentiation compared to cells isolated from individuals with a BMI below 25. Bone marrow MSCs were strongly induced to differentiate along both osteogenic and adipogenic lineages, whereas AT-MSCs predominantly differentiated into the chondrogenic lineage. Therefore, the type of regeneration required and variations among potential donors must be carefully considered when selecting MSCs for use in applied tissue engineering or cell therapy.
Collapse
Affiliation(s)
- Hyun Jin Yang
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 2015; 11:140-50. [PMID: 25560703 PMCID: PMC4338988 DOI: 10.1038/nrendo.2014.234] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem-cell-mediated bone repair has been used in clinical trials for the regeneration of large craniomaxillofacial defects, to slow the process of bone degeneration in patients with osteonecrosis of the femoral head and for prophylactic treatment of distal tibial fractures. Successful regenerative outcomes in these investigations have provided a solid foundation for wider use of stromal cells in skeletal repair therapy. However, employing stromal cells to facilitate or enhance bone repair is far from being adopted into clinical practice. Scientific, technical, practical and regulatory obstacles prevent the widespread therapeutic use of stromal cells. Ironically, one of the major challenges lies in the limited understanding of the mechanisms via which transplanted cells mediate regeneration. Animal models have been used to provide insight, but these models largely fail to reproduce the nuances of human diseases and bone defects. Consequently, the development of targeted approaches to optimize cell-mediated outcomes is difficult. In this Review, we highlight the successes and challenges reported in several clinical trials that involved the use of bone-marrow-derived mesenchymal or adipose-tissue-derived stromal cells. We identify several obstacles blocking the mainstream use of stromal cells to enhance skeletal repair and highlight technological innovations or areas in which novel techniques might be particularly fruitful in continuing to advance the field of skeletal regenerative medicine.
Collapse
Affiliation(s)
- Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Bruce A Bunnell
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Elizabeth Martin
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Trivia Frazier
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| | - Ben P Hung
- Department of Biomedical Engineering, Johns Hopkins University, 400 North Broadway, Baltimore, MD 21205, USA
| | - Jeffrey M Gimble
- Centre for Stem Cell Research and Regenerative Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112, USA
| |
Collapse
|
35
|
Franceschini V, Bettini S, Pifferi S, Menini A, Siciliano G, Ognio E, Brini AT, Di Oto E, Revoltella RP. Transplanted human adipose tissue-derived stem cells engraft and induce regeneration in mice olfactory neuroepithelium in response to dichlobenil subministration. Chem Senses 2014; 39:617-29. [PMID: 25056732 DOI: 10.1093/chemse/bju035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electro-olfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy.
Collapse
Affiliation(s)
- Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy,
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, and Foundation Onlus Stem Cells and Life, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Pifferi
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Anna Menini
- International School for Advanced Studies, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Emanuela Ognio
- IRCCS San Martino, National Institute for Cancer Research (IST), Largo Rosanna Benzi 10, 16132 Genua, Italy
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Odontoiatric Sciences, University of Milan, Via Vanvitelli 32, 2019 Milan, Italy
| | - Enrico Di Oto
- Department of Hematology and Oncology "L. and A. Seragnoli," Section of Anatomic Pathology at Bellaria Hospital, University of Bologna, Via Altura 3, 40139 Bologna, Italy and
| | - Roberto P Revoltella
- Institute for Chemical, Physical Processes, C.N.R. and Foundation Onlus Stem Cells and Life, Via L.L. Zamenhof 8, 56127 Pisa, Italy
| |
Collapse
|
36
|
Catalano MG, Marano F, Rinella L, de Girolamo L, Bosco O, Fortunati N, Berta L, Frairia R. Extracorporeal shockwaves (ESWs) enhance the osteogenic medium-induced differentiation of adipose-derived stem cells into osteoblast-like cells. J Tissue Eng Regen Med 2014; 11:390-399. [DOI: 10.1002/term.1922] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 03/07/2014] [Accepted: 04/24/2014] [Indexed: 12/31/2022]
Affiliation(s)
| | - Francesca Marano
- Department of Medical Sciences; University of Turin; Turin Italy
| | - Letizia Rinella
- Department of Medical Sciences; University of Turin; Turin Italy
| | - Laura de Girolamo
- Orthopaedic Biotechnologies Laboratory; IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Ornella Bosco
- Department of Medical Sciences; University of Turin; Turin Italy
| | - Nicoletta Fortunati
- Oncological Endocrinology; AO Città della Salute e della Scienza di Torino; Turin Italy
| | | | - Roberto Frairia
- Department of Medical Sciences; University of Turin; Turin Italy
| |
Collapse
|
37
|
Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. J Immunol Res 2014; 2014:987678. [PMID: 24741639 PMCID: PMC3987801 DOI: 10.1155/2014/987678] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023] Open
Abstract
The spontaneous expression of neural markers, already demonstrated in bone marrow (BM) mesenchymal stem cells (MSCs), has been considered as evidence of the MSCs' predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs), human skin-derived mesenchymal stem cells (hS-MSCs), human periodontal ligament stem cells (hPDLSCs,) and human dental pulp stem cells (hDPSCs). Our results demonstrate that the neuronal markers βIII-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs. Conversely, the neural progenitor marker nestin is expressed only by a high percentage of undifferentiated hPDLSCs and hDPSCs. Our results suggest that the expression of βIII-tubulin and NeuN could be a common feature of stem cells and not exclusive to neuronal cells. This could result in a reassessment of the use of βIII-tubulin and NeuN as the only evidence proving neuronal differentiation. Further studies will be necessary to elucidate the relevance of the spontaneous expression of these markers in stem cells.
Collapse
|
38
|
Schmuhl E, Ramer R, Salamon A, Peters K, Hinz B. Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK. Biochem Pharmacol 2014; 87:489-501. [DOI: 10.1016/j.bcp.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/27/2022]
|
39
|
Lima AC, Puga AM, Mano JF, Concheiro A, Alvarez-Lorenzo C. Free and copolymerized γ-cyclodextrins regulate the performance of dexamethasone-loaded dextran microspheres for bone regeneration. J Mater Chem B 2014; 2:4943-4956. [DOI: 10.1039/c3tb21665a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of γ-cyclodextrins (γ-CD), as free entities or structural monomers (acrylamidomethyl-γ-cyclodextrin, γ-CD–NMA), into dextran-methacrylate (dextran-MA) photopolymerized spheres modifies the loading and release of an osteogenic agent.
Collapse
Affiliation(s)
- A. C. Lima
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine
- Guimarães 4806-909, Portugal
| | - A. M. Puga
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidad de Santiago de Compostela
- Santiago de Compostela, Spain
| | - J. F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine
- Guimarães 4806-909, Portugal
| | - A. Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidad de Santiago de Compostela
- Santiago de Compostela, Spain
| | - C. Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica
- Facultad de Farmacia
- Universidad de Santiago de Compostela
- Santiago de Compostela, Spain
| |
Collapse
|
40
|
Witzeneder K, Lindenmair A, Gabriel C, Höller K, Theiß D, Redl H, Hennerbichler S. Human-derived alternatives to fetal bovine serum in cell culture. ACTA ACUST UNITED AC 2013; 40:417-23. [PMID: 24474892 DOI: 10.1159/000356236] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/07/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The need for an alternative to fetal bovine serum (FBS) is known to scientists and users involved in cell therapy or advanced therapy medicinal products. Human serum (huS) and platelet lysate (hPL) can be used as alternatives resulting in similar or even superior results concerning cell expansion. METHODS We developed protocols for the production of huS and two types of hPL and tested them in the expansion of human fibroblasts and adipose tissue-derived stem cells (ASC). Quality control included cell counts (platelets, red and white blood cells), sterility testing, pH levels, total protein concentrations and growth factor levels. ASC and fibroblasts were expanded for three passages in media supplemented with FBS, huS or hPL and evaluated microscopically. Proliferation in terms of population doubling times (PDT) was determined. In case of ASC, differentiation was performed as well. RESULTS All three alternatives demonstrated shorter PDT for fibroblasts and ASC compared to FBS. Furthermore, ASC maintained their differentiation potential. CONCLUSION We conclude that hPL and huS can be used as alternatives to FBS for the cultivation and expansion of cells intended for human use.
Collapse
Affiliation(s)
- Karin Witzeneder
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Linz/Vienna, Austria ; Austrian Cluster for Tissue Regeneration, Linz/Vienna, Austria
| | - Andrea Lindenmair
- Austrian Cluster for Tissue Regeneration, Linz/Vienna, Austria ; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz/Vienna, Austria
| | - Christian Gabriel
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Linz/Vienna, Austria ; Austrian Cluster for Tissue Regeneration, Linz/Vienna, Austria
| | - Katharina Höller
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Linz/Vienna, Austria ; Austrian Cluster for Tissue Regeneration, Linz/Vienna, Austria
| | - Denise Theiß
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Linz/Vienna, Austria ; Austrian Cluster for Tissue Regeneration, Linz/Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Linz/Vienna, Austria ; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Linz/Vienna, Austria
| | - Simone Hennerbichler
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Linz/Vienna, Austria ; Austrian Cluster for Tissue Regeneration, Linz/Vienna, Austria
| |
Collapse
|
41
|
Schneider H, Sedaghati B, Naumann A, Hacker MC, Schulz-Siegmund M. Gene silencing of chordin improves BMP-2 effects on osteogenic differentiation of human adipose tissue-derived stromal cells. Tissue Eng Part A 2013; 20:335-45. [PMID: 23931154 DOI: 10.1089/ten.tea.2012.0563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although bone morphogenic protein (BMP)-2 is known to potently induce osteogenic differentiation of human mesenchymal stem cells, strong individual differences have been reported. In part, this is due to internal antagonists of BMP-2 for example, noggin and chordin, secreted by differentiating cells. This enabling study was performed to prove the hypothesis that osteogenic effects of BMP-2 can be improved by transient nonviral gene silencing of chordin. We investigated the effect of siRNA against chordin on osteogenic differentiation in human adipose tissue-derived stromal cells (hASC). Cells of two different donors were isolated after liposuction and proliferated for passage 4 or 5. On seeding, hASCs were transfected with siRNA using a commercial liposomal transfection reagent. Subsequently, cells were differentiated in the presence or absence of BMP-2 (100 ng/mL). Noncoding siRNA as well as siRNA against noggin served as a control. Osteogenic differentiation of hASC was determined by alkaline phosphase (ALP) activity and matrix mineralization. ALP activity of hASC treated with siRNA against chordin was increased for cells of both donors. In contrast, silencing of noggin had no effect in any of the donors. In combination with BMP-2, silencing of either chordin or noggin showed strongly improved ALP activity compared with the control group that was also supplemented with BMP-2. Mineralization was observed to start earlier in groups that received siRNA against chordin or noggin and showed increased amounts of incorporated calcium on day 15 compared with the control groups. Silencing chordin in hASCs was successful to increase BMP-2 effects on osteogenic differentiation in both donors, while effects of noggin silencing were reliably observed only in one of the two investigated donors. In contrast to noggin silencing, chordin silencing also increased osteogenic differentiation without supplemented BMP-2.
Collapse
Affiliation(s)
- Hellen Schneider
- 1 Pharmaceutical Technology, Institute of Pharmacy, University of Leipzig , Leipzig, Germany
| | | | | | | | | |
Collapse
|
42
|
Lo Surdo JL, Millis BA, Bauer SR. Automated microscopy as a quantitative method to measure differences in adipogenic differentiation in preparations of human mesenchymal stromal cells. Cytotherapy 2013; 15:1527-40. [PMID: 23992827 DOI: 10.1016/j.jcyt.2013.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/28/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Multipotent stromal cells, also called mesenchymal stromal cells (MSCs), are potentially valuable as a cellular therapy because of their differentiation and immunosuppressive properties. As the result of extensive heterogeneity of MSCs, quantitative approaches to measure differentiation capacity between donors and passages on a per-cell basis are needed. METHODS Human bone marrow-derived MSCs were expanded to passages P3, P5 and P7 from eight different donors and were analyzed for colony-forming unit capacity (CFU), cell size, surface marker expression and forward/side-scatter analysis by flow cytometry. Adipogenic differentiation potential was quantified with the use of automated microscopy. Percentage of adipogenesis was determined by quantifying nuclei and Nile red-positive adipocytes after automated image acquisition. RESULTS MSCs varied in expansion capacity and increased in average cell diameter with passage. CFU capacity decreased with passage and varied among cell lines within the same passage. The number of adipogenic precursors varied between cell lines, ranging from 0.5% to 13.6% differentiation at P3. Adipogenic capacity decreased significantly with increasing passage. MSC cell surface marker analysis revealed no changes caused by passaging or donor differences. CONCLUSIONS We measured adipogenic differentiation on a per-cell basis with high precision and accuracy with the use of automated fluorescence microscopy. We correlated these findings with other quantitative bioassays to better understand the role of donor variability and passaging on CFU, cell size and adipogenic differentiation capacity in vitro. These quantitative approaches provide valuable tools to measure MSC quality and measure functional biological differences between donors and cell passages that are not revealed by conventional MSC cell surface marker analysis.
Collapse
Affiliation(s)
- Jessica L Lo Surdo
- FDA/Center for Biologics Evaluation and Research, Division of Cellular and Gene Therapies, Office of Cellular, Tissue, and Gene Therapies, Bethesda, Maryland, USA
| | | | | |
Collapse
|
43
|
Payer M, Lohberger B, Strunk D, Reich KM, Acham S, Jakse N. Effects of directly autotransplanted tibial bone marrow aspirates on bone regeneration and osseointegration of dental implants. Clin Oral Implants Res 2013; 25:468-74. [PMID: 23701676 DOI: 10.1111/clr.12172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Aim of the pilot trial was to evaluate applicability and effects of directly autotransplanted tibial bone marrow (BM) aspirates on the incorporation of porous bovine bone mineral in a sinus lift model and on the osseointegration of dental implants. MATERIAL AND METHODS Six edentulous patients with bilaterally severely resorbed maxillae requiring sinus augmentation and implant treatment were included. During surgery, tibial BM was harvested and added to bone substitute material (Bio-Oss(®) ) at the randomly selected test site. At control sites, augmentation was performed with Bio-Oss(®) alone. The cellular content of each BM aspirate was checked for multipotency and surface antigen expression as quality control. Histomorphometric analysis of biopsies from the augmented sites after 3 and 6 months (during implantation) was used to evaluate effects on bone regeneration. Osseointegration of implants was evaluated with Periotest(®) and radiographic means. RESULTS Multipotent cellular content in tibial BM aspirates was comparable to that in punctures from the iliac crest. No significant difference in amount of new bone formation and the integration of bone substitute particles was detected histomorphometrically. Periotest(®) values and radiographs showed successful osseointegration of inserted implants at all sites. CONCLUSION Directly autotransplanted tibial BM aspirates did not show beneficial regenerative effects in the small study population (N = 6) of the present pilot trial. However, the proximal tibia proved to be a potential donor site for small quantities of BM. Future trials should clarify whether concentration of tibial BM aspirates could effect higher regenerative potency.
Collapse
Affiliation(s)
- Michael Payer
- Department of Oral Surgery and Radiology, School of Dentistry, Medical University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
44
|
Kyllönen L, Haimi S, Mannerström B, Huhtala H, Rajala KM, Skottman H, Sándor GK, Miettinen S. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro. Stem Cell Res Ther 2013; 4:17. [PMID: 23415114 PMCID: PMC3706769 DOI: 10.1186/scrt165] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/04/2013] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Currently, human adipose stem cells (hASCs) are differentiated towards osteogenic lineages using culture medium supplemented with L-ascorbic acid 2-phosphate (AsA2-P), dexamethasone (Dex) and beta-glycerophosphate (β-GP). Because this osteogenic medium (OM1) was initially generated for the differentiation of bone marrow-derived mesenchymal stem cells, the component concentrations may not be optimal for the differentiation of hASCs. After preliminary screening, two efficient osteogenic media (OM2 and OM3) were chosen to be compared with the commonly used osteogenic medium (OM1). To further develop the culture conditions towards clinical usage, the osteo-inductive efficiencies of OM1, OM2 and OM3 were compared using human serum (HS)-based medium and a defined, xeno-free medium (RegES), with fetal bovine serum (FBS)-based medium serving as a control. METHODS To compare the osteo-inductive efficiency of OM1, OM2 and OM3 in FBS-, HS- and RegES-based medium, the osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization, and expression of osteogenic marker genes (runx2A, DLX5, collagen type I, osteocalcin, and ALP). RESULTS In HS-based medium, the ALP activity increased significantly by OM3, and mineralization was enhanced by both OM2 and OM3, which have high AsA2-P and low Dex concentrations. ALP activity and mineralization of hASCs was the weakest in FBS-based medium, with no significant differences between the OM compositions due to donor variation. However, the qRT-PCR data demonstrated significant upregulation of runx2A mRNA under osteogenic differentiation in FBS- and HS-based medium, particularly by OM3 under FBS conditions. Further, the expression of DLX5 was greatly stimulated by OM1 to 3 on day 7 when compared to control. The regulation of collagen type I, ALP, and osteocalcin mRNA was modest under induction by OM1 to 3. The RegES medium was found to support the proliferation and osteogenic differentiation of hASCs, but the composition of the RegES medium hindered the comparison of OM1, OM2 and OM3. CONCLUSIONS Serum conditions affect hASC proliferation and differentiation significantly. The ALP activity and mineralization was the weakest in FBS-based medium, although osteogenic markers were upregulated on mRNA level. When comparing the OM composition, the commonly used OM1 was least effective. Accordingly, higher concentration of AsA2-P and lower concentration of Dex, as in OM2 and OM3, should be used for the osteogenic differentiation of hASCs in vitro.
Collapse
|
45
|
Abstract
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue. These stem cells, now known as adipose-derived stem cells or ADSCs, have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. As of today, thousands of research and clinical articles have been published using ASCs, describing their possible pluripotency in vitro, their uses in regenerative animal models, and their application to the clinic. This paper outlines the progress made in the ASC field since their initial description in 2001, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo, their use in mediating inflammation and vascularization during tissue regeneration, and their potential for reprogramming into induced pluripotent cells.
Collapse
|
46
|
Wuchter P, Wagner W, Ho AD. Mesenchymal Stem Cells – An Oversimplified Nomenclature for Extremely Heterogeneous Progenitors. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
47
|
|
48
|
Banka S, Mukudai Y, Yoshihama Y, Shirota T, Kondo S, Shintani S. A combination of chemical and mechanical stimuli enhances not only osteo- but also chondro-differentiation in adipose-derived stem cells. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Lo Surdo J, Bauer SR. Quantitative approaches to detect donor and passage differences in adipogenic potential and clonogenicity in human bone marrow-derived mesenchymal stem cells. Tissue Eng Part C Methods 2012; 18:877-89. [PMID: 22563812 DOI: 10.1089/ten.tec.2011.0736] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bone marrow-derived multipotent stromal cells (MSCs), also known as mesenchymal stem cells, have great promise due to their capacity for tri-lineage differentiation and immunosuppressive properties, which allows for their allogeneic use and ultimately may allow for treatment of many diseases. MSCs will require extensive expansion and passaging to obtain cells in sufficient numbers necessary for cell therapies. MSCs from many donors could potentially be used. Because of this, there is a need to understand the role of passaging and donor differences on differentiation capacity using quantitative approaches. Here, we evaluated MSCs from two donors (noted as PCBM1632 and PCBM1641 by the manufacturer) at tissue culture passages 3, 5, and 7. We used a colony forming unit (CFU) assay and limiting dilution to quantify clonogenicity and precursor frequency during adipogenesis, and quantitative real-time-polymerase chain reaction for adipogenic markers to evaluate changes on a gene expression level. Further, we observed changes in cell size, and we sorted small and large populations to evaluate size-related adipogenic potential. While the adipogenic precursor frequency of ∼1 in 76 cells remained similar through passages for cells from PCBM1641, we found a large decrease in the adipogenic potential of MSCs from PCBM1632, with 1 in 2035 cells being capable of differentiating into an adipocyte at passage 7. MSCs from both donors showed an increase in cell diameter with increasing passage, which correlates with a decrease in clonogenicity by CFU analysis. We also measured adipose lineage gene expression following induction of adipocyte differentiation. Expression of these genes decreased with passage number for MSCs from PCBM1632 and correlated with the decrease in adipogenic potential by passage 7. In contrast, MSCs from PCBM1641 showed increased expression of these genes with increasing passage. We have shown that several quantitative assays can detect differences in MSC differentiation capacity, clonogenicity, and cell size between donors and passages. These quantitative methods are useful to assess the quality of MSCs.
Collapse
Affiliation(s)
- Jessica Lo Surdo
- Cellular and Tissue Therapies Branch, Division of Cellular and Gene Therapies, Office of Cellular, Tissue, and Gene Therapies, FDA, Center for Biologics Evaluation and Research, Bethesda, MD, USA
| | | |
Collapse
|
50
|
Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int 2012; 2012:980353. [PMID: 22448175 PMCID: PMC3289837 DOI: 10.1155/2012/980353] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/21/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023] Open
Abstract
While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs), adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs), as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.
Collapse
|