1
|
Rajput SN, Naeem BK, Ali A, Salim A, Khan I. Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine. World J Stem Cells 2024; 16:410-433. [PMID: 38690517 PMCID: PMC11056638 DOI: 10.4252/wjsc.v16.i4.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages. In humans, their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs. Studies suggested that mesenchymal stem cells (MSCs), necessary for repair and regeneration via transplantation, require doses ranging from 10 to 400 million cells. Furthermore, the limited expansion of MSCs restricts their therapeutic application. AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols. METHODS Human umbilical cord (hUC) tissue derived MSCs were obtained and re-cultured. These cultured cells were subjected to the following evaluation procedures: Immunophenotyping, immunocytochemical staining, trilineage differentiation, population doubling time and number, gene expression markers for proliferation, cell cycle progression, senescence-associated β-galactosidase assay, human telomerase reverse transcriptase (hTERT) expression, mycoplasma, cytomegalovirus and endotoxin detection. RESULTS Analysis of pluripotent gene markers Oct4, Sox2, and Nanog in recultured hUC-MSC revealed no significant differences. The immunophenotypic markers CD90, CD73, CD105, CD44, vimentin, CD29, Stro-1, and Lin28 were positively expressed by these recultured expanded MSCs, and were found negative for CD34, CD11b, CD19, CD45, and HLA-DR. The recultured hUC-MSC population continued to expand through passage 15. Proliferative gene expression of Pax6, BMP2, and TGFb1 showed no significant variation between recultured hUC-MSC groups. Nevertheless, a significant increase (P < 0.001) in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs. Cellular senescence markers (hTERT expression and β-galactosidase activity) did not show any negative effect on recultured hUC-MSCs. Additionally, quality control assessments consistently confirmed the absence of mycoplasma, cytomegalovirus, and endotoxin contamination. CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population. This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
Collapse
Affiliation(s)
- Shafiqa Naeem Rajput
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Bushra Kiran Naeem
- Surgical Unit 4, Dr. Ruth KM Pfau Civil Hospital, Karachi 74400, Pakistan
| | - Anwar Ali
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Center for Regenerative Medicine and Stem Cells Research, and Department of Ophthalmology and Visual Sciences, The Aga Khan University, Karachi 74800, Sindh, Pakistan.
| |
Collapse
|
2
|
Harnessing 3D collagen hydrogel-directed conversion of human GMSCs into SCP-like cells to generate functionalized nerve conduits. NPJ Regen Med 2021; 6:59. [PMID: 34593823 PMCID: PMC8484485 DOI: 10.1038/s41536-021-00170-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Achieving a satisfactory functional recovery after severe peripheral nerve injuries (PNI) remains one of the major clinical challenges despite advances in microsurgical techniques. Nerve autografting is currently the gold standard for the treatment of PNI, but there exist several major limitations. Accumulating evidence has shown that various types of nerve guidance conduits (NGCs) combined with post-natal stem cells as the supportive cells may represent a promising alternative to nerve autografts. In this study, gingiva-derived mesenchymal stem cells (GMSCs) under 3D-culture in soft collagen hydrogel showed significantly increased expression of a panel of genes related to development/differentiation of neural crest stem-like cells (NCSC) and/or Schwann cell precursor-like (SCP) cells and associated with NOTCH3 signaling pathway activation as compared to their 2D-cultured counterparts. The upregulation of NCSC-related genes induced by 3D-collagen hydrogel was abrogated by the presence of a specific NOTCH inhibitor. Further study showed that GMSCs encapsulated in 3D-collagen hydrogel were capable of transmigrating into multilayered extracellular matrix (ECM) wall of natural NGCs and integrating well with the aligned matrix structure, thus leading to biofabrication of functionalized NGCs. In vivo, implantation of functionalized NGCs laden with GMSC-derived NCSC/SCP-like cells (designated as GiSCs), significantly improved the functional recovery and axonal regeneration in the segmental facial nerve defect model in rats. Together, our study has identified an approach for rapid biofabrication of functionalized NGCs through harnessing 3D collagen hydrogel-directed conversion of GMSCs into GiSCs.
Collapse
|
3
|
Min SJ, Lee JS, Nah H, Kim SH, Moon HJ, Reis RL, Kwon IK, Heo DN. Development of photo-crosslinkable platelet lysate-based hydrogels for 3D printing and tissue engineering. Biofabrication 2021; 13. [PMID: 34330124 DOI: 10.1088/1758-5090/ac1993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Three-dimensional (3D) printing shows potential for use as an advanced technology for forming biomimetic tissue and other complex structures. However, there are limits and restrictions on selection of conventional bioinks. Here we report the first 3D-printable platelet lysate (PLMA)-based hydrogel, which consists of platelet lysate from whole blood of humans that can simulate the 3D structure of tissues and can be formed into a crosslinked hydrogel layer-by-layer to build cell-laden hydrogel constructs through methacrylated photo-polymerization. Furthermore, it can be customized for use with various tissues by controlling the physical properties according to irradiation time and concentration. In particular, different cells can be mixed and printed, and the integrity of the 3D printed structure can maintain its shape after crosslinking. The bio-ink exhibits excellent cell diffusion and proliferation at low concentrations, which improves moldability and biocompatibility. The 3D-printable PLMA bioinks may constitute a new strategy to create customized microenvironments for the repair of various tissuesin vivousing materials derived from the human body.
Collapse
Affiliation(s)
- Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jae Seo Lee
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seung Hyeon Kim
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rui L Reis
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco/Guimarães, Portugal
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.,Biofriends Inc., 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Trucco D, Sharma A, Manferdini C, Gabusi E, Petretta M, Desando G, Ricotti L, Chakraborty J, Ghosh S, Lisignoli G. Modeling and Fabrication of Silk Fibroin-Gelatin-Based Constructs Using Extrusion-Based Three-Dimensional Bioprinting. ACS Biomater Sci Eng 2021; 7:3306-3320. [PMID: 34101410 DOI: 10.1021/acsbiomaterials.1c00410] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure's fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs' fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications.
Collapse
Affiliation(s)
- Diego Trucco
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano 1/10, 40136 Bologna, Italy.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Aarushi Sharma
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, Hauz Khas, 110016 New Delhi, India
| | - Cristina Manferdini
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Elena Gabusi
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Mauro Petretta
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Via di Barbiano 1/10, 40136 Bologna, Italy.,RegenHu Ltd., CH-1690 Villaz St. Pierre, Switzerland
| | - Giovanna Desando
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Juhi Chakraborty
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, Hauz Khas, 110016 New Delhi, India
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology, Hauz Khas, 110016 New Delhi, India
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
5
|
Gómez-Blanco JC, Galván-Chacón V, Patrocinio D, Matamoros M, Sánchez-Ortega ÁJ, Marcos AC, Duarte-León M, Marinaro F, Pagador JB, Sánchez-Margallo FM. Improving Cell Viability and Velocity in μ-Extrusion Bioprinting with a Novel Pre-Incubator Bioprinter and a Standard FDM 3D Printing Nozzle. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3100. [PMID: 34198815 PMCID: PMC8201198 DOI: 10.3390/ma14113100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Bioprinting is a promising emerging technology. It has been widely studied by the scientific community for the possibility to create transplantable artificial tissues, with minimal risk to the patient. Although the biomaterials and cells to be used are being carefully studied, there is still a long way to go before a bioprinter can easily and quickly produce printings without harmful effects on the cells. In this sense, we have developed a new μ-extrusion bioprinter formed by an Atom Proton 3D printer, an atmospheric enclosure and a new extrusion-head capable to increment usual printing velocity. Hence, this work has two main objectives. First, to experimentally study the accuracy and precision. Secondly, to study the influence of flow rates on cellular viability using this novel μ-extrusion bioprinter in combination with a standard FDM 3D printing nozzle. Our results show an X, Y and Z axis movement accuracy under 17 μm with a precision around 12 μm while the extruder values are under 5 and 7 μm, respectively. Additionally, the cell viability obtained from different volumetric flow tests varies from 70 to 90%. So, the proposed bioprinter and nozzle can control the atmospheric conditions and increase the volumetric flow speeding up the bioprinting process without compromising the cell viability.
Collapse
Affiliation(s)
- Juan C. Gómez-Blanco
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (V.G.-C.); (D.P.); (M.D.-L.); (F.M.); (F.M.S.-M.)
| | - Victor Galván-Chacón
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (V.G.-C.); (D.P.); (M.D.-L.); (F.M.); (F.M.S.-M.)
| | - David Patrocinio
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (V.G.-C.); (D.P.); (M.D.-L.); (F.M.); (F.M.S.-M.)
| | - Manuel Matamoros
- School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain; (M.M.); (Á.J.S.-O.); (A.C.M.)
| | - Álvaro J. Sánchez-Ortega
- School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain; (M.M.); (Á.J.S.-O.); (A.C.M.)
| | - Alfonso C. Marcos
- School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain; (M.M.); (Á.J.S.-O.); (A.C.M.)
| | - María Duarte-León
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (V.G.-C.); (D.P.); (M.D.-L.); (F.M.); (F.M.S.-M.)
| | - Federica Marinaro
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (V.G.-C.); (D.P.); (M.D.-L.); (F.M.); (F.M.S.-M.)
| | - José B. Pagador
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (V.G.-C.); (D.P.); (M.D.-L.); (F.M.); (F.M.S.-M.)
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (V.G.-C.); (D.P.); (M.D.-L.); (F.M.); (F.M.S.-M.)
| |
Collapse
|
6
|
Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Corneal Epithelial Repair In Vitro. Cells 2021; 10:cells10051254. [PMID: 34069578 PMCID: PMC8160941 DOI: 10.3390/cells10051254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Corneal injuries are among the leading causes of blindness and vision impairment. Trauma, infectious keratitis, thermal and chemical (acids and alkali burn) injuries may lead to irreversible corneal scarring, neovascularization, conjunctivalization, and limbal stem cell deficiency. Bilateral blindness constitutes 12% of total global blindness and corneal transplantation remains a stand-alone treatment modality for the majority of end-stage corneal diseases. However, global shortage of donor corneas, the potential risk of graft rejection, and severe side effects arising from long-term use of immunosuppressive medications, demands alternative therapeutic approaches. Umbilical cord-derived mesenchymal stem cells can be isolated in large numbers using a relatively less invasive procedure. However, their role in injury induced corneal repair is largely unexplored. Here, we isolated, cultured and characterized mesenchymal stem cells from human umbilical cord, and studied the expression of mesenchymal (CD73, CD90, CD105, and CD34), ocular surface and epithelial (PAX6, WNT7A, and CK-8/18) lineage markers through immunofluorescence. The cultured human limbal and corneal epithelial cells were used as controls. Scratch assay was used to study the corneal epithelial repair potential of umbilical cord-derived mesenchymal stem cells, in vitro. The in vitro cultured umbilical cord-derived mesenchymal stem cells were plastic adherent, showed trilineage differentiation and expressed: mesenchymal markers CD90, CD105, CD73; epithelial marker CK-8/18, and ocular lineage developmental markers PAX6 and WNT-7A. Our findings suggest that umbilical cord-derived mesenchymal stem cells promote repair of the injured corneal epithelium by stimulating the proliferation of corneal epithelial cells, in vitro. They may serve as a potential non-ocular source of stem cells for treating injury induced bilateral corneal diseases.
Collapse
|
7
|
Moghaddam AS, Khonakdar HA, Arjmand M, Jafari SH, Bagher Z, Moghaddam ZS, Chimerad M, Sisakht MM, Shojaei S. Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells. ACS APPLIED BIO MATERIALS 2021; 4:4049-4070. [PMID: 35006822 DOI: 10.1021/acsabm.1c00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative medicine offers the potential to repair or substitute defective tissues by constructing active tissues to address the scarcity and demands for transplantation. The method of forming 3D constructs made up of biomaterials, cells, and biomolecules is called bioprinting. Bioprinting of stem cells provides the ability to reliably recreate tissues, organs, and microenvironments to be used in regenerative medicine. 3D bioprinting is a technique that uses several biomaterials and cells to tailor a structure with clinically relevant geometries and sizes. This technique's promise is demonstrated by 3D bioprinted tissues, including skin, bone, cartilage, and cardiovascular, corneal, hepatic, and adipose tissues. Several bioprinting methods have been combined with stem cells to effectively produce tissue models, including adult stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and differentiation techniques. In this review, technological challenges of printed stem cells using prevalent naturally derived bioinks (e.g., carbohydrate polymers and protein-based polymers, peptides, and decellularized extracellular matrix), recent advancements, leading companies, and clinical trials in the field of 3D bioprinting are delineated.
Collapse
Affiliation(s)
- Abolfazl Salehi Moghaddam
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Hossein Ali Khonakdar
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, Dresden D-01069, Germany.,Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4593, Iran
| | - Zohreh Bagher
- ENT and Head & Neck Research Centre and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Mohammadreza Chimerad
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844, Iran
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran 19379-57511, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam 3000 DR, The Netherlands
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, PO Box 13185/768, Tehran 15689-37813, Iran.,Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, PO Box 13185-768, Tehran 15689-37813, Iran
| |
Collapse
|
8
|
Trucco D, Vannozzi L, Teblum E, Telkhozhayeva M, Nessim GD, Affatato S, Al‐Haddad H, Lisignoli G, Ricotti L. Graphene Oxide-Doped Gellan Gum-PEGDA Bilayered Hydrogel Mimicking the Mechanical and Lubrication Properties of Articular Cartilage. Adv Healthc Mater 2021; 10:e2001434. [PMID: 33586352 PMCID: PMC11468639 DOI: 10.1002/adhm.202001434] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/28/2020] [Indexed: 12/15/2022]
Abstract
Articular cartilage (AC) is a specialized connective tissue able to provide a low-friction gliding surface supporting shock-absorption, reducing stresses, and guaranteeing wear-resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects.
Collapse
Affiliation(s)
- Diego Trucco
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Lorenzo Vannozzi
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Eti Teblum
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Madina Telkhozhayeva
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Gilbert Daniel Nessim
- Department of ChemistryBar‐Ilan UniversityRamat Gan52900Israel
- Bar Ilan Institute for Nanotechnology and Advanced Materials (BINA)Bar‐Ilan UniversityRamat Gan52900Israel
| | - Saverio Affatato
- IRCSS Istituto Ortopedico RizzoliLaboratorio Tecnologie BiomedicheVia di Barbiano, 1/10Bologna40136Italy
| | - Hind Al‐Haddad
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| | - Gina Lisignoli
- IRCSS Istituto Ortopedico RizzoliSC Laboratorio di Immunoreumatologia e Rigenerazione TissutaleVia di Barbiano, 1/10Bologna40136Italy
| | - Leonardo Ricotti
- The BioRobotics InstituteScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
- Department of Excellence in Robotics & AIScuola Superiore Sant'AnnaPiazza Martiri della Libertà 33Pisa56127Italy
| |
Collapse
|
9
|
Jamieson C, Keenan P, Kirkwood D, Oji S, Webster C, Russell KA, Koch TG. A Review of Recent Advances in 3D Bioprinting With an Eye on Future Regenerative Therapies in Veterinary Medicine. Front Vet Sci 2021; 7:584193. [PMID: 33665213 PMCID: PMC7921312 DOI: 10.3389/fvets.2020.584193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
3D bioprinting is a rapidly evolving industry that has been utilized for a variety of biomedical applications. It differs from traditional 3D printing in that it utilizes bioinks comprised of cells and other biomaterials to allow for the generation of complex functional tissues. Bioprinting involves computational modeling, bioink preparation, bioink deposition, and subsequent maturation of printed products; it is an intricate process where bioink composition, bioprinting approach, and bioprinter type must be considered during construct development. This technology has already found success in human studies, where a variety of functional tissues have been generated for both in vitro and in vivo applications. Although the main driving force behind innovation in 3D bioprinting has been utility in human medicine, recent efforts investigating its veterinary application have begun to emerge. To date, 3D bioprinting has been utilized to create bone, cardiovascular, cartilage, corneal and neural constructs in animal species. Furthermore, the use of animal-derived cells and various animal models in human research have provided additional information regarding its capacity for veterinary translation. While these studies have produced some promising results, technological limitations as well as ethical and regulatory challenges have impeded clinical acceptance. This article reviews the current understanding of 3D bioprinting technology and its recent advancements with a focus on recent successes and future translation in veterinary medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas G. Koch
- Reproductive Health and Biotechnology Lab, Department of Biomedical Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
V S S, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr 2021; 180:323-332. [PMID: 33025224 DOI: 10.1007/s00431-020-03819-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
Neonates and pediatric populations are vulnerable subjects in terms of health. Proper screening and early optimal treatment would reduce infant and child mortality, improving the quality of life. Researchers and clinicians all over the world are in pursuit of innovations to improve the medical care delivery system. Infant morphometrics changes drastically due to the rapid somatic growth in infancy and childhood, demanding for patient-specific customization of treatment intervention accordingly. 3D printing is a radical technology that allows the generation of physical 3D products from digital images and addresses the patient-specific requirement. The combination of cost-effective and on-demand customization offers a boundless opportunity for the enhancement of neonates and pediatric health.Conclusion: The advanced technology of 3D printing proposes a pioneering breakthrough in bringing physiologically and anatomically appropriate treatment strategies addressing the unmet needs of child health problems. What is Known: • The potential application of 3D printing is observed across a multitude of fields within medicine and surgery. • The unprecedented effect of this technology on pediatric healthcare is still very much a work in progress. What is New: • The recent clinical applications of 3D printing provide better treatment modalities to infants and children. • The review provides an overview of the comparison between conventional treatment methods and 3DP regarding specific applications.
Collapse
Affiliation(s)
- Sukanya V S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi , Sangareddy, Telangana, 502285, India
| | | | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi , Sangareddy, Telangana, 502285, India.
| |
Collapse
|
11
|
Aveic S, Craveiro RB, Wolf M, Fischer H. Current Trends in In Vitro Modeling to Mimic Cellular Crosstalk in Periodontal Tissue. Adv Healthc Mater 2021; 10:e2001269. [PMID: 33191670 PMCID: PMC11469331 DOI: 10.1002/adhm.202001269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Clinical evidence indicates that in physiological and therapeutic conditions a continuous remodeling of the tooth root cementum and the periodontal apparatus is required to maintain tissue strength, to prevent damage, and to secure teeth anchorage. Within the tooth's surrounding tissues, tooth root cementum and the periodontal ligament are the key regulators of a functional tissue homeostasis. While the root cementum anchors the periodontal fibers to the tooth root, the periodontal ligament itself is the key regulator of tissue resorption, the remodeling process, and mechanical signal transduction. Thus, a balanced crosstalk of both tissues is mandatory for maintaining the homeostasis of this complex system. However, the mechanobiological mechanisms that shape the remodeling process and the interaction between the tissues are largely unknown. In recent years, numerous 2D and 3D in vitro models have sought to mimic the physiological and pathophysiological conditions of periodontal tissue. They have been proposed to unravel the underlying nature of the cell-cell and the cell-extracellular matrix interactions. The present review provides an overview of recent in vitro models and relevant biomaterials used to enhance the understanding of periodontal crosstalk and aims to provide a scientific basis for advanced regenerative strategies.
Collapse
Affiliation(s)
- Sanja Aveic
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
- Neuroblastoma LaboratoryPediatric Research Institute Fondazione Città della SperanzaPadova35127Italy
| | | | - Michael Wolf
- Department of OrthodonticsRWTH Aachen University HospitalAachen52074Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalAachen52074Germany
| |
Collapse
|
12
|
Matamoros M, Gómez-Blanco JC, Sánchez ÁJ, Mancha E, Marcos AC, Carrasco-Amador JP, Pagador JB. Temperature and Humidity PID Controller for a Bioprinter Atmospheric Enclosure System. MICROMACHINES 2020; 11:mi11110999. [PMID: 33198062 PMCID: PMC7698131 DOI: 10.3390/mi11110999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
Bioprinting is a complex process, highly dependent on bioink properties (materials and cells) and environmental conditions (mainly temperature, humidity and CO2 concentration) during the bioprinting process. To guarantee proper cellular viability and an accurate geometry, it is mandatory to control all these factors. Despite internal factors, such as printing pressures, temperatures or speeds, being well-controlled in actual bioprinters, there is a lack in the controlling of external parameters, such as room temperature or humidity. In this sense, the objective of this work is to control the temperature and humidity of a new, atmospheric enclosure system for bioprinting. The control has been carried out with a decoupled proportional integral derivative (PID) controller that was designed, simulated and experimentally tested in order to ensure the proper operation of all its components. Finally, the PID controller can stabilize the atmospheric enclosure system temperature in 311 s and the humidity in 65 s, with an average error of 1.89% and 1.30%, respectively. In this sense, the proposed atmospheric enclosure system can reach and maintain the proper temperature and humidity values during post-printing and provide a pre-incubation environment that promotes stability, integrity and cell viability of the 3D bioprinted structures.
Collapse
Affiliation(s)
- Manuel Matamoros
- Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain; (Á.J.S.); (A.C.M.); (J.P.C.-A.)
- Correspondence: (M.M.); (J.C.G.-B.)
| | - J. Carlos Gómez-Blanco
- Jesús Usón Minimally Invasive Surgery Centre, 10002 Cáceres, Spain; (E.M.); (J.B.P.)
- Correspondence: (M.M.); (J.C.G.-B.)
| | - Álvaro J. Sánchez
- Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain; (Á.J.S.); (A.C.M.); (J.P.C.-A.)
| | - Enrique Mancha
- Jesús Usón Minimally Invasive Surgery Centre, 10002 Cáceres, Spain; (E.M.); (J.B.P.)
| | - Alfonso C. Marcos
- Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain; (Á.J.S.); (A.C.M.); (J.P.C.-A.)
| | - J. Pablo Carrasco-Amador
- Department of Graphic Expression, School of Industrial Engineering, University of Extremadura, 06006 Badajoz, Spain; (Á.J.S.); (A.C.M.); (J.P.C.-A.)
| | - J. Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, 10002 Cáceres, Spain; (E.M.); (J.B.P.)
| |
Collapse
|
13
|
3D Printing and NIR Fluorescence Imaging Techniques for the Fabrication of Implants. MATERIALS 2020; 13:ma13214819. [PMID: 33126650 PMCID: PMC7662749 DOI: 10.3390/ma13214819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) printing technology holds great potential to fabricate complex constructs in the field of regenerative medicine. Researchers in the surgical fields have used 3D printing techniques and their associated biomaterials for education, training, consultation, organ transplantation, plastic surgery, surgical planning, dentures, and more. In addition, the universal utilization of 3D printing techniques enables researchers to exploit different types of hardware and software in, for example, the surgical fields. To realize the 3D-printed structures to implant them in the body and tissue regeneration, it is important to understand 3D printing technology and its enabling technologies. This paper concisely reviews 3D printing techniques in terms of hardware, software, and materials with a focus on surgery. In addition, it reviews bioprinting technology and a non-invasive monitoring method using near-infrared (NIR) fluorescence, with special attention to the 3D-bioprinted tissue constructs. NIR fluorescence imaging applied to 3D printing technology can play a significant role in monitoring the therapeutic efficacy of 3D structures for clinical implants. Consequently, these techniques can provide individually customized products and improve the treatment outcome of surgeries.
Collapse
|
14
|
Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, Casado JG, Macías-García A, Díaz Díez MA, Carrasco-Amador JP, Torrejón Martín D, Sánchez-Margallo FM, Pagador JB. Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior. Front Bioeng Biotechnol 2020; 8:776. [PMID: 32850697 PMCID: PMC7424022 DOI: 10.3389/fbioe.2020.00776] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, bioprinting is rapidly evolving and hydrogels are a key component for its success. In this sense, synthesis of hydrogels, as well as bioprinting process, and cross-linking of bioinks represent different challenges for the scientific community. A set of unified criteria and a common framework are missing, so multidisciplinary research teams might not efficiently share the advances and limitations of bioprinting. Although multiple combinations of materials and proportions have been used for several applications, it is still unclear the relationship between good printability of hydrogels and better medical/clinical behavior of bioprinted structures. For this reason, a PRISMA methodology was conducted in this review. Thus, 1,774 papers were retrieved from PUBMED, WOS, and SCOPUS databases. After selection, 118 papers were analyzed to extract information about materials, hydrogel synthesis, bioprinting process, and tests performed on bioprinted structures. The aim of this systematic review is to analyze materials used and their influence on the bioprinting parameters that ultimately generate tridimensional structures. Furthermore, a comparison of mechanical and cellular behavior of those bioprinted structures is presented. Finally, some conclusions and recommendations are exposed to improve reproducibility and facilitate a fair comparison of results.
Collapse
Affiliation(s)
- Enrique Mancha Sánchez
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - J. Carlos Gómez-Blanco
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Esther López Nieto
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | - Javier G. Casado
- Stem Cells Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| | | | - María A. Díaz Díez
- School of Industrial Engineering, University of Extremadura, Badajoz, Spain
| | | | | | | | - J. Blas Pagador
- Bioengineering and Health Technologies Unit, Minimally Invasive Surgery Centre Jesús Usón, Cáceres, Spain
| |
Collapse
|
15
|
Michel R, Auzély-Velty R. Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules 2020; 21:2949-2965. [PMID: 32568527 DOI: 10.1021/acs.biomac.0c00305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of extrusion-based bioprinting for tissue engineering is conditioned by the design of bioinks displaying adequate printability, shape stability, and postprinting bioactivity. In this context, simple bioink formulations, made of cells supported by a polymer matrix, often lack the necessary versatility. To address this issue, intense research work has been focused on introducing colloidal particles into the ink formulation. By creating weak cross-links between polymer chains, added particles modify the rheology and mechanical behavior of bioinks to improve their printability and structural integrity. Additionally, nano- and microscopic particles display composition- and structure-specific properties that can affect the cellular behavior and enhance the formation of tissue within the printed material. This Review offers a comprehensive picture of the role of colloids in bioprinting from a physicochemical and biological perspective. As such, it provides guidance on devising adaptable bioinks for the fabrication of biomimetic tissues.
Collapse
Affiliation(s)
- Raphaël Michel
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 CEDEX 9 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 CEDEX 9 Grenoble, France
| |
Collapse
|
16
|
Macdougall LJ, Anseth K. Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(α-hydroxy acid) Diacrylate Macromers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Balistreri CR, De Falco E, Bordin A, Maslova O, Koliada A, Vaiserman A. Stem cell therapy: old challenges and new solutions. Mol Biol Rep 2020; 47:3117-3131. [PMID: 32128709 DOI: 10.1007/s11033-020-05353-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chronic human diseases will be extended, as well as its effectiveness and success, leading to long-awaited medical revolution. Here, some of these aspects are summarized, reviewing and discussing recent advances in this rapidly developing research field.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Olga Maslova
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
18
|
Rana Khalid I, Darakhshanda I, Rafi a R. 3D Bioprinting: An attractive alternative to traditional organ transplantation. ACTA ACUST UNITED AC 2019. [DOI: 10.17352/abse.000012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|