1
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
2
|
D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid Redox Signal 2024; 40:691-714. [PMID: 37917110 DOI: 10.1089/ars.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Reactive oxygen species (ROS), the reactive oxygen-carrying chemicals moieties, act as pleiotropic signal transducers to maintain various biological processes/functions, including immune response. Increased ROS production leads to oxidative stress, which is implicated in xenobiotic-induced adverse effects. Understanding the immunoregulatory mechanisms and immunotoxicity is of interest to developing therapeutics against xenobiotic insults. Recent Advances: While developmental studies have established the essential roles of ROS in the establishment and proper functioning of the immune system, toxicological studies have demonstrated high ROS generation as one of the potential mechanisms of immunotoxicity induced by environmental chemicals, including heavy metals, pesticides, aromatic hydrocarbons (benzene and derivatives), plastics, and nanoparticles. Mitochondrial electron transport and various signaling components, including NADH oxidase, toll-like receptors (TLRs), NF-κB, JNK, NRF2, p53, and STAT3, are involved in xenobiotic-induced ROS generation and immunotoxicity. Critical Issues: With many studies demonstrating the role of ROS and oxidative stress in xenobiotic-induced immunotoxicity, rigorous and orthogonal approaches are needed to achieve in-depth and precise understanding. The association of xenobiotic-induced immunotoxicity with disease susceptibility and progression needs more data acquisition. Furthermore, the general methodology needs to be possibly replaced with high-throughput precise techniques. Future Directions: The progression of xenobiotic-induced immunotoxicity into disease manifestation is not well documented. Immunotoxicological studies about the combination of xenobiotics, age-related sensitivity, and their involvement in human disease incidence and pathogenesis are warranted. Antioxid. Redox Signal. 40, 691-714.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| |
Collapse
|
3
|
Zhang Q, Lu F, Zhang C, Yu X, Yang X, Yan H. Blocking exosomal secretion aggravated 1,4-benzoquinone-induced cytotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:1099-1106. [PMID: 37818967 DOI: 10.1002/tox.23944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/06/2023] [Accepted: 08/13/2023] [Indexed: 10/13/2023]
Abstract
Benzene exposure inhibits the hematopoietic system and leads to the occurrence of various types of leukemia. However, the mechanism underlying the hematotoxicity of benzene is still largely unclear. Emerging evidence has shown that exosomes are involved in toxic mechanisms of benzene. To understand the effect of 1,4-benzoquinone (PBQ; an active metabolite of benzene in bone marrow) on the exosomal release characteristics and role of exosomal secretion in PBQ-induced cytotoxicity. Exosomes were isolated from PBQ-treated HL-60 cells, purified by ultracentrifugation, and verified by transmission electron microscopy, nanoparticle tracking analysis and the presence of specific biomarkers. Our results showed that PBQ increased exosomal secretion in a dose-dependent manner, reaching a peak in 3 h at 10 μM PBQ treatment and then slowly decreasing in HL-60 cells. The exosomes contained miRNAs, which have been reported to be associated with benzene exposure or benzene poisoning. In particular, mir-34a-3p and mir-34A-5p were enriched in exosomes derived from PBQ-treated cells. In addition, the inhibition of exosomal release by GW4869 (an inhibitor of exosomal release) exacerbated PBQ-induced cytotoxicity, including increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential, and increased the apoptosis rate. Our findings illustrated that exosomes secretion plays an important role in antagonizing PBQ-induced cytotoxicity and maintaining cell homeostasis.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Medicine, Shandong Xiandai University, Jinan, Shandong, People's Republic of China
| | - Fangfang Lu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunxiao Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiuyuan Yu
- Clinical Laboratory, Traditional Chinese Medicine Hospital of Jimo City, Jimo, Shandong, People's Republic of China
| | - Xinjun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hongtao Yan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
4
|
Wroński A, Dobrzyńska I, Sękowski S, Łuczaj W, Olchowik-Grabarek E, Skrzydlewska E. Cannabidiol and Cannabigerol Modify the Composition and Physicochemical Properties of Keratinocyte Membranes Exposed to UVA. Int J Mol Sci 2023; 24:12424. [PMID: 37569799 PMCID: PMC10418984 DOI: 10.3390/ijms241512424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The action of UVA radiation (both that derived from solar radiation and that used in the treatment of skin diseases) modifies the function and composition of keratinocyte membranes. Therefore, this study aimed to assess the effects of phytocannabinoids (CBD and CBG), used singly and in combination, on the contents of phospholipids, ceramides, lipid rafts and sialic acid in keratinocyte membranes exposed to UVA radiation, together with their structure and functionality. The phytocannabinoids, especially in combination (CBD+CBG), partially prevented increased levels of phosphatidylinositols and sialic acid from occurring and sphingomyelinase activity after the UVA exposure of keratinocytes. This was accompanied by a reduction in the formation of lipid rafts and malondialdehyde, which correlated with the parameters responsible for the integrity and functionality of the keratinocyte membrane (membrane fluidity and permeability and the activity of transmembrane transporters), compared to UVA-irradiated cells. This suggests that the simultaneous use of two phytocannabinoids may have a protective effect on healthy cells, without significantly reducing the therapeutic effect of UV radiation used to treat skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Białystok, Nowy Swiat 17/5, 15-453 Białystok, Poland;
| | - Izabela Dobrzyńska
- Laboratory of Bioanalysis, Faculty of Chemistry, University in Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University in Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland; (S.S.); (E.O.-G.)
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland;
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University in Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland; (S.S.); (E.O.-G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland;
| |
Collapse
|
5
|
Zhong B, Ling X, Meng J, Han Y, Zhang H, Liu Z, Chen J, Zhang H, Pan Z, Liu L. Hsa_circ_0001944 regulates apoptosis by regulating the binding of PARP1 and HuR in leukemia and malignant transformed cells induced by hydroquinone. ENVIRONMENTAL TOXICOLOGY 2023; 38:381-391. [PMID: 36448377 DOI: 10.1002/tox.23719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Hydroquinone (HQ) is one of the major metabolites of benzene and can cause abnormal gene expression. It is a known carcinogen that alters cell cycle disruption and cell proliferation. However, its chemical mechanism remain a mystery. Circular RNAs (circRNAs) are a subtype of noncoding RNAs (ncRNAs) that play a variety of roles in biological processes. Hsa_circ_001944 expression was upregulated in 30 leukemia patients and HQ-induced malignant transformed TK6 cells. Hsa_circ_001944 silencing inhibited the growth of HQ-TK6 cells and halted the cell cycle. The silencing of hsa_circ_0001944 led to increased cell accumulation in G1 versus S phase, increased apoptosis in the sh1944 versus the shNC group, and increased levels of DNA damage (γ-H2AX), leading to cell cycle arrest. In summary, inhibition of hsa_circ_001944 restricted cell growth by inhibiting cell cycle arrest and induced growth of HQ-TK6 cells by modulating PARP1 expression. Hsa_circ_0001944 targeted HuR, which is a kind of RNA-binding protein, to control PARP1 expression via RNAinter, RBPmap, and RBPdb. Fluorescence in situ hybridization combined with immunofluorescent labeling and western blotting experiments showed that hsa_circ_001944 was able to dissociate HuR and PARP1 binding in HQ-TK6 cells, control PARP1 production, and ultimately alter the PARP1/H-Ras pathway.
Collapse
Affiliation(s)
- Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Hospital Infection Management, Dongguan Maternal and Child Health Care Hospital, Dongguan, People's Republic of China
| | - Zhidong Liu
- Department of Occupational Disease, Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, People's Republic of China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, People's Republic of China
| |
Collapse
|
6
|
Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells. Molecules 2022; 27:molecules27165056. [PMID: 36014294 PMCID: PMC9413844 DOI: 10.3390/molecules27165056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: 2,4,6-Tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) are utilized as brominated flame retardants (BFRs) in order to reduce the combustion of materials used in various utility products. The presence of 2,4,6-TBP and PBP has been reported in environmental samples as well as in inhaled air, dust, food, drinking water, and the human body. To date, there are limited data concerning the toxic action of 2,4,6-TBP and particularly PBP, and no study has been conducted to assess the apoptotic mechanism of action of these substances in human leukocytes. (2) Methods: PBMCs were isolated from leukocyte–platelet buffy coat and treated with tested substances in concentrations ranging from 0.01 to 50 µg/mL for 24 h. The apoptotic mechanism of action of the tested BFRs was assessed by the determination of phosphatidylserine exposure on the PBMCs surface, the evaluation of mitochondrial potential and cytosolic calcium ion levels, and the determination of caspase-8, -9, and -3 activation. Moreover, poly (ADP-ribose) polymerase-1 (PARP-1) cleavage, DNA fragmentation, and chromatin condensation were analyzed. (3) Results: 2,4,6-TBP and, more strongly, PBP induced apoptosis in PBMCs, changing all tested parameters. It was also found that the mitochondrial pathway was mainly involved in the apoptosis of PBMCs exposed to the studied compounds. (4) Conclusions: 2,4,6-TBP and PBP triggered apoptosis in human PBMCs, and some observed changes occurred at 2,4,6-TBP concentrations that were detected in humans occupationally exposed to this substance.
Collapse
|
7
|
D'Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A. Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1723-1739. [PMID: 35301792 DOI: 10.1002/tox.23520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shiwangi Dwivedi
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Faiza Raihan
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Undiganalu Gangadharappa Yathisha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | | | - Bangera Sheshappa Mamatha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| |
Collapse
|
8
|
Yu CH, Yang SQ, Li L, Xin Y, Zhang F, Liu XF, Yi ZC. Identification of potential pathways and microRNA-mRNA networks associated with benzene metabolite hydroquinone-induced hematotoxicity in human leukemia K562 cells. BMC Pharmacol Toxicol 2022; 23:20. [PMID: 35366954 PMCID: PMC8976366 DOI: 10.1186/s40360-022-00556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hydroquinone (HQ) is a phenolic metabolite of benzene with a potential risk for hematological disorders and hematotoxicity in humans. In the present study, an integrative analysis of microRNA (miRNA) and mRNA expressions was performed to identify potential pathways and miRNA-mRNA network associated with benzene metabolite hydroquinone-induced hematotoxicity. METHODS K562 cells were treated with 40 μM HQ for 72 h, mRNA and miRNA expression changes were examined using transcriptomic profiles and miRNA microarray, and then bioinformatics analysis was performed. RESULTS Out of all the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) induced by HQ, 1482 DEGs and 10 DEMs were up-regulated, and 1594 DEGs and 42 DEMs were down-regulated. HQ-induced DEGs were involved in oxidative stress, apoptosis, DNA methylation, histone acetylation and cellular response to leukemia inhibitory factor GO terms, as well as metabolic, Wnt/β-catenin, NF-κB, and leukemia-related pathways. The regulatory network of mRNAs and miRNAs includes 23 miRNAs, 1108 target genes, and 2304 potential miRNAs-mRNAs pairs. MiR-1246 and miR-224 had the potential to be major regulators in HQ-exposed K562 cells based on the miRNAs-mRNAs network. CONCLUSIONS This study reinforces the use of in vitro model of HQ exposure and bioinformatic approaches to advance our knowledge on molecular mechanisms of benzene hematotoxicity at the RNA level.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yu Xin
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Fang Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xiao-Fan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
9
|
The Differential Effect of Cannabidiol on the Composition and Physicochemical Properties of Keratinocyte and Fibroblast Membranes from Psoriatic Patients and Healthy People. MEMBRANES 2021; 11:membranes11020111. [PMID: 33557204 PMCID: PMC7913938 DOI: 10.3390/membranes11020111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/23/2023]
Abstract
The development of psoriasis is accompanied by oxidative stress, which can modify the components of skin cells. Therefore, the aim of this study was to evaluate the effect of cannabidiol (CBD), an antioxidant and anti-inflammatory phytocannabinoid, on the composition and physicochemical properties of the membranes of healthy and psoriatic keratinocytes and fibroblasts exposed to ultraviolet A (UVA) and ultraviolet B (UVB) radiation. In psoriasis-altered cells, decreased levels of the main groups of phospholipids and increased levels of sialic acid and malondialdehyde (MDA), a lipid peroxidation product, as well as negative charge of cell membranes compared to non-diseased cells, were found. On the other hand, UVA/B radiation increased the levels of phospholipids and MDA in both groups of cells. Moreover, psoriatic cells were characterized by lower levels of sialic acid and negative charge of cell membranes, while non-diseased cells showed the opposite response. The CBD treatment intensified some of the changes (phospholipid content and membrane charge) caused by the radiation of psoriatic cells, while it prevented these changes in the cells of healthy people. The results of this study indicate that CBD can prevent structural and functional changes to the membranes of healthy skin cells during phototherapy for psoriasis.
Collapse
|
10
|
Bhattarai N, Korhonen E, Toppila M, Koskela A, Kaarniranta K, Mysore Y, Kauppinen A. Resvega Alleviates Hydroquinone-Induced Oxidative Stress in ARPE-19 Cells. Int J Mol Sci 2020; 21:ijms21062066. [PMID: 32192228 PMCID: PMC7139575 DOI: 10.3390/ijms21062066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Retinal pigment epithelial (RPE) cells maintain homeostasis at the retina and they are under continuous oxidative stress. Cigarette smoke is a prominent environmental risk factor for age-related macular degeneration (AMD), which further increases the oxidant load in retinal tissues. In this study, we measured oxidative stress and inflammatory markers upon cigarette smoke-derived hydroquinone exposure on human ARPE-19 cells. In addition, we studied the effects of commercial Resvega product on hydroquinone-induced oxidative stress. Previously, it was observed that Resvega induces autophagy during impaired protein clearance in ARPE-19 cells, for which it has the potential to alleviate pro-inflammatory pathways. Cell viability was determined while using the lactate dehydrogenase (LDH) and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and the cytokine levels were measured using the enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) production were measured using the 2',7'-dichlorofluorescin diacetate (H2DCFDA) probe. Hydroquinone compromised the cell viability and increased ROS production in ARPE-19 cells. Resvega significantly improved cell viability upon hydroquinone exposure and reduced the release of interleukin (IL)-8 and monocytic chemoattractant protein (MCP)-1 from RPE cells. Resvega, N-acetyl-cysteine (NAC) and aminopyrrolidine-2,4-dicarboxylic acid (APDC) alleviated hydroquinone-induced ROS production in RPE cells. Collectively, our results indicate that hydroquinone induces cytotoxicity and increases oxidative stress through NADPH oxidase activity in RPE cells, and resveratrol-containing Resvega products prevent those adverse effects.
Collapse
Affiliation(s)
- Niina Bhattarai
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
- Correspondence: (N.B.); (A.K); Tel.: +358-44-9830424 (N.B.); +358-40-3553216 (A.K.)
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
- Department of Clinical Chemistry, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Maija Toppila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.K.); (K.K.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; (A.K.); (K.K.)
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Yashavanthi Mysore
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (M.T.); (Y.M.)
- Correspondence: (N.B.); (A.K); Tel.: +358-44-9830424 (N.B.); +358-40-3553216 (A.K.)
| |
Collapse
|
11
|
Batsalova T, Basheva D, Bardarov K, Bardarov V, Dzhambazov B, Teneva I. Assessment of the cytotoxicity, antioxidant activity and chemical composition of extracts from the cyanobacterium Fischerella major Gomont. CHEMOSPHERE 2019; 218:93-103. [PMID: 30469008 DOI: 10.1016/j.chemosphere.2018.11.097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Cyanoprokaryotes (Cyanobacteria/Cyanophyta) are ancient photosynthetic prokaryotic organisms with cosmopolitan distribution. They are producers of a number of biologically active substances with antitumor and antifungal activity, vitamins, antibiotics, algaecides, insecticides, repellents, hormones, immunosuppressants and toxins. So far, the cyanobacterium Fischerella major Gomont has not been studied regarding its impact on the environment and human health. In this study, the cytotoxic, antioxidant and antitumor activities of four extracts prepared from Fischerella major were evaluated in vitro. In addition, the total phenolic content and the potential for production of cyanotoxins were also analyzed. The conducted GC/MS analysis identified 45 compounds with different chemical nature and biological activity. Presence of microcystins and saxitoxins was detected in all Fischerella major extracts. In vitro testing on cell cultures showed a significant concentration- and time-dependent cytotoxic effect on all cell lines (HeLa, SK-Hep-1 and FL) treated at three exposure times (24, 48 and 72 h) with four extracts. A selective antitumor effect was not observed. This is the first study demonstrating biological activity of extracts from Fischerella major, which makes it an interesting subject for further research, including environmental risk assessments (as producer of cyanotoxins) or as a potential source of pharmaceuticals.
Collapse
Affiliation(s)
- Tsvetelina Batsalova
- Department of Developmental Biology, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Diyana Basheva
- Department of Botany, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | | | | | - Balik Dzhambazov
- Department of Developmental Biology, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria
| | - Ivanka Teneva
- Department of Botany, Plovdiv University "Paisii Hilendarski", 24 Tsar Assen St, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
12
|
Yu CH, Li Y, Zhao X, Yang SQ, Li L, Cui NX, Rong L, Yi ZC. Benzene metabolite 1,2,4-benzenetriol changes DNA methylation and histone acetylation of erythroid-specific genes in K562 cells. Arch Toxicol 2018; 93:137-147. [PMID: 30327826 DOI: 10.1007/s00204-018-2333-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/10/2018] [Indexed: 02/05/2023]
Abstract
1,2,4-Benzenetriol (BT) is one of the phenolic metabolites of benzene, a general occupational hazard and ubiquitous environmental air pollutant with leukemogenic potential in humans. Previous studies have revealed that the benzene metabolites phenol and hydroquinone can inhibit hemin-induced erythroid differentiation in K562 cells. We investigated the roles of DNA methylation and histone acetylation in BT-inhibited erythroid differentiation in K562 cells. When K562 cells were treated with 0, 5, 10, 15 or 20 µM BT for 72 h, hemin-induced hemoglobin synthesis decreased in a concentration-dependent manner. Both 5-aza-2'-deoxycytidine (5-aza-CdR, DNA methyltransferase inhibitor) and trichostatin A (TSA, histone deacetylases inhibitor) could prevent 20 µM BT from inhibiting hemin-induced hemoglobin synthesis and the mRNA expression of erythroid genes. Exposure to BT changed DNA methylation levels at several CpG sites of erythroid-specific genes, as well as the acetylation of histone H3 and H4, chromatin occupancy of GATA-1 and recruitment of RNA polymerase II at α-globin and β-globin gene clusters after hemin induction. These results demonstrated that BT could inhibit hemin-induced erythroid differentiation, where DNA methylation and histone acetylation also played important roles by down-regulating erythroid-specific genes. This partly explained the mechanisms of benzene hematotoxicity.
Collapse
Affiliation(s)
- Chun-Hong Yu
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Yang Li
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China
| | - Xiao Zhao
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Shui-Qing Yang
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Lei Li
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Ning-Xuan Cui
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Long Rong
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zong-Chun Yi
- School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Beijing, 100083, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
13
|
Increased Level of α2,6-Sialylated Glycans on HaCaT Cells Induced by Titanium Dioxide Nanoparticles under UV Radiation. NANOMATERIALS 2018; 8:nano8040253. [PMID: 29671762 PMCID: PMC5923583 DOI: 10.3390/nano8040253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022]
Abstract
As one of the most widely used nanomaterials, the safety of nano-TiO2 for human beings has raised concern in recent years. Sialylation is an important glycosylation modification that plays a critical role in signal transduction, apoptosis, and tumor metastasis. The aim of this work was to investigate the cytotoxicity and phototoxicity of nano-TiO2 with different crystalline phases for human skin keratinocytes (HaCaT cells) under ultraviolet (UV) irradiation and detect sialic acid alterations. The results showed that the mixture of crystalline P25 had the highest cytotoxicity and phototoxicity, followed by pure anatase A25, whereas pure rutile R25 had the lowest cytotoxicity and phototoxicity. A25 and R25 had no effects on the expression of sialic acids on HaCaT cells. However, HaCaT cells treated with P25 and UV showed an increased level of alterations in α2,6-linked sialic acids, which was related to the level of reactive oxygen species (ROS) generated by nano-TiO2 and UV. The abundance of α2,6-linked sialic acids increased as ROS production increased, and vice versa. Antioxidant vitamin C (VC) reversed the abnormal expression of α2,6-linked sialic acids caused by nano-TiO2 and protected cells by eliminating ROS. These findings indicate that nano-TiO2 can alter the sialylation status of HaCaT cells under UV irradiation in a process mediated by ROS.
Collapse
|
14
|
Jia H, Zhang C, Glatt H, Liu Y. Role of exposure/recovery schedule in micronuclei induction by several promutagens in V79-derived cells expressing human CYP2E1 and SULT1A1. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 808:27-37. [DOI: 10.1016/j.mrgentox.2016.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/14/2023]
|
15
|
Tang KY, Yu CH, Jiang L, Gong M, Liu WJ, Wang Y, Cui NX, Song W, Sun Y, Yi ZC. Long-term exposure of K562 cells to benzene metabolites inhibited erythroid differentiation and elevated methylation in erythroid specific genes. Toxicol Res (Camb) 2016; 5:1284-1297. [PMID: 30090432 DOI: 10.1039/c6tx00143b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Benzene is a common occupational hazard and a widespread environmental pollutant. Previous studies have revealed that 72 h exposure to benzene metabolites inhibited hemin-induced erythroid differentiation of K562 cells accompanied with elevated methylation in erythroid specific genes. However, little is known about the effects of long-term and low-dose benzene metabolite exposure. In this study, to elucidate the effects of long-term benzene metabolite exposure on erythroid differentiation, K562 cells were treated with low-concentration phenol, hydroquinone and 1,2,4-benzenetriol for at least 3 weeks. After exposure of K562 cells to benzene metabolites, hemin-induced hemoglobin synthesis declined in a concentration- and time-dependent manner, and the hemin-induced expressions of α-, β- and γ-globin genes and heme synthesis enzyme porphobilinogen deaminase were significantly suppressed. Furthermore, when K562 cells were continuously cultured without benzene metabolites for another 20 days after exposure to benzene metabolites for 4 weeks, the decreased erythroid differentiation capabilities still remained stable in hydroquinone- and 1,2,4-benzenetriol-exposed cells, but showed a slow increase in phenol-exposed K562 cells. In addition, methyltransferase inhibitor 5-aza-2'-deoxycytidine significantly blocked benzene metabolites inhibiting hemoglobin synthesis and expression of erythroid genes. Quantitative MassARRAY methylation analysis also confirmed that the exposure to benzene metabolites increased DNA methylation levels at several CpG sites in several erythroid-specific genes and their far-upstream regulatory elements. These results demonstrated that long-term and low-dose exposure to benzene metabolites inhibited the hemin-induced erythroid differentiation of K562 cells, in which DNA methylation played a role through the suppression of erythroid specific genes.
Collapse
Affiliation(s)
- K Y Tang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - C H Yu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - L Jiang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - M Gong
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W J Liu
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Wang
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - N X Cui
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - W Song
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| | - Y Sun
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China . .,State Key Laboratory of Transducer Technology , Chinese Academy of Sciences , Beijing , China
| | - Z C Yi
- School of Biological Science and Medical Engineering , Beihang University , Beijing 100191 , China .
| |
Collapse
|
16
|
Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice. Int J Mol Sci 2015; 16:27058-71. [PMID: 26569237 PMCID: PMC4661859 DOI: 10.3390/ijms161126001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin− cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin−c-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.
Collapse
|
17
|
del Mar Garcia-Molina M, Muñoz-Muñoz JL, Berna J, García-Ruiz PA, Rodriguez-Lopez JN, Garcia-Canovas F. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone. IUBMB Life 2014; 66:122-7. [PMID: 24578277 DOI: 10.1002/iub.1250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 11/07/2022]
Abstract
Hydroxyhydroquinone (HHQ) was characterized kinetically as a tyrosinase substrate. A kinetic mechanism is proposed, in which HHQ is considered as a monophenol or as an o-diphenol, depending on the part of the molecule that interacts with the enzyme. The kinetic parameters obtained from an analysis of the measurements of the initial steady state rate of 2-hydroxy p-benzoquinone formation were kcatapp=229.0±7.7 s(-1) and KMapp,HHQ=0.40±0.05 mM. Furthermore, the action of tyrosinase on HHQ led to the enzyme's inactivation through a suicide inactivation mechanism. This suicide inactivation process was characterized kinetically by λmaxapp (the apparent maximum inactivation constant) and r, the number of turnovers made by 1 mol of enzyme before being inactivated. The values of λmaxapp and r were (8.2±0.1)×10(-3) s(-1) and 35,740±2,548, respectively.
Collapse
Affiliation(s)
- Maria del Mar Garcia-Molina
- GENZ: Grupo de Investigación de Enzimología, Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Campus de Excelencia Internacional "Mare Nostrum", Universidad de Murcia, Espinardo, Murcia, E-30100, Spain
| | | | | | | | | | | |
Collapse
|