1
|
Zhao W, Zhang Y, Chen J, Hu D. Revolutionizing oral care: Reactive oxygen species (ROS)-Regulating biomaterials for combating infection and inflammation. Redox Biol 2025; 79:103451. [PMID: 39631247 PMCID: PMC11664010 DOI: 10.1016/j.redox.2024.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The human oral cavity is home to a delicate symbiosis between its indigenous microbiota and the host, the balance of which is easily perturbed by local or systemic factors, leading to a spectrum of oral diseases such as dental caries, periodontitis, and pulp infections. Reactive oxygen species (ROS) play crucial roles in the host's innate immune defenses. However, in chronic inflammatory oral conditions, dysregulated immune responses can result in excessive ROS production, which in turn exacerbates inflammation and causes tissue damage. Conversely, the potent antimicrobial properties of ROS have inspired the development of various anti-infective therapies. Therefore, the strategic modulation of ROS by innovative biomaterials is emerging as a promising therapeutic approach for oral infection and inflammation. This review begins by highlighting the state-of-the-art of ROS-regulating biomaterials, which are designed to generate, scavenge, or modulate ROS in a bidirectional manner. We then delve into the latest innovations in these biomaterials and their applications in treating a range of oral diseases, including dental caries, endodontic and periapical conditions, periodontitis, peri-implantitis, and oral candidiasis. The review concludes with an overview of the current challenges and future potential of these biomaterials in clinical settings. This review provides novel insights for the ongoing development of ROS-based therapeutic strategies for oral diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China; State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology Sichuan University, Chengdu, 610041, PR China.
| | - Danrong Hu
- Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Zhang S, Wang X, Chen X, Shu D, Lin Q, Zou H, Dong J, Wang B, Tang Q, Li H, Chen X, Pu J, Gu B, Liu P. An on-Demand Oxygen Nano-vehicle Sensitizing Protein and Nucleic Acid Drug Augment Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2409378. [PMID: 39840472 DOI: 10.1002/adma.202409378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Indexed: 01/23/2025]
Abstract
Hypoxia severely limits the antitumor immunotherapy for breast cancer. Although efforts to alleviate tumor hypoxia and drug delivery using diverse nanostructures achieve promising results, the creation of a versatile controllable oxygen-releasing nano-platform for co-delivery with immunostimulatory molecules remains a persistent challenge. To address this problem, a versatile oxygen controllable releasing vehicle PFOB@F127@PDA (PFPNPs) is developed, which effectively co-delivered either protein drug lactate oxidase (LOX) or nucleic acids drug unmethylated cytosine-phosphate-guanine oligonucleotide (CpG ODNs). Upon photothermal heating, this platform triggered oxygen release, thereby augmenting LOX-mediated lactate detection rates, and improving T cells infiltrating and cytokine expression. Moreover, under an oxygenated tumor microenvironment (TME), PFPNPs co-delivered with CpG ODNs effectively reprogrammed the immunosuppressive TME by repolarizing macrophages to an M1-like phenotype, promoting dendritic cells maturation, and increasing tumor-infiltrating T cells while decreasing the ratio of regulatory T cells (Tregs). Our study demonstrated that this controlled oxygen-releasing platform possessed adaptive drug-loading capabilities to meet varied immunotherapeutic demands in clinical settings.
Collapse
Affiliation(s)
- Sidi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
| | - Xinghui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Xiaojing Chen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Duohuo Shu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Quankun Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Hanbing Zou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jialin Dong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Bing Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Qianyun Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huishan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Xiaoxiang Chen
- Allergy Department Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jun Pu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Bin Gu
- Department of Urology, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute. Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- State Key Laboratory for Cancer Systems Regulation and Clinical Translation, Jiading District Central Medicine Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, Shanghai, 201800, P. R. China
- Central Laboratory Ren Ji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
3
|
Zou A, Zhu X, Fu R, Wang Z, Wang Y, Ruan Z, Xianyu Y, Zhang J. Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408246. [PMID: 39821963 DOI: 10.1002/smll.202408246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Indexed: 01/19/2025]
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques. These advanced methods enhance the accuracy and efficiency of identifying DNA methylation patterns, providing a powerful tool for early diagnosis and treatment of methylation-related diseases. This review summarizes nanomaterial-based techniques, categorized into electrochemical and photochemical methods for developing next-generation biosensors for DNA methylation. Electrochemical approaches based on nanostructured or nanomaterial-modified electrodes can detect methylation through electrical signals and can directly identify methylation sites via ionic current changes based on nanopore sequencing. Photochemical methods based on nanoparticles allow for optical detection through colorimetry, fluorescence, surface plasmon resonance, and Raman spectroscopy. Nanotechnology-implemented methodologies enable ultrasensitive and selective biosensors as point-of-care platforms for DNA methylation analysis, thereby advancing epigenetic research and clinical diagnostics.
Collapse
Affiliation(s)
- Anlai Zou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Xiaoxue Zhu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruijie Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zexiang Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yidan Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Yunlei Xianyu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
4
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Wang S, Xu N, Yu S, Si W, Yang M, Liu Y, Zheng Y, Zhao S, Shi J, Yuan J. Hyaluronic acid-coated porphyrin nanoplatform with oxygen sustained supplying and glutathione depletion for enhancing photodynamic/ion/chemo synergistic cancer treatment. Int J Biol Macromol 2024; 278:134661. [PMID: 39128741 DOI: 10.1016/j.ijbiomac.2024.134661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Hypoxia and high concentration of glutathione (GSH) in tumor seriously hinder the role of reactive oxygen species (ROS) and oxygen-dependence strategy in tumor treatment. In this work, a self-generating oxygen and self-consuming GSH hyaluronic acid (HA)-coated porphyrin nanoplatform (TAPPP@CaO2/Pt(IV)/HA) is established for enhancing photodynamic/ion/chemo targeting synergistic therapy of tumor. During the efforts of ROS production by nanosystems, a GSH consuming strategy is implemented for augmenting ROS-induced oxidative damage for synergetic cancer therapy. CaO2 in the nanosystems is decomposed into O2 and H2O2 in an acidic environment, which alleviates hypoxia and enhances the photodynamic therapy (PDT) effect. Calcium overload causes mitochondria dysfunction and induces apoptosis. Pt (IV) reacts with GSH to produce Pt (II) for chemotherapy and reduce the concentration of GSH, protecting ROS from scavenging for augmenting ROS-induced oxidative damage. In vitro and in vivo results demonstrated the self-generating oxygen and self-consuming GSH strategy can enhance ROS-dependent PDT coupled with ion/chemo synergistic therapy. The proposed strategy not only solves the long-term problem that hypoxia limits therapeutic effect of PDT, but also ameliorates the highly reducing environment of tumors. Thus the preparation of TAPPP@CaO2/Pt(IV)/HA provided a novel strategy for the effective combined therapy of cancers.
Collapse
Affiliation(s)
- Shaochen Wang
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Ningning Xu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Shuling Yu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | - Wen Si
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Miaojie Yang
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yu Liu
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yan Zheng
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Shuang Zhao
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine Innovation and Transformation of Henan Province, Henan University, Kaifeng, Henan 475004, People's Republic of China; State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan 475004, People's Republic of China.
| | - Jintao Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
6
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Yin M, Lei D, Liu Y, Qin T, Gao H, Lv W, Liu Q, Qin L, Jin W, Chen Y, Liang H, Wang B, Gao M, Zhang J, Lu J. NIR triggered polydopamine coated cerium dioxide nanozyme for ameliorating acute lung injury via enhanced ROS scavenging. J Nanobiotechnology 2024; 22:321. [PMID: 38849841 PMCID: PMC11162040 DOI: 10.1186/s12951-024-02570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Acute lung injury (ALI) is a life threatening disease in critically ill patients, and characterized by excessive reactive oxygen species (ROS) and inflammatory factors levels in the lung. Multiple evidences suggest that nanozyme with diversified catalytic capabilities plays a vital role in this fatal lung injury. At present, we developed a novel class of polydopamine (PDA) coated cerium dioxide (CeO2) nanozyme (Ce@P) that acts as the potent ROS scavenger for scavenging intracellular ROS and suppressing inflammatory responses against ALI. Herein, we aimed to identify that Ce@P combining with NIR irradiation could further strengthen its ROS scavenging capacity. Specifically, NIR triggered Ce@P exhibited the most potent antioxidant and anti-inflammatory behaviors in lipopolysaccharide (LPS) induced macrophages through decreasing the intracellular ROS levels, down-regulating the levels of TNF-α, IL-1β and IL-6, up-regulating the level of antioxidant cytokine (SOD-2), inducing M2 directional polarization (CD206 up-regulation), and increasing the expression level of HSP70. Besides, we performed intravenous (IV) injection of Ce@P in LPS induced ALI rat model, and found that it significantly accumulated in the lung tissue for 6 h after injection. It was also observed that Ce@P + NIR presented the superior behaviors of decreasing lung inflammation, alleviating diffuse alveolar damage, as well as promoting lung tissue repair. All in all, it has developed the strategy of using Ce@P combining with NIR irradiation for the synergistic enhanced treatment of ALI, which can serve as a promising therapeutic strategy for the clinical treatment of ROS derived diseases as well.
Collapse
Affiliation(s)
- Mingjing Yin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Doudou Lei
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yalan Liu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Tao Qin
- Department of Intensive Care Unit, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Huyang Gao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Wenquan Lv
- Department of Emergency, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, Guangxi, 530022, China
| | - Qianyue Liu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Weiqian Jin
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yin Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Hao Liang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bailei Wang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jianfeng Zhang
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.
| |
Collapse
|
8
|
Ye J, Wu Y, Pan J, Cai S, Cheng Y, Chu C, Su M. ICG-based laser treatments for ophthalmic diseases: Toward their safe and rapid strategy. LUMINESCENCE 2023. [PMID: 38151242 DOI: 10.1002/bio.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The eye is a very important organ, and keratitis, corneal neovascularization, floaters, age-related macular degeneration, and other vision problems have seriously affected people's quality of life. Among the ophthalmic treatments, laser photocoagulations have been proposed and have shown therapeutic effects in clinical settings. However, corneal thinning and bleeding lesions induced by laser damage have led to limit its applications. To treat the issues of traditional hyperthermia treatments, photosensitizers [e.g., indocyanine green (ICG)] have been investigated to increase the therapeutic effects of corneal neovascularization and choroidal neovascularization. In the recent study, with the help of ICG, laser-induced nanobubble was proposed to treat vitreous opacities. The developed strategies could enlarge the effect of laser irradiation and reduce the side effects, so as to expand the scope of laser treatments in clinical ophthalmic diseases.
Collapse
Affiliation(s)
- Jinfa Ye
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yiming Wu
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Jintao Pan
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Shundong Cai
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhang Cheng
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Chengchao Chu
- Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Min Su
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| |
Collapse
|
9
|
Liu K, Yao Y, Xue S, Zhang M, Li D, Xu T, Zhi F, Liu Y, Ding D. Recent Advances of Tumor Microenvironment-Responsive Nanomedicines-Energized Combined Phototherapy of Cancers. Pharmaceutics 2023; 15:2480. [PMID: 37896240 PMCID: PMC10610502 DOI: 10.3390/pharmaceutics15102480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as a powerful tumor treatment tool due to its advantages including minimal invasiveness, high selectivity and thus dampened side effects. On the other side, the efficacy of PDT is severely frustrated by the limited oxygen level in tumors, thus promoting its combination with other therapies, particularly photothermal therapy (PTT) for bolstered tumor treatment outcomes. Meanwhile, nanomedicines that could respond to various stimuli in the tumor microenvironment (TME) provide tremendous benefits for combined phototherapy with efficient hypoxia relief, tailorable drug release and activation, improved cellular uptake and intratumoral penetration of nanocarriers, etc. In this review, we will introduce the merits of combining PTT with PDT, summarize the recent important progress of combined phototherapies and their combinations with the dominant tumor treatment regimen, chemotherapy based on smart nanomedicines sensitive to various TME stimuli with a focus on their sophisticated designs, and discuss the challenges and future developments of nanomedicine-mediated combined phototherapies.
Collapse
Affiliation(s)
- Kehan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Yao Yao
- Department of Gerontology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China;
| | - Shujuan Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Mengyao Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dazhao Li
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Tao Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), D02 NY74 Dublin, Ireland
| | - Feng Zhi
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| |
Collapse
|
10
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
11
|
Zhang C, Hu X, Jin L, Lin L, Lin H, Yang Z, Huang W. Strategic Design of Conquering Hypoxia in Tumor for Advanced Photodynamic Therapy. Adv Healthc Mater 2023; 12:e2300530. [PMID: 37186515 DOI: 10.1002/adhm.202300530] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/08/2023] [Indexed: 05/17/2023]
Abstract
Photodynamic therapy (PDT), with its advantages of high targeting, minimally invasive, and low toxicity side effects, has been widely used in the clinical therapy of various tumors, especially superficial tumors. However, the tumor microenvironment (TME) presents hypoxia due to the low oxygen (O2 ) supply caused by abnormal vascularization in neoplastic tissues and high O2 consumption induced by the rapid proliferation of tumor cells. The efficacy of oxygen-consumping PDT can be hampered by a hypoxic TME. To address this problem, researchers have been developing advanced nanoplatforms and strategies to enhance the therapeutic effect of PDT in tumor treatment. This review summarizes recent advanced PDT therapeutic strategies to against the hypoxic TME, thus enhancing PDT efficacy, including increasing O2 content in TME through delivering O2 to the tumors and in situ generations of O2 ; decreasing the O2 consumption during PDT by design of type I photosensitizers. Moreover, recent synergistically combined therapy of PDT and other therapeutic methods such as chemotherapy, photothermal therapy, immunotherapy, and gas therapy is accounted for by addressing the challenging problems of mono PDT in hypoxic environments, including tumor resistance, proliferation, and metastasis. Finally, perspectives of the opportunities and challenges of PDT in future clinical research and translations are provided.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiaoming Hu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P. R. China
| | - Long Jin
- Department of Pathology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Lisheng Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongxin Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Zhen Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Wei Huang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Normal University, Fuzhou, 350007, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE) Northwestern Polytechnical University Xi'an, Xi'an, 710072, P. R. China
| |
Collapse
|
12
|
Kiss B, Borbély J. Business Risk Mitigation in the Development Process of New Monoclonal Antibody Drug Conjugates for Cancer Treatment. Pharmaceutics 2023; 15:1761. [PMID: 37376209 DOI: 10.3390/pharmaceutics15061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Recent developments aim to extend the cytotoxic effect and therapeutic window of mAbs by constructing antibody-drug conjugates (ADCs), in which the targeting moiety is the mAb that is linked to a highly toxic drug. According to a report from mid of last year, the global ADCs market accounted for USD 1387 million in 2016 and was worth USD 7.82 billion in 2022. It is estimated to increase in value to USD 13.15 billion by 2030. One of the critical points is the linkage of any substituent to the functional group of the mAb. Increasing the efficacy against cancer cells' highly cytotoxic molecules (warheads) are connected biologically. The connections are completed by different types of linkers, or there are efforts to add biopolymer-based nanoparticles, including chemotherapeutic agents. Recently, a combination of ADC technology and nanomedicine opened a new pathway. To fulfill the scientific knowledge for this complex development, our aim is to write an overview article that provides a basic introduction to ADC which describes the current and future opportunities in therapeutic areas and markets. Through this approach, we show which development directions are relevant both in terms of therapeutic area and market potential. Opportunities to reduce business risks are presented as new development principles.
Collapse
Affiliation(s)
- Balázs Kiss
- Faculty of Economics, University of Debrecen, 4032 Debrecen, Hungary
- BBS Dominus LLC, 4225 Debrecen, Hungary
| | - János Borbély
- Doctoral School of Clinical Medicine, University of Debrecen, 4032 Debrecen, Hungary
- BBS Biochemicals LLC, 4225 Debrecen, Hungary
| |
Collapse
|
13
|
He M, Wang M, Xu T, Zhang M, Dai H, Wang C, Ding D, Zhong Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J Control Release 2023; 356:623-648. [PMID: 36868519 DOI: 10.1016/j.jconrel.2023.02.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules that can arouse immune system. In recent decades, ROS has emerged as a unique therapeutic strategy for malignant tumors as (i) it can not only directly reduce tumor burden but also trigger immune responses by inducing immunogenic cell death (ICD); and (ii) it can be facilely generated and modulated by radiotherapy, photodynamic therapy, sonodynamic therapy and chemodynamic therapy. The anti-tumor immune responses are, however, mostly downplayed by the immunosuppressive signals and dysfunction of effector immune cells within the tumor microenvironment (TME). The past years have seen fierce developments of various strategies to power ROS-based cancer immunotherapy by e.g. combining with immune checkpoints inhibitors, tumor vaccines, and/or immunoadjuvants, which have shown to potently inhibit primary tumors, metastatic tumors, and tumor relapse with limited immune-related adverse events (irAEs). In this review, we introduce the concept of ROS-powered cancer immunotherapy, highlight the innovative strategies to boost ROS-based cancer immunotherapy, and discuss the challenges in terms of clinical translation and future perspectives.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
14
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
15
|
Lai C, Luo B, Shen J, Shao J. Biomedical engineered nanomaterials to alleviate tumor hypoxia for enhanced photodynamic therapy. Pharmacol Res 2022; 186:106551. [PMID: 36370918 DOI: 10.1016/j.phrs.2022.106551] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT), as a highly selective, widely applicable, and non-invasive therapeutic modality that is an alternative to radiotherapy and chemotherapy, is extensively applied to cancer therapy. Practically, the efficiency of PDT is severely hindered by the existence of hypoxia in tumor tissue. Hypoxia is a typical hallmark of malignant solid tumors, which remains an essential impediment to many current treatments, thereby leading to poor clinical prognosis after therapy. To address this issue, studies have been focused on modulating tumor hypoxia to augment the therapeutic efficacy. Although nanomaterials to relieve tumor hypoxia for enhanced PDT have been demonstrated in many research articles, a systematical summary of the role of nanomaterials in alleviating tumor hypoxia is scarce. In this review, we introduced the mechanism of PDT, and the involved therapeutic modality of PDT for ablation of tumor cells was specifically summarized. Moreover, current advances in nanomaterials-mediated tumor oxygenation via oxygen-carrying or oxygen-generation tactics to alleviate tumor hypoxia are emphasized. Based on these considerable summaries and analyses, we proposed some feasible perspectives on nanoparticle-based tumor oxygenation to ameliorate the therapeutic outcomes, which may provide some detailed information in designing new oxygenation nanomaterials in this burgeneous field.
Collapse
Affiliation(s)
- Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
16
|
Li Y, Hu D, Pan M, Qu Y, Chu B, Liao J, Zhou X, Liu Q, Cheng S, Chen Y, Wei Q, Qian Z. Near-infrared light and redox dual-activatable nanosystems for synergistically cascaded cancer phototherapy with reduced skin photosensitization. Biomaterials 2022; 288:121700. [DOI: 10.1016/j.biomaterials.2022.121700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
|
17
|
Pan H, Zou Q, Wang T, Li D, Sun SK. Minimalist O 2 generator formed by in situ KMnO 4 oxidation for tumor cascade therapy. Biomaterials 2022; 287:121596. [PMID: 35700623 DOI: 10.1016/j.biomaterials.2022.121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
Diverse oxygen generation strategies have been developed to overcome hypoxia in tumors for enhancing the therapeutic efficacy, but inevitably suffering from tedious synthesis process of oxygen generators in vitro before in vivo administration. Herein, we show direct injection of commercially and clinically used KMnO4 into solid tumors enables in situ formation of MnO2 as an oxygen depot for cascade oxidation damage and enhanced photodynamic therapy. KMnO4 can damage tumor tissues by oxidation and generate MnO2, and subsequent intravenous injection of Ce6 allows MnO2-triggered hypoxia-modulated photodynamic therapy of tumors. Excellent cascade tumor suppression effect is realized both in vitro and in vivo based on the KMnO4-Ce6 system without the need of synthesis. The proposed strategy lays down a novel way with unprecedented superiors of no need of synthesis process and ultra-facile administration procedure for tumor hypoxia-modulated cascade therapy.
Collapse
Affiliation(s)
- Haiyan Pan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Quan Zou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Tingting Wang
- Department of Ultrasound in Medicine, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, 310009, China
| | - Dong Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
18
|
Sivasubramanian M, Lo LW. Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging. BIOSENSORS 2022; 12:336. [PMID: 35624636 PMCID: PMC9138624 DOI: 10.3390/bios12050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Photoacoustic imaging (PAI) is an invaluable tool in biomedical imaging, as it provides anatomical and functional information in real time. Its ability to image at clinically relevant depths with high spatial resolution using endogenous tissues as contrast agents constitutes its major advantage. One of the most important applications of PAI is to quantify tissue oxygen saturation by measuring the differential absorption characteristics of oxy and deoxy Hb. Consequently, PAI can be utilized to monitor tumor-related hypoxia, which is a crucial factor in tumor microenvironments that has a strong influence on tumor invasiveness. Reactive oxygen species (ROS)-based therapies, such as photodynamic therapy, radiotherapy, and sonodynamic therapy, are oxygen-consuming, and tumor hypoxia is detrimental to their efficacy. Therefore, a persistent demand exists for agents that can supply oxygen to tumors for better ROS-based therapeutic outcomes. Among the various strategies, NP-mediated supplemental tumor oxygenation is especially encouraging due to its physio-chemical, tumor targeting, and theranostic properties. Here, we focus on NP-based tumor oxygenation, which includes NP as oxygen carriers and oxygen-generating strategies to alleviate hypoxia monitored by PAI. The information obtained from quantitative tumor oxygenation by PAI not only supports optimal therapeutic design but also serves as a highly effective tool to predict therapeutic outcomes.
Collapse
Affiliation(s)
| | - Leu-Wei Lo
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan;
| |
Collapse
|
19
|
Zhang X, He Q, Sun J, Gong H, Cao Y, Duan L, Yi S, Ying B, Xiao B. Near-Infrared-Enpowered Nanomotor-Mediated Targeted Chemotherapy and Mitochondrial Phototherapy to Boost Systematic Antitumor Immunity. Adv Healthc Mater 2022; 11:e2200255. [PMID: 35536883 DOI: 10.1002/adhm.202200255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/02/2022] [Indexed: 02/05/2023]
Abstract
Phototherapy is an important strategy to inhibit tumor growth and activate antitumor immunity. However, the effect of photothermal/photodynamic therapy (PTT/PDT) is restricted by limited tumor penetration depth and unsatisfactory potentiation of antitumor immunity. Here, a near-infrared (NIR)-driven nanomotor is constructed with a mesoporous silicon nanoparticle (MSN) as the core, end-capped with Antheraea pernyi silk fibroin (ApSF) comprising arginine-glycine-aspartate (RGD) tripeptides. Upon NIR irradiation, the resulting ApSF-coated MSNs (DIMs) loading with photosensitizers (ICG derivatives, IDs) and chemotherapeutic drugs (doxorubicin, Dox) can efficiently penetrate into the internal tumor tissues and achieve effective phototherapy. Combined with chemotherapy, a triple-modal treatment (PTT, PDT, and chemotherapy) approach is developed to induce the immunogenic cell death of tumor cells and to accelerate the release of damage-associated molecular patterns. In vivo results suggest that DIMs can promote the maturation of dendritic cells and surge the number of infiltrated immune cells. Meanwhile, DIMs can polarize macrophages from M2 to M1 phenotypes and reduce the percentages of immunosuppressive Tregs, which reverse the immunosuppressive tumor microenvironment and activate systemic antitumor immunity. By achieving synergistic effects on the tumor inhibition and the antitumor immunity activation, DIMs show great promise as new nanoplatforms to treat metastatic breast cancer.
Collapse
Affiliation(s)
- Xueqing Zhang
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass Sciences Southwest University Chongqing 400715 China
| | - Qian He
- West China Hospital Sichuan University Chengdu 610041 China
| | - Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences University of Oxford Headington Oxford OX3 7LD UK
| | - Hanlin Gong
- West China Hospital Sichuan University Chengdu 610041 China
| | - Yingui Cao
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass Sciences Southwest University Chongqing 400715 China
| | - Lian Duan
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass Sciences Southwest University Chongqing 400715 China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass Sciences Southwest University Chongqing 400715 China
| | - Binwu Ying
- West China Hospital Sichuan University Chengdu 610041 China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology College of Sericulture Textile and Biomass Sciences Southwest University Chongqing 400715 China
| |
Collapse
|
20
|
Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci 2022; 621:440-463. [PMID: 35483177 DOI: 10.1016/j.jcis.2022.04.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are important semiconductor materials with interesting photo-responsive properties. During the past, ZnO-based NPs have received considerable attention for photodynamic therapy (PDT) due to their biocompatibility and excellent potential of generating tumor-killing reactive oxygen species (ROS) through gentle photodynamic activation. This article provides a comprehensive review of the recent developments and improvements in optical properties of ZnO NPs as photosensitizers for PDT. The optical properties of ZnO-based photosensitizers are significantly dependent on their charge separation, absorption potential, band gap engineering, and surface area, which can be adjusted/tuned by doping, compositing, and morphology control. Here, we first summarize the recent progress in the charge separation capability, absorption potential, band gap engineering, and surface area of nanosized ZnO-based photosensitizers. Then, morphology control that is closely related to their synthesis method is discussed. Following on, the state-of-art for the ZnO-based NPs in the treatment of hypoxic tumors is comprehensively reviewed. Finally, we provide some outlooks on common targeted therapy methods for more effective tumor killing, including the attachment of small molecules, antibodies, ligands molecules, and receptors to NPs which further improve their selective distribution and targeting, hence improving the therapeutic effectiveness. The current review may provide useful guidance for the researchers who are interested in this promising dynamic cancer treatment technology.
Collapse
|
21
|
Liu X, Wu Z, Guo C, Guo H, Su Y, Chen Q, Sun C, Liu Q, Chen D, Mu H. Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv 2021; 29:138-148. [PMID: 34967268 PMCID: PMC8725898 DOI: 10.1080/10717544.2021.2021324] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Based on the tumor hypoxic microenvironment and the new programmed cell death mode of combined ferroptosis, an angelica polysaccharide-based nanocarrier material was synthesized. The polymer contains hydrophilic angelica polysaccharide (ASP) that is linked by azobenzene (AZO) linker with ferrocene (Fc), and then the side chain was covalently modified with arachidonic acid (AA). It was postulated that the polymer micelles could work as an instinctive liver targeting drug delivery carrier, owing to the existence of ASP with liver targeting. Moreover, the aim was to engineer hypoxia-responsive polymer micelles which was modified by AA, for selective enhancement of ferroptosis in solid tumor, via diminishing glutathione (GSH) under hypoxia. Finally, we synthesized the amphiphilic polymer micelles AA/ASP-AZO-Fc (AAAF) by self-assembling. The structure of AAAF was confirmed by 1H-NMR and FT-IR. Then, we exemplified the hydrophobic medication curcumin into polymer micelles AAAF@Cur, which has smooth and regular spheres. In vitro release test affirmed that AAAF@Cur can achieve hypoxia response to drug release. In addition, a series of cell experiments confirmed that hypoxia could enhance cell uptake and effectively improve the proliferation inhibitory activity of HepG2 cells. In conclusion, AAAF, as an effective cell carrier, is expected to develop in sensitizing ferroptosis and anti-tumor.
Collapse
Affiliation(s)
- Xue Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Qingdao, PR China
| | - Huimin Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Yanguo Su
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Qiang Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, PR China
| | - Qingming Liu
- Shandong Academy of Chinese Medicine, Jinan, PR China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| | - Hongjie Mu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, PR China
| |
Collapse
|
22
|
Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021; 179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Dynamic inorganic nanoassemblies (DINAs) have emerged as smart nanomedicine platforms with promising potential for bioimaging and targeted drug delivery. In this review, we keep abreast of the advances in development of tumor microenvironment (TME)-responsive DINAs to meet the challenges associated with precise cancer therapy. TME-responsive DINAs are designed to achieve precise switches of structures/functions in response to TME-specific stimuli including reactive oxygen species (ROS), reduced pH and hypoxia, so as to enhance the tumor accumulation of nanoassemblies, overcome the biological barriers during intratumoral penentration of therapeutics, and achieve tumor-specific imaging and therapy. This progress report will summarize various types of recently reported smart DINAs for TME-responsive tumor imaging and therapy. Their future development towards potential clinical translation will also be discussed.
Collapse
|
23
|
Liu X, Song N, Qian D, Gu S, Pu J, Huang L, Liu J, Qian K. Porous Inorganic Materials for Bioanalysis and Diagnostic Applications. ACS Biomater Sci Eng 2021; 8:4092-4109. [PMID: 34494831 DOI: 10.1021/acsbiomaterials.1c00733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Porous inorganic materials play an important role in adsorbing targeted analytes and supporting efficient reactions in analytical science. The detection performance relies on the structural properties of porous materials, considering the tunable pore size, shape, connectivity, etc. Herein, we first clarify the enhancement mechanisms of porous materials for bioanalysis, concerning the detection sensitivity and selectivity. The diagnostic applications of porous material-assisted platforms by coupling with various analytical techniques, including electrochemical sensing, optical spectrometry, and mass spectrometry, etc., are then reviewed. We foresee that advanced porous materials will bring far-reaching implications in bioanalysis toward real-case applications, especially as diagnostic assays in clinical settings.
Collapse
Affiliation(s)
- Xun Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Naikun Song
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dahong Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Sai Gu
- School of Engineering, University of Warwick, Coventry CV4 7AL, W Midlands, England.,Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom
| | - Jun Pu
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU27XH, United Kingdom.,Chinese Academy of Sciences, Dalian Institute of Chemical Physics, CAS State Key Laboratory of Catalysis, 568 Zhongshan Road, Dalian 116023, P. R. China
| | - Kun Qian
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.,Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China
| |
Collapse
|
24
|
Zhang T, Xiong H, Ma X, Gao Y, Xue P, Kang Y, Sun ZJ, Xu Z. Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloid-Derived Suppressor Cells and Heightening Immunogenicity. SMALL METHODS 2021; 5:e2100115. [PMID: 34927922 DOI: 10.1002/smtd.202100115] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/24/2021] [Indexed: 06/14/2023]
Abstract
Tumor-induced immune suppression mediated by myeloid-derived suppressor cells (MDSCs) and insufficient immunogenicity are two major factors for the poor overall response rate to the immune checkpoint blockade (ICB). Here, a tumor microenvironment responsive nanoprodrug (FIT nanoparticles) is presented for co-delivering tadalafil (TAD) and indocyanine green (ICG) photosensitizer to simultaneously targeting intratumor MDSCs and amplifying tumor immunogenicity. The resulting nanoprodrug shows high drug loading (nearly 100%), tumor-specific release, and robust therapeutic efficacy by virtue of promoting immunogenic cell death (ICD) induction and alleviation of MDSCs for augmenting the photothermal immunotherapy. In an in vivo colon tumor model, the released TAD in the tumor can effectively ameliorate MDSCs immunosuppressive activity, while the photosensitizer ICG is capable of inducing ICD to promote sufficient dendritic cells maturation and T cell infiltration. The results reported here may provide a superior candidate of adjuvants for strengthening immune response and ICB efficacy.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Honggang Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuan Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
25
|
Lange N, Szlasa W, Saczko J, Chwiłkowska A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics 2021; 13:818. [PMID: 34072719 PMCID: PMC8229084 DOI: 10.3390/pharmaceutics13060818] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Photodynamic therapy (PDT) is a method of cancer treatment that leads to the disintegration of cancer cells and has developed significantly in recent years. The clinically used photosensitizers are primarily porphyrin, which absorbs light in the red spectrum and their absorbance maxima are relatively short. This review presents group of compounds and their derivatives that are considered to be potential photosensitizers in PDT. Cyanine dyes are compounds that typically absorb light in the visible to near-infrared-I (NIR-I) spectrum range (750-900 nm). This meta-analysis comprises the current studies on cyanine dye derivatives, such as indocyanine green (so far used solely as a diagnostic agent), heptamethine and pentamethine dyes, squaraine dyes, merocyanines and phthalocyanines. The wide array of the cyanine derivatives arises from their structural modifications (e.g., halogenation, incorporation of metal atoms or organic structures, or synthesis of lactosomes, emulsions or conjugation). All the following modifications aim to increase solubility in aqueous media, enhance phototoxicity, and decrease photobleaching. In addition, the changes introduce new features like pH-sensitivity. The cyanine dyes involved in photodynamic reactions could be incorporated into sets of PDT agents.
Collapse
Affiliation(s)
- Natalia Lange
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (N.L.); (W.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
26
|
Lan G, Yang J, Ye RP, Boyjoo Y, Liang J, Liu X, Li Y, Liu J, Qian K. Sustainable Carbon Materials toward Emerging Applications. SMALL METHODS 2021; 5:e2001250. [PMID: 34928103 DOI: 10.1002/smtd.202001250] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/10/2021] [Indexed: 06/14/2023]
Abstract
It is desirable for a sustainable society that the production and utilization of renewable materials are net-zero in terms of carbon emissions. Carbon materials with emerging applications in CO2 utilization, renewable energy storage and conversion, and biomedicine have attracted much attention both academically and industrially. However, the preparation process of some new carbon materials suffers from energy consumption and environmental pollution issues. Therefore, the development of low-cost, scalable, industrially and economically attractive, sustainable carbon material preparation methods are required. In this regard, the use of biomass and its derivatives as a precursor of carbon materials is a major feature of sustainability. Recent advances in the synthetic strategy of sustainable carbon materials and their emerging applications are summarized in this short review. Emphasis is made on the discussion of the original intentions and various sustainable strategies for producing sustainable carbon materials. This review provides basic insights and significant guidelines for the further design of sustainable carbon materials and their emerging applications in catalysis and the biomedical field.
Collapse
Affiliation(s)
- Guojun Lan
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou Chaowang Road 18, Zhejiang, 310032, P. R. China
| | - Jing Yang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Run-Ping Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Yash Boyjoo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiaoyan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Ying Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou Chaowang Road 18, Zhejiang, 310032, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
27
|
Yue D, Cai X, Fan M, Zhu J, Tian J, Wu L, Jiang Q, Gu Z. An Alternating Irradiation Strategy-Driven Combination Therapy of PDT and RNAi for Highly Efficient Inhibition of Tumor Growth and Metastasis. Adv Healthc Mater 2021; 10:e2001850. [PMID: 33314663 DOI: 10.1002/adhm.202001850] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia and hypoxia induced overexpression of vascular endothelial growth factor (VEGF) not only seriously affects the treatment effects of photodynamic therapy (PDT) but also promotes tumor metastasis. Herein, an alternating irradiation strategy (referred to as alternate use of low/high dose of light [ALHDL] irradiation)-driven combination therapy of PDT and RNA interference (RNAi) is developed to synergistically inhibit tumor growth and metastasis. A cationic amphipathic peptide (ALS) served as a carrier in the co-delivery system of photochlor (HPPH) and siVEGF (ALSH/siVEGF). At the beginning of ALHDL-driven ALSH/siVEGF treatment, short-term LDL irradiation can facilitate the tumor penetration, cellular uptake, and endosome escape of ALSH/siVEGF. Moreover, accompanied by HDL-mediated rapid cell apoptosis and LDL-mediated efficient VEGF silencing, the joint use of PDT and RNAi achieved remarkable antitumor effects both in vitro and in vivo. Importantly, benefited from the excellent performance of ALHDL in slowing the rapid deterioration of the anoxic environment of tumors, and ALSH/siVEGF treatment-mediated highly improved VEGF silencing efficacy and inhibitory effect on angiogenesis, the liver and lung metastases of HeLa cells have been successfully suppressed. Together, this study clearly indicates that ALHDL-driven combination therapy of PDT and RNAi is a highly effective modality for inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Dong Yue
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
| | - Xiaojun Cai
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Mengni Fan
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Jingwu Zhu
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Jiang Tian
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Lihuang Wu
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| | - Qian Jiang
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials Sichuan University 29 Wangjiang Road Chengdu Sichuan 610065 P. R. China
- College of Materials Science and Engineering Nanjing Tech University, Nanjing 30 Puzhu Road Nanjing Jiangsu 211816 P. R. China
| |
Collapse
|
28
|
Li X, Kulkarni AS, Liu X, Gao WQ, Huang L, Hu Z, Qian K. Metal-Organic Framework Hybrids Aid Metabolic Profiling for Colorectal Cancer. SMALL METHODS 2021; 5:e2001001. [PMID: 34927854 DOI: 10.1002/smtd.202001001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/05/2020] [Indexed: 06/14/2023]
Abstract
Colorectal cancer (CRC) is the third most common fatal cancer worldwide, accounting for ≈10% of cancer-related mortality. Metabolic shift occurs from the very early stage during the development of CRC, which is of significant etiological and diagnostic importance toward precision medicine. Here, an advanced molecular tool to characterize the metabolic alterations in CRC, based on metal-organic framework (MOF) hybrids is reported. Consuming only 500 nL of plasma without any sample pretreatment, MOF hybrids yield direct metabolic fingerprints by laser desorption/ionization mass spectrometry in seconds. A diagnostic prediction model by a machine learning algorithm is constructed, to discriminate CRC patients from normal controls with an average area under the curve of 0.947 for the discovery cohort and 0.912 for the independent validation cohort. In addition, CRC-specific metabolic signature consisting of 34 potential biomarkers, based on the aforementioned diagnostic model is identified. The results advance the design of nanomaterial-based platforms for metabolic analysis and establish a new liquid biopsy tool for CRC screening compatible with the current clinical workflow in practice.
Collapse
Affiliation(s)
- Xinxing Li
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Anuja Shreeram Kulkarni
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xun Liu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wei-Qiang Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Zhiqian Hu
- Department of Gastrointestinal Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, 200065, P. R. China
- Department of General Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
29
|
Hou S, Mahadevegowda SH, Lu D, Zhang K, Chan-Park MB, Duan H. Metabolic Labeling Mediated Targeting and Thermal Killing of Gram-Positive Bacteria by Self-Reporting Janus Magnetic Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006357. [PMID: 33325629 DOI: 10.1002/smll.202006357] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticles have been widely used in detection and killing of bacteria; however, targeting bacteria is still challenging. Delicate design of nanoparticles is required for simultaneous targeting, detection, and therapeutic functions. Here the use of Au/MnFe2 O4 (Au/MFO) Janus nanoparticles to target Gram-positive bacteria via metabolic labeling is reported and realize integrated self-reporting and thermal killing of bacteria. In these nanoparticles, the Au component is functionalized with tetrazine to target trans-cyclooctene group anchored on bacterial cell wall by metabolic incorporation of d-amino acids, and the MFO part exhibits peroxidase activity, enabling self-reporting of bacteria before treatment. The spatial separation of targeting and reporting functions avoids the deterioration of catalytic activity after surface modification. Also important is that MFO facilitates magnetic separation and magnetic heating, leading to easy enrichment and magnetic thermal therapy of labeled bacteria. This method demonstrates that metabolic labeling with d-amino acids is a promising strategy to specifically target and kill Gram-positive bacteria.
Collapse
Affiliation(s)
- Shuai Hou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Surendra H Mahadevegowda
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Derong Lu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Kaixi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
30
|
Li B, Gong T, Xu N, Cui F, Yuan B, Yuan Q, Sun H, Wang L, Liu J. Improved Stability and Photothermal Performance of Polydopamine-Modified Fe 3 O 4 Nanocomposites for Highly Efficient Magnetic Resonance Imaging-Guided Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003969. [PMID: 33053265 DOI: 10.1002/smll.202003969] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Magnetic nanomaterials are a promising class of contrast agents for magnetic resonance imaging (MRI). However, their poor stability and low relaxivity are major challenges hindering their clinical applications. In this study, magnetic theranostic nanoagents based on polydopamine-modified Fe3 O4 (Fe3 O4 @PDA) nanocomposites are fabricated for MRI-guided photothermal therapy (PTT) cancer treatments. Their high transverse relaxivity of 337.8 mM-1 s-1 makes these Fe3 O4 @PDA nanocomposites a promising T2 -weighted MRI contrast agent for cancer diagnosis and image-guided cancer therapy. Due to the good photothermal effect of polydopamine (PDA), the tumors of 4T1 tumor-bearing mice are completely excised by PTT. Most importantly, the PDA shell also improves the stability of the Fe3 O4 @PDA nanocomposites, which contributes to their excellent, long-term performance in MRI and PTT applications. Their good stability, high T2 relaxivity, robust biocompatibility, and satisfactory treatment effect give these Fe3 O4 @PDA nanocomposites great potential for use in cancer theranostics.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Tingting Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Nannan Xu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Fengzhi Cui
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Biying Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lei Wang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
31
|
Rana MS, Xu L, Cai J, Vedarethinam V, Tang Y, Guo Q, Huang H, Shen N, Di W, Ding H, Huang L, Qian K. Zirconia Hybrid Nanoshells for Nutrient and Toxin Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003902. [PMID: 33107195 DOI: 10.1002/smll.202003902] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/03/2020] [Indexed: 05/07/2023]
Abstract
Monitoring milk quality is of fundamental importance in food industry, because of the nutritional value and resulting position of milk in daily diet. The detection of small nutrients and toxins in milk is challenging, considering high sample complexity and low analyte abundance. In addition, the slow analysis and tedious sample preparation hinder the large-scale application of conventional detection techniques. Herein, zirconia hybrid nanoshells are constructed to enhance the performance of laser desorption/ionization mass spectrometry (LDI MS). Zirconia nanoshells with the optimized structures and compositions are used as matrices in LDI MS and achieve direct analysis of small molecules from 5 nL of native milk in ≈1 min, without any purification or separation. Accurate quantitation of small nutrient is achieved by introducing isotope into the zirconia nanoshell-assisted LDI MS as the internal standard, offering good consistency to biochemical analysis (BCA) with R2 = 0.94. Further, trace toxin is enriched and identified with limit-of-detection (LOD) down to 4 pm, outperforming the current analytical methods. This work sheds light on the personalized design of material-based tool for real-case bioanalysis and opens up new opportunities for the simple, fast, and cost-effective detection of various small molecules in a broad field.
Collapse
Affiliation(s)
- Md Sohel Rana
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lin Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, P. R. China
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jingyi Cai
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Vadanasundari Vedarethinam
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yuanjia Tang
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Qiang Guo
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Hongtao Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Nan Shen
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, P. R. China
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Wen Di
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Huihua Ding
- State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Lin Huang
- Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P.R. China
- Department of Obstetrics and Gynecology, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
32
|
Kong L, Yuan F, Huang P, Yan L, Cai Z, Lawson T, Wu W, Chou S, Liu Y. A Metal-Polymer Hybrid Biomimetic System for use in the Chemodynamic-Enhanced Photothermal Therapy of Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004161. [PMID: 33000898 DOI: 10.1002/smll.202004161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Indexed: 06/11/2023]
Abstract
This article reports the fabrication of a smart biomimetic enzyme system, which incorporates a pH-responsive chemodynamic therapy (CDT) combined with a photothermal (PTT) therapy approach in resolving the high recurrence rate of deadly cancers. The resulting enzyme system comprises copper sulfide (CuS) nanoparticle (NP) cores as Fenton-like catalysts, and a photothermal-active generation 5 poly(amidoamine) (G5) dendrimer as a template for the entrapment of Cu NPs and the compression of glucose oxidase (GOD). GOD is introduced to produce H2 O2 necessary in the sequential Fenton-like reaction, and this generates hydroxyl radicals that kill the cancerous cells. Polyethylene glycol is added to the system to improve biocompatibility. Mechanism study suggests that the constructed CuS/G5-GOD-based system has a better Fenton-like catalytic activity than a Fe3 O4 -GOD-based system. This allows the further inhibition on the residual tumors from recurrence and metastasis through CDT after being treated by PTT. The developed smart nanoscale biomimetic system shows high efficiency for breast cancer suppression from recurrence and metastasis by combining PTT with a pH-responsive CDT. It has the potential to resolve the essential issue of cancer recurrence after its initial clinic treatment.
Collapse
Affiliation(s)
- Lingdan Kong
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Feng Yuan
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Pingping Huang
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Zhenzhai Cai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Tom Lawson
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wencan Wu
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| | - Shulei Chou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2522, Australia
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, Eye Hospital, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xuanyuanxi Road, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
33
|
Hao Y, Chen Y, He X, Yu Y, Han R, Li Y, Yang C, Hu D, Qian Z. Polymeric Nanoparticles with ROS-Responsive Prodrug and Platinum Nanozyme for Enhanced Chemophotodynamic Therapy of Colon Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001853. [PMID: 33101874 PMCID: PMC7578901 DOI: 10.1002/advs.202001853] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/25/2020] [Indexed: 02/05/2023]
Abstract
The combination of chemotherapy and photodynamic therapy (PDT) has promising potential in the synergistic treatment of cancer. However, chemotherapy and photodynamic synergistic therapy are impeded by uncontrolled chemotherapeutics release behavior, targeting deficiencies, and hypoxia-associated poor PDT efficacy in solid tumors. Here, a platinum nanozyme (PtNP) loaded reactive oxygen species (ROS)-responsive prodrug nanoparticle (CPT-TK-HPPH/Pt NP) is created to overcome these limitations. The ROS-responsive prodrug consists of a thioketal bond linked with camptothecin (CPT) and photosensitizer-2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH). The PtNP in CPT-TK-HPPH/Pt NP can efficiently catalyze the decomposition of hydrogen peroxide (H2O2) into oxygen to relieve hypoxia. The production of oxygen can satisfy the consumption of HPPH under 660 nm laser irradiation to attain the on-demand release of CPT and ensure enhanced photodynamic therapy. As a tumor diagnosis agent, the results of photoacoustic imaging and fluorescence imaging for CPT-TK-HPPH/Pt NP exhibit desirable long circulation and enhanced in vivo targeting. CPT-TK-HPPH/Pt NPs effectively inhibit tumor proliferation and growth in vitro and in vivo. CPT-TK-HPPH/Pt NP, with its excellent ROS-responsive drug release behavior and enhanced PDT efficiency can serve as a new cancer theranostic agent, and will further promote the research of chemophotodynamic synergistic cancer therapy.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yuwen Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Xinlong He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yongyang Yu
- Department of Gastrointestinal SurgeryWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Chengli Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Danrong Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center of BiotherapyChengdu610041P. R. China
| |
Collapse
|
34
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
35
|
Sobhani N, Dolat E, Darroudi M, Hashemzadeh A, Khoobi M, Salarabadi SS, Hoseini B, Sazgarnia A. Accompanying photocytotoxic activity of gold nanoechinus and zinc phthalocyanine on cancerous cell lines. Photodiagnosis Photodyn Ther 2020; 32:101929. [PMID: 32795508 DOI: 10.1016/j.pdpdt.2020.101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Near-infrared triggered photodynamic therapy (NIR-PDT) has been introduced as a relatively deep tumor treatment modality. The gold Nanoechinus (Au NE) is a rare type of nanostructures that act as a transducer to change NIR wavelength to ultraviolet (UV) and visible lights. During the photodynamic process, Au nanoechinus (Au NE) converts the irradiation of 980 nm to 674 nm which is absorbed by Zn(II) Phthalocyanine tetrasulfonic acid (ZnPcS). In this study the cooperation effect of Au NE and ZnPcS in PDT on MCF7 and Hela cells was investigated. METHODS Cytotoxicity and phototoxicity of the composition having different concentrations of Au NE and ZnPcS upon irradiation of 980 nm NIR light were evaluated against MCF7 and Hela cells after two different incubation times and irradiating with two different power densities of laser. RESULTS Among different experimental groups, in MCF7 cells, which were incubated for 48 h with 50 μg/mL Au NE+2μM ZnPcS and were treated by 980 nm laser with a power density of 200 mW cm-2 for 15 and 30 min, 48 and 38% cell viability were recorded. No appreciable result was observed due to PDT of Hela cells. CONCLUSIONS Comparing to other PDT modalities against MCF7 cells, NIR-PDT procedure suggested in this study with the synergistic effect of Au NE and ZnPcS could be a secure promising modality in the treatment of deep-seated tumors. Carefully increasing the power density and ambient temperature, to the extent of skin tolerance threshold value, seems to be efficient in the treatment of Hela cells.
Collapse
Affiliation(s)
- Nafiseh Sobhani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Elham Dolat
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Khoobi
- Biomaterial Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | | | - Benyamin Hoseini
- Department of Health Information Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Chen J, Feng S, Chen M, Li P, Yang Y, Zhang J, Xu X, Li Y, Chen S. In Vivo Dynamic Monitoring of Bacterial Infection by NIR-II Fluorescence Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002054. [PMID: 32715565 DOI: 10.1002/smll.202002054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Time window of antibiotic administration is a critical but long-neglected point in the treatment of bacterial infection, as unnecessary prolonged antibiotics are increasingly causing catastrophic drug-resistance. Here, a second near-infrared (NIR-II) fluorescence imaging strategy based on lead sulfide quantum dots (PbS QDs) is presented to dynamically monitor bacterial infection in vivo in a real-time manner. The prepared PbS QDs not only provide a low detection limit (104 CFU mL-1 ) of four typical bacteria strains in vitro but also show a particularly high labeling efficiency with Escherichia coli (E. coli). The NIR-II in vivo imaging results reveal that the number of invading bacteria first decreases after post-injection, then increases from 1 d to 1 week and drop again over time in infected mouse models. Meanwhile, there is a simultaneous variation of dendritic cells, neutrophils, macrophages, and CD8+ T lymphocytes against bacterial infection at the same time points. Notably, the infected mouse self-heals eventually without antibiotic treatment, as a robust immune system can successfully prevent further health deterioration. The NIR-II imaging approach enables real-time monitoring of bacterial infection in vivo, thus facilitating spatiotemporal deciphering of time window for antibiotic treatment.
Collapse
Affiliation(s)
- Jun Chen
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Sijia Feng
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mo Chen
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Pei Li
- Institute of Antibiotics, Huashan Hospital, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Fudan University, Shanghai, 200040, China
| | - Yimeng Yang
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Zhang
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission, Fudan University, Shanghai, 200040, China
- National Clinical Research Center for Aging and Medicine Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yunxia Li
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shiyi Chen
- Institute of Sports Medicine of Fudan University, Department of Orthopaedic Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
37
|
Cheng W, Chen H, Liu C, Ji C, Ma G, Yin M. Functional organic dyes for health‐related applications. VIEW 2020. [DOI: 10.1002/viw.20200055] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Wenyu Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Hongtao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Chendong Ji
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Guiping Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| | - Meizhen Yin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing China
| |
Collapse
|
38
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal-Organic Framework Core-Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020; 59:10831-10835. [PMID: 32237260 DOI: 10.1002/anie.202001135] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Indexed: 12/11/2022]
Abstract
High-throughput metabolic analysis is of significance in diagnostics, while tedious sample pretreatment has largely hindered its clinic application. Herein, we designed FeOOH@ZIF-8 composites with enhanced ionization efficiency and size-exclusion effect for laser desorption/ionization mass spectrometry (LDI-MS)-based metabolic diagnosis of gynecological cancers. The FeOOH@ZIF-8-assisted LDI-MS achieved rapid, sensitive, and selective metabolic fingerprints of the native serum without any enrichment or purification. Further analysis of extracted serum metabolic fingerprints successfully discriminated patients with gynecological cancers (GCs) from healthy controls and also differentiated three major subtypes of GCs. Given the low cost, high-throughput, and easy operation, our approach brings a new dimension to disease analysis and classification.
Collapse
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, Shanghai, 200001, P. R. China.,Department of Obstetrics and Gynecology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001, P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Aihua Jin
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
39
|
Pei C, Liu C, Wang Y, Cheng D, Li R, Shu W, Zhang C, Hu W, Jin A, Yang Y, Wan J. FeOOH@Metal–Organic Framework Core–Satellite Nanocomposites for the Serum Metabolic Fingerprinting of Gynecological Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congcong Pei
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chao Liu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - You Wang
- Shanghai Key Laboratory of Gynecologic OncologyRenji Hospital Shanghai 200001 P. R. China
- Department of Obstetrics and GynecologySchool of MedicineShanghai Jiao Tong University Shanghai 200001 P. R. China
| | - Dan Cheng
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Rongxin Li
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Wenli Hu
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| | - Aihua Jin
- Institute of Molecular BioscienceThe University of Queensland St Lucia Queensland 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of Queensland Brisbane QLD 4072 Australia
| | - Jingjing Wan
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
40
|
Song H, Wang H, Zhu J. VIEW
the future of biodiagnostics. VIEW 2020. [DOI: 10.1002/viw2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
41
|
Tan H, Hu H, Huang L, Qian K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020; 145:5699-5712. [DOI: 10.1039/d0an00577k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This comprehensive minireview highlights the recent research on the subtypes, optical manipulation, and biomedical applications of plasmonic tweezers.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Pancreatobiliary Surgery
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- P. R. China
| | - Huiqian Hu
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Lin Huang
- Stem Cell Research Center
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
42
|
Zhou Z, Ni K, Deng H, Chen X. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Adv Drug Deliv Rev 2020; 158:73-90. [PMID: 32526453 DOI: 10.1016/j.addr.2020.06.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) play important roles in cell signaling and tissue homeostasis, in which the level of ROS is critical through the equilibrium between ROS generating and eliminating events. A disruption of the balance leads to disease development either by a surplus or a dearth of ROS, which requires ROS-modulating strategies to overturn the defect for disease treatment. Over the past decade, there have been tremendous advances in nanomedicine centering ROS generation and/or elimination as major mechanisms to treat a variety of diseases. In this review, we will discuss the research achievements on two opposite approaches of ROS-generating and ROS-eliminating strategies for treating cancer and other related diseases. Importantly, we will highlight the conceptual and strategic advances of ROS-mediated immunomodulation, including macrophage polarization, immunogenic cell death and T cell activation, which are currently rising as one of the mainstreams of cancer therapy. At the end, the future challenges and opportunities of mediating ROS-based mechanisms are envisioned. In light of the pleiotropic roles of ROS in different diseases, we hope this review is timely to deliver a clear logic of designing principles on ROS generation and elimination for different disease treatments.
Collapse
|