1
|
Chen W, Guo P, Su L, Guo X, Shi M, Geng J, Zong Y, Zhao Y, Du R, He Z. Combining Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Total Ginsenoside Ginseng Root and Its Impact on Antidepressant Effects. Int J Mol Sci 2024; 25:12606. [PMID: 39684318 DOI: 10.3390/ijms252312606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Depression is one of the most common neurological diseases, which imposes a substantial social and economic burden on modern society. The purpose of this study was to explore the mechanism of total ginsenoside ginseng root (TGGR) in the treatment of depression through a comprehensive strategy combining network pharmacology, transcriptomics, and in vivo experimental validation. The Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database and literature were used to collect the main components and targets of TGGR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied to explore the underlying mechanisms. In addition, the chronic unpredictable mild stress (CUMS)-induced C57BL/6 mouse model was used to evaluate the antidepressant activity of TGGR. The results showed that TGGR improved depression-like behavior in mice and increased the decrease in serum 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) levels caused by CUMS. Combined network pharmacology and transcriptomic analysis showed that the AMP-activated kinase (AMPK) signaling pathway mainly enriched the core target. Immunohistochemistry, Western blotting, and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to confirm whether TGGR exerts antidepressant effects by regulating this pathway. The results showed that TGGR has a regulatory impact on related proteins in the AMPK pathway, and the regulatory effect of TGGR on proteins was inhibited after the administration of related pathway inhibitors. In summary, total ginsenosides may regulate the AMPK signaling pathway and activate the sirtuin 1 (SIRT1) peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) pathway to have therapeutic effects on depression.
Collapse
Affiliation(s)
- Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Pengli Guo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lili Su
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiangjuan Guo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meiling Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Education, Ministry of National Education, Changchun 130118, China
| |
Collapse
|
2
|
Liu H, Jiang L, Xu S, Wang C, Sun J. Quercetin prevents methylmercury-induced mitochondrial dysfunction in the cerebral cortex of mice. Drug Chem Toxicol 2024; 47:1124-1138. [PMID: 38647114 DOI: 10.1080/01480545.2024.2341888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Methylmercury (MeHg) exposure can cause nerve damage and mitochondrial dysfunction. Mitochondrial dysfunction is mainly mediated by mitochondrial biogenesis and mitochondrial dynamics disorders. Quercetin (QE) plays an important role in activating silencing information regulator 2 related enzyme 1 (SIRT1), and SIRT1 activates peroxisome-proliferator-activated receptor-γ co-activator 1α (PGC-1α), which can regulate mitochondrial biogenesis and mitochondrial dynamics. The main purpose of this study was to explore the alleviating effects of QE on MeHg-induced nerve damage and mitochondrial dysfunction. The results showed that QE could reduce the excessive production of reactive oxygen species (ROS) and the loss of membrane potential induced by MeHg. Meanwhile, QE activated SIRT1 activity and SIRT1/PGC-1α signaling pathway, improved mitochondrial biogenesis and fusion and reduced mitochondrial fission. In summary, we hypothesized that QE prevents MeHg-induced mitochondrial dysfunction by activating SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Liujiangshan Jiang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, PR China
| | - Jingyi Sun
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
3
|
Guo P, Wang Z, Sun L, He Z, Li J, Geng J, Zong Y, Chen W, Du R. 20 (S)-Protopanaxadiol Alleviates DRP1-Mediated Mitochondrial Dysfunction in a Depressive Model In Vitro and In Vivo via the SIRT1/PGC-1α Signaling Pathway. Molecules 2024; 29:5085. [PMID: 39519726 PMCID: PMC11547436 DOI: 10.3390/molecules29215085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Depression is a complex and common mental illness affecting physical and psychological health. Panax ginseng C. A. Mey is a traditional Chinese medicine with abundant pharmacological activity and applications in regulating mood disorders. 20 (S)-Protopanaxadiol is the major intestinal metabolite of ginsenoside and one of the active components in ginseng. In this study, we aimed to investigate the therapeutic effects of 20 (S)-Protopanaxadiol on neuronal damage and depression, which may involve mitochondrial dynamics. However, the mechanism underlying the antidepressant effects of 20 (S)-Protopanaxadiol is unelucidated. In the present study, we investigated the potential mechanisms underlying the antidepressant activity of 20 (S)-Protopanaxadiol by employing a corticosterone-induced HT22 cellular model and a chronic unpredicted mild stress (CUMS)-induced animal model in combination with a network pharmacology approach. In vitro, the results showed that 20 (S)-Protopanaxadiol ameliorated the corticosterone (CORT)-induced decrease in HT22 cell viability, decrease in 5-hydroxytryptamine (5-HT) levels, and increase in nitric oxide (NO) and malondialdehyde (MDA) levels. Furthermore, 20 (S)-Protopanaxadiol exerted improvement effects on the CORT-induced increase in HT22 cell mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and apoptosis. In vivo, the results showed that 20 (S)-Protopanaxadiol ameliorated depressive symptoms and hippocampal neuronal damage in CUMS mice, and sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor-1-Alpha (PGC-1α) activity were activated in the hippocampus of mice, thereby alleviating mitochondrial dysfunction and promoting the clearance of damaged mitochondria. In both in vivo and in vitro models, after inhibiting SIRT1 expression, the protective effect of 20 (S)-Protopanaxadiol on mitochondria was significantly weakened, and dynamin-related protein 1 (DRP1)-mediated mitochondrial division was significantly reduced. These findings suggest that 20 (S)-Protopanaxadiol may exert neuroprotective and antidepressant effects by attenuating DRP1-mediated mitochondrial dysfunction and apoptosis by modulating the SIRT1/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Pengli Guo
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
| | - Zixian Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
| | - Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (P.G.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
- Key Laboratory of Animal Production and Product Quality and Security, Ministry of Educatio, Ministry of National Education, Changchun 130118, China
| |
Collapse
|
4
|
Zhao M, Li J, Li Z, Yang D, Wang D, Sun Z, Wen P, Gou F, Dai Y, Ji Y, Li W, Zhao D, Yang L. SIRT1 Regulates Mitochondrial Damage in N2a Cells Treated with the Prion Protein Fragment 106-126 via PGC-1α-TFAM-Mediated Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:9707. [PMID: 39273653 PMCID: PMC11395710 DOI: 10.3390/ijms25179707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondrial damage is an early and key marker of neuronal damage in prion diseases. As a process involved in mitochondrial quality control, mitochondrial biogenesis regulates mitochondrial homeostasis in neurons and promotes neuron health by increasing the number of effective mitochondria in the cytoplasm. Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase that regulates neuronal mitochondrial biogenesis and quality control in neurodegenerative diseases via deacetylation of a variety of substrates. In a cellular model of prion diseases, we found that both SIRT1 protein levels and deacetylase activity decreased, and SIRT1 overexpression and activation significantly ameliorated mitochondrial morphological damage and dysfunction caused by the neurotoxic peptide PrP106-126. Moreover, we found that mitochondrial biogenesis was impaired, and SIRT1 overexpression and activation alleviated PrP106-126-induced impairment of mitochondrial biogenesis in N2a cells. Further studies in PrP106-126-treated N2a cells revealed that SIRT1 regulates mitochondrial biogenesis through the PGC-1α-TFAM pathway. Finally, we showed that resveratrol resolved PrP106-126-induced mitochondrial dysfunction and cell apoptosis by promoting mitochondrial biogenesis through activation of the SIRT1-dependent PGC-1α/TFAM signaling pathway in N2a cells. Taken together, our findings further describe SIRT1 regulation of mitochondrial biogenesis and improve our understanding of mitochondria-related pathogenesis in prion diseases. Our findings support further investigation of SIRT1 as a potential target for therapeutic intervention of prion diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (M.Z.)
| |
Collapse
|
5
|
Di Lorenzo R, Chimienti G, Picca A, Trisolini L, Latronico T, Liuzzi GM, Pesce V, Leeuwenburgh C, Lezza AMS. Resveratrol impinges on retrograde communication without inducing mitochondrial biogenesis in aged rat soleus muscle. Exp Gerontol 2024; 194:112485. [PMID: 38876448 DOI: 10.1016/j.exger.2024.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.
Collapse
Affiliation(s)
- Rosa Di Lorenzo
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Guglielmina Chimienti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Roma, Italy.
| | - Lucia Trisolini
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Tiziana Latronico
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Grazia Maria Liuzzi
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32611, USA.
| | - Angela Maria Serena Lezza
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
6
|
Li L, Zou J, Zhou M, Li H, Zhou T, Liu X, Huang Q, Yang S, Xiang Q, Yu R. Phenylsulfate-induced oxidative stress and mitochondrial dysfunction in podocytes are ameliorated by Astragaloside IV activation of the SIRT1/PGC1α /Nrf1 signaling pathway. Biomed Pharmacother 2024; 177:117008. [PMID: 38901196 DOI: 10.1016/j.biopha.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Astragaloside IV (AS-IV) exhibits diverse biological activities. Despite this, the detailed molecular mechanisms by which AS-IV ameliorates diabetic nephropathy (DN) and shields podocytes from oxidative stress (OS) and mitochondrial dysfunction remain poorly understood. In this study, we used biochemical assays, histopathological analysis, Doppler ultrasound, transmission electron microscopy,flow cytometry, fluorescence staining, and Western blotting and other methods. AS-IV was administered to db/db mice for in vivo experimentation. Our findings indicated that AS-IV treatment significantly reduced diabetes-associated markers, proteinuria, and kidney damage. It also diminished ROS levels in the kidney, enhanced the expression of endogenous antioxidant enzymes, and improved mitochondrial health. Phenyl sulfate (PS), a protein-bound uremic solute of enteric origin, has been closely linked with DN and represents a promising avenue for further research. In vitro, PS exposure induced OS and mitochondrial dysfunction in podocytes, increasing ROS levels while decreasing antioxidant enzyme activity (Catalase, Heme Oxygenase-1, Superoxide Dismutase, and Glutathione Peroxidase). ROS inhibitors (N-acetyl-L-cysteine, NAC) as the positive control group can significantly reduce the levels of ROS and restore antioxidant enzymes protein levels. Additionally, PS reduced markers associated with mitochondrial biosynthesis and function (SIRT1, PGC1α, Nrf1, and TFAM). These adverse effects were partially reversed by AS-IV treatment. However, co-treatment with AS-IV and the SIRT1 inhibitor EX527 failed to restore these indicators. Overall, our study demonstrates that AS-IV effectively attenuates DN and mitigates PS-induced OS and mitochondrial dysfunction in podocytes via the SIRT1/PGC1α/Nrf1 pathway.
Collapse
Affiliation(s)
- Liu Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Junju Zou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Min Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Hong Li
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Tongyi Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiu Liu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qiuqing Huang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shiyao Yang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qin Xiang
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Rong Yu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
7
|
Chen J, Zhang M, Aniagu S, Jiang Y, Chen T. PM 2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104393. [PMID: 38367920 DOI: 10.1016/j.etap.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Recent evidence indicates that PM2.5 poses a risk for congenital heart diseases, but the mechanisms remain unclear. We hypothesized that AHR activated by PM2.5 might cause mitochondrial damage via PGC-1α dysregulation, leading to heart defects. We initially discovered that the PGC-1α activator ZLN005 counteracted cardiac defects in zebrafish larvae exposed to EOM (extractable organic matter) from PM2.5. Moreover, ZLN005 attenuated EOM-induced PGC-1α downregulation, mitochondrial dysfunction/biogenesis, and apoptosis. EOM exposure not only decreased PGC-1α expression levels, but suppressed its activity via deacetylation, and SIRT1 activity is required during both processes. We then found that SIRT1 expression levels and NAD+/NADH ratio were reduced in an AHR-dependent way. We also demonstrated that AHR directly suppressed the transcription of SIRT1 while promoted the transcription of TiPARP which consumed NAD+. In conclusion, our study suggests that PM2.5 induces mitochondrial damage and heart defects via AHR/SIRT1/PGC-1α signal pathway.
Collapse
Affiliation(s)
- Jin Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin TX, USA
| | - Yan Jiang
- Suzhou medical college, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
8
|
Liu Y, Lv S, He G, Wang C, Ou C. Ferroptosis at the crossroads of manganese-induced neurotoxicity: A retrospective study. Toxicology 2024; 502:153727. [PMID: 38216111 DOI: 10.1016/j.tox.2024.153727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Manganese is an essential trace element, but overexposure can cause neurotoxicity and subsequent neurodegenerative diseases. Ferroptosis is a form of cell death characterized by lipid peroxidation and iron overload inside cells, which is closely related to manganese neurotoxicity. Manganese can induce ferroptosis through multiple pathways: causing oxidative stress and increased cellular reactive oxygen species (ROS), resulting in lipid peroxidation; depleting glutathione (GSH) and weakening the antioxidant capacity of cells; disrupting iron metabolism and increasing iron-dependent lipid peroxidation; damaging mitochondrial function and disrupting the electron transport chain, leading to increased ROS production. Oxidative stress, iron metabolism disorders, lipid peroxidation, GSH depletion, and mitochondrial dysfunction, typical features of ferroptosis, have been observed in animal and cell models after manganese exposure. In summary, manganese can participate in the pathogenesis of neurodegenerative diseases by inducing events related to ferroptosis. This provides new insights into studying the mechanism of manganese neurotoxicity and developing therapeutic drugs.
Collapse
Affiliation(s)
- Yaoyang Liu
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China
| | - Shanyu Lv
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China
| | - Guoguo He
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China
| | - Changyong Wang
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China.
| | - Chaoyan Ou
- Department of Toxicology, College of Public Health, Guilin Medical University, Guilin, China.
| |
Collapse
|
9
|
Kari ZA, Téllez-Isaías G, Khoo MI, Wee W, Kabir MA, Cheadoloh R, Wei LS. Resveratrol impacts on aquatic animals: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:307-318. [PMID: 38376668 DOI: 10.1007/s10695-024-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
Aquaculture has intensified tremendously with the increasing demand for protein sources as the global population grows. However, this industry is plagued with major challenges such as poor growth performance, the lack of a proper environment, and immune system impairment, thus creating stress for the aquaculture species and risking disease outbreaks. Currently, prophylactics such as antibiotics, vaccines, prebiotics, probiotics, and phytobiotics are utilized to minimize the negative impacts of high-density farming. One of the promising prophylactic agents incorporated in fish feed is resveratrol, a commercial phytophenol derived via the methanol extraction method. Recent studies have revealed many beneficial effects of resveratrol in aquatic animals. Therefore, this review discusses and summarizes the roles of resveratrol in improving growth performance, flesh quality, immune system, antioxidant capacity, disease resistance, stress mitigation, and potential combination with other prophylactic agents for aquatic animals.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| | | | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Romalee Cheadoloh
- Faculty of Science Technology and Agriculture, Yala Rajabhat University, 133 Thetsaban 3 Rd, Sateng, Mueang, 95000, Yala Province, Thailand
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia.
| |
Collapse
|
10
|
Shokri F, Zarei M, Komaki A, Raoufi S, Ramezani-Aliakbari F. Effect of diminazene on cardiac hypertrophy through mitophagy in rat models with hyperthyroidism induced by levothyroxine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1151-1162. [PMID: 37632551 DOI: 10.1007/s00210-023-02680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Hyperthyroidism is associated with the alteration in molecular pathways involved in the regulation of mitochondrial mass and apoptosis, which contribute to the development of cardiac hypertrophy. Diminazene (DIZE) is an animal anti-infection drug that has shown promising effects on improving cardiovascular disease. The aim of the present study was to investigate the therapeutic effect of DIZE on cardiac hypertrophy and the signaling pathways involved in this process in the hyperthyroid rat model. Twenty male Wistar rats were equally divided into four groups: control, hyperthyroid, DIZE, and hyperthyroid + DIZE. After 28 days of treatment, serum thyroxine (T4) and thyroid stimulating hormone (TSH) level, cardiac hypertrophy indices, cardiac damage markers, cardiac malondialdehyde (MDA), and superoxide dismutase (SOD) level, the mRNA expression level of mitochondrial and apoptotic genes were evaluated. Hyperthyroidism significantly decreased the cardiac expression level of SIRT1/PGC1α and its downstream involved in the regulation of mitochondrial biogenesis, mitophagy, and antioxidant enzyme activities including TFAM, PINK1/MFN2, Drp1, and Nrf2, respectively, as well as stimulated mitochondrial-dependent apoptosis by reducing Bcl-2 expression and increasing Bax expression. Treatment with DIZE significantly reversed the downregulation of SIRT1, PGC1α, PINK1, MFN2, Drp1, and Nrf2 but did not significantly change the TFAM expression. Moreover, DIZE suppressed apoptosis by normalizing the cardiac expression levels of Bax and Bcl-2. DIZE is effective in attenuating hyperthyroidism-induced cardiac hypertrophy by modulating the mitophagy-related pathway, suppressing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Farid Shokri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
11
|
Koyama H, Kamogashira T, Yamasoba T. Heavy Metal Exposure: Molecular Pathways, Clinical Implications, and Protective Strategies. Antioxidants (Basel) 2024; 13:76. [PMID: 38247500 PMCID: PMC10812460 DOI: 10.3390/antiox13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Heavy metals are often found in soil and can contaminate drinking water, posing a serious threat to human health. Molecular pathways and curation therapies for mitigating heavy metal toxicity have been studied for a long time. Recent studies on oxidative stress and aging have shown that the molecular foundation of cellular damage caused by heavy metals, namely, apoptosis, endoplasmic reticulum stress, and mitochondrial stress, share the same pathways as those involved in cellular senescence and aging. In recent aging studies, many types of heavy metal exposures have been used in both cellular and animal aging models. Chelation therapy is a traditional treatment for heavy metal toxicity. However, recently, various antioxidants have been found to be effective in treating heavy metal-induced damage, shifting the research focus to investigating the interplay between antioxidants and heavy metals. In this review, we introduce the molecular basis of heavy metal-induced cellular damage and its relationship with aging, summarize its clinical implications, and discuss antioxidants and other agents with protective effects against heavy metal damage.
Collapse
Affiliation(s)
- Hajime Koyama
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teru Kamogashira
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Tokyo Teishin Hospital, Tokyo 102-0071, Japan
| |
Collapse
|
12
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
13
|
Del Rio Naiz SC, Varela KG, de Carvalho D, Remor AP. Probucol neuroprotection against manganese-induced damage in adult Wistar rat brain slices. Toxicol Ind Health 2023; 39:638-650. [PMID: 37705340 DOI: 10.1177/07482337231201565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Manganese (Mn) is an abundant element used for commercial purposes and is essential for the proper function of biological systems. Chronic exposure to high Mn concentrations causes Manganism, a Parkinson's-like neurological disorder. The pathophysiological mechanism of Manganism remains unknown; however, it involves mitochondrial dysfunction and oxidative stress. This study assessed the neuroprotective effect of probucol, a hypolipidemic agent with anti-inflammatory and antioxidant properties, on cell viability and oxidative stress in slices of the cerebral cortex and striatum from adult male Wistar rats. Brain structure slices were kept separately and incubated with manganese chloride (MnCl2) and probucol to evaluate the cell viability and oxidative parameters. Probucol prevented Mn toxicity in the cerebral cortex and striatum, as evidenced by the preservation of cell viability observed with probucol (10 and 30 μM) pre-treatment, as well as the prevention of mitochondrial complex I inhibition in the striatum (30 μM). These findings support the protective antioxidant action of probucol, attributed to its ability to prevent cell death and mitigate Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Karina Giacomini Varela
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Diego de Carvalho
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Aline Pertile Remor
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| |
Collapse
|
14
|
Yan D, Yang Y, Lang J, Wang X, Huang Y, Meng J, Wu J, Zeng X, Li H, Ma H, Gao L. SIRT1/FOXO3-mediated autophagy signaling involved in manganese-induced neuroinflammation in microglia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114872. [PMID: 37027942 DOI: 10.1016/j.ecoenv.2023.114872] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Manganese (Mn), as one of the environmental risk factors for Parkinson's disease (PD), has been widely studied. Though autophagy dysfunction and neuroinflammation mainly are responsible for the causative issue of Mn neurotoxicity, the molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that overexposure to Mn caused neuroinflammation impairment and autophagy dysfunction, accompanied by the increase of IL-1β, IL-6, and TNF-α mRNA expression, and nerve cell apoptosis, microglia cell activation, NF-κB activation, poor neurobehavior performance. This is due to Mn-induced the downregulation of SIRT1. Upregulation of SIRT1 in vivo and in vitro could alleviate Mn-induced autophagy dysfunction and neuroinflammation, yet these beneficial effects were abolished following 3-MA administration. Furthermore, we found that Mn interfered with the acetylation of FOXO3 by SIRT1 in BV2 cells, leading to a decrease in the nuclear translocation of FOXO3, and its binding of LC3B promoter and transcription activity. This could be antagonized by the upregulation of SIRT1. Finally, it is proved that SIRT1/FOXO3-LC3B autophagy signaling involves in Mn-induced neuroinflammation impairment.
Collapse
Affiliation(s)
- Dongying Yan
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Yuqing Yang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jing Lang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xiaobai Wang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Preventive Medicine Experimental Practice Teaching Center, School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Ying Huang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Preventive Medicine Experimental Practice Teaching Center, School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jia Meng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jie Wu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xinning Zeng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Honglin Ma
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Liang Gao
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China.
| |
Collapse
|
15
|
Yao Y, Chen T, Wu H, Yang N, Xu S. Melatonin attenuates bisphenol A-induced colon injury by dual targeting mitochondrial dynamics and Nrf2 antioxidant system via activation of SIRT1/PGC-1α signaling pathway. Free Radic Biol Med 2023; 195:13-22. [PMID: 36549428 DOI: 10.1016/j.freeradbiomed.2022.12.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Industrial advancement has led to an increase in the production and usage of bisphenol A (BPA), thereby resulting in serious environmental pollution problems. BPA ingestion causes multiorgan toxicity. However, the exact mechanism underlying BPA-induced colon damage remains elusive. Moreover, no safe treatment is available to alleviate BPA-induced colon injury. Therefore, the in vivo and in vitro approaches were employed to detect the protective effects of melatonin (MT) on BPA-induced colon injury and to determine the underpinning molecular mechanisms. MT treatment of mice and the colonic epithelial cells NCM460 alleviated BPA-induced colon damage by inhibiting the mitochondrial dynamic imbalance, enhancing mitochondrial respiratory chain (MRC) complexes expression, reducing reactive oxygen species (ROS) production, and suppressing apoptosis and necroptosis. MT upregulated the proteins level of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which further increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and the downstream antioxidant target genes heme oxygenase-1 (HO-1) and NAD(P)H quinone redox enzyme-1 (NQO1). Treatment with the SIRT1 inhibitor EX527 effectively reversed the MT-induced upregulation of the aforementioned protein levels. Thus, the MT-activated Sirt1/PGC-1α signaling pathway restored the mitochondrial dynamic balance and activated the Nrf2 antioxidant axis to attenuate BPA-induced colon injury. These results demonstrate that MT supplementation may potentially mitigate BPA toxicity.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Naixi Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Wu L, Chen Q, Dong B, Han D, Zhu X, Liu H, Yang Y, Xie S, Jin J. Resveratrol attenuated oxidative stress and inflammatory and mitochondrial dysfunction induced by acute ammonia exposure in gibel carp (Carassius gibelio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114544. [PMID: 36641865 DOI: 10.1016/j.ecoenv.2023.114544] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Ammonia is recognized as an environmental stressor for fish. As resveratrol (RES) has anti-inflammatory and antioxidant properties, we hypothesized that RES could attenuate the response to ammonia exposure in gibel carp. Therefore, gibel carp were fed a diet containing RES for eight weeks, followed by acute ammonia stimulation. Stress induced by acute ammonia exposure could be ameliorated by RES, manifested by down-regulated plasma glucose, and up-regulated C3 and IgM levels. Furthermore, decreased AST and LDH; enhanced T-AOC, SOD, and GPx in the liver; and reduced damage to gill and liver tissues indicated that RES attenuated oxidative and tissue damage induced by ammonia exposure. Moreover, RES activated the Nrf2/HO-1 pathway and up-regulated the expression of several antioxidant genes. RES enhanced anti-inflammatory activity as reflected by activation of the NF-κB pathway, down-regulated the expression of pro-inflammatory cytokines (nfκb, tnf-α, and il-1β), and up-regulated the expression of anti-inflammatory cytokines (il-4 and il-10). In terms of mitochondrial function, RES up-regulated protein levels of p-AMPK, SIRT1, and PGC-1α; inhibited mitochondrial fission; promoted mitochondrial fusion and biogenesis-related gene expression. Overall, the results suggest that RES mediated the Nrf2/HO-1, NF-κB, and AMPK/SIRT1/PGC-1α pathways to attenuate oxidative stress, inflammation, and mitochondrial dysfunction induced by ammonia in gibel carp.
Collapse
Affiliation(s)
- Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaozhen Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
17
|
Wu L, Chen Q, Dong B, Geng H, Wang Y, Han D, Zhu X, Liu H, Zhang Z, Yang Y, Xie S, Jin J. Resveratrol alleviates lipopolysaccharide-induced liver injury by inducing SIRT1/P62-mediated mitophagy in gibel carp ( Carassius gibelio). Front Immunol 2023; 14:1177140. [PMID: 37168854 PMCID: PMC10164966 DOI: 10.3389/fimmu.2023.1177140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Resveratrol (RES) is a polyphenol organic compound with antioxidant and anti-inflammatory properties. This study aimed to determine whether and how RES can alleviate liver injury in lipopolysaccharide (LPS)-induced gibel carp. Methods Gibel carp were fed a diet with or without RES and were cultured for 8 weeks, followed by LPS injection. Results and discussion The results suggested that RES attenuated the resulting oxidative stress and inflammation by activating the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway, as confirmed by changes in oxidative stress, inflammation-related gene expression, and antioxidant enzyme activity. Furthermore, RES cleared damaged mitochondria and enhanced mitochondrial biogenesis to mitigate reactive oxygen species (ROS) accumulation by upregulating the SIRT1/PGC-1α and PINK1/Parkin pathways and reducing p62 expression. Overall, RES alleviated LPS-induced oxidative stress and inflammation in gibel carp through mitochondria-related mechanisms.
Collapse
Affiliation(s)
- Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaozhen Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hancheng Geng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Junyan Jin,
| |
Collapse
|
18
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Su T, Zhang Z, Han X, Yang F, Wang Z, Cheng Y, Liu H. Systematic Insight of Resveratrol Activated SIRT1 Interactome through Proximity Labeling Strategy. Antioxidants (Basel) 2022; 11:antiox11122330. [PMID: 36552538 PMCID: PMC9774693 DOI: 10.3390/antiox11122330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
SIRT1 functions by regulating the modification of proteins or interacting with other proteins to form complexes. It has been widely studied and found to play significant roles in various biological processes and diseases. However, systematic studies on activated-SIRT1 interactions remain limited. Here, we present a comprehensive SIRT1 interactome under resveratrol stimulation through proximity labeling methods. Our results demonstrated that RanGap1 interacted with SIRT1 in HEK 293T cells and MCF-7 cells. SIRT1 regulated the protein level of RanGap1 and had no obvious effect on RanGap1 transcription. Moreover, the overexpression of Rangap1 increased the ROS level in MCF-7 cells, which sensitized cells to resveratrol and reduced the cell viability. These findings provide evidence that RanGap1 interacts with SIRT1 and influences intracellular ROS, critical signals for mitochondrial functions, cell proliferation and transcription. Additionally, we identified that the SIRT1-RanGap1 interaction affects downstream signals induced by ROS. Overall, our study provides an essential resource for future studies on the interactions of resveratrol-activated SIRT1. There are conflicts about the relationship between resveratrol and ROS in previous reports. However, our data identified the impact of the resveratrol-SIRT1-RanGap1 axis on intracellular ROS.
Collapse
Affiliation(s)
- Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fei Yang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (Y.C.); (H.L.)
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Correspondence: (Y.C.); (H.L.)
| |
Collapse
|
20
|
Lv WH, Zhao T, Pantopoulos K, Chen GH, Wei XL, Zhang DG, Luo Z. Manganese-Induced Oxidative Stress Contributes to Intestinal Lipid Deposition via the Deacetylation of PPARγ at K339 by SIRT1. Antioxid Redox Signal 2022; 37:417-436. [PMID: 35293223 DOI: 10.1089/ars.2021.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Excessive manganese (Mn) exposure is toxic, and induces lipid deposition, but the underlying mechanisms remain elusive. Herein, we explored how dietary Mn supplementation affects lipid deposition and metabolism in the intestine of vertebrates using the yellow catfish Pelteobagrus fulvidraco as the model. Results: High-Mn (H-Mn) diet increased intestinal Mn content, promoted lipid accumulation and lipogenesis, and inhibited lipolysis. In addition, it induced oxidative stress, upregulated metal-response element-binding transcription factor-1 (MTF-1), and peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in the nucleus, induced PPARγ acetylation, and the interaction between PPARγ and retinoid X receptor alpha (RXRα), while it downregulated sirtuin 1 (SIRT1) expression and activity. Mechanistically, Mn activated the MTF-1/divalent metal transporter 1 (DMT1) pathway, increased Mn accumulation in the mitochondria, and induced oxidative stress. This in turn promoted lipid deposition via deacetylation of PPARγ at K339 by SIRT1. Subsequently, PPARγ mediated Mn-induced lipid accumulation through transcriptionally activating fatty acid translocase, stearoyl-CoA desaturase 1, and perilipin 2 promoters. Innovation: These studies uncover a previously unknown mechanism by which Mn induces lipid deposition in the intestine via the oxidative stress-SIRT1-PPARγ pathway. Conclusion: High dietary Mn intake activates MTF-1/DMT1 and oxidative stress pathways. Oxidative stress-mediated PPARγ deacetylation at K339 site contributes to increased lipid accumulation. Our results provided a direct link between Mn and lipid metabolism via the oxidative stress-SIRT1-PPARγ axis. Antioxid. Redox Signal. 37, 417-436.
Collapse
Affiliation(s)
- Wu-Hong Lv
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhao
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Canada
| | - Guang-Hui Chen
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Lei Wei
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Laboratory of Molecular Nutrition for Aquatic Economic Animals, Fishery College, Huazhong Agricultural University, Wuhan, China.,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
21
|
Chen L, Qin Y, Liu B, Gao M, Li A, Li X, Gong G. PGC-1 α-Mediated Mitochondrial Quality Control: Molecular Mechanisms and Implications for Heart Failure. Front Cell Dev Biol 2022; 10:871357. [PMID: 35721484 PMCID: PMC9199988 DOI: 10.3389/fcell.2022.871357] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/27/2022] [Indexed: 12/26/2022] Open
Abstract
Mitochondria with structural and functional integrity are essential for maintaining mitochondrial function and cardiac homeostasis. It is involved in the pathogenesis of many diseases. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α), acted as a transcriptional cofactor, is abundant in the heart, which modulates mitochondrial biogenesis and mitochondrial dynamics and mitophagy to sustain a steady-state of mitochondria. Cumulative evidence suggests that dysregulation of PGC-1α is closely related to the onset and progression of heart failure. PGC-1α deficient-mice can lead to worse cardiac function under pressure overload compared to sham. Here, this review mainly focuses on what is known about its regulation in mitochondrial functions, as well as its crucial role in heart failure.
Collapse
Affiliation(s)
- Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xue Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Huang Q, Chen H, Yin K, Shen Y, Lin K, Guo X, Zhang X, Wang N, Xin W, Xu Y, Gui D. Formononetin Attenuates Renal Tubular Injury and Mitochondrial Damage in Diabetic Nephropathy Partly via Regulating Sirt1/PGC-1α Pathway. Front Pharmacol 2022; 13:901234. [PMID: 35645821 PMCID: PMC9133725 DOI: 10.3389/fphar.2022.901234] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial abnormality is one of the main factors of tubular injury in diabetic nephropathy (DN). Formononetin (FMN), a novel isoflavonoid isolated from Astragalus membranaceus, has diverse pharmacological activities. However, the beneficial effects of FMN on renal tubular impairment and mitochondrial dysfunction in DN have yet to be studied. In this study, we performed in vivo tests in Streptozotocin (STZ) -induced diabetic rats to explore the therapeutic effects of FMN on DN. We demonstrated that FMN could ameliorate albuminuria and renal histopathology. FMN attenuated renal tubular cells apoptosis, mitochondrial fragmentation and restored expression of mitochondrial dynamics-associated proteins, such as Drp1, Fis1 and Mfn2, as well as apoptosis-related proteins, such as Bax, Bcl-2 and cleaved-caspase-3. Moreover, FMN upregulated the protein expression of Sirt1 and PGC-1α in diabetic kidneys. In vitro studies further demonstrated that FMN could inhibit high glucose-induced apoptosis of HK-2 cells. FMN also reduced the production of mitochondrial superoxide and alleviated mitochondrial membrane potential (MMP) loss. Furthermore, FMN partially restored the protein expression of Drp1, Fis1 and Mfn2, Bax, Bcl-2, cleaved-caspase-3, Sirt1 and PGC-1α in HK-2 cells exposure to high glucose. In conclusion, FMN could attenuate renal tubular injury and mitochondrial damage in DN partly by regulating Sirt1/PGC-1α pathway.
Collapse
Affiliation(s)
- Qunwei Huang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Kai Yin
- Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Kanghong Lin
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xieyi Guo
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiang Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenfeng Xin
- College of Notoginseng Medicine and Pharmacy of Wenshan University, Wenshan, China
- *Correspondence: Wenfeng Xin, ; Youhua Xu, Dingkun Gui,
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
- *Correspondence: Wenfeng Xin, ; Youhua Xu, Dingkun Gui,
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Wenfeng Xin, ; Youhua Xu, Dingkun Gui,
| |
Collapse
|