1
|
Berti M, Cavicchio L, Rosato I, Fletcher T, Pitter G, Russo F, Batzella E, Canova C. PFAS and menopause onset: Is it just a matter of reverse causation? Cross-sectional and longitudinal analyses in highly exposed women in the Veneto Region. ENVIRONMENTAL RESEARCH 2025; 264:120305. [PMID: 39510233 DOI: 10.1016/j.envres.2024.120305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Several cross-sectional studies have linked perfluoroalkyl substances (PFAS) to prevalence of menopause. These findings might be influenced by reverse causation mechanism, making longitudinal studies more suitable. However, existing longitudinal studies are limited and present conflicting results. AIM This study investigates the association between PFAS and both prevalence and incidence of menopause, using longitudinal designs to limit the impact of reverse causation. METHODS A surveillance program on a PFAS highly exposed population in the Veneto region started in 2017 with two rounds of screening, on average 3.8 years apart. Women who participated in the first screening (n = 11,046) were included in the cross-sectional analysis. Multivariate logistic regression models were used to estimate the Odds Ratios (ORs) of menopause associated with exposure to different PFAS. For incidence analysis a retrospective-prospective design used PFOA concentrations reconstructed to 2013 (n = 8536), and a prospective design involved women participating in both screenings (n = 1709), evaluating their baseline concentrations of PFOA, PFOS, and PFHxS. Cox proportional hazards models with age as the timescale were used to estimate Hazard Ratios (HRs), adjusting for sociodemographic and lifestyle factors. RESULTS Increased menopause prevalence was associated with higher ln-concentrations of PFOA, PFOS, and PFHxS, with ORs of 1.31 (CI: 1.25-1.38), 1.51 (CI: 1.38-1.66), and 1.42 (CI: 1.34-1.51), respectively. The retrospective-prospective study showed increased risk of menopause in higher PFOA reconstructed quartiles, with HRs of 1.01 (CI: 0.87-1.18), 1.17 (CI: 1.02-1.37), and 1.07 (CI: 0.93-1.23) for the second, third and fourth quartiles. The prospective longitudinal study found no association between PFAS and menopause onset. CONCLUSIONS Our results showed a strong cross-sectional association between PFAS exposure and menopause, a weak positive association in the retrospective-prospective study, and no association in the prospective study. This suggests that cross-sectional associations may largely result from reverse causality due to early menopause on reducing PFAS excretion.
Collapse
Affiliation(s)
- Mirko Berti
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Lara Cavicchio
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy; Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Isabella Rosato
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, Padova, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, Venice, Italy
| | - Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Shen J, Mao Y, Zhang H, Lou H, Zhang L, Moreira JP, Jin F. Exposure of women undergoing in-vitro fertilization to per-and polyfluoroalkyl substances: Evidence on negative effects on fertilization and high-quality embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124474. [PMID: 38992828 DOI: 10.1016/j.envpol.2024.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
In April 2023, the World Health Organization (WHO) reported that 17.5% of the global adult population experience infertility. What may be the contribution of per-and polyfluoroalkyl (PFAS) to this global public health problem? This study explored the associations between in vitro fertilization (IVF) outcomes and plasma concentrations of individual PFAS and PFAS mixtures in women undergoing in vitro fertilization and embryo transfer (IVF-ET) and how these exposures might affect IVF outcomes. We analyzed 8 PFASs in plasma samples from women (N = 259) who underwent IVF treatment. In multivariable generalized linear mixed models, there were statistically significant associations of higher plasma concentrations of PFNA with reduced numbers of total retrieved oocytes [12.486 (95%CI: 0.446,25.418), p trend = 0.017], 2 PN zygotes [6.467(95%CI: 2.034,14.968), p trend = 0.007], and cleavage embryos [6.039(95%CI: 2.162,14.240), p trend = 0.008]. Similarly, there was a continuous decline in the numbers of retrieved 2 PN zygotes and cleavage embryos with increasing concentration of PFOS [6.467(95%CI: 2.034,14.968), p trend = 0.009 and 6.039(95%CI: 2.162,14.240), p trend = 0.031,respectively] and a negative association between PFHxS concentrations and clinical pregnancy during the initial cycles of frozen ET [0.525(95%CI:0.410,0.640), p trend = 0.021]. To investigate the joint effect of PFAS mixtures, a confounder-adjusted BKMR model analysis showed inverse relationship between PFAS mixtures and the number of high-quality embryos, 2 PN zygotes and cleavage embryos, to which the greatest contributors to the mixture effect are PFDeA and PFBS, respectively. It demonstrated that PFAS exposure might exert negative effects on oocyte yield, fertilization and high-quality embryo in women undergoing IVF. These findings suggest that exposure to PFAS may increase the risk of female infertility and further studies are needed to uncover the potential mechanisms underlying the reproductive effects associated with PFAS.
Collapse
Affiliation(s)
- Juan Shen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuchan Mao
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongyan Zhang
- Hangzhou Women's Hospital, 369 Kunpeng Road, Hangzhou, China
| | - Hangying Lou
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Joaquim Paulo Moreira
- International Healthcare Management Research and Development Center (IHM_RDC), The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, Jinan, China; Henan Normal University, School of Social Affairs, Xinxiang, China; Atlantica Instituto Universitario, Gestao em Saude, Oeiras, Portugal.
| | - Fan Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Wei H, Lu S, Chen M, Yao R, Yan B, Li Q, Song X, Li M, Wu Y, Yang X, Ma P. Mechanisms of exacerbation of Th2-mediated eosinophilic allergic asthma induced by plastic pollution derivatives (PPD): A molecular toxicological study involving lung cell ferroptosis and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174482. [PMID: 38969129 DOI: 10.1016/j.scitotenv.2024.174482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Polystyrene microplastics (PS-MP) and dibutyl phthalate (DBP) are plastic pollution derivatives (PPDs) commonly found in the natural environment. To investigate the effects of PPD exposure on the risk of allergic asthma, we established a PPD exposure group in a mouse model. The dose administered for PS-MP was 0.1 mg/d and for DBP was 30 mg/kg/d, with a 5-week oral administration period. The pathological changes of airway tissue and the increase of oxidative stress and inflammatory response confirmed that PPD aggravated eosinophilic allergic asthma in mice. The mitochondrial morphological changes and metabolomics of mice confirmed that ferrotosis and oxidative stress played key roles in this process. Treatment with 100 mg/Kg deferoxamine (DFO) provided significant relief, and metabolomic analysis of lung tissue supported the molecular toxicological. Our findings suggest that the increased levels of reactive oxygen species (ROS) in the lungs lead to Th2-mediated eosinophilic inflammation, characterized by elevated IL-4, IL-5, and eosinophils, and reduced INF-γ levels. This inflammatory response is mediated by the NFκB pathway and exacerbates type I hypersensitivity through increased IL-4 production. In this study, the molecular mechanism by which PPD aggravates asthma in mice was elucidated, which helps to improve the understanding of the health effects of PPD and lays a theoretical foundation for addressing the health risks posed by PPD.
Collapse
Affiliation(s)
- Huaqin Wei
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Surui Lu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mingqing Chen
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Runming Yao
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Biao Yan
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Qing Li
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaoli Song
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengcheng Li
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yang Wu
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, Yunnan, China
| | - Ping Ma
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
4
|
Xu H, Mao X, Zhang S, Ren J, Jiang S, Cai L, Miao X, Tao Y, Peng C, Lv M, Li Y. Perfluorooctanoic acid triggers premature ovarian insufficiency by impairing NAD+ synthesis and mitochondrial function in adult zebrafish. Toxicol Sci 2024; 201:118-128. [PMID: 38830045 DOI: 10.1093/toxsci/kfae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
High-dose perfluorooctanoic acid (PFOA) impairs oocyte maturation and offspring quality. However, the physiological concentrations of PFOA in follicular fluids of patients with premature ovarian insufficiency (POI) were detected at lower levels, thus the relationship between physiological PFOA and reproductive disorders remains elusive. Here, we investigated whether physiological PFOA exposure affects gonad function in adult zebrafish. Physiological PFOA exposure resulted in POI-like phenotypes in adult females, which exhibited decreased spawning frequency, reduced number of ovulated eggs, abnormal gonadal index, and aberrant embryonic mortality. Meanwhile, oocytes from PFOA-exposed zebrafish showed mitochondrial disintegration and diminished mitochondrial membrane potential. Unlike the high-dose treated oocytes exhibiting high reactive oxygen species (ROS) levels and excessive apoptosis, physiological PFOA reduced the ROS levels and did not trigger apoptosis. Interestingly, physiological PFOA exposure would not affect testis function, indicating specific toxicity in females. Mechanistically, PFOA suppressed the NAD+ biosynthesis and impaired mitochondrial function in oocytes, thus disrupting oocyte maturation and ovarian fertility. Nicotinamide mononucleotide (NMN), a precursor for NAD+ biosynthesis, alleviated the PFOA-induced toxic effects in oocytes and improved the oocyte maturation and fertility upon PFOA exposure. Our findings discover new insights into PFOA-induced reproductive toxicity and provide NMN as a potential drug for POI therapy.
Collapse
Affiliation(s)
- Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing 400031, China
| | - Siling Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jie Ren
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shanwen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Lijuan Cai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaomin Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yixi Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Fisheries Development Department of Agriculture and Rural Committee of Nanchuan District, Chongqing 408400, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Huang G, Li J, Zhou L, Duan T, Deng L, Yang P, Gong Y. Perfluoroalkyl and Polyfluoroalkyl Substances in Relation to the Participant-Reported Total Pregnancy and Live Birth Numbers among Reproductive-Aged Women in the United States. TOXICS 2024; 12:613. [PMID: 39195715 PMCID: PMC11359323 DOI: 10.3390/toxics12080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), widely utilized in various industries, may pose potential reproductive well-being risks. However, the research on the impact of PFAS exposures on pregnancy and live birth rates remains scarce. To address this gap, we conducted a cross-sectional study using the data from the United States National Health and Nutrition Examination Survey (NHANES) collected between 2013 and 2018. We focused on six PFAS compounds measured in the serum of women aged 20 to 50 years, employing the Poisson regression, Quantile G-composition (Qgcomp), and Weighted Quantile Sum (WQS) regression models. Adjusting for age, racial/ethnic origin, educational level, marital status, family income, body mass index (BMI), menarche age, birth control pill use, and other female hormone consumption, the Poisson regression identified significant negative associations between the individual PFAS exposures and pregnancy and live birth numbers (p < 0.05 for all 24 null hypotheses for which the slope of the trend line is zero). The Qgcomp analysis indicated that a one-quartile increase in the mixed PFAS exposures was associated with reductions of 0.09 (95% CI: -0.15, -0.03) in the pregnancy numbers and 0.12 (95% CI: -0.19, -0.05) in the live birth numbers. Similarly, the WQS analysis revealed that a unit increase in the WQS index corresponded to decreases of 0.14 (95% CI: -0.20, -0.07) in the pregnancy numbers and 0.14 (95% CI: -0.21, -0.06) in the live birth numbers. Among the six specific PFAS compounds we studied, perfluorononanoic acid (PFNA) had the most negative association with the pregnancy and live birth numbers. In conclusion, our findings suggest that PFAS exposures are associated with lower pregnancy and live birth numbers among women of reproductive age.
Collapse
Affiliation(s)
- Guangtong Huang
- School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Jiehao Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lixin Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tiantian Duan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; (J.L.); (L.Z.); (T.D.); (L.D.)
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Shi W, Zhang Z, Li M, Dong H, Li J. Reproductive toxicity of PFOA, PFOS and their substitutes: A review based on epidemiological and toxicological evidence. ENVIRONMENTAL RESEARCH 2024; 250:118485. [PMID: 38373549 DOI: 10.1016/j.envres.2024.118485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have already drawn a lot of attention for their accumulation and reproductive toxicity in organisms. Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS), two representative PFAS, are toxic to humans and animals. Due to their widespread use in environmental media with multiple toxicities, PFOA and PFOS have been banned in numerous countries, and many substitutes have been produced to meet market requirements. Unfortunately, most alternatives to PFOA and PFOS have proven to be cumulative and highly toxic. Of the reported multiple organ toxicities, reproductive toxicity deserves special attention. It has been confirmed through epidemiological studies that PFOS and PFOA are not only associated with reduced testosterone levels in humans, but also with an association with damage to the integrity of the blood testicular barrier. In addition, for women, PFOA and PFOS are correlated with abnormal sex hormone levels, and increase the risk of infertility and abnormal menstrual cycle. Nevertheless, there is controversial evidence on the epidemiological relationship that exists between PFOA and PFOS as well as sperm quality and reproductive hormones, while the evidence from animal studies is relatively consistent. Based on the published papers, the potential toxicity mechanisms for PFOA, PFOS and their substitutes were reviewed. For males, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Apoptosis and autophagy in spermatogenic cells; (2) Apoptosis and differentiation disorders of Leydig cells; (3) Oxidative stress in sperm and disturbance of Ca2+ channels in sperm membrane; (4) Degradation of delicate intercellular junctions between Sertoli cells; (5) Activation of brain nuclei and shift of hypothalamic metabolome. For females, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Damage to oocytes through oxidative stress; (2) Inhibition of corpus luteum function; (3) Inhibition of steroid hormone synthesis; (4) Damage to follicles by affecting gap junction intercellular communication (GJIC); (5) Inhibition of placental function. Besides, PFAS substitutes show similar reproductive toxicity with PFOA and PFOS, and are even more toxic to the placenta. Finally, based on the existing knowledge, future developments and direction of efforts in this field are suggested.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Tang W, Zhu X, Chen Y, Yang S, Wu C, Chen D, Xue L, Guo Y, Dai Y, Wei S, Wu M, Wu M, Wang S. Towards prolonging ovarian reproductive life: Insights into trace elements homeostasis. Ageing Res Rev 2024; 97:102311. [PMID: 38636559 DOI: 10.1016/j.arr.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Ovarian aging is marked by a reduction in the quantity and quality of ovarian follicles, leading to a decline in female fertility and ovarian endocrine function. While the biological characteristics of ovarian aging are well-established, the exact mechanisms underlying this process remain elusive. Recent studies underscore the vital role of trace elements (TEs) in maintaining ovarian function. Imbalances in TEs can lead to ovarian aging, characterized by reduced enzyme activity, hormonal imbalances, ovulatory disorders, and decreased fertility. A comprehensive understanding of the relationship between systemic and cellular TEs balance and ovarian aging is critical for developing treatments to delay aging and manage age-related conditions. This review consolidates current insights into TEs homeostasis and its impact on ovarian aging, assesses how altered TEs metabolism affects ovarian aging, and suggests future research directions to prolong ovarian reproductive life. These studies are expected to offer novel approaches for mitigating ovarian aging.
Collapse
Affiliation(s)
- Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Shuhong Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Lockington C, Favetta LA. How Per- and Poly-Fluoroalkyl Substances Affect Gamete Viability and Fertilization Capability: Insights from the Literature. J Xenobiot 2024; 14:651-678. [PMID: 38804291 PMCID: PMC11130945 DOI: 10.3390/jox14020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
There has been emerging research linking per- and poly-fluoroalkyl substances (PFAS) to gamete viability and fertility. PFAS, prevalent in the environment and water supplies, undergo slow degradation due to their C-F bond and a long half-life (2.3-8.5 years). In females, PFAS inhibit the hypothalamic-pituitary-gonadal (HPG) axis, reducing follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels, leading to the inhibition of androgen and estradiol production. PFAS have been found to cause detrimental effects on egg quality through impairing folliculogenesis. In males, PFAS can impair sperm motility and morphology: two fundamental qualities of successful fertilization. PFAS exposure has been proven to inhibit testosterone production, sperm capacitation, and acrosomal reaction. After fertilization, the results of PFAS exposure to embryos have also been investigated, showing reduced development to the blastocyst stage. The aim of this review is to report the main findings in the literature on the impact of PFAS exposure to gamete competency and fertilization capability by highlighting key studies on both male and female fertility. We report that there is significant evidence demonstrating the negative impacts on fertility after PFAS exposure. At high doses, these environmentally abundant and widespread compounds can significantly affect human fertility.
Collapse
Affiliation(s)
| | - Laura A. Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
9
|
Chu Y, Li Q, He Y, Li H, Wang Q, Li S, Wang J, Wang W, Ju S. Exposure to chlorpyrifos interferes with intercellular communication in cumulus-oocyte complexes during porcine oocyte maturation. Food Chem Toxicol 2024; 187:114629. [PMID: 38565334 DOI: 10.1016/j.fct.2024.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide (OP) to control pests has been verified reproductive toxicity on mammalian oocytes. However, limited information exists on its correlation with the dysfunction of the intercellular communication in cumulus-oocyte complexes (COCs). Herein, our study utilized porcine COCs as models to directly address the latent impact of CPF on the communication between cumulus cells (CCs) and oocytes during in vitro maturation. The results demonstrated that CPF exposure decreased the rate of the first polar body (PB1) extrusion and blocked meiosis progression. Notably, the cumulus expansion of CPF-exposed COCs was suppressed significantly, accompanied by the down-regulated mRNA levels of cumulus expansion-related genes. Furthermore, the early apoptotic level was raised and the expression of BAX/BCL2 and cleaved caspase 3 was up-regulated in the CCs of CPF-exposed COCs (p < 0.05). Moreover, CPF exposure impaired mRNA levels of antioxidant enzyme-related genes, induced higher levels of reactive oxygen species (ROS) and reduced the levels of mitochondrial membrane potential (MMP) in CCs (p < 0.05). Additionally, the integrated optical density (IOD) rate (cumulus/oocyte) of calcein and the expression of connexin 43 (CX43) was increased in CPF treatment groups (p < 0.05). As well, CPF exposure reduced the expression levels of FSCN1, DAAM1 and MYO10, which resulted in a significant decrease in the number and fluorescence intensity of transzonal projections (TZPs). In conclusion, CPF inhibited the expansion of cumulus and caused oxidative stress and apoptosis as well as disturbed the function of gap junctions (GJs) and TZPs, which eventually resulted in the failure of oocyte maturation.
Collapse
Affiliation(s)
- Yajie Chu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Heran Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Qijia Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shurui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jianuo Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
10
|
Hong J, Du K, Jin H, Chen Y, Jiang Y, Zhang W, Chen D, Zheng S, Cao L. Evidence of promoting effects of 6:2 Cl-PFESA on hepatocellular carcinoma proliferation in humans: An ideal alternative for PFOS in terms of environmental health? ENVIRONMENT INTERNATIONAL 2024; 186:108582. [PMID: 38513556 DOI: 10.1016/j.envint.2024.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic chemicals, encompassing compounds like perfluorooctane sulfonate (PFOS), which have widespread applications across various industries, including food packaging and firefighting. In recent years, China has increasingly employed 6:2 Cl-PFESA as an alternative to PFOS. Although the association between PFAS exposure and hepatocellular carcinoma (HCC) has been demonstrated, the underlying mechanisms that promote HCC proliferation are uncleared. Therefore, we aimed to investigate the effects and differences of PFOS and 6:2 Cl-PFESA on HCC proliferation through in vivo and in vitro tumor models. Our results reveal that both PFOS and 6:2 Cl-PFESA significantly contribute to HCC proliferation in vitro and in vivo. Exposure led to reduced population doubling times, enlarged cell colony sizes, enhanced DNA synthesis efficiency, and a higher proportion of cells undergoing mitosis. Furthermore, both PFOS and 6:2 Cl-PFES) have been shown to activate the PI3K/AKT/mTOR signaling pathway and inhibit necroptosis. This action consequently enhances the proliferation of HCC cells. Our phenotypic assay findings suggest that the tumorigenic potential of 6:2 Cl-PFESA surpasses that of PFOS; in a subcutaneous tumor model using nude mice, the mean tumor weight for the 6:2 Cl-PFESA-treated cohort was 2.33 times that observed in the PFOS cohort (p < 0.01). Despite 6:2 Cl-PFESA being considered a safer substitute for PFOS, the pronounced effects of this chemical on HCC cell growth warrant a thorough assessment of hepatotoxicity risks linked to its usage.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
11
|
Zhang Z, Tian J, Liu W, Zhou J, Zhang Y, Ding L, Sun H, Yan G, Sheng X. Perfluorooctanoic acid exposure leads to defect in follicular development through disrupting the mitochondrial electron transport chain in granulosa cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166954. [PMID: 37722425 DOI: 10.1016/j.scitotenv.2023.166954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental pollutant that can impair ovarian function, while the underlying mechanism is not fully understood, and effective treatments are lacking. In this study, we established a mouse model of PFOA exposure induced by drinking water and found that PFOA exposure impaired follicle development, increased apoptosis of granulosa cells (GCs), and hindered normal follicular development in a 3D culture system. RNA-seq analysis revealed that PFOA disrupted oxidative phosphorylation in ovaries by impairing the mitochondrial electron transport chain. This resulted in reduced mitochondrial membrane potential and increased mitochondrial reactive oxygen species (mtROS) in isolated GCs or KGN cells. Resveratrol, a mitochondrial nutrient supplement, could improve mitochondrial function and restore normal follicular development by activating FoxO1 through SIRT1/PI3K-AKT pathway. Our results indicate that PFOA exposure impairs mitochondrial function in GCs and affects follicle development. Resveratrol can be a potential therapeutic agent for PFOA-induced ovarian dysfunction.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jiao Tian
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Wenwen Liu
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Yang Zhang
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Lijun Ding
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China
| | - Haixiang Sun
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Guijun Yan
- Department of Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Xiaoqiang Sheng
- Center for Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
12
|
Gonkowski S, Martín J, Kortas A, Aparicio I, Santos JL, Alonso E, Sobiech P, Rytel L. Assessment of perfluoroalkyl substances concentration levels in wild bat guano samples. Sci Rep 2023; 13:22707. [PMID: 38123620 PMCID: PMC10733414 DOI: 10.1038/s41598-023-49638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Perfluoroalkyl substances (PFASs) are substances commonly used in the production of various everyday objects, including among others kitchen dishes, cosmetics, or clothes. They penetrate to the environment and living organisms causing disturbances in the functioning of many internal organs and systems. Due to environmental pollution, wildlife is also exposed to PFASs, but the knowledge about this issue is rather limited. The aim of this study was to evaluate the exposure of wild greater mouse-eared bats (Myotis myotis), living in Poland, to six selected PFASs: five perfluoroalkyl carboxylic acids (perfluorobutanoic acid-PFBuA, perfluoropentanoic acid-PFPeA, perfluorohexanoic acid-PFHxA, perfluoroheptanoic acid-PFHpA, perfluorooctanoic acid-PFOA) and perfluorooctane sulfonic acid (PFOS) through the analysis of guano samples with liquid chromatography with tandem mass spectrometry (LC-MS-MS) method. To our knowledge this is the first study concerning the PFASs levels in bats, as well as using guano samples to evaluate the exposure of wild mammals to these substances. A total of 40 guano samples were collected from 4 bats summer (nursery) colonies located in various parts of Poland. The presence of PFASs mentioned were detected in all colonies studied, and concentration levels of these substances were sampling dependent. The highest concentration levels were observed in the case of PFPeA [1.34 and 3060 ng/g dry weight (dw)] and PFHxA (8.30-314 ng/g dw). This study confirms the exposure of wild bats to PFASs.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Annemarie Kortas
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Ul. Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Przemysław Sobiech
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Ul. Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Ul. Oczapowskiego 14, 10-719, Olsztyn, Poland.
| |
Collapse
|
13
|
Rickard BP, Overchuk M, Tulino J, Tan X, Ligler FS, Bae-Jump VL, Fenton SE, Rizvi I. Exposure to select PFAS and PFAS mixtures alters response to platinum-based chemotherapy in endometrial cancer cell lines. Environ Health 2023; 22:87. [PMID: 38098045 PMCID: PMC10720226 DOI: 10.1186/s12940-023-01034-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Exposure to per- and poly-fluoroalkyl substances (PFAS) has been associated with significant alterations in female reproductive health. These include changes in menstrual cyclicity, timing of menarche and menopause, and fertility outcomes, as well as increased risk of endometriosis, all of which may contribute to an increased risk of endometrial cancer. The effect of PFAS on endometrial cancer cells, specifically altered treatment response and biology, however, remains poorly studied. Like other gynecologic malignancies, a key contributor to lethality in endometrial cancer is resistance to chemotherapeutics, specifically to platinum-based agents that are used as the standard of care for patients with advanced-stage and/or recurrent disease. OBJECTIVES To explore the effect of environmental exposures, specifically PFAS, on platinum-based chemotherapy response and mitochondrial function in endometrial cancer. METHODS HEC-1 and Ishikawa endometrial cancer cells were exposed to sub-cytotoxic nanomolar and micromolar concentrations of PFAS/PFAS mixtures and were treated with platinum-based chemotherapy. Survival fraction was measured 48-h post-chemotherapy treatment. Mitochondrial membrane potential was evaluated in both cell lines following exposure to PFAS ± chemotherapy treatment. RESULTS HEC-1 and Ishikawa cells displayed differing outcomes after PFAS exposure and chemotherapy treatment. Cells exposed to PFAS appeared to be less sensitive to carboplatin, with instances of increased survival fraction, indicative of platinum resistance, observed in HEC-1 cells. In Ishikawa cells treated with cisplatin, PFAS mixture exposure significantly decreased survival fraction. In both cell lines, increases in mitochondrial membrane potential were observed post-PFAS exposure ± chemotherapy treatment. DISCUSSION Exposure of endometrial cancer cell lines to PFAS/PFAS mixtures had varying effects on response to platinum-based chemotherapies. Increased survival fraction post-PFAS + carboplatin treatment suggests platinum resistance, while decreased survival fraction post-PFAS mixture + cisplatin exposure suggests enhanced therapeutic efficacy. Regardless of chemotherapy sensitivity status, mitochondrial membrane potential findings suggest that PFAS exposure may affect endometrial cancer cell mitochondrial functioning and should be explored further.
Collapse
Affiliation(s)
- Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599, USA
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, Durham, NC, 27709, USA
| | - Marta Overchuk
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA; Engineering Building III, North Carolina State University, Raleigh, NC, 27606, USA
| | - Justin Tulino
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA; Engineering Building III, North Carolina State University, Raleigh, NC, 27606, USA
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Frances S Ligler
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX, 77843, USA
| | - Victoria L Bae-Jump
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, Chapel Hill, NC, 27599, USA
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, 27599, USA
| | - Suzanne E Fenton
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599, USA
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, Durham, NC, 27709, USA
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC, 27599, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599, USA; Engineering Building III, North Carolina State University, Raleigh, NC, 27606, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 450 West Drive, Chapel Hill, NC, 27599, USA.
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Kabakci R, Clark KL, Plewes MR, Monaco CF, Davis JS. Perfluorooctanoic acid (PFOA) inhibits steroidogenesis and mitochondrial function in bovine granulosa cells in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122698. [PMID: 37832777 PMCID: PMC10873118 DOI: 10.1016/j.envpol.2023.122698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental contaminant. Due to the ubiquitous presence of PFOA in the environment, the impacts of PFOA exposure not only affect human reproductive health but may also affect livestock reproductive health. The focus of this study was to determine the effects of PFOA on the physiological functions of bovine granulosa cells in vitro. Primary bovine granulosa cells were exposed to 0, 4, and 40 μM PFOA for 48 and 96 h followed by analysis of granulosa cell function including cell viability, steroidogenesis, and mitochondrial activity. Results revealed that PFOA inhibited steroid hormone secretion and altered the expression of key enzymes required for steroidogenesis. Gene expression analysis revealed decreases in mRNA transcripts for CYP11A1, HSD3B, and CYP19A1 and an increase in STAR expression after PFOA exposure. Similarly, PFOA decreased levels of CYP11A1 and CYP19A1 protein. PFOA did not impact live cell number, alter the cell cycle, or induce apoptosis, although it reduced metabolic activity, indicative of mitochondrial dysfunction. We observed that PFOA treatment caused a loss of mitochondrial membrane potential and increases in PINK protein expression, suggestive of mitophagy and mitochondrial damage. Further analysis revealed that these changes were associated with increased levels of reactive oxygen species. Expression of autophagy related proteins phosphoULK1 and LAMP2 were increased after PFOA exposure, in addition to an increased abundance of lysosomes, characteristic of increased autophagy. Taken together, these findings suggest that PFOA can negatively impact granulosa cell steroidogenesis via mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ruhi Kabakci
- Department of Physiology, Faculty of Veterinary Medicine, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey; Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kendra L Clark
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Michele R Plewes
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Deparment of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Corrine F Monaco
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE 68198, USA
| | - John S Davis
- Deparment of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Deparment of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| |
Collapse
|
15
|
Hu Y, Han F, Wang Y, Zhong Y, Zhan J, Liu J. Trimester-specific hemodynamics of per- and polyfluoroalkyl substances and its relation to lipid profile in pregnant women. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132339. [PMID: 37660622 DOI: 10.1016/j.jhazmat.2023.132339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants widely detected in blood from pregnant women, yet limited study evaluated the trimester-specific variance of serum PFAS, and even less is known for the window of vulnerability to lipids metabolism interrupting effects of PFAS during pregnancy. We quantified 16 legacy, 3 emerging PFAS, and lipid biomarkers in 286 serum samples from 118 pregnant women. All target PFAS, except perfluorotridecanoic acid (PFTrDA), in maternal serum showed moderate to low temporal irregular variability across gestation (average intraclass correlation coefficients ≥ 0.57), while the generalized estimating equations showed a significant declining trend in the serum levels during pregnancy (p for trend < 0.05). The decline of 6:2 chlorinated polyfluorinated ether sulfonate in maternal serum was the greatest with a change of - 21.63% from 1st to 2nd trimester, which indicated a possible higher accumulation of this emerging PFAS in fetal compartment. Multiple linear regression, multiple informant model and Bayesian kernel machine regression showed a higher vulnerability in the 1st trimester to effects of PFAS exposure on serum lipids of pregnant women. The results highlighted the importance of the study timing of PFAS exposure during pregnancy.
Collapse
Affiliation(s)
- Yao Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Feng Han
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yuxin Wang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jing Zhan
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaying Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
16
|
Hallberg I, Björvang RD, Hadziosmanovic N, Koekkoekk J, Pikki A, van Duursen M, Lenters V, Sjunnesson Y, Holte J, Berglund L, Persson S, Olovsson M, Damdimopoulou P. Associations between lifestyle factors and levels of per- and polyfluoroalkyl substances (PFASs), phthalates and parabens in follicular fluid in women undergoing fertility treatment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:699-709. [PMID: 37481638 PMCID: PMC10541317 DOI: 10.1038/s41370-023-00579-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Concerns have been raised whether exposure to endocrine-disrupting chemicals (EDCs) can alter reproductive functions and play a role in the aetiology of infertility in women. With increasing evidence of adverse effects, information on factors associated with exposure is necessary to form firm recommendations aiming at reducing exposure. OBJECTIVE Our aim was to identify associations between lifestyle factors including the home environment, use of personal care products (PCP), and dietary habits and concentrations of EDCs in ovarian follicular fluid. METHODS April-June 2016, 185 women undergoing ovum pick-up for in vitro fertilisation in Sweden were recruited. Correlation analyses were performed between self-reported lifestyle factors and concentration of EDCs analysed in follicular fluid. Habits related to cleaning, PCPs, and diet were assessed together with concentration of six per- and polyfluoroalkyl substances (PFASs) [PFHxS, PFOA, PFOS, PFNA, PFDA and PFUnDA], methyl paraben and eight phthalate metabolites [MECPP, MEHPP, MEOHP, MEHP, cxMinCH, cxMiNP, ohMiNP, MEP, MOHiBP]. Spearman's partial correlations were adjusted for age, parity and BMI. RESULTS Significant associations were discovered between multiple lifestyle factors and concentrations of EDCs in ovarian follicular fluid. After correcting p values for multiple testing, frequent use of perfume was associated with MEP (correlation ρ = 0.41 (confidence interval 0.21-0.47), p < 0.001); hens' egg consumption was positively associated with PFOS (ρ = 0.30 (0.15-0.43), p = 0.007) and PFUnDA (ρ = 0.27 (0.12-0.40), p = 0.036). White fish consumption was positively associated with PFUnDA (ρ = 0.34 (0.20-0.47), p < 0.001) and PFDA (ρ = 0.27 (0.13-0.41), p = 0.028). More correlations were discovered when considering the raw uncorrected p values. Altogether, our results suggest that multiple lifestyle variables affect chemical contamination of follicular fluid. IMPACT STATEMENT This study shows how lifestyle factors correlate with the level of contamination in the ovary by both persistent and semi-persistent chemicals in women of reproductive age. Subsequently, these data can be used to form recommendations regarding lifestyle to mitigate possible negative health outcomes and fertility problems associated with chemical exposure, and to inform chemical policy decision making. Our study can also help form the basis for the design of larger observational and intervention studies to examine possible effects of lifestyle changes on exposure levels, and to unravel the complex interactions between biological factors, lifestyle and chemical exposures in more detail.
Collapse
Affiliation(s)
- Ida Hallberg
- Department of Women´s and Children´s Health, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Richelle D Björvang
- Department of Women´s and Children´s Health, Uppsala University, SE-751 85, Uppsala, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 86, Stockholm, Sweden
| | | | - Jacco Koekkoekk
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Anne Pikki
- Carl von Linnékliniken, SE-751 83, Uppsala, Sweden
| | - Majorie van Duursen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CG, Utrecht, the Netherlands
| | - Virissa Lenters
- Environment and Health, Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CG, Utrecht, the Netherlands
| | - Ylva Sjunnesson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Jan Holte
- Department of Women´s and Children´s Health, Uppsala University, SE-751 85, Uppsala, Sweden
- Carl von Linnékliniken, SE-751 83, Uppsala, Sweden
| | - Lars Berglund
- School of Health and Welfare, Dalarna University, SE-791 88, Falun, Sweden
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, SE-751 22, Uppsala, Sweden
| | - Sara Persson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Matts Olovsson
- Department of Women´s and Children´s Health, Uppsala University, SE-751 85, Uppsala, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-141 86, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Uppsala clinical Research Center, Uppsala University, SE-751 85, Uppsala, Sweden
- Department of Reproductive Medicine, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
| |
Collapse
|
17
|
Zhang R, Li X, Su Z, Ning F, Gao Y. Effect of dietary antioxidants on excretion of perfluorooctanoic acid (PFOA) via regulating uptake transporters expression and intestinal permeability in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115224. [PMID: 37413964 DOI: 10.1016/j.ecoenv.2023.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Dietary antioxidants, including 2,6-di-tert-butyl-hydroxytoluene (BHT), α-tocopherol (αT) and tea polyphenol (TP), have been widely used in food. However, no data about the effect of food antioxidants on PFOA excretion were available. In this study, excretion of PFOA toward mice (four mice in each group) under the influence of co-ingested food antioxidants (i.e., BHT, αT, and TP) were investigated, and mechanism involved in excretion of PFOA, including RNA expression of uptake and efflux transporters in kidneys and liver involved in PFOA transport and intestinal permeability were also investigated. Chronic exposure to BHT (1.56 mg/kg) increased urinary PFOA excretion from 1795 ± 340 ng/mL (control) to 3340 ± 29.9 ng/mL (BHT treatment). TP treatment (12.5 mg/kg) decreased urinary excretion of PFOA, i.e., with a decrease percentage of 70% compared to the control. Organic anion transporting polypeptides (Oatps) act as uptake transporter mediate renal elimination or reabsorption of PFOA in the kidney. The decrease in urinary excretion of PFOA under TP treatment was associated with significantly (p < 0.05) enhanced expression of Oatp1a1 in the kidney (1.78 ± 0.58 vs 1.00 ± 0.18 in control), which facilitated renal reabsorption of PFOA and in turn decreased urinary excretion of PFOA. αT treatment (12.5 mg/kg) increased fecal PFOA excretion with a value of 228 ± 95.8 ng/g vs control (96.8 ± 22.7 ng/g). Mechanistic investigation revealed that αT treatment reduced intestinal permeability, resulting in increased fecal PFOA excretion.
Collapse
Affiliation(s)
- Ruirui Zhang
- Jinan Environmental Research Academy, Jinan 250100, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Xin Li
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Fangyuan Ning
- Jinan Environmental Research Academy, Jinan 250100, China
| | - Yuxue Gao
- Jinan Environmental Research Academy, Jinan 250100, China
| |
Collapse
|
18
|
Basini G, Bussolati S, Torcianti V, Grasselli F. Perfluorooctanoic acid (PFOA) affects steroidogenesis and antioxidant defence in granulosa cells from swine ovary. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104169. [PMID: 37286068 DOI: 10.1016/j.etap.2023.104169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
PFOA is mainly employed in products with water and oil repellent properties. Due to its persistence, bioaccumulation and critical effects on health, its use has been restricted in several countries. This research was intended to explore PFOA action on the main functions of swine ovarian granulosa cells, a valuable model for translational medicine. Moreover, since we previously demonstrated a disruptive effect on free radical generation we sought to explore PFOA effects on the main antioxidant enzymes. PFOA inhibited cell proliferation (p < 0.001), assessed by BrdU uptake. Steroidogenesis was disrupted: PFOA also stimulated 17β-estradiol production (p < 0.05), increased progesterone production (p < 0.05) at the lowest dose while it displayed an inhibitory effect at higher concentrations (p < 0.05). SOD (p < 0.001), catalase (p < 0.05) and peroxidase (p < 0.01) activities were stimulated. Therefore, our study supports a disruptive effect of PFOA in cultured swine granulosa cells.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Veronica Torcianti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
19
|
Fujiwara N, Yamashita S, Okamoto M, Cooley MA, Ozaki K, Everett ET, Suzuki M. Perfluorooctanoic acid-induced cell death via the dual roles of ROS-MAPK/ERK signaling in ameloblast-lineage cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115089. [PMID: 37271104 DOI: 10.1016/j.ecoenv.2023.115089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an artificial fluorinated organic compound that has generated increased public attention due to its potential health hazards. Unsafe levels of PFOA exposure can affect reproduction, growth and development. During tooth enamel development (amelogenesis), environmental factors including fluoride can cause enamel hypoplasia. However, the effects of PFOA on ameloblasts and tooth enamel formation remain largely unknown. In the present study we demonstrate several PFOA-mediated cell death pathways (necrosis/necroptosis, and apoptosis) and assess the roles of ROS-MAPK/ERK signaling in PFOA-mediated cell death in mouse ameloblast-lineage cells (ALC). ALC cells were treated with PFOA. Cell proliferation and viability were analyzed by MTT assays and colony formation assays, respectively. PFOA suppressed cell proliferation and viability in a dose dependent manner. PFOA induced both necrosis (PI-positive cells) and apoptosis (cleaved-caspase-3, γH2AX and TUNEL-positive cells). PFOA significantly increased ROS production and up-regulated phosphor-(p)-ERK. Addition of ROS inhibitor N-acetyl cysteine (NAC) suppressed p-ERK and decreased necrosis, and increased cell viability compared to PFOA alone, whereas NAC did not change apoptosis. This suggests that PFOA-mediated necrosis was induced by ROS-MAPK/ERK signaling, but apoptosis was not associated with ROS. Addition of MAPK/ERK inhibitor PD98059 suppressed necrosis and increased cell viability compared to PFOA alone. Intriguingly, PD98059 augmented PFOA-mediated apoptosis. This suggests that p-ERK promoted necrosis but suppressed apoptosis. Addition of the necroptosis inhibitor Necrostatin-1 restored cell viability compared to PFOA alone, while pan-caspase inhibitor Z-VAD did not mitigate PFOA-mediated cell death. These results suggest that 1) PFOA-mediated cell death was mainly caused by necrosis/necroptosis by ROS-MAPK/ERK signaling rather than apoptosis, 2) MAPK/ERK signaling plays the dual roles (promoting necrosis and suppressing apoptosis) under PFOA treatment. This is the initial report to indicate that PFOA could be considered as a possible causative factor for cryptogenic enamel malformation. Further studies are required to elucidate the mechanisms of PFOA-mediated adverse effects on amelogenesis.
Collapse
Affiliation(s)
- Natsumi Fujiwara
- Department of Oral Health Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Shohei Yamashita
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Motoki Okamoto
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kazumi Ozaki
- Department of Oral Health Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Eric T Everett
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maiko Suzuki
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
20
|
Li M, Ma Y, Cheng W, Zhang L, Zhou C, Zhang W, Zhang W. Association between perfluoroalkyl and polyfluoroalkyl internal exposure and serum α-Klotho levels in middle-old aged participants. Front Public Health 2023; 11:1136454. [PMID: 37228732 PMCID: PMC10204767 DOI: 10.3389/fpubh.2023.1136454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Purpose Exposure to perfluoroalkyl and polyfluoroalkyl substances causes oxidative stress, which is strongly associated with adverse health effects. Klotho protein plays an anti-aging role via antioxidation activity. Methods We investigated the levels of serum α-Klotho and PFAS exposure in adults who participated in the National Health and Nutrition Examination Survey from 2013 to 2016. A nationally representative subsample of 1,499 adults aged 40-79 years was analyzed for the associations of serum α-Klotho levels with serum PFAS exposures by correlation analysis and multiple general linear models. Of note, the potential confounding factors including age and gender were adjusted. Quantile-based g-computation models were used to assess the effects of mixed PFAS exposure on serum α-Klotho levels. Results The weighted geometric mean of serum α-Klotho was 791.38 pg/mL for the subjects during 2013-2016. After adjusting for potential confounders, serum Klotho levels showed a statistically significant downward trend with increasing quartiles of PFOA and PFNA. Multivariate adjusted general linear regression analysis showed that increased exposure to PFNA was substantially associated with lower serum levels of α-Klotho, and each 1-unit increase in PFNA concentration was accompanied by a 20.23 pg/mL decrease in α-Klotho level; while no significant association was observed between other PFAS exposures and serum α-Klotho levels. It was negatively correlated between α-Klotho and Q4 for PFNA relative to the lowest quartile (Q1) of exposure (P = 0.025). It was found that the strongest negative correlation between PFNA exposure and serum α-Klotho levels was in the middle-aged (40-59 years) female participants. Furthermore, the mixture of the four PFAS substances showed an overall inverse association with serum α-Klotho concentrations, with PFNA being the major contributor. Conclusions Taken together, in a representative sample of the U.S. middle-aged and elderly populations, serum concentrations of PFAS, especially PFNA, have been negatively associated with serum levels of α-Klotho, which is strongly associated with cognition and aging. It was important to note that the majority of associations were limited to middle-aged women. It will be meaningful to clarify the causal relationship and the pathogenic mechanisms of PFAS exposure and α-Klotho levels, which is helpful to aging and aging-related diseases.
Collapse
Affiliation(s)
- Min Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Yuanlin Ma
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Cheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Luyun Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Cheng Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wenji Zhang
- Guangdong Provincial Engineering and Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Han JW, Park HJ. Perfluorooctanoic acid induces cell death in TM3 cells via the ER stress-mitochondrial apoptosis pathway. Reprod Toxicol 2023; 118:108383. [PMID: 37044272 DOI: 10.1016/j.reprotox.2023.108383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally ubiquitous synthetic chemical highly persistent in organisms. PFOA exposure is pernicious to reproductive health as indicated by reports of male infertility. However, the PFOA toxicity mechanism to Leydig cells remains poorly understood. Therefore, this study aimed to investigate the toxicological events occurring in TM3 Leydig cells treated with PFOA (250, 500, 750µM) for 24h. PFOA was shown to significantly decrease cell viability resulting from inhibition of proliferation and elevation of apoptotic ratio in a dose dependent manner. Upregulation of pro-apoptotic gene expressions such as Bax, Bad, and p53, was observed in combination with an increase in the apoptosis-related protein levels of Bax, cleaved caspase-3, cleaved caspase-8, and phosphorylated p53. Furthermore, exposure of PFOA lead to mitochondrial damage involving mitochondrial membrane permeabilization. A release of cytochrome c and collapse of the mitochondrial membrane potential (∆Ψm) were observed compared to the untreated control. Additionally, PFOA stimulated unfolded protein response (UPR) upregulating ER stress marker, Bip/GRP78, and upregulated protein levels of UPR signal molecules IRE1, p-JNK, p-ERK1/2, p-p53, CHOP, and ERO1. Overall, the present study elucidated the ER stress-mitochondrial apoptosis pathway-related molecular mechanisms involved in PFOA-induced cell death in TM3 Leydig cells.
Collapse
Affiliation(s)
- Jong-Won Han
- Department of Stem Cell and Regenerative Biotechnology, KIT, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, 26339, Republic of Korea.
| |
Collapse
|
22
|
Feng J, Soto‐Moreno EJ, Prakash A, Balboula AZ, Qiao H. Adverse PFAS effects on mouse oocyte in vitro maturation are associated with carbon-chain length and inclusion of a sulfonate group. Cell Prolif 2023; 56:e13353. [PMID: 36305033 PMCID: PMC9890540 DOI: 10.1111/cpr.13353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVES Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that are widely used in various products. PFAS are characterized by their fluorinated carbon chains that make them hard to degrade and bioaccumulate in human and animals. Toxicological studies have shown PFAS toxic effects: cytotoxicity, immunotoxicity, neurotoxicity, and reproductive toxicity. However, it is still unclear how the structures of PFAS, such as carbon-chain length and functional groups, determine their reproductive toxicity. METHODS AND RESULTS By using a mouse-oocyte-in-vitro-maturation (IVM) system, we found the toxicity of two major categories of PFAS, perfluoroalkyl carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA), is elevated with increasing carbon-chain length and the inclusion of the sulfonate group. Specifically, at 600 μM, perfluorohexanesulfonic acid (PFHxS) and perfluorooctanesulfonic acid (PFOS) reduced the rates of both germinal-vesicle breakdown (GVBD) and polar-body extrusion (PBE) as well as enlarged polar bodies. However, the shorter PFSA, perfluorobutanesulfonic acid (PFBS), and all PFCA did not show similar adverse cytotoxicity. Further, we found that 600 μM PFHxS and PFOS exposure induced excess reactive oxygen species (ROS) and decreased mitochondrial membrane potential (MMP). Cytoskeleton analysis revealed that PFHxS and PFOS exposure induced chromosome misalignment, abnormal F-actin organization, elongated spindle formation, and symmetric division in the treated oocytes. These meiotic defects compromised oocyte developmental competence after parthenogenetic activation. CONCLUSIONS Our study provides new information on the structure-toxicity relationship of PFAS.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| | | | - Aashna Prakash
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| | - Ahmed Z. Balboula
- Division of Animal SciencesUniversity of MissouriMissouriColumbiaUSA
| | - Huanyu Qiao
- Department of Comparative BiosciencesUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignChampaignUrbanaUSA
| |
Collapse
|
23
|
Shen H, Gao M, Li Q, Sun H, Jiang Y, Liu L, Wu J, Yu X, Jia T, Xin Y, Han S, Wang Y, Zhang X. Effect of PFOA exposure on diminished ovarian reserve and its metabolism. Reprod Biol Endocrinol 2023; 21:16. [PMID: 36726108 PMCID: PMC9890749 DOI: 10.1186/s12958-023-01056-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
Owing to its difficulty in degrading and ease of accumulation in the body, perfluorooctanoic acid (PFOA) has a detrimental effect on reproduction. This study aimed to examine the effect of PFOA concentration in follicular fluid during ovulation stimulation on embryo quality and the impact of PFOA exposure on the metabolic components of follicular fluid. This was a single-center prospective study that included 25 patients with diminished ovarian reserve (DOR), 25 with normal ovarian reserve (NOR), and 25 with polycystic ovary syndrome (PCOS). Follicular fluid samples were analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry. We demonstrated that the PFOA levels of follicular fluid in the DOR group were higher than those in the NOR group and PCOS group (P < 0.05). PFOA concentration in the PCOS group was negatively correlated with high-quality embryos (P < 0.05). To gain more insight into the impact of PFOA on the metabolic composition of follicular fluid, we classified the DOR group based on the PFOA concentration, for which metabolomic analysis was performed. In the high-concentration PFOA group, there was an increase and a decrease in three and nine metabolites, respectively, compared to that in the low-concentration group. These results suggest that PFOA may alter the metabolic composition of follicular fluid, thus, affecting ovarian reserve function.
Collapse
Affiliation(s)
- Haofei Shen
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Lanzhou, 730030, Gansu, China
| | - Min Gao
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Qiuyuan Li
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Huipeng Sun
- Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingdi Jiang
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Lihong Liu
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Jingyuan Wu
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Lanzhou, 730030, Gansu, China
| | - Xiao Yu
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Tianyu Jia
- Lanzhou University, Lanzhou, 730000, Gansu, China
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China
| | - Yongan Xin
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China.
| | - Yiqing Wang
- Lanzhou University, Lanzhou, 730000, Gansu, China.
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China.
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Lanzhou, 730030, Gansu, China.
| | - Xuehong Zhang
- Lanzhou University, Lanzhou, 730000, Gansu, China.
- Lanzhou University First Affiliated Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
24
|
Krawczyk K, Marynowicz W, Pich K, Jedruch O, Kania G, Gogola-Mruk J, Tworzydlo W, Polanski Z, Ptak A. Persistent organic pollutants affect steroidogenic and apoptotic activities in granulosa cells and reactive oxygen species concentrations in oocytes in the mouse. Reprod Fertil Dev 2023; 35:294-305. [PMID: 36403477 DOI: 10.1071/rd21326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/28/2022] [Indexed: 11/21/2022] Open
Abstract
CONTEXT The destruction of granulosa cells (GCs), the main functional cell type in the ovary, prevents steroid hormone production, which in turn may damage oocytes, resulting in ovarian failure. The accumulation of a number of persistent organic pollutants (POPs) in the ovarian follicular fluid (FF) has been documented, which raises serious questions regarding their impact on female fertility. AIMS We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability. METHODS A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP. KEY RESULTS Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration. CONCLUSIONS Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. IMPLICATIONS These results indicate that chronic exposure to POPs adversely affects female reproductive health.
Collapse
Affiliation(s)
- Kinga Krawczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Weronika Marynowicz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Oliwia Jedruch
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Gabriela Kania
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Zbigniew Polanski
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
25
|
Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Adsorption of perfluoroalkyl substances on polyamide microplastics: Effect of sorbent and influence of environmental factors. ENVIRONMENTAL RESEARCH 2023; 216:114834. [PMID: 36400220 DOI: 10.1016/j.envres.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and perfluoroalkyl substances (PFASs) are two types of pollutants coexisting in the environment. Their co-exposure is a source of increasing concern. MPs present in the natural environment suppose an ideal surface for the sorption of hazardous contaminants. This study investigates the adsorption behaviour of six PFASs on polyamide (PA) MPs. Adsorption experiments under various internal (PA and PFASs dosage, PA particle size) and environmental (pH, ionic strength, dissolved organic matter) factors were carried out. Isotherm results (from 0.1 to 25 mg/L of PFASs) showed that the maximum adsorption capacity of the selected PFASs on the PA was as follows: perfluorooctanesulfonic acid (PFOS, 0.873 mg/g) > perfluorooctanoic acid (0.235 mg/g) > perfluoroheptanoic acid (0.231 mg/g) > perfluorohexanoic acid (0.201 mg/g) > perfluoropentanoic acid (0.192 mg/g) > perfluorobutanoic acid (0.188 mg/g) (pH 5.88, 0% salinity and 0% of dissolved organic matter). The PFOS has more tendency to be sorbed onto PA than perfluorocarboxilic acids. The MP characterization by scanning electron microscopy, X ray diffraction and Fourier transform infrared spectroscopy showed changes in the PA surface after adsorption assays. Pore filling, hydrophobic interactions and hydrogen bonds governed sorption process. The sorption capacity of PFASs was crucially affected by the PA size (from 19.6% to 99.9% for 3 mm and 50 μm particle size, respectively). The process was not significantly influenced by salinity while the dissolved organic matter exerted a negative effect (decrease from 100% to 26% for PFOS in presence of 25 mg/L of humic acid). Finally, adsorption rates of PFASs were quantified in real water matrices (influent and effluent wastewater, surface and tap water samples). The results revealed interactions between PA and PFASs and evidenced the role of PA as a vector to transport PFASs in the aquatic environment.
Collapse
Affiliation(s)
- Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain.
| |
Collapse
|
26
|
Zhang P, Qi C, Ma Z, Wang Y, Zhang L, Hou X. Perfluorooctanoic acid exposure in vivo perturbs mitochondrial metabolic during oocyte maturation. ENVIRONMENTAL TOXICOLOGY 2022; 37:2965-2976. [PMID: 36029293 DOI: 10.1002/tox.23652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctanoic acid (PFOA), a member of a group of polyfluorinated and perfluorinated alkyl substances (PFAS), is associated with adverse pregnancy outcomes in mammals. However, the effects of in vivo exposure to PFOA on the female reproductive system and the underlying mechanisms remain unclear. In our study, we constructed a mouse model to investigate whether low-dose PFOA (1 mg/kg/day) or high-dose PFOA (5 mg/kg/day) affect meiosis maturation of oocytes and the potential mechanisms that may be associated with oocyte maturation disorder. Our results indicate that low-dose and high-dose PFOA can lead to impaired oocyte maturation, which is manifested by decreased rate of embryonic foam rupture and first polar body extrusion. Moreover, PFOA exposure harmed the mitochondrial metabolic, resulting in low levels of ATP contents, high reactive oxygen species, aberrant mitochondrial membrane potential. In addition, the proportion of DNA damage marker γ-H2AX was also significantly increased in PFOA exposure oocytes. These changes lead to abnormal arrangements of the spindle and chromosomes during oocyte maturation. In conclusion, our results for the first time illustrated that exposure to PFOA in vivo in female mice impaired the meiosis maturation of oocytes, which provided a basis for studying the mechanism of PFOA reproductive toxicity in female mammals.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Changyong Qi
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Zhinan Ma
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Yixiong Wang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology,Yangzhou Maternal and Child Health Hospital Yangzhou University Yangzhou, Jiangsu, China
| | - Xiaojing Hou
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, China
| |
Collapse
|
27
|
Estefanía González-Alvarez M, Severin A, Sayadi M, Keating AF. PFOA-Induced Ovotoxicity Differs Between Lean and Obese Mice With Impacts on Ovarian Reproductive and DNA Damage Sensing and Repair Proteins. Toxicol Sci 2022; 190:173-188. [PMID: 36214631 PMCID: PMC9789752 DOI: 10.1093/toxsci/kfac104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is an environmentally persistent perfluoroalkyl substance that is widely used in consumer products. Exposure to PFOA is associated with reproductive and developmental effects including endocrine disruption, delayed puberty in girls, and decreased fetal growth. In the United States, obesity affects 40% of women and 20% of girls, with higher rates in minority females. Obesity causes infertility, poor oocyte quality, miscarriage, and offspring defects. This study proposed that PFOA exposure would impact estrous cyclicity, ovarian steroid hormones, and the ovarian proteome and further hypothesized that obesity would impact PFOA-induced ovotoxicity. Female wild type (KK.Cg-a/a; lean) or KK.Cg-Ay/J mice (obese) received saline (CT) or PFOA (2.5 mg/kg) per os for 15 days beginning at 7 weeks of age. There were no effects on food intake, body weight, estrous cyclicity, serum progesterone, and heart, spleen, kidney, or uterus weight (p > .05). Ovary weight was decreased (p < .05) by PFOA exposure relative to vehicle control-treated mice in lean but not obese mice. Liquid chromatography-tandem mass spectrometry was performed on isolated ovarian protein and PFOA exposure altered the ovarian abundance of proteins involved in DNA damage sensing and repair pathways and reproduction pathways (p < .05) differentially in lean and obese mice. The data suggest that PFOA exposure alters ovary weight and differentially targets ovarian proteins in lean and obese females in ways that might reduce female fecundity.
Collapse
Affiliation(s)
| | - Andrew Severin
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Maryam Sayadi
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
28
|
Clark KL, Davis JS. Perfluorooctanoic acid (PFOA) promotes follicular growth and alters expression of genes that regulate the cell cycle and the Hippo pathway in cultured neonatal mouse ovaries. Toxicol Appl Pharmacol 2022; 454:116253. [PMID: 36152675 PMCID: PMC10416762 DOI: 10.1016/j.taap.2022.116253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic chemical resistant to biodegradation and is environmentally persistent. PFOA is found in many consumer products and is a major source of water contamination. While PFOA has been identified as a contaminant of concern for reproductive health, little is known about the effects of PFOA on ovarian follicular development and growth. Recent evidence indicates that the Hippo pathway is an important regulator of ovarian physiology. Here, we investigated the effects of PFOA on ovarian folliculogenesis during the neonatal period of development and potential impacts on the Hippo signaling pathway. Post-natal day 4 (PND4) neonatal ovaries from CD-1 mice were cultured with control medium (DMSO <0.01% final concentration) or PFOA (50 μM or 100 μM). After 96 h, ovaries were collected for histological analysis of folliculogenesis, gene and protein expression, and immunostaining. Results revealed that PFOA (50 μM) increased the number of secondary follicles, which was accompanied by increases in mRNA transcripts and protein of marker of proliferation marker Ki67 with no impacts on apoptosis markers Bax, Bcl2, or cleaved caspase-3. PFOA treatment (50 μM and 100 μM) stimulated an upregulation of transcripts for cell cycle regulators Ccna2, Ccnb2, Ccne1, Ccnd1, Ccnd2, and Ccnd3. PFOA also increased abundance of transcripts of Hippo pathway components Mst1/2, Lats1, Mob1b, Yap1, and Taz, as well as downstream Hippo pathway targets Areg, Amotl2, and Cyr61, although it decreased transcripts for anti-apoptotic Birc5. Inhibition of the Hippo pathway effector YAP1 with Verteporfin resulted in the attenuation of PFOA-induced follicular growth and proliferation. Together, these findings suggest that occupationally relevant levels of PFOA (50 μM) can stimulate follicular activation in neonatal ovaries potentially through activation of the Hippo pathway.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
| |
Collapse
|
29
|
Lim J. Broad toxicological effects of per-/poly- fluoroalkyl substances (PFAS) on the unicellular eukaryote, Tetrahymena pyriformis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103954. [PMID: 35948183 DOI: 10.1016/j.etap.2022.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Per-/Poly- fluoroalkyl substances represent emerging persistent organic pollutants. Their toxic effects can be broad, yet little attention has been given to organisms at the microscale. To address this knowledge shortfall, the unicellular eukaryote Tetrahymena pyriformis was exposed to increasing concentrations (0-5000 μM) of PFOA/PFOS and monitored for cellular motility, division and function (i.e., phagocytosis), reactive oxygen species generation and total protein levels. Both PFOA/PFOS exposure had negative impacts on T. pyriformis, including reduced motility, delayed cell division and oxidative imbalance, with each chemical having distinct toxicological profiles. T. pyriformis represents a promising candidate for assessing the biological effects these emerging anthropogenically-derived contaminants in a freshwater setting.
Collapse
Affiliation(s)
- Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
30
|
Hong A, Zhuang L, Cui W, Lu Q, Yang P, Su S, Wang B, Zhang G, Chen D. Per- and polyfluoroalkyl substances (PFAS) exposure in women seeking in vitro fertilization-embryo transfer treatment (IVF-ET) in China: Blood-follicular transfer and associations with IVF-ET outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156323. [PMID: 35636536 DOI: 10.1016/j.scitotenv.2022.156323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
As follicular fluid constitutes a critical microenvironment for the development of oocytes, investigation of environmental contaminants in follicular fluid may facilitate a better understanding of the influence of environmental exposure on reproductive health. In the present study, we aimed to investigate per- and polyfluoroalkyl substances (PFAS) exposure in women receiving in vitro fertilization-embryo transfer (IVF-ET) treatment, determine the blood-follicle transfer efficiencies (BFTE) of PFAS, and explore potential associations between PFAS exposure and selected IVF-ET outcomes. Our results revealed that n-PFOA was the most abundant PFAS in both serum and follicular fluid (FF) (median = 5.85 and 5.56 ng/mL, respectively), followed by n-PFOS (4.95 and 4.28 ng/mL), 6:2 Cl-PFESA (2.18 and 2.10 ng/mL), PFNA (1.37 and 1.37 ng/mL), PFUdA (0.33 and 0.97 ng/mL), PFDA (0.37 and 0.66 ng/mL), PFHxS (0.42 and 0.39 ng/mL), and PFHpS (0.11 and 0.10 ng/mL). The median BFTE ranged from 0.65 to 0.92 for individual PFAS, indicating a relatively high tendency of PFAS to cross the blood-follicle barrier (BFB). An inverted V-shaped trend was observed between the median BFTE and the number of fluorinated carbon atoms or the log Kow (octanol-water partition coefficient) for individual PFAS, suggesting the influence by physicochemical properties and molecular structures. Although our data did not find any clear pattern in the link between blood or follicular fluid concentrations of PFAS and selected IVF-ET outcomes, our study raises the need for better characterization of exposure to environmental chemicals in follicular fluid together with its potential influence on reproductive health.
Collapse
Affiliation(s)
- Aobo Hong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lili Zhuang
- Reproductive Medicine Centre, Yuhuangding Hospital of Yantai, Affiliated Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Wenxuan Cui
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Qun Lu
- Reproductive Medical Center, Peking University People's Hospital, Beijing 100044, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shu Su
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Guohuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China; Institute of Reproductive and Child Health, School of Public Health, Peking University, Beijing 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing 100191, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
31
|
Zhou YT, Li R, Li SH, Ma X, Liu L, Niu D, Duan X. Perfluorooctanoic acid (PFOA) exposure affects early embryonic development and offspring oocyte quality via inducing mitochondrial dysfunction. ENVIRONMENT INTERNATIONAL 2022; 167:107413. [PMID: 35863238 DOI: 10.1016/j.envint.2022.107413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a synthetic perfluorinated compound that is extensively used as an integral surfactant in commercial production. Owing to its hydrophilicity and persistence, PFOA can accumulate in living organisms and induce severe disease in animals and humans. It has been reported that PFOA exposure can affect ovarian function and induce reproductive toxicity; however, the effects and potential mechanism of PFOA exposure during gestation on early embryonic development and offspring remain unclear. This study found that PFOA exposure in vitro disrupted spindle assembly and chromosome alignment during the first cleavage of early mouse embryos, which impacted early embryonic cleavage and blastocyst formation. Moreover, PFOA exposure caused mitochondrial dysfunction and oxidative stress by inducing aberrant Ca2+ levels, liquid drops(LDs), and mitochondrial membrane potential in the 2-cell stage. Furthermore, we found that PFOA exposure resulted in DNA damage, autophagy, and apoptosis in 2-cell stage by inhibiting SOD2 function. Gestational exposure to PFOA significantly increased ovarian apoptosis and disrupted follicle development in F1 offspring. In addition, oocyte maturation competence was decreased in F1 offspring. Finally, single-cell transcriptome analysis revealed that PFOA-induced oocyte deterioration was caused by mitochondrial dysfunction and apoptosis in the F1 offspring. In summary, our results indicated that gestational exposure to PFOA had potential toxic effects on ovarian function and led to a higher incidence of meiotic defects in F1 female offspring.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Rui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Si-Hong Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
32
|
Ding N, Harlow SD, Randolph JF, Mukherjee B, Batterman S, Gold EB, Park SK. Perfluoroalkyl Substances and Incident Natural Menopause in Midlife Women: The Mediating Role of Sex Hormones. Am J Epidemiol 2022; 191:1212-1223. [PMID: 35292812 PMCID: PMC9393069 DOI: 10.1093/aje/kwac052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 01/28/2023] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been associated with earlier natural menopause; however, the underlying mechanisms are not well understood, particularly the extent to which this relationship is mediated by sex hormones. We analyzed data (1999-2017) on 1,120 premenopausal women from the Study of Women's Health Across the Nation (SWAN). Causal mediation analysis was applied to quantify the degree to which follicle-stimulating hormone (FSH) and estradiol levels could mediate the associations between PFAS and incident natural menopause. Participants with higher PFAS concentrations had shorter times to natural menopause, with a relative survival of 0.82 (95% confidence interval (CI): 0.69, 0.96) for linear perfluorooctane sulfonate (n-PFOS), 0.84 (95% CI: 0.69, 1.00) for sum of branched-chain perfluorooctane sulfonate (Sm-PFOS), 0.79 (95% CI: 0.66, 0.93) for linear-chain perfluorooctanoate (n-PFOA), and 0.84 (95% CI: 0.71, 0.97) for perfluorononanoate (PFNA), comparing the highest tertile of PFAS concentrations with the lowest. The proportion of the effect mediated through FSH was 8.5% (95% CI: -11.7, 24.0) for n-PFOS, 13.2% (95% CI: 0.0, 24.5) for Sm-PFOS, 26.9% (95% CI: 15.6, 38.4) for n-PFOA, and 21.7% (6.8, 37.0) for PFNA. No significant mediation by estradiol was observed. The effect of PFAS on natural menopause may be partially explained by variations in FSH concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung Kyun Park
- Correspondence to Dr. Sung Kyun Park, Department of Epidemiology, School of Public Health, University of Michigan, M5541 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (e-mail: )
| |
Collapse
|
33
|
Mario T, Yvonne D, Veronica S, Alejandro D, Juan RM, Diana F, Edmundo B, Eduardo C, Mario A, Alma L, Ivan B, Concepcion G, Fahiel C, Miguel B. Effects of perfluorooctanoic acid in oxidative stress generation, DNA damage in cumulus cells, and its impact on in vitro maturation of porcine oocytes. ENVIRONMENTAL TOXICOLOGY 2022; 37:1394-1403. [PMID: 35187785 DOI: 10.1002/tox.23492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/22/2021] [Accepted: 02/05/2022] [Indexed: 05/23/2023]
Abstract
Perfluorooctanoic acid is a synthetic compound mostly used in a wide range of consumer products with several adverse effects on somatic cells and gametes. It has been linked to hepatotoxic and carcinogenic effects, alterations in the immune system, endocrine, and reproductive alterations. In vivo studies show an increase in reactive oxygen species and DNA damage. However, the mechanisms by which this compound affects fertility, remain contradictory. Therefore, the aim of the present study was to evaluate the effect of perfluorooctanoic acid on oocyte viability and maturation, as well as the viability, generation of oxidative stress, and genotoxic damage in the cumulus cells exposed during in vitro maturation. This compound had a negative effect on oocyte viability (lethal concentration, LC50 = 269 μM) and maturation (inhibition maturation concentration IM50 = 75 μM), while in cumulus cells the LC50 was 158 μM. The generation of reactive oxygen species evaluated in cumulus cells, protein carbonylation, and DNA damage, was significantly increased at 40 μM perfluorooctanoic acid. This study provides evidence that perfluorooctanoic acid causes reactive oxygen species generation, protein oxidation, and DNA damage in cumulus cells, compromising the maturation and viability of porcine oocyte, which may affect fertility.
Collapse
Affiliation(s)
- Teteltitla Mario
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Ducolomb Yvonne
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Souza Veronica
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Domínguez Alejandro
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Rodríguez-Mercado Juan
- Research Unit in Genetics and Environmental Toxicology, Faculty of Superior Studies Zaragoza, UNAM, Mexico City, Mexico
| | - Flores Diana
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bonilla Edmundo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casas Eduardo
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Altamirano Mario
- Research Unit in Genetics and Environmental Toxicology, Faculty of Superior Studies Zaragoza, UNAM, Mexico City, Mexico
| | - López Alma
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Bahena Ivan
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Gutierrez Concepcion
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Casillas Fahiel
- Department of Biology of Reproduction, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| | - Betancourt Miguel
- Department of Health Sciences, Metropolitan Autonomous University-Iztapalapa Campus, Mexico City, Mexico
| |
Collapse
|
34
|
Basini G, Bussolati S, Torcianti V, Grasselli F. Perfluorooctanoic Acid (PFOA) Induces Redox Status Disruption in Swine Granulosa Cells. Vet Sci 2022; 9:vetsci9060254. [PMID: 35737306 PMCID: PMC9230600 DOI: 10.3390/vetsci9060254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) is employed in the production and processing of several plastic materials, mainly during the production of waterproof fabrics or nonstick cookware. PFOA is identified as a substance of very high concern, as it is classified as a persistent, bioaccumulative, and toxic (PBT) substance because of its persistence in the environment and its potential accumulation in organisms. Thus, safe levels of exposure cannot be established, and PFOA emissions should be minimized. PFOA has recently been linked to several health concerns in humans. In particular, a disruptive effect on redox status homeostasis has been documented, with a potential impairment of normal reproductive function that requires adequate oxidative balance. Therefore, the aim of the present study was to evaluate the effects of PFOA (2, 20, and 200 ng/mL) on ovarian granulosa cells, a model of reproductive cells. The obtained results reveal that PFOA stimulated cell viability (p < 0.05). Regarding the effects on free radical production, O2−, NO, and H2O2 were significantly inhibited (p < 0.05), while the nonenzymatic antioxidant power was not significantly modified. Collectively, the present results deserve attention since free radical molecules play a crucial role in ovarian follicle development leading to a successful ovulation.
Collapse
|
35
|
Rickard BP, Tan X, Fenton SE, Rizvi I. Select Per- and Polyfluoroalkyl Substances (PFAS) Induce Resistance to Carboplatin in Ovarian Cancer Cell Lines. Int J Mol Sci 2022; 23:5176. [PMID: 35563566 PMCID: PMC9104343 DOI: 10.3390/ijms23095176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants associated with adverse reproductive outcomes including reproductive cancers in women. PFAS can alter normal ovarian function, but the effects of PFAS on ovarian cancer progression and therapy response remain understudied. Ovarian cancer is the most lethal gynecologic malignancy, and a major barrier to effective treatment is resistance to platinum-based chemotherapy. Platinum resistance may arise from exposure to external stimuli such as environmental contaminants. This study evaluated PFAS and PFAS mixture exposures to two human ovarian cancer cell lines to evaluate the ability of PFAS exposure to affect survival fraction following treatment with carboplatin. This is the first study to demonstrate that, at sub-cytotoxic concentrations, select PFAS and PFAS mixtures increased survival fraction in ovarian cancer cells following carboplatin treatment, indicative of platinum resistance. A concomitant increase in mitochondrial membrane potential, measured by the JC-1 fluorescent probe, was observed in PFAS-exposed and PFAS + carboplatin-treated cells, suggesting a potential role for altered mitochondrial function that requires further investigation.
Collapse
Affiliation(s)
- Brittany P. Rickard
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
| | - Xianming Tan
- Department of Biostatistics, University of North Carolina School of Public Health, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Suzanne E. Fenton
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Imran Rizvi
- Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.P.R.); (S.E.F.)
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
36
|
Clark KL, George JW, Hua G, Davis JS. Perfluorooctanoic acid promotes proliferation of the human granulosa cell line HGrC1 and alters expression of cell cycle genes and Hippo pathway effector YAP1. Reprod Toxicol 2022; 110:49-59. [PMID: 35346789 PMCID: PMC10364788 DOI: 10.1016/j.reprotox.2022.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/27/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a common environmental contaminant that belongs to a group of manmade fluorinated chemicals called per- and polyfluoroalkyl substances (PFAS). Due to the pervasive nature of PFOA, the environmental health risks of PFOA contamination and exposure on reproductive health have increasing concern. In the present study, we exposed HGrC1 cells, an immortalized human granulosa cell line, to environmentally relevant (1-10 μM) concentrations of PFOA. Results indicated that HGrC1 cells treated with PFOA had increased proliferation and migration relative to vehicle treated controls. No differences in cell apoptosis were observed with 1-10 μM PFOA. Gene expression analysis revealed increases in mRNA transcripts for cell cycle regulators CCND1, CCNA2, and CCNB1. Upregulation of YAP1 protein and downstream target CTGF protein was also observed, suggesting that the Hippo pathway is involved in the proliferation and migratory effects of PFOA on HGrC1 cells. Further, the YAP1 inhibitor Verteporfin prevented the stimulatory effects of PFOA on HGrC1 cells. Together, these findings support a role for the Hippo pathway effector YAP1 in response to PFOA exposure in human granulosa cells.
Collapse
Affiliation(s)
- Kendra L Clark
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, Nebraska, 68105, USA
| | - Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, Nebraska, 68105, USA
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA; Veterans Affairs Nebraska Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, Nebraska, 68105, USA.
| |
Collapse
|
37
|
Delbes G, Blázquez M, Fernandino JI, Grigorova P, Hales BF, Metcalfe C, Navarro-Martín L, Parent L, Robaire B, Rwigemera A, Van Der Kraak G, Wade M, Marlatt V. Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals. ENVIRONMENTAL RESEARCH 2022; 204:112040. [PMID: 34509487 DOI: 10.1016/j.envres.2021.112040] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.
Collapse
Affiliation(s)
- G Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada.
| | - M Blázquez
- Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - J I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | | | - B F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - C Metcalfe
- School of Environment, Trent University, Trent, Canada
| | - L Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - L Parent
- Université TELUQ, Montréal, Canada
| | - B Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Obstetrics and Gynecology, McGill University, Montreal, Canada
| | - A Rwigemera
- Centre Armand Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - G Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, Canada
| | - V Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
38
|
Zhang R, Lu W, Yao Y, Tu L, Yu T, Luan T, Chen B. Metabolomics analysis of the 3D L-02 cell cultures revealing the key role of metabolism of amino acids in ameliorating hepatotoxicity of perfluorooctanoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150438. [PMID: 34562763 DOI: 10.1016/j.scitotenv.2021.150438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
To simulate the real cell status and morphology in the living systems is substantial for using cell models to address the detrimental effects of toxic contaminants. In this study, the comparative profiles of metabolites in three-dimensional (3D) human normal liver (L-02) cell spheroids with perfluorooctanoic acid (PFOA) treatment were analyzed using a metabolomic approach. The uniform 3D cell spheroids were well formed in 3 days (e.g., sphericity index >0.9) and stably maintained over the subsequent 11 days. The cytotoxicity of PFOA to the 3D L-02 cell spheroids was highly dependent on both exposure concentration and duration. Comparative analysis of metabolomes showed that the number of differential metabolites in the 3D cell spheroids treated with 300 μM PFOA for 10 days (n = 59) was greater than those with a 4-day exposure to 300 μM PFOA (n = 17). Six metabolic pathways related to amino acids metabolism were only found in the 3D cell spheroids with a 10-day treatment of 300 μM PFOA, which could not be found in the 2D monolayer cells and those 3D cell spheroids with a 4-day exposure. The suppression of PFOA on glutamine metabolism substantially decreased glutathione (GSH) production and accordingly increased the level of reactive oxygen species in the 3D cell spheroids. On the contrary, the supplementation of glutamine increased GSH production and the viability of cell spheroids, indicating that glutamine metabolism played a critical role in the chronic toxic effects of PFOA. Our study strongly suggested that comprehensive toxicological methodologies based on the 3D cell models could currently be robust and suitable for addressing the chronic adverse effects of toxic contaminants.
Collapse
Affiliation(s)
- Ruijia Zhang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenhua Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yao Yao
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lanyin Tu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiantian Yu
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 540080, China
| | - Tiangang Luan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
39
|
Makowska K, Martín J, Rychlik A, Aparicio I, Santos JL, Alonso E, Gonkowski S. Assessment of exposure to perfluoroalkyl substances (PFASs) in dogs by fur analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117435. [PMID: 34052650 DOI: 10.1016/j.envpol.2021.117435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Poly- and perfluoroalkyl substances (PFASs) are a large group of chemicals commonly used in various branches of industry, which may adversely affect the living organisms. The aim of this study were to evaluate exposure of dogs to six selected PFASs: five perfluoroalkyl carboxylic acids (perfluorobutanoic acid - PFBuA, perfluoropentanoic acid - PFPeA, perfluorohexanoic acid - PFHxA, perfluoroheptanoic acid - PFHpA, perfluorooctanoic acid - PFOA) and perfluorooctane sulfonic acid (PFOS) through the analysis of fur samples. To our knowledge this is the first study concerning the use of fur samples to evaluation of exposure of domestic animals to PFASs. Relationship between PFASs concentration and age, gender and body weight of animals was also evaluated. Fur samples were collected from 30 dogs living in Olsztyn (Poland). All PFASs studied were detected in the canine fur samples. The highest concentrations were observed in the case of PFOA and PFBuA, detected at concentrations in the range between 1.51 and 66.7 ng/g and 0.98-26.6 ng/g, respectively. During the present study generally no statistically significant differences dependent on gender, age and body weight of animals were found. This study confirms the suitability of fur samples for biomonitoring of exposure to PFASs in domestic animals, what may be important in veterinary toxicology.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland.
| | - Julia Martín
- Department of Analytical Chemistry, University of Seville, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957, Olsztyn, Poland
| | - Irene Aparicio
- Department of Analytical Chemistry, University of Seville, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| | - Juan Luis Santos
- Department of Analytical Chemistry, University of Seville, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, University of Seville, C/ Virgen de África, 7, E-41011, Sevilla, Spain
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland
| |
Collapse
|
40
|
Zhu X, Li Y, Jiang Y, Zhang J, Duan R, Liu L, Liu C, Xu X, Yu L, Wang Q, Xiong F, Ni C, Xu L, He Q. Prediction of Gut Microbial Community Structure and Function in Polycystic Ovary Syndrome With High Low-Density Lipoprotein Cholesterol. Front Cell Infect Microbiol 2021; 11:665406. [PMID: 34350129 PMCID: PMC8326754 DOI: 10.3389/fcimb.2021.665406] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota has been proved to be involved in the occurrence and development of many diseases, such as type 2 diabetes, obesity, coronary heart disease, etcetera. It provides a new idea for the pathogenesis of polycystic ovary syndrome (PCOS). Our study showed that the gut microbial community of PCOS with high low-density lipoprotein cholesterol (LDLC) has a noticeable imbalance. Gut microbiota of PCOS patients was significantly changed compared with CON, and these changes were closely related to LDLC. Gut microbiota may affect the metabolic level of PCOS patients through multiple metabolic pathways, and lipid metabolism disorder may further aggravate the imbalance of gut microbiota. Actinomycetaceae, Enterobacteriaceae and Streptococcaceae had high accuracy in the diagnosis of PCOS and the differentiation of subgroups, suggesting that they may play an important role in the diagnosis and treatment of PCOS in the future. Also, the model we built showed good specificity and sensitivity for distinguishing PCOS from CON (including L_CON and L_PCOS, H_CON and H_PCOS). In conclusion, this is the first report on the gut microbiota of PCOS with high LDLC, suggesting that in the drug development or treatment of PCOS patients, the difference of gut microbiota in PCOS patients with different LDLC levels should be fully considered.
Collapse
Affiliation(s)
- Xuping Zhu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Yanyu Li
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Yanmin Jiang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Jisheng Zhang
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ru Duan
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Lin Liu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Chao Liu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Xiang Xu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Lu Yu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Qian Wang
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Fan Xiong
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Chengming Ni
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Lan Xu
- Department of Endocrinology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, China
| | - Qing He
- Department of Good Clinical Practice (GCP), The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
41
|
Guo C, Zhao Z, Zhao K, Huang J, Ding L, Huang X, Meng L, Li L, Wei H, Zhang S. Perfluorooctanoic acid inhibits the maturation rate of mouse oocytes cultured in vitro by triggering mitochondrial and DNA damage. Birth Defects Res 2021; 113:1074-1083. [PMID: 33871176 DOI: 10.1002/bdr2.1899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is widely used in the manufacture of household and industrial products. It has certain toxicity and leaves many residues in the environment. Numerous studies have shown that PFOA exhibits endocrine disrupting properties and immunotoxicity and induces developmental defects. However, there is very little information regarding its toxicity on oocytes. METHODS We cultured denuded oocytes in maturation medium supplemented with 0, 300, or 500 PFOA during IVM and evaluated the maturation of oocytes from the aspects of ROS(DCFH-DA), mitochondria(MitoOrange and JC-1), DNA damage(P-H2AX), and cytoskeleton(β-tubulin). RESULTS Compared with the control group, the PFOA treatment group exhibited significantly reduced proportion of oocytes matutation. Furthermore, the DCFH-DA test showed that PFOA significantly increased reactive oxygen species (ROS) levels. PFOA disrupted mitochondrial distribution and decreased mitochondrial function as assessed using MitoOrange and JC-1. In addition, PFOA-treated oocytes exhibited a significantly higher percentage of P-H2AX, defective β-tubulin, abnormal chromosome alignment, lower expression of the anti-apoptotic gene Bcl-2, and higher expression of the apoptotic genes caspase3 and Bax. CONCLUSION In summary, PFOA could negatively and directly affect oocyte maturation in vitro and cause oxidative stress, mitochondrial function disruption, DNA damage, cytoskeleton damage, and apoptosis.
Collapse
Affiliation(s)
- Conghui Guo
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihong Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kun Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhao Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linshu Ding
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaogang Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Meng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
42
|
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M. Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. CHEMOSPHERE 2021; 264:128467. [PMID: 33032226 DOI: 10.1016/j.chemosphere.2020.128467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of anthropogenic chemicals is detected in humans and wildlife and the health effects of various chemical exposures are not well understood. Early life stages are generally the most susceptible to chemical disruption and developmental exposure can cause disease in adulthood, but the mechanistic understanding of such effects is poor. Within the EU project EDC-MixRisk, a chemical mixture (Mixture G) was identified in the Swedish pregnancy cohort SELMA by the inverse association between levels in women at around gestational week ten with birth weight of their children. This mixture was composed of mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mono-isononyl phthalate, triclosan, perfluorohexane sulfonate, perfluorooctanoic acid, and perfluorooctane sulfonate. In a series of experimental studies, we characterized effects of Mixture G on early development in zebrafish models. Here, we studied apoptosis and Wnt/β-catenin signaling which are two evolutionarily conserved signaling pathways of crucial importance during development. We determined effects on apoptosis by measuring TUNEL staining, caspase-3 activity, and acridine orange staining in wildtype zebrafish embryos, while Wnt/β-catenin signaling was assayed using a transgenic line expressing an EGFP reporter at β-catenin-regulated promoters. We found that Mixture G increased apoptosis, suppressed Wnt/β-catenin signaling in the caudal fin, and altered the shape of the caudal fin at water concentrations only 20-100 times higher than the geometric mean serum concentration in the human cohort. These findings call for awareness that pollutant mixtures like mixture G may interfere with a variety of developmental processes, possibly resulting in adverse health effects.
Collapse
Affiliation(s)
- Anna Smirnova
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Petter Ranefall
- SciLifeLab BioImage Informatics Facility, and Dept of Information Technology, Uppsala University, Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
43
|
Martínez-Quezada R, González-Castañeda G, Bahena I, Domínguez A, Domínguez-López P, Casas E, Betancourt M, Casillas F, Rodríguez J, Álvarez L, Mateos R, Altamirano M, Bonilla E. Effect of perfluorohexane sulfonate on pig oocyte maturation, gap-junctional intercellular communication, mitochondrial membrane potential and DNA damage in cumulus cells in vitro. Toxicol In Vitro 2021; 70:105011. [DOI: 10.1016/j.tiv.2020.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/23/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
|
44
|
Ma X, Cui L, Chen L, Zhang J, Zhang X, Kang Q, Jin F, Ye Y. Parental plasma concentrations of perfluoroalkyl substances and In Vitro fertilization outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116159. [PMID: 33279270 DOI: 10.1016/j.envpol.2020.116159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl substances (PFAS) are known to be endocrine-disrupting compounds, but are nevertheless widely used in consumer and industrial products and have been detected globally in human and wildlife. Data from animal and epidemiological studies suggest that PFAS may affect human fertility. This led us to consider whether maternal or paternal plasma PFAS had effects on in vitro fertilization (IVF) outcomes. The study population consisted of 96 couples who underwent IVF treatment in 2017 due to tubal factor infertility. The concentrations of 10 PFAS in blood samples from both male and female partners were measured. Poisson regression with log link was performed to evaluate the association between the tertiles of PFAS concentrations and numbers of retrieved oocytes, mature oocytes, two-pronuclei (2 PN) zygotes, and good-quality embryos, while multiple linear regression models were used to investigate the correlation between plasma PFAS and semen parameters. Multivariable logistic regression was used to evaluate the association between the tertiles of PFAS concentrations and clinical outcomes. It was found that maternal plasma concentrations of perfluorooctanoic acid (PFOA) were negatively associated with the numbers of retrieved oocytes (ptrend = 0.023), mature oocytes (ptrend = 0.015), 2 PN zygotes (ptrend = 0.014), and good-quality embryos (ptrend = 0.012). Higher paternal plasma PFOA concentrations were found to be significantly associated with reduced numbers of 2 PN zygotes (ptrend = 0.047). None of the maternal or paternal PFAS were significantly associated with the probability of implantation, clinical pregnancy, or live birth. To our knowledge, the present study is the first to assess the association between parental exposure to PFAS and IVF outcomes. Our results suggest the potential reproductive effects of PFAS on both men and women, and that exposure to PFAS may negatively affect IVF outcomes. Future studies, particularly with large sample size cohorts, are needed to confirm these findings.
Collapse
Affiliation(s)
- Xueqian Ma
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Lin Chen
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiaohui Zhang
- Department of Women's Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
45
|
Gingrich J, Pu Y, Upham BL, Hulse M, Pearl S, Martin D, Avery A, Veiga-Lopez A. Bisphenol S enhances gap junction intercellular communication in ovarian theca cells. CHEMOSPHERE 2021; 263:128304. [PMID: 33155548 PMCID: PMC7726030 DOI: 10.1016/j.chemosphere.2020.128304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 05/08/2023]
Abstract
Gap junction intercellular communication (GJIC) is necessary for ovarian function, and it is temporospatially regulated during follicular development and ovulation. At outermost layer of the antral follicle, theca cells provide structural, steroidogenic, and vascular support. Inter- and extra-thecal GJIC is required for intrafollicular trafficking of signaling molecules. Because GJIC can be altered by hormones and endocrine disrupting chemicals (EDCs), we tested if any of five common EDCs (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), perfluorooctanesulfonic acid (PFOS), and triphenyltin chloride (TPT)) can interfere with theca cell GJIC. Since most chemicals are reported to repress GJIC, we hypothesized that all chemicals tested, within environmentally relevant human exposure concentrations, will inhibit theca cell GJICs. To evaluate this hypothesis, we used a scrape loading/dye transfer assay. BPS, but no other chemical tested, enhanced GJIC in a dose- and time-dependent manner in ovine primary theca cells. A signal-protein inhibitor approach was used to explore the GJIC-modulatory pathways involved. Phospholipase C and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated BPS-induced enhanced GJIC. Human theca cells were used to evaluate translational relevance of these findings. Human primary theca cells had a ∼40% increase in GJIC in response to BPS, which was attenuated with a MAPK inhibitor, suggestive of a conserved mechanism. Upregulation of GJIC could result in hyperplasia of the theca cell layer or prevent ovulation by holding the oocyte in meiotic arrest. Further studies are necessary to understand in vitro to in vivo translatability of these findings on follicle development and fertility outcomes.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, 48824, USA
| | - Madeline Hulse
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Anita Avery
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
46
|
Yang Y, Meng K, Chen M, Xie S, Chen D. Fluorotelomer Alcohols' Toxicology Correlates with Oxidative Stress and Metabolism. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:71-101. [PMID: 33866421 DOI: 10.1007/398_2020_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorotelomer alcohols (FTOHs) are widely used as industrial raw materials due to their unique hydrophobic and oleophobic properties. However, because of accidental exposure to products containing FTOHs or with the widespread use of FTOHs, they tend to contaminate the water and the soil. There are reports demonstrating that FTOHs can cause various harmful effects in animals and humans (for example, neurotoxicity, hepatotoxicity, nephrotoxicity, immunotoxicity, endocrine-disrupting activity, and developmental and reproductive toxicities). Oxidative stress is related to a variety of toxic effects induced by FTOHs. To date, few reviews have addressed the relationship between the toxicity of FTOHs and oxidative stress. This article summarises research demonstrating that the toxicity induced by FTOHs correlates with oxidative stress and metabolism. Furthermore, during the metabolic process of FTOHs, a number of cytochrome P450 enzymes (CYP450) are involved and many metabolites are produced by these enzymes, which can induce oxidative stress. This is also reviewed.
Collapse
Affiliation(s)
- Yujuan Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Kuiyu Meng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Min Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China.
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Zhou Y, Li H, Lin C, Mao Y, Rao J, Lou Y, Yang X, Xu X, Jin F. Perfluorooctanoic acid (PFOA) inhibits the gap junction intercellular communication and induces apoptosis in human ovarian granulosa cells. Reprod Toxicol 2020; 98:125-133. [PMID: 32971237 DOI: 10.1016/j.reprotox.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 01/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) has attracted widespread research attention as it is very stable, bioaccumulates, and causes reproductive toxicity. Data from several animal experiments and epidemiological studies indicate that female fertility may decline because of ovarian granulosa cell (GC) apoptosis as oocyte quality is positively associated with effective gap junctional intercellular communication (GJIC) between GCs. To the best of our knowledge, however, no previous trials have been conducted or reported on the effects of PFOA exposure on apoptosis induction in human GCs. Moreover, the roles of GJIC in GC survival and in the induction of apoptosis in GCs by PFOA remain unclear. To test this, we cultured human GCs in vitro and treated them with 0 μM, 0.3 μM, 3 μM, or 30 μM PFOA for 24 h. We also treated a human ovarian GC line (KGN) with various combinations of PFOA, retinoic acid (RA, 10 μM), and carbenoxolone disodium (CBX, 50 mM). Our findings showed that PFOA lowered human GC viability and increased apoptosis. The effects of CBX resemble those of PFOA. The combination of PFOA and CBX enhances the inhibition of GJIC by PFOA and promotes apoptosis. The effects of RA are the opposite to those of PFOA. The combination of RA and PFOA mitigates PFOA-induced GJIC inhibition and reduces apoptosis. The observed expression levels of apoptosis-related proteins were consistent with the aforementioned findings. Hence, our study demonstrated that PFOA may induce human ovarian GC apoptosis by inhibiting GJIC.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongping Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chuanping Lin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinpeng Rao
- Reproductive Medical Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiyun Lou
- Department of Gynecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Xinyun Yang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - XiangRong Xu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
48
|
Lin T, Zhang Y, Ding X, Huang T, Zhang W, Zou W, Kuang H, Yang B, Wu L, Zhang D. Perfluorooctanoic acid induces cytotoxicity in spermatogonial GC-1 cells. CHEMOSPHERE 2020; 260:127545. [PMID: 32653749 DOI: 10.1016/j.chemosphere.2020.127545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane acid (PFOA), a typical perfluorinated chemical, has been suggested to interfere with male reproductive function. In this study, mouse spermatogonial GC-1 cells were in vitro treated with PFOA (250, 500 or 750 μM) for 24 h to investigate the cytotoxicity of PFOA and its underlying mechanisms. Our results indicated that exposure to intermediate and high doses of PFOA suppressed the viability of GC-1 cells in a concentration-dependent manner. Furthermore, PFOA treatment markedly enhanced the generation of reactive oxygen species and malondialdehyde, with diminished activity of superoxide dismutase. Particularly, PFOA exposure evoked a decline in mitochondrial membrane potential and ATP production. Furthermore, the apoptotic index and caspase-3 activity were significantly elevated after treatment with PFOA. In addition, PFOA incubation caused an increase in LC3B-II/LC3B-I ratio. Meanwhile, PFOA resulted in an excessive accumulation of autophagosomes in the cytoplasm. Taken together, exposure to PFOA can elicit cytotoxicity to spermatogonial GC-1 cells in vitro, which may be link to the mitochondrial oxidative damage and induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Yurong Zhang
- Medical College of Nanchang University, Nanchang, 330006, PR China
| | - Xinbao Ding
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Huang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Wenjuan Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Weiying Zou
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Haibin Kuang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Bei Yang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Lei Wu
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China
| | - Dalei Zhang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
49
|
Ding N, Harlow SD, Randolph Jr JF, Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update 2020; 26:724-752. [PMID: 32476019 PMCID: PMC7456353 DOI: 10.1093/humupd/dmaa018] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are found widespread in drinking water, foods, food packaging materials and other consumer products. Several PFAS have been identified as endocrine-disrupting chemicals based on their ability to interfere with normal reproductive function and hormonal signalling. Experimental models and epidemiologic studies suggest that PFAS exposures target the ovary and represent major risks for women's health. OBJECTIVE AND RATIONALE This review summarises human population and toxicological studies on the association between PFAS exposure and ovarian function. SEARCH METHODS A comprehensive review was performed by searching PubMed. Search terms included an extensive list of PFAS and health terms ranging from general keywords (e.g. ovarian, reproductive, follicle, oocyte) to specific keywords (including menarche, menstrual cycle, menopause, primary ovarian insufficiency/premature ovarian failure, steroid hormones), based on the authors' knowledge of the topic and key terms. OUTCOMES Clinical evidence demonstrates the presence of PFAS in follicular fluid and their ability to pass through the blood-follicle barrier. Although some studies found no evidence associating PFAS exposure with disruption in ovarian function, numerous epidemiologic studies, mostly with cross-sectional study designs, have identified associations of higher PFAS exposure with later menarche, irregular menstrual cycles, longer cycle length, earlier age of menopause and reduced levels of oestrogens and androgens. Adverse effects of PFAS on ovarian folliculogenesis and steroidogenesis have been confirmed in experimental models. Based on laboratory research findings, PFAS could diminish ovarian reserve and reduce endogenous hormone synthesis through activating peroxisome proliferator-activated receptors, disrupting gap junction intercellular communication between oocyte and granulosa cells, inducing thyroid hormone deficiency, antagonising ovarian enzyme activities involved in ovarian steroidogenesis or inhibiting kisspeptin signalling in the hypothalamus. WIDER IMPLICATIONS The published literature supports associations between PFAS exposure and adverse reproductive outcomes; however, the evidence remains insufficient to infer a causal relationship between PFAS exposure and ovarian disorders. Thus, more research is warranted. PFAS are of significant concern because these chemicals are ubiquitous and persistent in the environment and in humans. Moreover, susceptible groups, such as foetuses and pregnant women, may be exposed to harmful combinations of chemicals that include PFAS. However, the role environmental exposures play in reproductive disorders has received little attention by the medical community. To better understand the potential risk of PFAS on human ovarian function, additional experimental studies using PFAS doses equivalent to the exposure levels found in the general human population and mixtures of compounds are required. Prospective investigations in human populations are also warranted to ensure the temporality of PFAS exposure and health endpoints and to minimise the possibility of reverse causality.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - John F Randolph Jr
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Ding N, Harlow SD, Randolph JF, Calafat AM, Mukherjee B, Batterman S, Gold EB, Park SK. Associations of Perfluoroalkyl Substances with Incident Natural Menopause: The Study of Women's Health Across the Nation. J Clin Endocrinol Metab 2020; 105:dgaa303. [PMID: 32491182 PMCID: PMC7418447 DOI: 10.1210/clinem/dgaa303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
CONTEXT Previous epidemiologic studies of per- and polyfluoroalkyl substances (PFASs) and menopausal timing conducted in cross-sectional settings were limited by reverse causation because PFAS serum concentrations increase after menopause. OBJECTIVES To investigate associations between perfluoroalkyl substances and incident natural menopause. DESIGN AND SETTING A prospective cohort of midlife women, the Study of Women's Health Across the Nation, 1999-2017. PARTICIPANTS 1120 multiracial/ethnic premenopausal women aged 45-56 years. METHODS Serum concentrations of perfluoroalkyls were quantified by high-performance liquid chromatography isotope dilution tandem mass spectrometry. Natural menopause was defined as the bleeding episode prior to at least 12 months of amenorrhea not due to surgery or hormone use. Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS Participants contributed 5466 person-years of follow-up, and 578 had incident natural menopause. Compared with the lowest tertile, women at the highest tertile of baseline serum concentrations had adjusted HR for natural menopause of 1.26 (95% CI: 1.02-1.57) for n-perfluorooctane sulfonic acid (n-PFOS) (Ptrend = .03), 1.27 (95% CI: 1.01-1.59) for branched-PFOS (Ptrend = .03), and 1.31 (95% CI: 1.04-1.65) for n-perfluorooctanoic acid (Ptrend = .01). Women were classified into four clusters based on their overall PFAS concentrations as mixtures: low, low-medium, medium-high, and high. Compared with the low cluster, the high cluster had a HR of 1.63 (95% CI: 1.08-2.45), which is equivalent to 2.0 years earlier median time to natural menopause. CONCLUSION This study suggests that select PFAS serum concentrations are associated with earlier natural menopause, a risk factor for adverse health outcomes in later life.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Siobán D Harlow
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - John F Randolph
- Department of Obstetrics and Gynecology, School of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Stuart Batterman
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
- Department of Civil and Environmental Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Ellen B Gold
- Department of Public Health Sciences, University of California, Davis, School of Medicine, Davis, California
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|