1
|
Saur M, Kunisch E, Fiehn LA, Arango-Ospina M, Merle C, Hagmann S, Moghaddam A, Stiller A, Hupa L, Renkawitz T, Kaňková H, Galusková D, Boccaccini AR, Westhauser F. Biological effects of a zinc-substituted borosilicate bioactive glass on human bone marrow derived stromal cells in vitro and in a critical-size femoral defect model in rats in vivo. Biomater Sci 2024; 12:4770-4789. [PMID: 39136779 DOI: 10.1039/d4bm00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The borosilicate 0106-B1-bioactive glass (BG) composition (in wt%: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3) has shown favorable processing characteristics and bone regeneration ability. This study investigated the addition of zinc (Zn) to 0106-B1-BG as an approach to improve this BG's biological properties. Different proportions of ZnO were substituted for CaO in 0106-B1-BG, resulting in three new BG-compositions: 1-Zn-BG, 2-Zn-BG, 3-Zn-BG (in wt%: 37.5 SiO2, 21.6/20.1/17.6 CaO, 4.0 P2O5, 5.9 Na2O, 12.0 K2O, 5.5 MgO, 12.5 B2O3 and 1.0/2.5/5.0 ZnO). Effects of the BG compositions on cytocompatibility, osteogenic differentiation, extracellular matrix deposition, and angiogenic response of human bone marrow-derived mesenchymal stromal cells (BMSCs) were evaluated in vitro. Angiogenic effects were assessed using a tube formation assay containing human umbilical vein endothelial cells. The in vivo osteogenic and angiogenic potentials of 3-Zn-BG were investigated in comparison to the Zn-free 0106-B1-BG in a rodent critical-size femoral defect model. The osteogenic differentiation of BMSCs improved in the presence of Zn. 3-Zn-BG showed enhanced angiogenic potential, as confirmed by the tube formation assay. While Zn-doped BGs showed clearly superior biological properties in vitro, 3-Zn-BG and 0106-B1-BG equally promoted the formation of new bone in vivo; however, 3-Zn-BG reduced osteoclastic cells and vascular structures in vivo. The acquired data suggests that the differences regarding the in vivo and in vitro results may be due to modulation of inflammatory responses by Zn, as described in the literature. The inflammatory effect should be investigated further to promote clinical applications of Zn-doped BGs.
Collapse
Affiliation(s)
- M Saur
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - E Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - L A Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - M Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - C Merle
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
- Joint Replacement Centre, Orthopaedic Surgery Paulinenhilfe, Diakonie-Klinikum Stuttgart, Rosenbergstraße 38, 70176 Stuttgart, Germany
| | - S Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - A Moghaddam
- Privatärztliches Zentrum Aschaffenburg, Frohsinnstraße 12, 63739 Aschaffenburg, Germany
| | - A Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - L Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| | - T Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - H Kaňková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - D Galusková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - F Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
2
|
Devoy EJ, Jabari E, Kotsanos G, Choe RH, Fisher JP. An Exploration of the Role of Osteoclast Lineage Cells in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39041616 DOI: 10.1089/ten.teb.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bone defects because of age, trauma, and surgery, which are exacerbated by medication side effects and common diseases such as osteoporosis, diabetes, and rheumatoid arthritis, are a problem of epidemic scale. The present clinical standard for treating these defects includes autografts and allografts. Although both treatments can promote robust regenerative outcomes, they fail to strike a desirable balance of availability, side effect profile, consistent regenerative efficacy, and affordability. This difficulty has contributed to the rise of bone tissue engineering (BTE) as a potential avenue through which enhanced bone regeneration could be delivered. BTE is founded upon a paradigm of using biomaterials, bioactive factors, osteoblast lineage cells (ObLCs), and vascularization to cue deficient bone tissue into a state of regeneration. Despite promising preclinical results, BTE has had modest success in being translated into the clinical setting. One barrier has been the simplicity of its paradigm relative to the complexity of biological bone. Therefore, this paradigm must be critically examined and expanded to better account for this complexity. One potential avenue for this is a more detailed consideration of osteoclast lineage cells (OcLCs). Although these cells ostensibly oppose ObLCs and bone regeneration through their resorptive functions, a myriad of investigations have shed light on their potential to influence bone equilibrium in more complex ways through their interactions with both ObLCs and bone matrix. Most BTE research has not systematically evaluated their influence. Yet contrary to expectations associated with the paradigm, a selection of BTE investigations has demonstrated that this influence can enhance bone regeneration in certain contexts. In addition, much work has elucidated the role of many controllable scaffold parameters in both inhibiting and stimulating the activity of OcLCs in parallel to bone regeneration. Therefore, this review aims to detail and explore the implications of OcLCs in BTE and how they can be leveraged to improve upon the existing BTE paradigm.
Collapse
Affiliation(s)
- Eoin J Devoy
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Erfan Jabari
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - George Kotsanos
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Robert H Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, Baysoy E, Kaleli-Can G, Ayan B. Exploring the Role of Hormones and Cytokines in Osteoporosis Development. Biomedicines 2024; 12:1830. [PMID: 39200293 PMCID: PMC11351445 DOI: 10.3390/biomedicines12081830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The disease of osteoporosis is characterized by impaired bone structure and an increased risk of fractures. There is a significant impact of cytokines and hormones on bone homeostasis and the diagnosis of osteoporosis. As defined by the World Health Organization (WHO), osteoporosis is defined as having a bone mineral density (BMD) that is 2.5 standard deviations (SD) or more below the average for young and healthy women (T score < -2.5 SD). Cytokines and hormones, particularly in the remodeling of bone between osteoclasts and osteoblasts, control the differentiation and activation of bone cells through cytokine networks and signaling pathways like the nuclear factor kappa-B ligand (RANKL)/the receptor of RANKL (RANK)/osteoprotegerin (OPG) axis, while estrogen, parathyroid hormones, testosterone, and calcitonin influence bone density and play significant roles in the treatment of osteoporosis. This review aims to examine the roles of cytokines and hormones in the pathophysiology of osteoporosis, evaluating current diagnostic methods, and highlighting new technologies that could help for early detection and treatment of osteoporosis.
Collapse
Affiliation(s)
- Egemen Umur
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Safiye Betül Bulut
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Pelin Yiğit
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Emirhan Bayrak
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Yaren Arkan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Fahriye Arslan
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Engin Baysoy
- Department of Biomedical Engineering, Bahçeşehir University, İstanbul 34353, Türkiye
| | - Gizem Kaleli-Can
- Department of Biomedical Engineering, İzmir Democracy University, İzmir 35140, Türkiye
| | - Bugra Ayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Park SY, Kong SH, Kim KJ, Ahn SH, Hong N, Ha J, Lee S, Choi HS, Baek KH, Kim JE, Kim SW. Effects of Endocrine-Disrupting Chemicals on Bone Health. Endocrinol Metab (Seoul) 2024; 39:539-551. [PMID: 39015028 PMCID: PMC11375301 DOI: 10.3803/enm.2024.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 07/18/2024] Open
Abstract
This comprehensive review critically examines the detrimental impacts of endocrine-disrupting chemicals (EDCs) on bone health, with a specific focus on substances such as bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, and dioxins. These EDCs, by interfering with the endocrine system's normal functioning, pose a significant risk to bone metabolism, potentially leading to a heightened susceptibility to bone-related disorders and diseases. Notably, BPA has been shown to inhibit the differentiation of osteoblasts and promote the apoptosis of osteoblasts, which results in altered bone turnover status. PFASs, known for their environmental persistence and ability to bioaccumulate in the human body, have been linked to an increased osteoporosis risk. Similarly, phthalates, which are widely used in the production of plastics, have been associated with adverse bone health outcomes, showing an inverse relationship between phthalate exposure and bone mineral density. Dioxins present a more complex picture, with research findings suggesting both potential benefits and adverse effects on bone structure and density, depending on factors such as the timing and level of exposure. This review underscores the urgent need for further research to better understand the specific pathways through which EDCs affect bone health and to develop targeted strategies for mitigating their potentially harmful impacts.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seong Hee Ahn
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sihoon Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Han Seok Choi
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Boramae Medical Center, Seoul, Korea
| |
Collapse
|
5
|
Husch JFA, Araújo-Gomes N, Willemen NGA, Cofiño-Fabrés C, van Creij N, Passier R, Leijten J, van den Beucken JJJP. Upscaling Osteoclast Generation by Enhancing Macrophage Aggregation Using Hollow Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403272. [PMID: 39087382 DOI: 10.1002/smll.202403272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Osteoclasts, the bone resorbing cells of hematopoietic origin formed by macrophage fusion, are essential in bone health and disease. However, in vitro research on osteoclasts remains challenging due to heterogeneous cultures that only contain a few multinucleated osteoclasts. Indeed, a strategy to generate homogeneous populations of multinucleated osteoclasts in a scalable manner has remained elusive. Here, the investigation focuses on whether microencapsulation of human macrophages in microfluidically generated hollow, sacrificial tyramine-conjugated dextran (Dex-TA) microgels could facilitate macrophage precursor aggregation and formation of multinucleated osteoclasts. Therefore, human mononuclear cells are isolated from buffy coats and differentiated toward macrophages. Macrophages are encapsulated in microgels using flow focus microfluidics and outside-in enzymatic oxidative phenolic crosslinking, and differentiated toward osteoclasts. Morphology, viability, and osteoclast fusion of microencapsulated cells are assessed. Furthermore, microgels are degraded to allow cell sorting of released cells based on osteoclastic marker expression. The successful encapsulation and osteoclast formation of human macrophages in Dex-TA microgels are reported for the first time using high-throughput droplet microfluidics. Intriguingly, osteoclast formation within these 3D microenvironments occurs at a significantly higher level compared to the conventional 2D culture system. Furthermore, the feasibility of establishing a pure osteoclast culture from cell transfer and release from degradable microgels is demonstrated.
Collapse
Affiliation(s)
- Johanna F A Husch
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nuno Araújo-Gomes
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Niels G A Willemen
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Carla Cofiño-Fabrés
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Nils van Creij
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| | - Robert Passier
- Applied Stem Cell Technologies, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Jeroen J J P van den Beucken
- Regenerative Biomaterials, Department of Dentistry, Radboudumc, Philips van Leydenlaan 25, Nijmegen, 6525EX, The Netherlands
| |
Collapse
|
6
|
Wang L, Hu H, Ko CC. Osteoclast-Driven Polydopamine-to-Dopamine Release: An Upgrade Patch for Polydopamine-Functionalized Tissue Engineering Scaffolds. J Funct Biomater 2024; 15:211. [PMID: 39194649 DOI: 10.3390/jfb15080211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Polydopamine, a mussel-inspired self-adherent polymer of dopamine, has impressive adhesive properties and thus is one of the most versatile approaches to functionalize tissue engineering scaffolds. To date, many types of polydopamine-functionalized scaffolds have been manufactured and extensively applied in bone tissue engineering at the preclinical stage. However, how polydopamine is biodegraded and metabolized during the bone healing process and the side effects of its metabolite remain largely unknown. These issues are often neglected in the modern manufacture of polydopamine-functionalized materials and restrict them from stepping forward to clinical applications. In this study, using our bioinspired polydopamine-laced hydroxyapatite collagen calcium silicate material as a representative of polydopamine-functionalized tissue engineering scaffolds, we discovered that polydopamine can be metabolized to dopamine specifically by osteoclasts, which we termed "osteoclast-driven polydopamine-to-dopamine release". The released dopamine showed an osteoinductive effect in vitro and promoted bone regeneration in calvarial critical-sized defects. The concept of "osteoclast-driven polydopamine-to-dopamine release" has considerable application potential. It could be easily adopted by other existing polydopamine-functionalized scaffolds: just by recruiting osteoclasts. Once adopted, scaffolds will obtain a dopamine-releasing function, which enables their modulation of osteoblast activity and hence elevates the osteoinductive effect. Thus, "osteoclast-driven polydopamine-to-dopamine release" serves as an upgrade patch, which is useful for many existing polydopamine-functionalized materials.
Collapse
Affiliation(s)
- Lufei Wang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction & College and Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China
| | - Huamin Hu
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Tian X, Vater C, Raina DB, Findeisen L, Matuszewski LM, Tägil M, Lidgren L, Winkler A, Gottwald R, Modler N, Schaser KD, Disch AC, Zwingenberger S. Co-delivery of rhBMP-2 and zoledronic acid using calcium sulfate/hydroxyapatite carrier as a bioactive bone substitute to enhance and accelerate spinal fusion. Bioact Mater 2024; 36:256-271. [PMID: 38487704 PMCID: PMC10937206 DOI: 10.1016/j.bioactmat.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Recombinant human bone morphogenetic protein-2 (rhBMP-2) has been FDA-approved for lumbar fusion, but supraphysiologic initial burst release due to suboptimal carrier and late excess bone resorption caused by osteoclast activation have limited its clinical usage. One strategy to mitigate the pro-osteoclast side effect of rhBMP-2 is to give systemic bisphosphonates, but it presents challenges with systemic side effects and low local bioavailability. The aim of this in vivo study was to analyze if posterolateral spinal fusion (PLF) could be improved by utilizing a calcium sulfate/hydroxyapatite (CaS/HA) carrier co-delivering rhBMP-2 and zoledronic acid (ZA). Six groups were allocated (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, and CaS/HA + BMP-2 + local ZA). 10-week-old male Wistar rats, were randomly assigned to undergo L4-L5 PLF with implantation of group-dependent scaffolds. At 3 and 6 weeks, the animals were euthanized for radiography, μCT, histological staining, or biomechanical testing to evaluate spinal fusion. The results demonstrated that the CaS/HA biomaterial alone or in combination with local or systemic ZA didn't support PLF. However, the delivery of rhBMP-2 significantly promoted PLF. Combining systemic ZA with BMP-2 didn't enhance spinal fusion. Notably, the co-delivery of rhBMP-2 and ZA using the CaS/HA carrier significantly enhanced and accelerated PLF, without inhibiting systemic bone turnover, and potentially reduced the dose of rhBMP-2. Together, the treatment regimen of CaS/HA biomaterial co-delivering rhBMP-2 and ZA could potentially be a safe and cost-effective off-the-shelf bioactive bone substitute to enhance spinal fusion.
Collapse
Affiliation(s)
- Xinggui Tian
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Corina Vater
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Deepak Bushan Raina
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, 22185, Sweden
| | - Lisa Findeisen
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Lucas-Maximilian Matuszewski
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Magnus Tägil
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, 22185, Sweden
| | - Lars Lidgren
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, 22185, Sweden
| | - Anja Winkler
- Institute of Lightweight Engineering and Polymer Technology at TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Robert Gottwald
- Institute of Lightweight Engineering and Polymer Technology at TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Niels Modler
- Institute of Lightweight Engineering and Polymer Technology at TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Klaus-Dieter Schaser
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Alexander C. Disch
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, 01307, Dresden, Germany
| |
Collapse
|
8
|
Fu J, Jia L, Wu L, Jiang Y, Zhao R, Du J, Guo L, Zhang C, Xu J, Liu Y. Lactobacillus rhamnosus inhibits osteoclast differentiation by suppressing the TLR2/NF-κB pathway. Oral Dis 2024; 30:2373-2386. [PMID: 37602540 DOI: 10.1111/odi.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE This study aimed to investigate the role of ultrasonicated Lactobacillus rhamnosus extract in osteoclast differentiation and its underlying mechanism, providing new strategies for the treatment of periodontitis. MATERIALS AND METHODS Osteoclasts were induced using macrophage colony-stimulating factor and receptor activator for nuclear factor-κB ligand. Lactobacillus rhamnosus extracts were obtained via ultrasonic crushing and ultracentrifugation. The effects of the LGG extract on osteoclast differentiation were evaluated, and the related signaling pathways were examined using western blotting. A mouse periodontitis model was established, and Lactobacillus rhamnosus extract was injected into the gingival sulcus to evaluate the inhibitory effect of Lactobacillus rhamnosus extract on alveolar bone resorption. RESULTS At 50 μg/mL, Lactobacillus rhamnosus extract inhibited osteoclast differentiation with no effect on apoptosis and proliferation. This phenomenon was achieved by deactivating the NF-κB/c-Fos/NFATc1 signaling pathway through toll-like receptor 2. The in vivo results showed that the local injection of Lactobacillus rhamnosus extract suppressed osteoclast differentiation and alveolar bone resorption. CONCLUSION The ultrasonicated extract of Lactobacillus rhamnosus inhibited osteoclast differentiation by suppressing the activation of the NF-κB/c-Fos/NFATc1 pathway. Furthermore, it inhibited the destruction of the alveolar bone, providing a new strategy for the use of probiotics in the treatment of periodontitis.
Collapse
Affiliation(s)
- Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Humbert P, Kampleitner C, De Lima J, Brennan MÁ, Lodoso-Torrecilla I, Sadowska JM, Blanchard F, Canal C, Ginebra MP, Hoffmann O, Layrolle P. Phase composition of calcium phosphate materials affects bone formation by modulating osteoclastogenesis. Acta Biomater 2024; 176:417-431. [PMID: 38272200 DOI: 10.1016/j.actbio.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Human mesenchymal stromal cells (hMSCs) seeded on calcium phosphate (CaP) bioceramics are extensively explored in bone tissue engineering and have recently shown effective clinical outcomes. In previous pre-clinical studies, hMSCs-CaP-mediated bone formation was preceded by osteoclastogenesis at the implantation site. The current study evaluates to what extent phase composition of CaPs affects the osteoclast response and ultimately influence bone formation. To this end, four different CaP bioceramics were used, hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and two biphasic composites of HA/β-TCP ratios of 60/40 and 20/80 respectively, for in vitro osteoclast differentiation and correlation with in vivo osteoclastogenesis and bone formation. All ceramics allowed osteoclast formation in vitro from mouse and human precursors, except for pure HA, which significantly impaired their maturation. Ectopic implantation alongside hMSCs in subcutis sites of nude mice revealed new bone formation at 8 weeks in all conditions with relative amounts for β-TCP > biphasic CaPs > HA. Surprisingly, while hMSCs were essential for osteoinduction, their survival did not correlate with bone formation. By contrast, the degree of early osteoclastogenesis (2 weeks) seemed to define the extent of subsequent bone formation. Together, our findings suggest that the osteoclastic response could be used as a predictive marker in hMSC-CaP-based bone regeneration and strengthens the need to understand the underlying mechanisms for future biomaterial development. STATEMENT OF SIGNIFICANCE: The combination of mesenchymal stromal cells (MSCs) and calcium phosphate (CaP) materials has demonstrated its safety and efficacy for bone regeneration in clinical trials, despite our insufficient understanding of the underlying biological mechanisms. Osteoclasts were previously suggested as key mediators between the early inflammatory phase following biomaterial implantation and the subsequent bone formation. Here we compared the affinity of osteoclasts for various CaP materials with different ratios of hydroxyapatite to β-tricalcium phosphate. We found that osteoclast formation, both in vitro and at early stages in vivo, correlates with bone formation when the materials were implanted alongside MSCs in mice. Surprisingly, MSC survival did not correlate with bone formation, suggesting that the number or phenotype of osteoclasts formed was more important.
Collapse
Affiliation(s)
- Paul Humbert
- INSERM, UMR 1238, Phy-OS, Bone Sarcoma and Remodeling of Calcified Tissues, School of Medicine, University of Nantes, Nantes, France; INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes, Oniris, CHU Nantes, Nantes, France
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria; Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | - Julien De Lima
- INSERM, UMR 1238, Phy-OS, Bone Sarcoma and Remodeling of Calcified Tissues, School of Medicine, University of Nantes, Nantes, France; INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes, Oniris, CHU Nantes, Nantes, France
| | - Meadhbh Á Brennan
- Regenerative Medicine Institute, School of Medicine and Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Irene Lodoso-Torrecilla
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Joanna Maria Sadowska
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Frédéric Blanchard
- INSERM, UMR 1238, Phy-OS, Bone Sarcoma and Remodeling of Calcified Tissues, School of Medicine, University of Nantes, Nantes, France; INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, University of Nantes, Oniris, CHU Nantes, Nantes, France
| | - Cristina Canal
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Institute of Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oskar Hoffmann
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Pierre Layrolle
- INSERM, UMR 1238, Phy-OS, Bone Sarcoma and Remodeling of Calcified Tissues, School of Medicine, University of Nantes, Nantes, France; INSERM, UMR 1214, ToNIC, CHU Purpan, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
10
|
Le Gars Santoni B, Niggli L, Dolder S, Loeffel O, Sblendorio GA, Maazouz Y, Alexander DTL, Heuberger R, Stähli C, Döbelin N, Bowen P, Hofstetter W, Bohner M. Influence of the sintering atmosphere on the physico-chemical properties and the osteoclastic resorption of β-tricalcium phosphate cylinders. Acta Biomater 2023; 169:566-578. [PMID: 37595772 DOI: 10.1016/j.actbio.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
One of the most widely used materials for bone graft substitution is β-Tricalcium phosphate (β-TCP; β-Ca3(PO4)2). β-TCP is typically produced by sintering in air or vacuum. During this process, evaporation of phosphorus (P) species occurs, leading to the formation of a calcium-rich alkaline layer. It was recently shown that the evaporation of P species could be prevented by co-sintering β-TCP with dicalcium phosphate (DCPA; CaHPO4; mineral name: monetite). The aim of this study was to see how a change of sintering atmosphere could affect the physico-chemical and biological properties of β-TCP. For this purpose, three experimental groups were considered: β-TCP cylinders sintered in air and subsequently polished to remove the surface layer (control group); the same polished cylinders after subsequent annealing at 500 °C in air to generate a calcium-rich alkaline layer (annealed group); and finally, β-TCP cylinders sintered in a monetite-rich atmosphere and subsequently polished (monetite group). XPS analysis confirmed that cylinders from the annealed group had a significantly higher Ca/P molar ratio at their surface than that of the control group while this ratio was significantly lower for the cylinders from the monetite group. Sintering β-TCP in the monetite-rich atmosphere significantly reduced the grain size and increased the density. Changes of surface composition affected the activity of osteoclasts seeded onto the surfaces, since annealed β-TCP cylinders were significantly less resorbed than β-TCP cylinders sintered in the monetite-rich atmosphere. This suggests that an increase of the surface Ca/P molar ratio leads to a decrease of osteoclastic resorption. STATEMENT OF SIGNIFICANCE: Minimal changes of surface and bulk (< 1%) composition have major effects on the ability of osteoclasts to resorb β-tricalcium phosphate (β-TCP), one of the most widely used ceramics for bone substitution. The results presented in this study are thus important for the calcium phosphate community because (i) β-TCP may have up to 5% impurities according to ISO and ASTM standards and still be considered to be "pure β-TCP", (ii) β-TCP surface properties are generally not considered during biocompatibility assessment and (iii) a rationale can be proposed to explain the various inconsistencies reported in the literature on the biological properties of β-TCP.
Collapse
Affiliation(s)
- Bastien Le Gars Santoni
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Luzia Niggli
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Silvia Dolder
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, CH-3008 Bern, Switzerland
| | - Olivier Loeffel
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Gabrielle A Sblendorio
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Laboratory of Construction Materials, Station 12, CH-1015 Lausanne, Switzerland; EPFL, Ecole Polytechnique Fédérale de Lausanne, Institute of Physics, Electron Spectrometry and Microscopy Laboratory, Station 3, CH-1015 Lausanne, Switzerland
| | - Yassine Maazouz
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Duncan T L Alexander
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Institute of Physics, Electron Spectrometry and Microscopy Laboratory, Station 3, CH-1015 Lausanne, Switzerland
| | - Roman Heuberger
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Christoph Stähli
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Nicola Döbelin
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland
| | - Paul Bowen
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Laboratory of Construction Materials, Station 12, CH-1015 Lausanne, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, CH-3008 Bern, Switzerland
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, CH-2544 Bettlach, Switzerland.
| |
Collapse
|
11
|
Qiu M, Li C, Cai Z, Li C, Yang K, Tulufu N, Chen B, Cheng L, Zhuang C, Liu Z, Qi J, Cui W, Deng L. 3D Biomimetic Calcified Cartilaginous Callus that Induces Type H Vessels Formation and Osteoclastogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207089. [PMID: 36999832 PMCID: PMC10238192 DOI: 10.1002/advs.202207089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Indexed: 06/04/2023]
Abstract
The formation of a calcified cartilaginous callus (CACC) is crucial during bone repair. CACC can stimulate the invasion of type H vessels into the callus to couple angiogenesis and osteogenesis, induce osteoclastogenesis to resorb the calcified matrix, and promote osteoclast secretion of factors to enhance osteogenesis, ultimately achieving the replacement of cartilage with bone. In this study, a porous polycaprolactone/hydroxyapatite-iminodiacetic acid-deferoxamine (PCL/HA-SF-DFO) 3D biomimetic CACC is developed using 3D printing. The porous structure can mimic the pores formed by the matrix metalloproteinase degradation of the cartilaginous matrix, HA-containing PCL can mimic the calcified cartilaginous matrix, and SF anchors DFO onto HA for the slow release of DFO. The in vitro results show that the scaffold significantly enhances angiogenesis, promotes osteoclastogenesis and resorption by osteoclasts, and enhances the osteogenic differentiation of bone marrow stromal stem cells by promoting collagen triple helix repeat-containing 1 expression by osteoclasts. The in vivo results show that the scaffold significantly promotes type H vessels formation and the expression of coupling factors to promote osteogenesis, ultimately enhancing the regeneration of large-segment bone defects in rats and preventing dislodging of the internal fixation screw. In conclusion, the scaffold inspired by biological bone repair processes effectively promotes bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhengwei Cai
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Cuidi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Kai Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Bo Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Liang Cheng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Chengyu Zhuang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zhihong Liu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
12
|
Cell–scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact Mater 2023; 23:16-44. [DOI: 10.1016/j.bioactmat.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
|
13
|
Kreller T, Zimmermann J, van Rienen U, Boccaccini AR, Jonitz-Heincke A, Detsch R. Alternating electric field stimulation: Phenotype analysis and osteoclast activity of differentiated RAW 264.7 macrophages on hydroxyapatite-coated Ti6Al4V surfaces and their crosstalk with MC3T3-E1 pre-osteoblasts. BIOMATERIALS ADVANCES 2023; 146:213285. [PMID: 36640524 DOI: 10.1016/j.bioadv.2023.213285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Affiliation(s)
- T Kreller
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - J Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
| | - U van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany; Department Life, Light and Matter, University of Rostock, 18051 Rostock, Germany; Department Ageing of Individuals and Society, University of Rostock, 18051 Rostock, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
14
|
A biomimetic piezoelectric scaffold with sustained Mg2+ release promotes neurogenic and angiogenic differentiation for enhanced bone regeneration. Bioact Mater 2022; 25:399-414. [PMID: 37056250 PMCID: PMC10087109 DOI: 10.1016/j.bioactmat.2022.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022] Open
Abstract
Natural bone is a composite tissue made of organic and inorganic components, showing piezoelectricity. Whitlockite (WH), which is a natural magnesium-containing calcium phosphate, has attracted great attention in bone formation recently due to its unique piezoelectric property after sintering treatment and sustained release of magnesium ion (Mg2+). Herein, a composite scaffold (denoted as PWH scaffold) composed of piezoelectric WH (PWH) and poly(ε-caprolactone) (PCL) was 3D printed to meet the physiological demands for the regeneration of neuro-vascularized bone tissue, namely, providing endogenous electric field at the defect site. The sustained release of Mg2+ from the PWH scaffold, displaying multiple biological activities, and thus exhibits a strong synergistic effect with the piezoelectricity on inhibiting osteoclast activation, promoting the neurogenic, angiogenic, and osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) in vitro. In a rat calvarial defect model, this PWH scaffold is remarkably conducive to efficient neo-bone formation with rich neurogenic and angiogenic expressions. Overall, this study presents the first example of biomimetic piezoelectric scaffold with sustained Mg2+ release for promoting the regeneration of neuro-vascularized bone tissue in vivo, which offers new insights for regenerative medicine.
Collapse
|
15
|
Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications. Biomimetics (Basel) 2022; 7:biomimetics7030131. [PMID: 36134935 PMCID: PMC9496066 DOI: 10.3390/biomimetics7030131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
Collapse
|
16
|
Tian B, Li X, Zhang J, Zhang M, Gan D, Deng D, Sun L, He X, Wu C, Chen F. A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair. Int J Oral Sci 2022; 14:45. [PMID: 36064833 PMCID: PMC9445063 DOI: 10.1038/s41368-022-00195-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
The positive regulation of bone-forming osteoblast activity and the negative feedback regulation of osteoclastic activity are equally important in strategies to achieve successful alveolar bone regeneration. Here, a molybdenum (Mo)-containing bioactive glass ceramic scaffold with solid-strut-packed structures (Mo-scaffold) was printed, and its ability to regulate pro-osteogenic and anti-osteoclastogenic cellular responses was evaluated in vitro and in vivo. We found that extracts derived from Mo-scaffold (Mo-extracts) strongly stimulated osteogenic differentiation of bone marrow mesenchymal stem cells and inhibited differentiation of osteoclast progenitors. The identified comodulatory effect was further demonstrated to arise from Mo ions in the Mo-extract, wherein Mo ions suppressed osteoclastic differentiation by scavenging reactive oxygen species (ROS) and inhibiting mitochondrial biogenesis in osteoclasts. Consistent with the in vitro findings, the Mo-scaffold was found to significantly promote osteoblast-mediated bone formation and inhibit osteoclast-mediated bone resorption throughout the bone healing process, leading to enhanced bone regeneration. In combination with our previous finding that Mo ions participate in material-mediated immunomodulation, this study offers the new insight that Mo ions facilitate bone repair by comodulating the balance between bone formation and resorption. Our findings suggest that Mo ions are multifunctional cellular modulators that can potentially be used in biomaterial design and bone tissue engineering.
Collapse
Affiliation(s)
- Beimin Tian
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xuan Li
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Jiujiu Zhang
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Meng Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Dian Gan
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Daokun Deng
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Lijuan Sun
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiaotao He
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Chengtie Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Faming Chen
- Department of Periodontology, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
17
|
Xiang X, Gao W, Xu Y, Zhang Y, Lu T, Gan S, Huang J, Li Z, Huang L, Liao Y, Wang L, Zhang J. Study on promoting regeneration of zebrafish skull by phycocyanin characterized by in vivo optical coherence tomography. JOURNAL OF BIOPHOTONICS 2022; 15:e202100333. [PMID: 35044723 DOI: 10.1002/jbio.202100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/11/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
In this study, the efficacy of phycocyanin in bone defect repairing was tested on a zebrafish skull defect model, and the evaluating process was monitored in vivo using optical coherence tomography (OCT). Thirty zebrafish were randomly divided into three groups, which were immersed in water and phycocyanin solution (50 and 100 mg/L) after skull defect creating. All zebrafish were examined by OCT immediately after craniotomy, and on the 10th and 20th days of phycocyanin treatment. All the model fish were euthanized to enable a histological evaluation of skull after 20 days of recovery. OCT images demonstrated that phycocyanin (50 mg/L) could repair a cranial defect within 20 days. A high concentration (100 mg/L) of phycocyanin may favor the recovery of bone abnormalities in 10 days, but with the extended treatment time to 20 days, a deformation of the skull occurs.
Collapse
Affiliation(s)
- Xiang Xiang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yao Xu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yiqing Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ting Lu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuqi Gan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ziling Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yonghua Liao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Limei Wang
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Wu T, Li B, Huang W, Zeng X, Shi Y, Lin Z, Lin C, Xu W, Xia H, Zhang T. Developing a novel calcium magnesium silicate/graphene oxide incorporated silk fibroin porous scaffold with enhanced osteogenesis, angiogenesis and inhibited osteoclastogenesis. Biomed Mater 2022; 17. [PMID: 35395653 DOI: 10.1088/1748-605x/ac65cc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/08/2022] [Indexed: 11/11/2022]
Abstract
Recently, biofunctional ions (Mg2+, Si4+, etc.) and graphene derivatives are proved to be promising in stimulating bone formation. In this study, a novel inorganic/organic composite porous scaffold based on silk fibroin (SF), graphene oxide (GO), and calcium magnesium silicate (CMS) was developed for bone repair. The porous scaffolds obtained by lyophilization showed a little difference in pore structure while GO and CMS displayed a good interaction with SF matrix. The addition of CMS with good mineralization potential and sustainedly release ability of biofunctional ions (Ca2+, Mg2+ and Si4+) increased the strength of SF scaffolds a little and facilitated the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) by upregulating bone formation-related genes (ALP, COL1, OC and Runx2). The further incorporation of GO in SF scaffolds enhanced the compressive strength and water retention, and also remarkably promoted the osteogenic differentiation of BMSCs. Besides, the angiogenesis of human umbilical vein endothelial cells was significantly promoted by CMS/GO/SF scaffold extract through the upregulation of angiogenesis genes (eNOs and bFGF). Moreover, the osteoclastic formation ability of RAW264.7 cells was suppressed by the released ions from CMS/GO/SF scaffold through the down-regulation of CAK, MMP9 and TRAP. The promoted osteogenesis, angiogenesis and inhibited osteoclastogenesis functions of CMS/GO/SF composite scaffold may enable it as a novel therapy for bone repair and regeneration.
Collapse
Affiliation(s)
- Tingting Wu
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Medicine and Health, Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Binglin Li
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, Guangdong, 510010, CHINA
| | - Wenhan Huang
- Department of Orthopaedics, Guangdong Academy of Medical Sciences, No.06, Zhongshan 2nd Road, Guangzhou, 510080, CHINA
| | - Xianli Zeng
- Southern Medical University, No.1023-1063, Shatai South Road, Baiyun District, Guangzhou, 510515, CHINA
| | - YiWan Shi
- Jinan University, 613 Huangpu Avenue West, Guangzhou, Guangdong, 510630, CHINA
| | - Zefeng Lin
- Department of Orthopedics,, PLA General Hospital of Southern Theatre Command, No.111, Liuhua road, Guangzhou, Guangdong, 510010, CHINA
| | - Chengxiong Lin
- Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Weikang Xu
- Guangdong Academy of Sciences, No. 1307, Guangzhou Avenue Middle, Guangzhou, Guangdong, 510500, CHINA
| | - Hong Xia
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, Guangdong, 510010, CHINA
| | - Tao Zhang
- PLA General Hospital of Southern Theatre Command, No.111, Liuhua Road, Guangzhou, 510010, CHINA
| |
Collapse
|
19
|
Lin Z, Zhang X, Fritch MR, Li Z, Kuang B, Alexander PG, Hao T, Cao G, Tan S, Bruce KK, Lin H. Engineering pre-vascularized bone-like tissue from human mesenchymal stem cells through simulating endochondral ossification. Biomaterials 2022; 283:121451. [DOI: 10.1016/j.biomaterials.2022.121451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 01/12/2023]
|
20
|
Bighetti-Trevisan RL, Souza ATP, Tosin IW, Bueno NP, Crovace MC, Beloti MM, Rosa AL, Ferraz EP. Bioactive glass-ceramic for bone tissue engineering: an in vitro and in vivo study focusing on osteoclasts. Braz Oral Res 2022; 36:e022. [PMID: 35293496 DOI: 10.1590/1807-3107bor-2022.vol36.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Despite the crucial role of osteoclasts in the physiological process of bone repair, most bone tissue engineering strategies have focused on osteoblast-biomaterial interactions. Although Biosilicate® with two crystalline phases (BioS-2P) exhibits osteogenic properties and significant bone formation, its effects on osteoclasts are unknown. This study aimed to investigate the in vitro and in vivo effects of BioS-2P on osteoclast differentiation and activity. RAW 264.7 cells were cultured in osteoclastogenic medium (OCM) or OCM conditioned with BioS-2P (OCM-BioS-2P), and the cell morphology, viability, and osteoclast differentiation were evaluated. BioS-2P scaffolds were implanted into rat calvarial defects, and the bone tissue was evaluated using tartrate-resistant acid phosphatase (TRAP) staining and RT-polymerase chain reaction (PCR) after 2 and 4 weeks to determine the gene expressions of osteoclast markers and compare them with those of the bone grown in empty defects (Control). OCM-BioS-2P favored osteoclast viability and activity, as evidenced by an increase in the TRAP-positive cells and matrix resorption. The bone tissue grown on BioS-2P scaffolds exhibited higher expression of the osteoclast marker genes (Ctsk, Mmp 9, Rank) after 2 and 4 weeks and the RankL/Opg ratio after 2 weeks. Trap gene expression was lower at 2 weeks, and a higher number of TRAP-stained areas were observed in the newly formed bone on BioS-2P scaffolds at both 2 and 4 weeks compared to the Controls. These results enhanced our understanding of the role of bioactive glass-ceramics in bone repair, and highlighted their role in the modulation of osteoclastic activities and promotion of interactions between bone tissues and biomaterials.
Collapse
Affiliation(s)
| | | | - Ingrid Wezel Tosin
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Natália Pieretti Bueno
- Universidade de São Paulo - USP, School of Dentistry, Department of Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP, Brazil
| | - Murilo Camuri Crovace
- Universidade Federal de São Carlos - UFScar, Vitreous Materials Laboratory, São Carlos, SP, Brazil
| | - Marcio Mateus Beloti
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Adalberto Luiz Rosa
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Bone Research Lab, Ribeirão Preto, SP, Brazil
| | - Emanuela Prado Ferraz
- Universidade de São Paulo - USP, School of Dentistry, Department of Oral and Maxillofacial Surgery, Prosthesis and Traumatology, São Paulo, SP, Brazil
| |
Collapse
|
21
|
Bone Regeneration and Oxidative Stress: An Updated Overview. Antioxidants (Basel) 2022; 11:antiox11020318. [PMID: 35204201 PMCID: PMC8868092 DOI: 10.3390/antiox11020318] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Bone tissue engineering is a complex domain that requires further investigation and benefits from data obtained over past decades. The models are increasing in complexity as they reveal new data from co-culturing and microfluidics applications. The in vitro models now focus on the 3D medium co-culturing of osteoblasts, osteoclasts, and osteocytes utilizing collagen for separation; this type of research allows for controlled medium and in-depth data analysis. Oxidative stress takes a toll on the domain, being beneficial as well as destructive. Reactive oxygen species (ROS) are molecules that influence the differentiation of osteoclasts, but over time their increasing presence can affect patients and aid the appearance of diseases such as osteoporosis. Oxidative stress can be limited by using antioxidants such as vitamin K and N-acetyl cysteine (NAC). Scaffolds and biocompatible coatings such as hydroxyapatite and bioactive glass are required to isolate the implant, protect the zone from the metallic, ionic exchange, and enhance the bone regeneration by mimicking the composition and structure of the body, thus enhancing cell proliferation. The materials can be further functionalized with growth factors that create a better response and higher chances of success for clinical use. This review highlights the vast majority of newly obtained information regarding bone tissue engineering, such as new co-culturing models, implant coatings, scaffolds, biomolecules, and the techniques utilized to obtain them.
Collapse
|
22
|
Vitale M, Ligorio C, McAvan B, Hodson NW, Allan C, Richardson SM, Hoyland JA, Bella J. Hydroxyapatite-decorated Fmoc-hydrogel as a bone-mimicking substrate for osteoclast differentiation and culture. Acta Biomater 2022; 138:144-154. [PMID: 34781025 PMCID: PMC8756142 DOI: 10.1016/j.actbio.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022]
Abstract
Hydrogels are water-swollen networks with great potential for tissue engineering applications. However, their use in bone regeneration is often hampered due to a lack of materials' mineralization and poor mechanical properties. Moreover, most studies are focused on osteoblasts (OBs) for bone formation, while osteoclasts (OCs), cells involved in bone resorption, are often overlooked. Yet, the role of OCs is pivotal for bone homeostasis and aberrant OC activity has been reported in several pathological diseases, such as osteoporosis and bone cancer. For these reasons, the aim of this work is to develop customised, reinforced hydrogels to be used as material platform to study cell function, cell-material interactions and ultimately to provide a substrate for OC differentiation and culture. Here, Fmoc-based RGD-functionalised peptide hydrogels have been modified with hydroxyapatite nanopowder (Hap) as nanofiller, to create nanocomposite hydrogels. Atomic force microscopy showed that Hap nanoparticles decorate the peptide nanofibres with a repeating pattern, resulting in stiffer hydrogels with improved mechanical properties compared to Hap- and RGD-free controls. Furthermore, these nanocomposites supported adhesion of Raw 264.7 macrophages and their differentiation in 2D to mature OCs, as defined by the adoption of a typical OC morphology (presence of an actin ring, multinucleation, and ruffled plasma membrane). Finally, after 7 days of culture OCs showed an increased expression of TRAP, a typical OC differentiation marker. Collectively, the results suggest that the Hap/Fmoc-RGD hydrogel has a potential for bone tissue engineering, as a 2D model to study impairment or upregulation of OC differentiation. STATEMENT OF SIGNIFICANCE: Altered osteoclasts (OC) function is one of the major cause of bone fracture in the most commonly skeletal disorders (e.g. osteoporosis). Peptide hydrogels can be used as a platform to mimic the bone microenvironment and provide a tool to assess OC differentiation and function. Moreover, hydrogels can incorporate different nanofillers to yield hybrid biomaterials with enhanced mechanical properties and improved cytocompatibility. Herein, Fmoc-based RGD-functionalised peptide hydrogels were decorated with hydroxyapatite (Hap) nanoparticles to generate a hydrogel with improved rheological properties. Furthermore, they are able to support osteoclastogenesis of Raw264.7 cells in vitro as confirmed by morphology changes and expression of OC-markers. Therefore, this Hap-decorated hydrogel can be used as a template to successfully differentiate OC and potentially study OC dysfunction.
Collapse
Affiliation(s)
- Mattia Vitale
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Cosimo Ligorio
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Bethan McAvan
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Nigel W Hodson
- BioAFM Facility, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chris Allan
- Biogelx Ltd-BioCity Scotland, Bo'Ness Rd, Newhouse, Chapelhall, Motherwell ML1 5UH, United Kingdom
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
23
|
Recombinant Proteins-Based Strategies in Bone Tissue Engineering. Biomolecules 2021; 12:biom12010003. [PMID: 35053152 PMCID: PMC8773742 DOI: 10.3390/biom12010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
The increase in fracture rates and/or problems associated with missing bones due to accidents or various pathologies generates socio-health problems with a very high impact. Tissue engineering aims to offer some kind of strategy to promote the repair of damaged tissue or its restoration as close as possible to the original tissue. Among the alternatives proposed by this specialty, the development of scaffolds obtained from recombinant proteins is of special importance. Furthermore, science and technology have advanced to obtain recombinant chimera’s proteins. This review aims to offer a synthetic description of the latest and most outstanding advances made with these types of scaffolds, particularly emphasizing the main recombinant proteins that can be used to construct scaffolds in their own right, i.e., not only to impregnate them, but also to make scaffolds from their complex structure, with the purpose of being considered in bone regenerative medicine in the near future.
Collapse
|
24
|
Abstract
Bone fragility fractures remain an important worldwide health and economic problem due to increased morbidity and mortality. The current methods for predicting fractures are largely based on the measurement of bone mineral density and the utilization of mathematical risk calculators based on clinical risk factors for bone fragility. Despite these approaches, many bone fractures remain undiagnosed. Therefore, current research is focused on the identification of new factors such as bone turnover markers (BTM) for risk calculation. BTM are a group of proteins and peptides released during bone remodeling that can be found in serum or urine. They derive from bone resorptive and formative processes mediated by osteoclasts and osteoblasts, respectively. Potential use of BTM in monitoring these phenomenon and therefore bone fracture risk is limited by physiologic and pathophysiologic factors that influence BTM. These limitations in predicting fractures explain why their inclusion in clinical guidelines remains limited despite the large number of studies examining BTM.
Collapse
Affiliation(s)
- Lisa Di Medio
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University Hospital of Florence, Florence, Italy
| |
Collapse
|
25
|
Wang L, Wu TH, Hu X, Liu J, Wu D, Miguez PA, Wright JT, Zhang S, Chi JT, Tseng HC, Ko CC. Biomimetic polydopamine-laced hydroxyapatite collagen material orients osteoclast behavior to an anti-resorptive pattern without compromising osteoclasts' coupling to osteoblasts. Biomater Sci 2021; 9:7565-7574. [PMID: 34664567 PMCID: PMC10547016 DOI: 10.1039/d1bm01119g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polydopamine-assisted modification for bone substitute materials has recently shown great application potential in bone tissue engineering due to its excellent biocompatibility and adhesive properties. A scaffold material's impact on osteoclasts is equally as important as its impact on osteoblasts when considering tissue engineering for bone defect repair, as healthy bone regeneration requires an orchestrated coupling between osteoclasts and osteoblasts. How polydopamine-functionalized bone substitute materials modulate the activity of osteoblast lineage cells has been extensively investigated, but much less is known about their impact on osteoclasts. Moreover, most of the polydopamine-functionalized materials would need to additionally load a biomolecule to exert the modulation on osteoclast activity. Herein, we demonstrated that our biomimetic polydopamine-laced hydroxyapatite collagen (PDHC) scaffold material, which does not need to load additional bioactive agent, is sufficiently able to modulate osteoclast activity in vitro. First, PDHC showed an anti-resorptive potential, characterized by decreased osteoclast differentiation and resorption capacity and changes in osteoclasts' transcriptome profile. Next, cAMP response element-binding protein (CREB) activity was found to mediate PDHC's anti-osteoclastogenic effect. Finally, although PDHC altered clastokines expression pattern of osteoclasts, as revealed by transcriptomic and secretomic analysis, osteoclasts' coupling to osteoblasts was not compromised by PDHC. Collectively, this study demonstrated the PDHC material orients osteoclast behavior to an anti-resorptive pattern without compromising osteoclasts' coupling to osteoblasts. Such a feature is favorable for the net increase of bone mass, which endows the PDHC material with great application potential in preclinical/clinical bone defect repair.
Collapse
Affiliation(s)
- Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Tai-Hsien Wu
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, USA.
| | - Xiangxiang Hu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Jie Liu
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, USA.
| | - Di Wu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Patricia A Miguez
- Division of Comprehensive Oral Health, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - John Timothy Wright
- Division of Pediatric and Public Health, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Shaoping Zhang
- Department of Periodontics, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Center for Genomics and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, USA.
| |
Collapse
|
26
|
Abstract
As the world's population ages, the treatment of osteoporosis is a major problem to be addressed. The cause of osteoporosis remains unclear. Ca2+ is not only an important component of bones but also plays a key role in osteoporosis treatment. Transient receptor potential vanilloid (TRPV) channels are one of the TRP channel families that is widely distributed in various organs, playing an important role in the physiological regulation of the human body. Bone formation and bone absorption may require Ca2+ transport via TRPV channels. It has been proven that the TRPV subtypes 1, 2, 4, 5, 6 (TRPV1, TRPV2, TRPV4, TRPV5, TRPV6) may affect bone metabolism balance through selective regulation of Ca2+. They significantly regulate osteoblast/osteoclast proliferation, differentiation and function. The purpose of this review is to explore the mechanisms of TRPV channels involved in regulation of the differentiation of osteoblasts and osteoclasts, as well as to discuss the latest developments in current researches, which may provide new clues and directions for an in-depth study of osteoporosis and other related bone metabolic diseases.
Collapse
|
27
|
Porous 3D Scaffolds Enhance MSC Vitality and Reduce Osteoclast Activity. Molecules 2021; 26:molecules26206258. [PMID: 34684837 PMCID: PMC8541337 DOI: 10.3390/molecules26206258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the context of an aging population, unhealthy Western lifestyle, and the lack of an optimal surgical treatment, deep osteochondral defects pose a great challenge for the public health system. Biodegradable, biomimetic scaffolds seem to be a promising solution. In this study we investigated the biocompatibility of porous poly-((D,L)-lactide-ε-caprolactone)dimethacrylate (LCM) scaffolds in contrast to compact LCM scaffolds and blank cell culture plastic. Thus, morphology, cytotoxicity and metabolic activity of human mesenchymal stromal cells (MSC) seeded directly on the materials were analyzed after three and six days of culturing. Further, osteoclastogenesis and osteoclastic activity were assessed using reverse-transcriptase real-time PCR of osteoclast-specific genes, EIA and morphologic aspects after four, eight, and twelve days. LCM scaffolds did not display cytotoxic effects on MSC. After three days, metabolic activity of MSC was enhanced on 3D porous scaffolds (PS) compared to 2D compact scaffolds (CS). Osteoclast activity seemed to be reduced at PS compared to cell culture plastic at all time points, while no differences in osteoclastogenesis were detectable between the materials. These results indicate a good cytocompatibility of LCM scaffolds. Interestingly, porous 3D structure induced higher metabolic activity of MSC as well as reduced osteoclast activity.
Collapse
|
28
|
Ren J, Kohli N, Sharma V, Shakouri T, Keskin-Erdogan Z, Saifzadeh S, Brierly GI, Knowles JC, Woodruff MA, García-Gareta E. Poly-ε-Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects. Polymers (Basel) 2021; 13:3399. [PMID: 34641215 PMCID: PMC8512525 DOI: 10.3390/polym13193399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
We hypothesized that a composite of 3D porous melt-electrowritten poly-ɛ-caprolactone (PCL) coated throughout with a porous and slowly biodegradable fibrin/alginate (FA) matrix would accelerate bone repair due to its angiogenic potential. Scanning electron microscopy showed that the open pore structure of the FA matrix was maintained in the PCL/FA composites. Fourier transform infrared spectroscopy and differential scanning calorimetry showed complete coverage of the PCL fibres by FA, and the PCL/FA crystallinity was decreased compared with PCL. In vitro cell work with osteoprogenitor cells showed that they preferentially bound to the FA component and proliferated on all scaffolds over 28 days. A chorioallantoic membrane assay showed more blood vessel infiltration into FA and PCL/FA compared with PCL, and a significantly higher number of bifurcation points for PCL/FA compared with both FA and PCL. Implantation into a rat cranial defect model followed by microcomputed tomography, histology, and immunohistochemistry after 4- and 12-weeks post operation showed fast early bone formation at week 4, with significantly higher bone formation for FA and PCL/FA compared with PCL. However, this phenomenon was not extrapolated to week 12. Therefore, for long-term bone regeneration, tuning of FA degradation to ensure syncing with new bone formation is likely necessary.
Collapse
Affiliation(s)
- Jiongyu Ren
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.R.); (G.I.B.); (M.A.W.)
| | - Nupur Kohli
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park & Saint Mark’s Hospital, London HA1 3UJ, UK; (N.K.); (V.S.)
- Department of Mechanical Engineering, Imperial College London, London SW7 1AL, UK
| | - Vaibhav Sharma
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park & Saint Mark’s Hospital, London HA1 3UJ, UK; (N.K.); (V.S.)
| | - Taleen Shakouri
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
| | - Zalike Keskin-Erdogan
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
| | - Siamak Saifzadeh
- Medical Engineering Research Facility, Queensland University of Technology, Brisbane, QLD 4059, Australia;
| | - Gary I. Brierly
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.R.); (G.I.B.); (M.A.W.)
| | - Jonathan C. Knowles
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Centre for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Maria A. Woodruff
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (J.R.); (G.I.B.); (M.A.W.)
| | - Elena García-Gareta
- Regenerative Biomaterials Group, The RAFT Institute & The Griffin Institute, Northwick Park & Saint Mark’s Hospital, London HA1 3UJ, UK; (N.K.); (V.S.)
- Division of Biomaterials & Tissue Engineering, Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, UK; (T.S.); (Z.K.-E.); (J.C.K.)
| |
Collapse
|
29
|
Ding T, Kang W, Li J, Yu L, Ge S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J Nanobiotechnology 2021; 19:247. [PMID: 34404409 PMCID: PMC8371786 DOI: 10.1186/s12951-021-00992-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background The regeneration of periodontal bone defect remains a vital clinical challenge. To date, numerous biomaterials have been applied in this field. However, the immune response and vascularity in defect areas may be key factors that are overlooked when assessing the bone regeneration outcomes of biomaterials. Among various regenerative therapies, the up-to-date strategy of in situ tissue engineering stands out, which combined scaffold with specific growth factors that could mimic endogenous regenerative processes. Results Herein, we fabricated a core/shell fibrous scaffold releasing basic fibroblast growth factor (bFGF) and bone morphogenetic protein-2 (BMP-2) in a sequential manner and investigated its immunomodulatory and angiogenic properties during periodontal bone defect restoration. The in situ tissue engineering scaffold (iTE-scaffold) effectively promoted the angiogenesis of periodontal ligament stem cells (PDLSCs) and induced macrophage polarization into pro-healing M2 phenotype to modulate inflammation. The immunomodulatory effect of macrophages could further promote osteogenic differentiation of PDLSCs in vitro. After being implanted into the periodontal bone defect model, the iTE-scaffold presented an anti-inflammatory response, provided adequate blood supply, and eventually facilitated satisfactory periodontal bone regeneration. Conclusions Our results suggested that the iTE-scaffold exerted admirable effects on periodontal bone repair by modulating osteoimmune environment and angiogenic activity. This multifunctional scaffold holds considerable promise for periodontal regenerative medicine and offers guidance on designing functional biomaterials. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00992-4.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Wenyan Kang
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Jianhua Li
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Lu Yu
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China
| | - Shaohua Ge
- Department of Periodontology & Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, China.
| |
Collapse
|
30
|
Bernhardt A, Skottke J, von Witzleben M, Gelinsky M. Triple Culture of Primary Human Osteoblasts, Osteoclasts and Osteocytes as an In Vitro Bone Model. Int J Mol Sci 2021; 22:7316. [PMID: 34298935 PMCID: PMC8307867 DOI: 10.3390/ijms22147316] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/12/2023] Open
Abstract
In vitro evaluation of bone graft materials is generally performed by analyzing the interaction with osteoblasts or osteoblast precursors. In vitro bone models comprising different cell species can give specific first information on the performance of those materials. In the present study, a 3D co-culture model was established comprising primary human osteoblasts, osteoclasts and osteocytes. Osteocytes were differentiated from osteoblasts embedded in collagen gels and were cultivated with osteoblast and osteoclasts seeded in patterns on a porous membrane. This experimental setup allowed paracrine signaling as well as separation of the different cell types for final analysis. After 7 days of co-culture, the three cell species showed their typical morphology and gene expression of typical markers like ALPL, BSPII, BLGAP, E11, PHEX, MEPE, RANKL, ACP5, CAII and CTSK. Furthermore, relevant enzyme activities for osteoblasts (ALP) and osteoclasts (TRAP, CTSK, CAII) were detected. Osteoclasts in triple culture showed downregulated TRAP (ACP5) and CAII expression and decreased TRAP activity. ALP and BSPII expression of osteoblasts in triple culture were upregulated. The expression of the osteocyte marker E11 (PDPN) was unchanged; however, osteocalcin (BGLAP) expression was considerably downregulated both in osteoblasts and osteocytes in triple cultures compared to the respective single cultures.
Collapse
Affiliation(s)
- Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Medical Faculty and University Hospital, Technische Universität Dresden, D-01307 Dresden, Germany; (J.S.); (M.v.W.); (M.G.)
| | | | | | | |
Collapse
|
31
|
Husch JFA, Stessuk T, den Breejen C, van den Boom M, Leeuwenburgh SCG, van den Beucken JJJP. A Practical Procedure for the In Vitro Generation of Human Osteoclasts and Their Characterization. Tissue Eng Part C Methods 2021; 27:421-432. [PMID: 34162266 DOI: 10.1089/ten.tec.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Osteoclasts are multinucleated cells derived from the hematopoietic monocyte/macrophage lineage that possess the unique capacity to resorb bone. Due to the crucial role of osteoclasts in maintaining bone homeostasis and pathologies, this cell type is pivotal in multiple research areas dedicated to bone physiology in health and disease. Although numerous methods for generation of human osteoclasts are already available, those rely either on cell labeling-based purification or an intermediate adhesion step after which cells are directly differentiated toward osteoclasts. While the former requires additional reagents and equipment, the latter harbors the risk of variable osteoclast formation due to varying numbers of osteoclast precursors available for different donors. In this study, we report a facile and reliable three-step method for the generation of human osteoclasts from blood-derived precursor cells. Monocytes were obtained after adhering peripheral blood-derived mononuclear cells to plastic substrates followed by macrophage induction and proliferation resulting in a homogeneous population of osteoclast precursors. Finally, macrophages were seeded into suitable culture vessels and differentiated toward osteoclasts. Osteoclastogenesis was monitored longitudinally using nondestructive techniques, while the functionality of mature osteoclasts was confirmed after 14 days of culture by analysis of functional (e.g., elevated tartrate-resistant acid phosphatase [TRAP]-activity, resorption) and morphological (e.g., presence of TRAP, actin ring, and integrin β3) characteristics. Furthermore, we propose to use combinatory staining of three morphological osteoclast markers, rather than previously reported staining of a single or maximal two markers, to clearly distinguish osteoclasts from undifferentiated mononuclear cells. Impact statement Research related to bone biology requires a standardized and reliable method for in vitro generation of human osteoclasts. We here describe such a procedure which avoids shortcomings of previously published protocols. Further, we report on nondestructive methods to qualitatively and quantitatively monitor osteoclastogenesis longitudinally, and on analysis of osteoclast generation and functionality after 14 days. Specifically, we recommend assessment of morphological human osteoclast characteristics using combinatory staining of three markers to confirm successful osteoclast generation.
Collapse
Affiliation(s)
- Johanna F A Husch
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Talita Stessuk
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Cèzanne den Breejen
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Manouk van den Boom
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Jeroen J J P van den Beucken
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Dellago B, Ricke A, Geyer T, Liska R, Baudis S. Photopolymerizable precursors for degradable biomaterials based on acetal moieties. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Clasky AJ, Watchorn JD, Chen PZ, Gu FX. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites. Acta Biomater 2021; 122:1-25. [PMID: 33352300 DOI: 10.1016/j.actbio.2020.12.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.
Collapse
|
34
|
Heinemann C, Adam J, Kruppke B, Hintze V, Wiesmann HP, Hanke T. How to Get Them off?-Assessment of Innovative Techniques for Generation and Detachment of Mature Osteoclasts for Biomaterial Resorption Studies. Int J Mol Sci 2021; 22:ijms22031329. [PMID: 33572748 PMCID: PMC7865995 DOI: 10.3390/ijms22031329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The fusion process of mononuclear monocytes into multinuclear osteoclasts in vitro is an essential process for the study of osteoclastic resorption of biomaterials. Thereby biomaterials offer many influencing factors such as sample shape, material composition, and surface topography, which can have a decisive influence on the fusion and thus the entire investigation. For the specific investigation of resorption, it can therefore be advantageous to skip the fusion on samples and use mature, predifferentiated osteoclasts directly. However, most conventional detachment methods (cell scraper, accutase), lead to a poor survival rate of osteoclasts or to a loss of function of the cells after their reseeding. In the present study different conventional and novel methods of detachment in combination with different culture surfaces were investigated to obtain optimal osteoclast differentiation, yield, and vitality rates without loss of function. The innovative method-using thermoresponsive surfaces for cultivation and detachment-was found to be best suited. This is in particular due to its ability to maintain osteoclast activity, as proven by TRAP 5b-, CTSK-activity and resorption pits on dentin discs and decellularized osteoblast-derived matrix plates. In conclusion, it is shown, that osteoclasts can be predifferentiated on cell culture dishes and transferred to a reference biomaterial under preservation of osteoclastic resorption activity, providing biomaterial researchers with a novel tool for material characterization.
Collapse
|
35
|
Liang Q, Du L, Zhang R, Kang W, Ge S. Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Prolif 2021; 54:e12997. [PMID: 33511708 PMCID: PMC7941242 DOI: 10.1111/cpr.12997] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Stromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem cells (PDLSCs) and bone regeneration have not been investigated. In this study, we aimed to evaluate the effects of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro and periodontal bone regeneration in vivo. Methods Cell‐counting kit‐8 (CCK8), transwell assay, qRT‐PCR and western blot were used to determine the effects and mechanism of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro. A rat periodontal bone defect model was developed to evaluate the effects of topical application of SDF‐1 and systemic injection of EX‐4 on endogenous cell recruitment, osteoclastogenesis and bone regeneration in vivo. Results SDF‐1/EX‐4 cotherapy had additive effects on PDLSC proliferation, migration, alkaline phosphatase (ALP) activity, mineral deposition and osteogenesis‐related gene expression compared to SDF‐1 or EX‐4 in vitro. Pretreatment with ERK inhibitor U0126 blocked SDF‐1/EX‐4 cotherapy induced ERK signal activation and PDLSC proliferation. SDF‐1/EX‐4 cotherapy significantly promoted new bone formation, recruited more CXCR4+ cells and CD90+/CD34‐ stromal cells to the defects, enhanced early‐stage osteoclastogenesis and osteogenesis‐related markers expression in regenerated bone compared to control, SDF‐1 or EX‐4 in vivo. Conclusions SDF‐1/EX‐4 cotherapy synergistically regulated PDLSC activities, promoted periodontal bone formation, thereby providing a new strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Qianyu Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| | - Lingqian Du
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan Shandong, China
| | - Rui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China.,Department of Endodontics, Hospital of stomatology, Zunyi Medical University, Zunyi Guizhou, China
| | - Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| |
Collapse
|
36
|
Veiga A, Castro F, Rocha F, Oliveira A. Silk-based microcarriers: current developments and future perspectives. IET Nanobiotechnol 2020; 14:645-653. [PMID: 33108319 PMCID: PMC8676661 DOI: 10.1049/iet-nbt.2020.0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Cell-seeded microcarriers (MCs) are currently one of the most promising topics in biotechnology. These systems are supportive structures for cell growth and expansion that allow efficient nutrient and gas transfer between the media and the attached cells. Silk proteins have been increasingly used for this purpose in the past few years due to their biocompatibility, biodegradability and non-toxicity. To date, several silk fibroin spherical MCs in combination with alginate, gelatin and calcium phosphates have been reported with very interesting outcomes. In addition, other silk-based three-dimensional structures such as microparticles with chitosan and collagen, as well as organoids, have been increasingly studied. In this study, the physicochemical and biological properties of these biomaterials, as well as the recent methodologies for their processing and for cell culture, are discussed. The potential biomedical applications are also addressed. In addition, an analysis of the future perspectives is presented, where the potential of innovative silk-based MCs processing technologies is highlighted.
Collapse
Affiliation(s)
- Anabela Veiga
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Filipa Castro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal.
| | - Fernando Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology & Energy, Faculty of Engineering of Porto, Department of Chemical Engineering, University of Porto, Porto, Portugal
| | - Ana Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
37
|
Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020; 6:5399-5430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morbidity, mortality, and burden of burn victims and patients with severe diabetic wounds are still high, which leads to an extensively growing demand for novel treatments with high clinical efficacy. Biomaterial-based wound treatment approaches have progressed over time from simple cotton wool dressings to advanced skin substitutes containing cells and growth factors; however, no wound care approach is yet completely satisfying. Bioactive glasses are materials with potential in many areas that exhibit unique features in biomedical applications. Today, bioactive glasses are not only amorphous solid structures that can be used as a substitute in hard tissue but also are promising materials for soft tissue regeneration and wound healing applications. Biologically active elements such as Ag, B, Ca, Ce, Co, Cu, Ga, Mg, Se, Sr, and Zn can be incorporated in glass networks; hence, the superiority of these multifunctional materials over current materials results from their ability to release multiple therapeutic ions in the wound environment, which target different stages of the wound healing process. Bioactive glasses and their dissolution products have high potency for inducing angiogenesis and exerting several biological impacts on cell functions, which are involved in wound healing and some other features that are valuable in wound healing applications, namely hemostatic and antibacterial properties. In this review, we focus on skin structure, the dynamic process of wound healing in injured skin, and existing wound care approaches. The basic concepts of bioactive glasses are reviewed to better understand the relationship between glass structure and its properties. We illustrate the active role of bioactive glasses in wound repair and regeneration. Finally, research studies that have used bioactive glasses in wound healing applications are summarized and the future trends in this field are elaborated.
Collapse
Affiliation(s)
- Tina Mehrabi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Zahra Mohammadi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
38
|
He F, Lu T, Fang X, Feng S, Feng S, Tian Y, Li Y, Zuo F, Deng X, Ye J. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32340-32351. [PMID: 32597161 DOI: 10.1021/acsami.0c07304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study proposes a novel approach, termed extrusion-microdrilling, to fabricate three-dimensional (3D) interconnected bioceramic scaffolds with channel-like macropores for bone regeneration. The extrusion-microdrilling method is characterized by ease of use, high efficiency, structural flexibility, and precision. The 3D interconnected β-tricalcium phosphate bioceramic (EM-TCP) scaffolds prepared by this method showed channel-like square macropores (∼650 μm) by extrusion and channel-like round macropores (∼570 μm) by microdrilling as well as copious micropores. By incorporating a strontium-containing phosphate-based glass (SrPG), the obtained calcium phosphate-based bioceramic (EM-TCP/SrPG) scaffolds had noticeably higher compressive strength, lower porosity, and smaller macropore size, tremendously enhanced in vitro proliferation and osteogenic differentiation of mouse bone marrow stromal cells, and suppressed in vitro osteoclastic activities of RAW264.7 cells, as compared with the EM-TCP scaffolds. In vivo assessment results indicated that at postoperative week 6, new vessels and a large percentage of new bone tissues (24-25%) were formed throughout the interconnected macropores of EM-TCP and EM-TCP/SrPG, which were implanted in the femoral defects of rabbits; the bone formation of the EM-TCP group was comparable to that of the EM-TCP/SrPG group. At 12 weeks postimplantation, the bone formation percentage of EM-TCP was slightly reduced, while that of EM-TCP/SrPG with a slower degradation rate was pronouncedly increased. This work provides a new strategy to fabricate interconnected bioceramic scaffolds allowing for fast bone regeneration, and the EM-TCP/SrPG scaffolds are promising for efficiently repairing bone defects.
Collapse
Affiliation(s)
- Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Jihua Laboratory, Foshan 528200, People's Republic of China
| | - Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Xibo Fang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Songheng Feng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Shenglei Feng
- School of Civil Engineering, Hebei University of Engineering, Handan 056038, People's Republic of China
| | - Ye Tian
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yanhui Li
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Fei Zuo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xin Deng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
- Jihua Laboratory, Foshan 528200, People's Republic of China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
39
|
Zhao F, van Rietbergen B, Ito K, Hofmann S. Fluid flow-induced cell stimulation in bone tissue engineering changes due to interstitial tissue formation in vitro. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3342. [PMID: 32323478 PMCID: PMC7388075 DOI: 10.1002/cnm.3342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 06/01/2023]
Abstract
In tissue engineering experiments in vitro, bioreactors have been used for applying wall shear stress (WSS) on cells to regulate cellular activities. To determine the loading conditions within bioreactors and to design tissue engineering products, in silico models are used. Previous in silico studies in bone tissue engineering (BTE) focused on quantifying the WSS on cells and the influence on appositional tissue growth. However, many BTE experiments also show interstitial tissue formation (i.e., tissue infiltrated in the pores rather than growing on the struts - appositional growth), which has not been considered in previous in silico studies. We hereby used a multiscale fluid-solid interaction model to quantify the WSS and mechanical strain on cells with interstitial tissue formation, taken from a reported BTE experiment. The WSS showed a high variation among different interstitial tissue morphologies. This is different to the situation under appositional tissue growth. It is found that a 35% filling of the pores results (by mineralised bone tissue) when the average WSS increases from 1.530 (day 0) to 5.735 mPa (day 28). Furthermore, the mechanical strain on cells caused by the fluid flow was extremely low (at the level of 10-14 -10-15 ), comparing to the threshold in a previous mechanobiological theory of osteogenesis (eg, 10-2 ). The output from this study offers a significant insight of the WSS changes during interstitial tissue growth under a constant perfusion flow rate in a BTE experiment. It has paved the way for optimising the local micro-fluidic environment for interstitial tissue mineralisation.
Collapse
Affiliation(s)
- Feihu Zhao
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
- Zienkiewicz Centre for Computational Engineering (ZCCE), College of EngineeringSwansea UniversitySwanseaUnited Kingdom
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
40
|
Ying X, Jin X, Wang P, He Y, Zhang H, Ren X, Chai S, Fu W, Zhao P, Chen C, Ma G, Liu H. Integrative Analysis for Elucidating Transcriptomics Landscapes of Glucocorticoid-Induced Osteoporosis. Front Cell Dev Biol 2020; 8:252. [PMID: 32373610 PMCID: PMC7176994 DOI: 10.3389/fcell.2020.00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis is the most common bone metabolic disease, characterized by bone mass loss and bone microstructure changes due to unbalanced bone conversion, which increases bone fragility and fracture risk. Glucocorticoids are clinically used to treat a variety of diseases, including inflammation, cancer and autoimmune diseases. However, excess glucocorticoids can cause osteoporosis. Herein we performed an integrated analysis of two glucocorticoid-related microarray datasets. The WGCNA analysis identified 3 and 4 glucocorticoid-related gene modules, respectively. Differential expression analysis revealed 1047 and 844 differentially expressed genes in the two datasets. After integrating differentially expressed glucocorticoid-related genes, we found that most of the robust differentially expressed genes were up-regulated. Through protein-protein interaction analysis, we obtained 158 glucocorticoid-related candidate genes. Enrichment analysis showed that these genes are significantly enriched in the osteoporosis related pathways. Our results provided new insights into glucocorticoid-induced osteoporosis and potential candidate markers of osteoporosis.
Collapse
Affiliation(s)
- Xiaoxia Ying
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiyun Jin
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Haomiao Zhang
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Ren
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenqi Fu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Pengcheng Zhao
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Chen Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020; 108:22-45. [PMID: 32251782 DOI: 10.1016/j.actbio.2020.03.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Bone is an extremely dynamic tissue, undergoing continuous remodeling for its whole lifetime, but its regeneration or augmentation due to bone loss or defects are not always easy to obtain. Bone tissue engineering (BTE) is a promising approach, and its success often relies on a "smart" scaffold, as a support to host and guide bone formation through bone cell precursors. Bone homeostasis is maintained by osteoblasts (OBs) and osteoclasts (OCs) within the basic multicellular unit, in a consecutive cycle of resorption and formation. Therefore, a functional scaffold should allow the best possible OB/OC cooperation for bone remodeling, as happens within the bone extracellular matrix in the body. In the present work OB/OC co-culture models, with and without scaffolds, are reviewed. These experimental systems are intended for different targets, including bone remodeling simulation, drug testing and the assessment of biomaterials and 3D scaffolds for BTE. As a consequence, several parameters, such as cell type, cell ratio, culture medium and inducers, culture times and setpoints, assay methods, etc. vary greatly. This review identifies and systematically reports the in vitro methods explored up to now, which, as they allow cellular communication, more closely resemble bone remodeling and/or the regeneration process in the framework of BTE. STATEMENT OF SIGNIFICANCE: Bone is a dynamic tissue under continuous remodeling, but spontaneous healing may fail in the case of excessive bone loss which often requires valid alternatives to conventional treatments to restore bone integrity, like bone tissue engineering (BTE). Pre-clinical evaluation of scaffolds for BTE requires in vitro testing where co-cultures combining innovative materials with osteoblasts (OBs) and osteoclasts (OCs) closely mimic the in vivo repair process. This review considers the direct and indirect OB/OC co-cultures relevant to BTE, from the early mouse-cell models to the recent bone regenerative systems. The co-culture modeling of bone microenvironment provides reliable information on bone cell cross-talk. Starting from improved knowledge on bone remodeling, bone disease mechanisms may be understood and new BTE solutions are designed.
Collapse
|
42
|
He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, Liu Z. Effect of cadmium on osteoclast differentiation during bone injury in female mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:487-494. [PMID: 31793751 DOI: 10.1002/tox.22884] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that represents an occupational hazard and environmental pollutant toxic heavy metal, which can cause osteoporosis following accumulation in the body. The purpose of this study was to investigate the effect of Cd on bone tissue osteoclast differentiation in vivo. Female BALB/c mice were randomly divided into three groups and given drinking water with various concentrations of Cd (0, 5, and 25 mg/L) for 16 weeks, after which the mice were sacrificed after collecting urine and blood. The level of Cd, calcium (Ca), phosphorus (P), trace elements, and some biochemical indicators were measured, and the bone was fixed in a 4% formaldehyde solution for histological observation. Bone marrow cells were isolated to determine the expression of osteoclast-associated mRNA and proteins. Cd was increased in the blood, urine, and bone in response to Cd in drinking water in a dose-dependent manner. The content of iron (Fe), manganese (Mn), and zinc (Zn) was significantly increased, whereas Ca and P were decreased in bone compared to the control group. Cd affected the histological structure of the bone, and induced the upregulation and downregulation of tartrate-resistant acid phosphatase 5b (TRACP-5b) and estradiol in the serum, respectively. Cd had no significant effect on the alkaline phosphatase activity in the serum. The expression of osteoclast marker proteins, including TRACP, cathepsin K, matrix metalloprotein 9, and carbonic anhydrases were all increased in the Cd-treated bone marrow cells. Cd significantly increased the expression of receptor activator of nuclear factor kappa B ligand (RANKL), but had lower effect on the expression of osteoprotegerin (OPG) in both bone marrow cells and bone tissue. Thus, Cd exposure destroyed the bone microstructure, promoted the formation of osteoclasts in the bone tissue, and accelerated bone resorption, in which the OPG/RANKL pathway may play an important role.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Liling Zhuo
- Department of Life Science, Zaozhuang College, Zaozhuang, China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Shahabipour F, Oskuee RK, Dehghani H, Shokrgozar MA, Aninwene GE, Bonakdar S. Cell-cell interaction in a coculture system consisting of CRISPR/Cas9 mediated GFP knock-in HUVECs and MG-63 cells in alginate-GelMA based nanocomposites hydrogel as a 3D scaffold. J Biomed Mater Res A 2020; 108:1596-1606. [PMID: 32180319 DOI: 10.1002/jbm.a.36928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
The interaction between osteogenic and angiogenic cells through a coculturing system in biocompatible materials has been considered for successfully engineering vascularized bone tissue equivalents. In this study, we developed a hydrogel-blended scaffold consisted of gelatin methacryloyl (GelMA) and alginate enriched with hydroxyapatite nanoparticles (HAP) to model an in vitro prevascularized bone construct. The hydrogel-based scaffold revealed a higher mechanical stiffness than those of pure (GelMA), alginate, and (GelMA+ HAP) hydrogels. In the present study, we generated a green fluorescent protein (GFP) knock-in umbilical vein endothelial cells (HUVECs) cell line using the CRISPR/Cas9 technology. The GFP was inserted into the human-like ROSA locus of HUVECs genome. HUVECs expressing GFP were cocultured with OB-like cells (MG-63) within three-dimensionally (3D) fabricated hydrogel to investigate the response of cocultured osteoblasts and endothelial cells in a 3D structure. Cell viability under the 3D cocultured gel was higher than the 3D monocultured. Compared to the 3D monocultured condition, the cells were aligned and developed into the vessel-like structures. During 14 days of culture periods, the cells displayed actin protrusions by the formation of spike-like filopodia in the 3D cocultured model. Angiogenic and osteogenic-related genes such as CD31, vWF, and osteocalcin showed higher expression in the cocultured versus the monocultured. These results have collectively indicated that the 3D cocultured hydrogel facilitates interaction among cells, thereby having a greater effect on angiogenic and osteogenic properties in the absence of induction media.
Collapse
Affiliation(s)
| | - Reza K Oskuee
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Science, Faculty of Veterinary medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - George E Aninwene
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
44
|
Shi C, Wu T, He Y, Zhang Y, Fu D. Recent advances in bone-targeted therapy. Pharmacol Ther 2020; 207:107473. [PMID: 31926198 DOI: 10.1016/j.pharmthera.2020.107473] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
The coordination between bone resorption and bone formation plays an essential role in keeping the mass and microstructure integrity of the bone in a steady state. However, this balance can be disturbed in many pathological conditions of the bone. Nowadays, the classical modalities for treating bone-related disorders are being challenged by severe obstacles owing to low tissue selectivity and considerable safety concerns. Moreover, as a highly mineralized tissue, the bone shows innate rigidity, low permeability, and reduced blood flow, features that further hinder the effective treatment of bone diseases. With the development of bone biology and precision medicine, one novel concept of bone-targeted therapy appears to be promising, with improved therapeutic efficacy and minimized systematic toxicity. Here we focus on the recent advances in bone-targeted treatment based on the unique biology of bone tissues. We summarize commonly used bone-targeting moieties, with an emphasis on bisphosphonates, tetracyclines, and biomimetic bone-targeting moieties. We also introduce potential bone-targeting strategies aimed at the bone matrix and major cell types in the bone. Based on these bone-targeting moieties and strategies, we discuss the potential applications of targeted therapy to treat bone diseases. We expect that this review will put together useful insights to help with the search for therapeutic efficacy in bone-related conditions.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China
| | - Dehao Fu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology (HUST), Wuhan, PR China.
| |
Collapse
|
45
|
Almeida AR, Bessa-Gonçalves M, Vasconcelos DM, Barbosa MA, Santos SG. Osteoclasts degrade fibrinogen scaffolds and induce mesenchymal stem/stromal osteogenic differentiation. J Biomed Mater Res A 2019; 108:851-862. [PMID: 31845492 DOI: 10.1002/jbm.a.36863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Fibrinogen (Fg) is a pro-inflammatory protein with pro-healing properties. Previous work showed that fibrinogen 3D scaffolds (Fg-3D) promote bone regeneration, but the cellular players were not identified. Osteoclasts are bone resorbing cells that promote bone remodeling in close crosstalk with osteoblasts. Herein, the capacity of osteoclasts differentiated on Fg-3D to degrade the scaffolds and promote osteoblast differentiation was evaluated in vitro. Fg-3D scaffolds were prepared by freeze-drying and osteoclasts were differentiated from primary human peripheral blood monocytes. Results obtained showed osteoclasts expressing the enzymes cathepsin K and tartrate resistant acid phosphatase colonizing Fg-3D scaffolds. Osteoclasts were able to significantly degrade Fg-3D, reducing the scaffold's area, and increasing D-dimer concentration, a Fg degradation product, in their culture media. Osteoclast conditioned media from the first week of differentiation promoted significantly stronger human primary mesenchymal stem/stromal cell (MSC) osteogenic differentiation, evaluated by alkaline phosphatase activity. Moreover, week 1 osteoclast conditioned media promoted earlier MSC osteogenic differentiation, than chemical osteogenesis inductors. TGF-β1 was found increased in osteoclast conditioned media from week 1, when compared to week 3 of differentiation. Taken together, our results suggest that osteoclasts are able to differentiate and degrade Fg-3D, producing factors like TGF-β1 that promote MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Ana R Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mafalda Bessa-Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Daniel M Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| |
Collapse
|
46
|
Westhauser F, Essers C, Karadjian M, Reible B, Schmidmaier G, Hagmann S, Moghaddam A. Supplementation with 45S5 Bioactive Glass Reduces In Vivo Resorption of the β-Tricalcium-Phosphate-Based Bone Substitute Material Vitoss. Int J Mol Sci 2019; 20:ijms20174253. [PMID: 31480285 PMCID: PMC6747147 DOI: 10.3390/ijms20174253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Compared to other materials such as 45S5 bioactive glass (BG), β-tricalcium phosphate (β-TCP)-based bone substitutes such as Vitoss show limited material-driven stimulation of osteogenesis and/or angiogenesis. The unfavorable degradation kinetics of β-TCP-based bone substitutes may result in an imbalance between resorption and osseous regeneration. Composite materials like Vitoss BA (Vitoss supplemented with 20 wt % 45S5-BG particles) might help to overcome these limitations. However, the influence of BG particles in Vitoss BA compared to unsupplemented Vitoss on osteogenesis, resorption behavior, and angiogenesis is not yet described. In this study, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stromal cells before subcutaneous implantation in immunodeficient mice for 10 weeks. Scaffold resorption was monitored by micro-computed tomography, while osteoid formation and vascularization were assessed by histomorphometry and gene expression analysis. Whilst slightly more osteoid and improved angiogenesis were found in Vitoss BA, maturation of the osteoid was more advanced in Vitoss scaffolds. The volume of Vitoss implants decreased significantly, combined with a significantly increased presence of resorbing cells, whilst the volume remained stable in Vitoss BA scaffolds. Future studies should evaluate the interaction of 45S5-BG with resorbing cells and bone precursor cells in greater detail to improve the understanding and application of β-TCP/45S5-BG composite bone substitute materials.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Maria Karadjian
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Bruno Reible
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
- ATORG-Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| |
Collapse
|
47
|
van Gestel NAP, Schuiringa GH, Hennissen JHPH, Delsing ACA, Ito K, van Rietbergen B, Arts JJ, Hofmann S. Resorption of the calcium phosphate layer on S53P4 bioactive glass by osteoclasts. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:94. [PMID: 31414232 PMCID: PMC6694093 DOI: 10.1007/s10856-019-6295-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 05/30/2023]
Abstract
Clinically, S53P4 bioactive glass (BAG) has shown very promising results in bone infection treatment, but it is also known to degrade very slowly in vivo. To evaluate which mechanisms (cellular or dissolution) can play a role in the degradation of S53P4 BAG and S53P4 BAG putty, in vitro degradation experiments at different pH (7.4 and 4.6) were performed. Micro computed tomography showed a rapid dissolution of the synthetic binder in the putty formulation, within 12 h is simulated body fluid (pH = 7.4), leaving behind only loose granules. Therefore the degradation of the loose granules was investigated further. Significant weight loss was observed and ion chromatography showed that Ca2+, Na+ and PO43- ions were released from S54P4 BAG granules in the two fluids. It was observed that the weight loss and ion release were increased when the pH of the fluid was decreased to 4.6. Osteoclasts are known to create such a low pH when resorbing bone and therefore their capacity to degrade S53P4 surfaces were studied as well. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed that osteoclasts were able to create resorption pits in the calcium phosphate layer on S53P4 BAG surfaces. The silica of the BAG, located underneath the calcium phosphate, seemed to hinder further osteclastic resorption of the material. To our knowledge we were the first to observe actively resorbing osteoclasts on S53P4 bioactive glass surfaces, in vitro. Future research is needed to define the specific role osteoclasts play in the degradation of BAG in vivo.
Collapse
Affiliation(s)
- Nicole A P van Gestel
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Gerke H Schuiringa
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Juul H P H Hennissen
- Faculty Bèta Sciences and Technology, Zuyd University of Applied Sciences, PO Box 550, 6400 AN, Heerlen, The Netherlands
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, PO Box 5800, 6229 HX, Maastricht, The Netherlands
| | - Anneke C A Delsing
- Department of the Built Environment, Building Physics and Services, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, PO Box 5800, 6229 HX, Maastricht, The Netherlands
| | - Jacobus J Arts
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Orthopaedic Surgery, Research School CAPHRI, Maastricht University Medical Centre, PO Box 5800, 6229 HX, Maastricht, The Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
48
|
Zhang B, Skelly JD, Maalouf JR, Ayers DC, Song J. Multifunctional scaffolds for facile implantation, spontaneous fixation, and accelerated long bone regeneration in rodents. Sci Transl Med 2019; 11:11/502/eaau7411. [DOI: 10.1126/scitranslmed.aau7411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/23/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Graft-guided regenerative repair of critical long bone defects achieving facile surgical delivery, stable graft fixation, and timely restoration of biomechanical integrity without excessive biotherapeutics remains challenging. Here, we engineered hydration-induced swelling/stiffening and thermal-responsive shape-memory properties into scalable, three-dimensional–printed amphiphilic degradable polymer-osteoconductive mineral composites as macroporous, non–load-bearing, resorbable synthetic grafts. The distinct physical properties of the grafts enabled straightforward surgical insertion into critical-size rat femoral segmental defects. Grafts rapidly recovered their precompressed shape, stiffening and swelling upon warm saline rinse to result in 100% stable graft fixation. The osteoconductive macroporous grafts guided bone formation throughout the defect as early as 4 weeks after implantation; new bone remodeling correlated with rates of scaffold composition-dependent degradation. A single dose of 400-ng recombinant human bone morphogenetic protein-2/7 heterodimer delivered via the graft accelerated bone regeneration bridging throughout the entire defect by 4 weeks after delivery. Full restoration of torsional integrity and complete scaffold resorption were achieved by 12 to 16 weeks after surgery. This biomaterial platform enables personalized bone regeneration with improved surgical handling, in vivo efficacy and safety.
Collapse
|
49
|
Thavornyutikarn B, Wright PFA, Feltis B, Kosorn W, Turney TW. Bisphosphonate activation of crystallized bioglass scaffolds for enhanced bone formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109937. [PMID: 31499956 DOI: 10.1016/j.msec.2019.109937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 11/26/2022]
Abstract
The interplay between bone formation by osteoblasts and bone resorption by osteoclasts has a critical effect on bone remodelling processes, and resultant bone quality. Bone scaffolds combined with anti-resorptive bisphosphonate drugs are a promising approach to achieving bone regeneration. Here, we have examined the synergistic effects of the bisphosphonate alendronate (ALD) coated onto calcium phosphate (CaP) modified, sintered bioactive glass 45S5 (BG) scaffolds, on osteoblast stimulation and osteoclast inhibition. After BG pre-treatment with ALD (10-8 M) for 5 days, human MG-63 osteoblasts displayed increased cellular proliferation and significantly enhanced alkaline phosphatase activity (ALP), in comparison with a non-ALD control BG. In contrast, human THP-1-derived osteoclasts cultured with 10-8 M ALD pretreated BG scaffolds showed a significant decrease in tartrate-resistant acid phosphatase (TRAcP) activity, and morphological changes indicative of functional inhibition, including reduced cell size and disruption of the osteoclast sealing zone (F-actin rings). These findings indicate that ALD-coated BG scaffolds promote osteoblast activity and inhibit osteoclast function to enhance bone formation.
Collapse
Affiliation(s)
- Boonlom Thavornyutikarn
- National Metal and Materials Technology Center, Thailand Science Park, Pathumthani 12120, Thailand
| | - Paul F A Wright
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Bryce Feltis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Wasana Kosorn
- National Metal and Materials Technology Center, Thailand Science Park, Pathumthani 12120, Thailand
| | - Terence W Turney
- Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
50
|
Cai Z, Wan Y, Becker ML, Long YZ, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials 2019; 208:45-71. [PMID: 30991217 DOI: 10.1016/j.biomaterials.2019.03.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Poly(propylene fumarate) (PPF) is a biodegradable polymer that has been investigated extensively over the last three decades. It has led many scientists to synthesize and fabricate a variety of PPF-based materials for biomedical applications due to its controllable mechanical properties, tunable degradation and biocompatibility. This review provides a comprehensive overview of the progress made in improving PPF synthesis, resin formulation, crosslinking, device fabrication and post polymerization modification. Further, we highlight the influence of these parameters on biodegradation, biocompatibility, and their use in a number of regenerative medicine applications, especially bone tissue engineering. In particular, the use of 3D printing techniques for the fabrication of PPF-based scaffolds is extensively reviewed. The recent invention of a ring-opening polymerization method affords precise control of PPF molecular mass, molecular mass distribution (ƉM) and viscosity. Low ƉM facilitates time-certain resorption of 3D printed structures. Novel post-polymerization and post-printing functionalization methods have accelerated the expansion of biomedical applications that utilize PPF-based materials. Finally, we shed light on evolving uses of PPF-based materials for orthopedics/bone tissue engineering and other biomedical applications, including its use as a hydrogel for bioprinting.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| | - Yong Wan
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China; Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China.
| | - David Dean
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|