1
|
Isaev VV, Minenkov Y. Comparative study of various molecular feature representations for solvation free energy predictions of neutral species. J Mol Graph Model 2025; 134:108901. [PMID: 39515275 DOI: 10.1016/j.jmgm.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Predicting molecular properties with the help of Neural Networks is a common way to substitute or enhance comprehensive quantum-chemical calculations. One of the problems facing researchers is the choice of vectorization approach to representing the solvent and the solute for the estimator model. In this work, 10 different approaches have been investigated for both organic solute and solvent including vectorizers that relied on macroscopic parameters, functional groups classification, molecular graphs, or atomic coordinates. A variation of the Bag of Bonds approach called JustBonds, trained on the MNSol database, showed the best overall performance resulting in RMSD <2 kcal/mol for the blind dataset that contains the solutes not presented in the training subset and <1 kcal/mol on records from Solv@TUM database, which is close to contemporary continuum models. We have also demonstrated that the most important bags usually contain heteroatom and play a key role in the solvation process. Furthermore, the small role of solvent vectorization was demonstrated and revealed that approaches based on functional groups or macroscopic solvent parameters are often enough to efficiently represent solvent media.
Collapse
Affiliation(s)
- Valerii V Isaev
- Lomonosov Moscow State University, Leninskie gory 1 bld. 3, 119991, Moscow, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Kosygina Street 4, 119991, Moscow, Russia.
| | - Yury Minenkov
- N.N. Semenov Federal Research Center for Chemical Physics, Kosygina Street 4, 119991, Moscow, Russia
| |
Collapse
|
2
|
Hanson B, Smith M, Li P. Accuracy of Discrete-Continuum Solvation Model for Cations: A Benchmark Study. J Phys Chem B 2024; 128:11904-11913. [PMID: 39570766 DOI: 10.1021/acs.jpcb.4c04034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Metal ions play important roles in chemistry, biochemistry, and material sciences. Accurately modeling ion solvation is crucial for simulating ion-containing systems. There are different models for ion solvation in computational chemistry, such as the explicit model, continuum model, and discrete-continuum model. Compared to the explicit model and continuum model, the discrete-continuum model of solvation is a hybrid solvation model in which the first solvation shell is described explicitly, and the remainder of the bulk liquid is characterized by a continuum model, which provides an excellent balance between accuracy and computational costs. This work serves as a systematic benchmark of the discrete-continuum model for the solvation of cations with +2, +3, and +4 charges. The calculated hydration free energies (HFEs) of ions were compared to those obtained by the SMD continuum model alone and the available experimental data. The discrete-continuum model showed improved performance over the continuum model alone via a smaller overall error and more consistent performance. Experimentally observed trends, such as the Irving-Williams series, are generally reproduced. In contrast, greater overall error was obtained for Ln3+ ions, and the HFE trend along the Ln3+ series was more difficult to reproduce, indicating these ions are challenging to model by the discrete-continuum model and continuum model. Overall, the discrete-continuum model is recommended to calculate the HFEs of cations when experimental data are not available.
Collapse
Affiliation(s)
- Bailey Hanson
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Madelyn Smith
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| |
Collapse
|
3
|
Zhang F, Li Y, Zhou X, Zhao Q, Li X, Zhang FL, Wang YF, Zhou X. Quenching Rate Constants of Lewis Base-Boryl Radical by Substrates: a Laser Flash Photolysis Study. Chemistry 2024:e202403949. [PMID: 39532687 DOI: 10.1002/chem.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The advanced strategy using Lewis base-boryl radicals (LBRs) has recently been proposed for the addition of alkyl substituents to the full-carbon quaternary center of an organic molecule. However, as the rate-determining step in the whole route, reaction rate constants of LBRs with substrates are extremely lacking. In this paper, 4-dimethylaminopyridine (DMAP)-BH2⋅ was selected as a representative of LBRs, and its reactions with six monochloro-substituted substrates, including three methyl chlorobenzoates and three chlorinated acetanilides were studied in experiments and theoretical calculations. The bimolecular reaction rate constants, kq, were determined using laser flash photolysis approach. By comparing activation energies along the two addition pathways, we have clarified the rate-determining step as the attacking to carbonyl oxygen instead of chlorine atom. Furthermore, noncovalent interaction (NCI) analyses on these substrates indicate that weak interactions, such as hydrogen-bonding and van der Waals interactions, have significant influence on the reactivity of these substrates. Our study provides concrete clues to extend this synthetic strategy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuanming Li
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xi Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qiang Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuelian Li
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoguo Zhou
- Department of Chemical Physic, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Lara-Cruz GA, Rose T, Grimme S, Jaramillo-Botero A. Reaction-Free Energies for Complexation of Carbohydrates by Tweezer Diboronic Acids. J Phys Chem B 2024; 128:9213-9223. [PMID: 39284008 DOI: 10.1021/acs.jpcb.4c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The accurate calculation of reaction-free energies (ΔrG°) for diboronic acids and carbohydrates is challenging due to reactant flexibility and strong solute-solvent interactions. In this study, these challenges are addressed with a semiautomatic workflow based on quantum chemistry methods to calculate conformational free energies, generate microsolvated solute structural ensembles, and compute ΔrG°. Workflow parameters were optimized for accuracy and precision while controlling computational costs. We assessed the accuracy by studying three reactions of diboronic acids with glucose and galactose, finding that the conformational entropy contributes significantly (by 3-5 kcal/mol at room temperature). Explicit solvent molecules improve the computed ΔrG° accuracy by about 4 kcal/mol compared to experimental data, though using 13 or more water molecules reduced precision and increased computational overhead. After fine-tuning, the workflow demonstrated remarkable accuracy, with an absolute error of about 2 kcal/mol compared to experimental ΔrG° and an average interquartile range of 2.4 kcal/mol. These results highlight the workflow's potential for designing and screening tweezer-like ligands with tailored selectivity for various carbohydrates.
Collapse
Affiliation(s)
- Gustavo Adolfo Lara-Cruz
- iOMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B-155, Santiago de Cali, Valle del Cauca 760031, Colombia
| | - Thomas Rose
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Andres Jaramillo-Botero
- iOMICAS Research Institute, Pontificia Universidad Javeriana, Calle 17 # 121B-155, Santiago de Cali, Valle del Cauca 760031, Colombia
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Pliego JR. Hybrid Cluster-Continuum Method for Single-Ion Solvation Free Energy in Acetonitrile Solvent. J Phys Chem A 2024; 128:6440-6449. [PMID: 39052560 PMCID: PMC11317976 DOI: 10.1021/acs.jpca.4c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
A new hybrid discrete-continuum approach named the cluster-continuum static approximation (CCSA) has been proposed for acetonitrile solvent. The continuum part uses the conductor-like polarizable continuum model for electrostatic and a surface area-dependent term for nonelectrostatic solvation. The CCSA includes only one explicit acetonitrile solvent molecule and a damping function, which makes the CCSA method reduce to pure continuum solvation in the case of weaker potential of mean force for solute-solvent interaction. The performance of the model was tested for 22 anions and 22 cations, including challenge species that cannot be adequately described by pure continuum solvation. A comparison was done with the widely used solvent model density (SMD) model. For anions, the CCSA reduces to pure continuum solvation and the method has the same performance as the SMD model, with a standard deviation of the mean signed error (SD-MSE) of 2.7 kcal mol-1 for both models. However, the CCSA method for cations considerably outperforms the SMD model, with an SD-MSE of 3.3 kcal mol-1 for the former and 8.4 kcal mol-1 for the latter. The method can be automated, and the present study suggests that continuum solvation models could be parameterized taking into account the explicit solvation as proposed in this work.
Collapse
Affiliation(s)
- Josefredo R. Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, Minas Gerais 36301-160, Brazil
| |
Collapse
|
6
|
Pederson JP, McDaniel JG. PyDFT-QMMM: A modular, extensible software framework for DFT-based QM/MM molecular dynamics. J Chem Phys 2024; 161:034103. [PMID: 39007371 DOI: 10.1063/5.0219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
PyDFT-QMMM is a Python-based package for performing hybrid quantum mechanics/molecular mechanics (QM/MM) simulations at the density functional level of theory. The program is designed to treat short-range and long-range interactions through user-specified combinations of electrostatic and mechanical embedding procedures within periodic simulation domains, providing necessary interfaces to external quantum chemistry and molecular dynamics software. To enable direct embedding of long-range electrostatics in periodic systems, we have derived and implemented force terms for our previously described QM/MM/PME approach [Pederson and McDaniel, J. Chem. Phys. 156, 174105 (2022)]. Communication with external software packages Psi4 and OpenMM is facilitated through Python application programming interfaces (APIs). The core library contains basic utilities for running QM/MM molecular dynamics simulations, and plug-in entry-points are provided for users to implement custom energy/force calculation and integration routines, within an extensible architecture. The user interacts with PyDFT-QMMM primarily through its Python API, allowing for complex workflow development with Python scripting, for example, interfacing with PLUMED for free energy simulations. We provide benchmarks of forces and energy conservation for the QM/MM/PME and alternative QM/MM electrostatic embedding approaches. We further demonstrate a simple example use case for water solute in a water solvent system, for which radial distribution functions are computed from 100 ps QM/MM simulations; in this example, we highlight how the solvation structure is sensitive to different basis-set choices due to under- or over-polarization of the QM water molecule's electron density.
Collapse
Affiliation(s)
- John P Pederson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Jesse G McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
7
|
Khezeli F, Plaisance C. Computational Design of an Electro-Organocatalyst for Conversion of CO 2 into Long Chain Aldehydes. J Phys Chem A 2024; 128:5445-5458. [PMID: 38962806 PMCID: PMC11264266 DOI: 10.1021/acs.jpca.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
Density functional theory calculations employing a hybrid implicit/explicit solvation method were used to demonstrate that an electro-organocatalyst designed in our previous work for reducing CO2 to formaldehyde could also be capable of coupling formaldehyde to form long chain aldehydes. The catalytic activity is enabled by an electron-rich vicinal enediamine (>N-C═C-N<) backbone that activates formaldehyde by reversing the polarity on the carbon atom, enabling it to act as a nucleophile in the subsequent aldol addition step. The catalyst then enables reductive dehydroxylation of the aldol addition product by facilitating outer-sphere electron transfer. The optimal pH as well as the limiting potential and formaldehyde concentration are identified and related to the kinetic balance between several rate limiting steps. Finally, the optimal conditions for coupling with the CO2 reduction cycle are discussed, demonstrating that the electro-organocatalyst is capable of efficiently converting CO2 into aldehyde products with a turnover frequency (per carbon atom) on the order of 0.1-1 s-1.
Collapse
Affiliation(s)
- Foroogh Khezeli
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Craig Plaisance
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Zhang Q, Chen Q, Shaik S, Wang B. Flavin-N5OOH Functions as both a Powerful Nucleophile and a Base in the Superfamily of Flavoenzymes. Angew Chem Int Ed Engl 2024; 63:e202318629. [PMID: 38299700 DOI: 10.1002/anie.202318629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Flavoenzymes can mediate a large variety of oxidation reactions through the activation of oxygen. However, the O2 activation chemistry of flavin enzymes is not yet fully exploited. Normally, the O2 activation occurs at the C4a site of the flavin cofactor, yielding the flavin C4a-(hydro)hydroperoxyl species in monooxygenases or oxidases. Using extensive MD simulations, QM/MM calculations and QM calculations, our studies reveal the formation of the common nucleophilic species, Flavin-N5OOH, in two distinct flavoenzymes (RutA and EncM). Our studies show that Flavin-N5OOH acts as a powerful nucleophile that promotes C-N cleavage of uracil in RutA, and a powerful base in the deprotonation of substrates in EncM. We reason that Flavin-N5OOH can be a common reactive species in the superfamily of flavoenzymes, which accomplish generally selective general base catalysis and C-X (X=N, S, Cl, O) cleavage reactions that are otherwise challenging with solvated hydroxide ion base. These results expand our understanding of the chemistry and catalysis of flavoenzymes.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
9
|
Pracht P, Grimme S, Bannwarth C, Bohle F, Ehlert S, Feldmann G, Gorges J, Müller M, Neudecker T, Plett C, Spicher S, Steinbach P, Wesołowski PA, Zeller F. CREST-A program for the exploration of low-energy molecular chemical space. J Chem Phys 2024; 160:114110. [PMID: 38511658 DOI: 10.1063/5.0197592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Conformer-rotamer sampling tool (CREST) is an open-source program for the efficient and automated exploration of molecular chemical space. Originally developed in Pracht et al. [Phys. Chem. Chem. Phys. 22, 7169 (2020)] as an automated driver for calculations at the extended tight-binding level (xTB), it offers a variety of molecular- and metadynamics simulations, geometry optimization, and molecular structure analysis capabilities. Implemented algorithms include automated procedures for conformational sampling, explicit solvation studies, the calculation of absolute molecular entropy, and the identification of molecular protonation and deprotonation sites. Calculations are set up to run concurrently, providing efficient single-node parallelization. CREST is designed to require minimal user input and comes with an implementation of the GFNn-xTB Hamiltonians and the GFN-FF force-field. Furthermore, interfaces to any quantum chemistry and force-field software can easily be created. In this article, we present recent developments in the CREST code and show a selection of applications for the most important features of the program. An important novelty is the refactored calculation backend, which provides significant speed-up for sampling of small or medium-sized drug molecules and allows for more sophisticated setups, for example, quantum mechanics/molecular mechanics and minimum energy crossing point calculations.
Collapse
Affiliation(s)
- Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Bannwarth
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Sebastian Ehlert
- AI4Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, The Netherlands
| | - Gereon Feldmann
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Johannes Gorges
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Marcel Müller
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Tim Neudecker
- Institute for Physical and Theoretical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | | | - Pit Steinbach
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Patryk A Wesołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Felix Zeller
- Institute for Physical and Theoretical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
10
|
Ghosh S, Hassan SH, Das A. Role of Explicit Solvation in Computational Modeling of Chemical Reactions: Mechanism of Cu(I) Transfer Between Thiolate-Based Chelators in Water. J Phys Chem B 2024. [PMID: 38503566 DOI: 10.1021/acs.jpcb.3c07327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Solvation plays important roles in controlling the thermodynamic and kinetic aspects of chemical reactions. The conventional approaches to treat solvation via electronic structure methods are likely to become inadequate, when the reacting solutes have strong electrostatic and hydrogen bonding interactions with the solvent and undergo significant structural changes during the course of the reaction. In this article, we present evidence of such solvent and structural effects in the computational study of the Cu(I) transfer reaction between thiolate-based chelators dithiobutylamine (DTBA) and dithiotheritol (DTT) in water, inspired from biological copper trafficking phenomena. We propose a general solution to the problem by combining classical molecular dynamics (MD) simulations of the bulk system and static quantum chemistry calculations. The fluctuating solvation shell was estimated from MD, and energetics was assessed by averaging QM energies of a series of molecular clusters constructed from the MD snapshots. Applying this approach, we propose a reaction pathway with estimates of relative intermediate stabilities and barriers, which suggest the overall reaction to be reversible in nature and likely to go through both two and three coordinated intermediates, confirming previous studies of similar protein analogues. An interesting fact that emerged from our study was the strong indication that the rate-determining step is the deprotonation of initial thiol bound Cu(I) complex, without involving any Cu(I)-S bonds. The proposed method will lead to a better treatment of solvations, and these mechanistic insights will aid our understanding of biological copper(I) trafficking.
Collapse
Affiliation(s)
- Soumak Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sk Hasibo Hassan
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Avisek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
11
|
Plett C, Stahn M, Bursch M, Mewes JM, Grimme S. Improving Quantum Chemical Solvation Models by Dynamic Radii Adjustment for Continuum Solvation (DRACO). J Phys Chem Lett 2024; 15:2462-2469. [PMID: 38407047 DOI: 10.1021/acs.jpclett.3c03551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We present the Dynamic Radii Adjustment for COntinuum solvation (DRACO) approach, which employs precomputed atomic partial charges and coordination numbers of the solute atoms to improve the solute cavity. As such, DRACO is compatible with major solvation models, improving their performance significantly and robustly at virtually no extra cost, especially for charged solutes. Combined with the purely electrostatic CPCM and COSMO models, DRACO reduces the mean absolute deviation (MAD) of the solvation free energy by up to 4.5 kcal mol-1 (67%) for a large data set of polar and ionic solutes. Even in combination with the highly empirical universal solvation model (SMD), DRACO substantially reduces the MAD for charged solutes by up to 1.5 kcal mol-1 (39%), while neutral solutes are slightly improved (0.2 kcal mol-1 or 16%). We present an interface of DRACO with two computationally efficient atomic charge models that enables fully automated, out-of-the-box calculations with the widely used program packages Orca and TurboMole.
Collapse
Affiliation(s)
- Christoph Plett
- Mulliken Center for Theoretical Chemistry, 53115 Bonn, Germany
| | - Marcel Stahn
- Mulliken Center for Theoretical Chemistry, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, 53115 Bonn, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, 53115 Bonn, Germany
- beeOLED GmbH, 01257 Dresden, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, 53115 Bonn, Germany
| |
Collapse
|
12
|
Khezeli F, Plaisance C. Computational Design of an Electro-Organocatalyst for Conversion of CO 2 into Formaldehyde. J Phys Chem A 2024; 128:1576-1592. [PMID: 38412517 PMCID: PMC10926098 DOI: 10.1021/acs.jpca.3c07806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Density functional theory calculations employing a hybrid implicit/explicit solvation method were used to explore a new strategy for electrochemical conversion of CO2 using an electro-organocatalyst. A particular structural motif is identified that consists of an electron-rich vicinal enediamine (>N-C═C-N<) backbone, which is capable of activating CO2 by the formation of a C-C bond while subsequently facilitating the transfer of electrons from a chemically inert cathode to ultimately produce formaldehyde. Unlike transition metal-based electrocatalysts, the electro-organocatalyst is not constrained by scaling relations between the formation energies of activated CO2 and adsorbed CO, nor is it expected to be active for the competing hydrogen evolution reaction. The rate-limiting steps are found to occur during two proton-coupled electron transfer (PCET) sequences and are associated with the transfer of a proton from a proton transfer mediator to a carbon atom on the electro-organocatalyst. The difficulty of this step in the second PCET sequence necessitates an electrode potential of -0.85 V vs RHE to achieve the maximum turnover frequency. In addition, it is postulated that the electro-organocatalyst should also be capable of forming long-chain aldehydes by successively carrying out reductive aldol condensation to grow the alkyl chain one carbon at a time.
Collapse
Affiliation(s)
- Foroogh Khezeli
- Cain Department
of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Craig Plaisance
- Cain Department
of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
Imamura K, Yokogawa D, Sato H. Recent developments and applications of reference interaction site model self-consistent field with constrained spatial electron density (RISM-SCF-cSED): A hybrid model of quantum chemistry and integral equation theory of molecular liquids. J Chem Phys 2024; 160:050901. [PMID: 38341702 DOI: 10.1063/5.0190116] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 02/13/2024] Open
Abstract
The significance of solvent effects in electronic structure calculations has long been noted, and various methods have been developed to consider this effect. The reference interaction site model self-consistent field with constrained spatial electron density (RISM-SCF-cSED) is a hybrid model that combines the integral equation theory of molecular liquids with quantum chemistry. This method can consider the statistically convergent solvent distribution at a significantly lower cost than molecular dynamics simulations. Because the RISM theory explicitly considers the solvent structure, it performs well for systems where hydrogen bonds are formed between the solute and solvent molecules, which is a challenge for continuum solvent models. Taking advantage of being founded on the variational principle, theoretical developments have been made in calculating various properties and incorporating electron correlation effects. In this review, we organize the theoretical aspects of RISM-SCF-cSED and its distinctions from other hybrid methods involving integral equation theories. Furthermore, we carefully present its progress in terms of theoretical developments and recent applications.
Collapse
Affiliation(s)
- Kosuke Imamura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
14
|
Brennan S, Smeu M. Voltage prediction of vanadium redox flow batteries from first principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:175201. [PMID: 38237185 DOI: 10.1088/1361-648x/ad201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Global energy demand has been increasing for decades, which has created a necessity for large scale energy storage solutions for renewable energy sources. We studied the voltage of vanadium redox flow batteries (VRFBs) with density functional theory (DFT) and a newly developed technique usingab initiomolecular dynamics (AIMD). DFT was used to create cluster models to calculate the voltage of VRFBs. However, DFT is not suited for capturing the dynamics and interactions in a liquid electrolyte, leading to the need for AIMD, which is capable of accurately modeling such things. The molarities and densities of all systems were carefully considered to match experimental conditions. With the use of AIMD, we calculated a voltage of 1.23 V, which compares well with the experimental value of 1.26 V. The techniques developed using AIMD for voltage calculations will be useful for the investigation of potential future battery technologies or as a screening process for additives to make improvements to currently available batteries.
Collapse
Affiliation(s)
- Scott Brennan
- Department of Physics, and Materials Science and Engineering Program, Binghamton University, Binghamton, NY 13902, United States of America
| | - Manuel Smeu
- Department of Physics, and Materials Science and Engineering Program, Binghamton University, Binghamton, NY 13902, United States of America
| |
Collapse
|
15
|
Zheng JW, Green WH. Experimental Compilation and Computation of Hydration Free Energies for Ionic Solutes. J Phys Chem A 2023; 127:10268-10281. [PMID: 38010212 DOI: 10.1021/acs.jpca.3c05514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Although charged solutes are common in many chemical systems, traditional solvation models perform poorly in calculating solvation energies of ions. One major obstacle is the scarcity of experimental data for solvated ions. In this study, we release an experiment-based aqueous ionic solvation energy data set, IonSolv-Aq, that contains hydration free energies for 118 anions and 155 cations, more than 2 times larger than the set of hydration free energies for singly charged ions contained in the 2012 Minnesota Solvation Database commonly used in benchmarking studies. We discuss sources of systematic uncertainty in the data set and use the data to examine the accuracy of popular implicit solvation models COSMO-RS and SMD for predicting solvation free energies of singly charged ionic solutes in water. Our results indicate that most SMD and COSMO-RS modeling errors for ionic solutes are systematic and correctable with empirical parameters. We discuss two systematic offsets: one across all ions and one that depends on the functional group of the ionization site. After correcting for these offsets, solvation energies of singly charged ions are predicted using COSMO-RS to 3.1 kcal mol-1 MAE against a challenging test set and 1.7 kcal mol-1 MAE (about 3% relative error) with a filtered test set. The performance of SMD is similar, with MAE against those same test sets of 2.7 and 1.7 kcal mol-1. These results underscore the importance of compiling larger experimental data sets to improve solvation model parametrization and fairly assess performance.
Collapse
Affiliation(s)
- Jonathan W Zheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Merten C. Modelling solute-solvent interactions in VCD spectra analysis with the micro-solvation approach. Phys Chem Chem Phys 2023; 25:29404-29414. [PMID: 37881890 DOI: 10.1039/d3cp03408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy has become an important part of the (stereo-)chemists' toolbox as a reliable method for the determination of absolute configurations. Being the chiroptical version of infrared spectroscopy, it has also been recognized as being very sensitive to conformational changes and intermolecular interactions. This sensitivity originates from the fact that the VCD spectra of individual conformers are often more different than their IR spectra, so that changes in conformational distributions or band positions and intensities become more pronounced. What is an advantage for studies focussing on intermolecular interactions can, however, quickly turn into a major obstacle during AC determinations: solute-solvent interactions can have a strong influence on spectral signatures and they must be accurately treated when simulating VCD and IR spectra. In this perspective, we showcase selected examples which exhibit particularly pronounced solvent effects. It is demonstrated that it is typically sufficient to model solute-solvent interactions by placing single solvent molecules near hydrogen bonding sites of the solute and subsequently use the optimized structures for spectra simulations. This micro-solvation approach works reasonably well for medium-sized, not too conformationally flexible molecules. We thus also discuss its limitations and outline the next steps that method development needs to take in order to further improve the workflows for VCD spectra predictions.
Collapse
Affiliation(s)
- Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
17
|
Bouquiaux C, Beaujean P, Ramos TN, Castet F, Rodriguez V, Champagne B. First hyperpolarizability of the di-8-ANEPPS and DR1 nonlinear optical chromophores in solution. An experimental and multi-scale theoretical chemistry study. J Chem Phys 2023; 159:174307. [PMID: 37933782 DOI: 10.1063/5.0174979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
The solvent effects on the linear and second-order nonlinear optical properties of an aminonaphtylethenylpyridinium (ANEP) dye are investigated by combining experimental and theoretical chemistry methods. On the one hand, deep near infrared (NIR) hyper-Rayleigh scattering (HRS) measurements (1840-1950 nm) are performed on solutions of di-8-ANEPPS in deuterated chloroform, dimethylformamide, and dimethylsulfoxide to determine their first hyperpolarizablity (βHRS). For the first time, these HRS experiments are carried out in the picosecond regime in the deep NIR with very moderate (≤3 mW) average input power, providing a good signal-to-noise ratio and avoiding solvent thermal effects. Moreover, the frequency dispersion of βHRS is investigated for Disperse Red 1 (DR1), a dye commonly used as HRS external reference. On the other hand, these are compared with computational chemistry results obtained by using a sequential molecular dynamics (MD) then quantum mechanics (QM) approach. The MD method allows accounting for the dynamical nature of the molecular structures. Then, the QM part is based on TDDFT/M06-2X/6-311+G* calculations using solvation models ranging from continuum to discrete ones. Measurements report a decrease of the βHRS of di-8-ANEPPS in more polar solvents and these effects are reproduced by the different solvation models. For di-8-ANEPPS and DR1, comparisons show that the use of a hybrid solvation model, combining the description of the solvent molecules around the probe by point charges with a continuum model, already achieves quasi quantitative agreement with experiment. These results are further improved by using a polarizable embedding that includes the atomic polarizabilities in the solvent description.
Collapse
Affiliation(s)
- Charlotte Bouquiaux
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Pierre Beaujean
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Tárcius N Ramos
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| | - Frédéric Castet
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, cours de la Libération 351, F-33405 Talence Cedex, France
| | - Vincent Rodriguez
- University of Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, cours de la Libération 351, F-33405 Talence Cedex, France
| | - Benoît Champagne
- University of Namur, Theoretical Chemistry Lab, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, rue de Bruxelles, 61, B-5000 Namur, Belgium
| |
Collapse
|
18
|
Amereh M, Seyfoori A, Dallinger B, Azimzadeh M, Stefanek E, Akbari M. 3D-Printed Tumor-on-a-Chip Model for Investigating the Effect of Matrix Stiffness on Glioblastoma Tumor Invasion. Biomimetics (Basel) 2023; 8:421. [PMID: 37754172 PMCID: PMC10526170 DOI: 10.3390/biomimetics8050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma multiform (GBM) tumor progression has been recognized to be correlated with extracellular matrix (ECM) stiffness. Dynamic variation of tumor ECM is primarily regulated by a family of enzymes which induce remodeling and degradation. In this paper, we investigated the effect of matrix stiffness on the invasion pattern of human glioblastoma tumoroids. A 3D-printed tumor-on-a-chip platform was utilized to culture human glioblastoma tumoroids with the capability of evaluating the effect of stiffness on tumor progression. To induce variations in the stiffness of the collagen matrix, different concentrations of collagenase were added, thereby creating an inhomogeneous collagen concentration. To better understand the mechanisms involved in GBM invasion, an in silico hybrid mathematical model was used to predict the evolution of a tumor in an inhomogeneous environment, providing the ability to study multiple dynamic interacting variables. The model consists of a continuum reaction-diffusion model for the growth of tumoroids and a discrete model to capture the migration of single cells into the surrounding tissue. Results revealed that tumoroids exhibit two distinct patterns of invasion in response to the concentration of collagenase, namely ring-type and finger-type patterns. Moreover, higher concentrations of collagenase resulted in greater invasion lengths, confirming the strong dependency of tumor behavior on the stiffness of the surrounding matrix. The agreement between the experimental results and the model's predictions demonstrates the advantages of this approach in investigating the impact of various extracellular matrix characteristics on tumor growth and invasion.
Collapse
Affiliation(s)
- Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Amir Seyfoori
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Briana Dallinger
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
| | - Mostafa Azimzadeh
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
| | - Evan Stefanek
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (M.A.); (A.S.); (M.A.)
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (B.D.); (E.S.)
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8W 2Y2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 91367, USA
| |
Collapse
|
19
|
Shukla S, Jakowski J, Kadian S, Narayan RJ. Computational approaches to delivery of anticancer drugs with multidimensional nanomaterials. Comput Struct Biotechnol J 2023; 21:4149-4158. [PMID: 37675288 PMCID: PMC10477808 DOI: 10.1016/j.csbj.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Functionalized nanotubes (NTs), nanosheets, nanorods, and porous organometallic scaffolds are potential in vivo carriers for cancer therapeutics. Precise delivery through these agents depends on factors like hydrophobicity, payload capacity, bulk/surface adsorption, orientation of molecules inside the host matrix, bonding, and nonbonding interactions. Herein, we summarize advances in simulation techniques, which are extremely valuable in initial geometry optimization and evaluation of the loading and unloading behavior of encapsulated drug molecules. Computational methods broadly involve the use of quantum and classical mechanics for studying the behavior of molecular properties. Combining theoretical processes with experimental techniques, such as X-ray crystallography, NMR spectroscopy, and bioassays, can provide a more comprehensive understanding of the structure and function of biological molecules. This integrated approach has led to numerous breakthroughs in drug discovery, enzyme design, and the study of complex biological processes. This short review provides an overview of results and challenges described from erstwhile investigations on the molecular interaction of anticancer drugs with nanocarriers of different aspect ratios.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| |
Collapse
|
20
|
Rajapaksha H, Augustine LJ, Mason SE, Forbes TZ. Guiding Principles for the Rational Design of Hybrid Materials: Use of DFT Methodology for Evaluating Non-Covalent Interactions in a Uranyl Tetrahalide Model System. Angew Chem Int Ed Engl 2023; 62:e202305073. [PMID: 37177866 DOI: 10.1002/anie.202305073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Together with the synthesis and experimental characterization of 14 hybrid materials containing [UO2 X4 ]2- (X=Cl- and Br- ) and organic cations, we report on novel methods for determining correlation trends in their formation enthalpy (ΔHf ) and observed vibrational signatures. ΔHf values were analyzed through isothermal acid calorimetry and a Density Functional Theory+Thermodynamics (DFT+T) approach with results showing good agreement between theory and experiment. Three factors (packing efficiency, cation protonation enthalpy, and hydrogen bonding energy [E H , norm total ${{E}_{H,{\rm { norm}}}^{{\rm { total}}}}$ ]) were assessed as descriptors for trends in ΔHf . Results demonstrated a strong correlation betweenE H , norm total ${E_{{\rm{H}},{\rm{norm}}}^{{\rm{total}}} }$ and ΔHf , highlighting the importance of hydrogen bonding networks in determining the relative stability of solid-state hybrid materials. Lastly, we investigate how hydrogen bonding networks affect the vibrational characteristics of uranyl solid-state materials using experimental Raman and IR spectroscopy and theoretical bond orders and find that hydrogen bonding can red-shift U≡O stretching modes. Overall, the tightly integrated experimental and theoretical studies presented here bridge the trends in macroscopic thermodynamic energies and spectroscopic features with molecular-level details of the geometry and electronic structure. This modeling framework forms a basis for exploring 3D hydrogen bonding as a tunable design feature in the pursuit of supramolecular materials by rational design.
Collapse
Affiliation(s)
- Harindu Rajapaksha
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Logan J Augustine
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| | - Sara E Mason
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
- Center for Funtional Nanomaterials (CFN), Brookhaven National Labotatory, Upton, NY 52242, USA
| | - Tori Z Forbes
- Department of Chemistry, University of Iowa, Chemistry Building W374, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Minenkov Y. Solv: An Alternative Continuum Model Implementation Based on Fixed Atomic Charges, Scaled Particle Theory, and the Atom-Atom Potential Method. J Chem Theory Comput 2023. [PMID: 37390470 DOI: 10.1021/acs.jctc.3c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
An alternative continuum model implementation is reported. The electrostatic contribution to the solvation Gibbs free energy utilizes the noniterative conductor-like screening model of Vyboishchikov and Voityuk (DOI: 10.1002/jcc.26531) based on the fixed partial atomic charges. The nonelectrostatic solute-solvent dispersion-repulsion energy is calculated through the Caillet-Claverie atom-atom potential method employing the grid-based approach. The nonelectrostatic cavitation energy is computed within the scaled particle theory (SPT) formalism with the solute hard-sphere radius obtained via the Pierotti-Claverie (PC) scheme, from the solute molecular surface (SPT-S) or volume (SPT-V). The solvent hard-sphere radius is derived through the fitting to the experimental total solvation free energies of 2530 neutral species in 92 solvents. Application of the model to reproduce both the absolute and relative (reaction net) solvation free energies indicates that the SPT-V approach based on the CM5 charges is the best performer. The method is suggested for the solvation free energy calculation in the nonaqueous solvents.
Collapse
Affiliation(s)
- Yury Minenkov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russian Federation
- Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2 Izhorskaya Street, Moscow 125412, Russian Federation
| |
Collapse
|
22
|
Ramos B, Vaz WF, Diniz LF, Sanches Neto FO, Ribeiro JCO, Carvalho-Silva VH, Teixeira ACSC, Ribeiro C, Napolitano HB, Carvalho PS. Kinetics, mechanism, and tautomerism in ametryn acid hydrolysis: From molecular structure to environmental impacts. CHEMOSPHERE 2023; 324:138278. [PMID: 36878364 DOI: 10.1016/j.chemosphere.2023.138278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The excessive use of pesticides and the demand for environmentally friendly compounds have driven the focus to detailed studies of the environmental destination of these compounds. Degradation by hydrolysis of pesticides, when released into the soil, can result in the formation of metabolites with potentially adverse effects on the environment. Moving in this direction, we investigated the mechanism of acid hydrolysis of the herbicide ametryn (AMT) and predicted the toxicities of metabolites through experimental and theoretical approaches. The formation of ionized hydroxyatrazine (HA) occurs with the release of the SCH3- group and the addition of H3O+ to the triazine ring. The tautomerization reactions privileged the conversion of AMT into HA. Furthermore, the ionized HA is stabilized by an intramolecular reaction that provides the molecule in two tautomeric states. Experimentally, the hydrolysis of AMT was obtained under acidic conditions and at room temperature with HA as the main product. HA was isolated in a solid state through its crystallization as organic counterions. The mechanism of conversion of AMT to HA and the experimental investigation of the reaction kinetics allowed us to determine the dissociation of CH3SH as the rate-controlling step in the degradation process that culminates in a half-life between 7 and 24 months under typical acid soil conditions of the Brazilian Midwest - region with strong agricultural and livestock vocation. The keto and hydroxy metabolites showed substantial thermodynamic stability and a decrease in toxicity compared to AMT. We hope that this comprehensive study will support the understanding of the degradation of s-triazine-based pesticides.
Collapse
Affiliation(s)
- Bruno Ramos
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécica, University of São Paulo, São Paulo, 05088000, Brazil.
| | - Wesley F Vaz
- Theoretical and Structural Chemistry Group, Goiás State University, 75132-903, Anápolis, Brazil
| | - Luan F Diniz
- Medicine and Cosmetic Quality Control Laboratory, Pharmaceutical Products Department, Pharmacy Faculty, Federal University of Minas Gerais, 31270-901, Belo Horizonte, Brazil
| | - Flavio O Sanches Neto
- Institute of Chemistry, University of Brasília, Postal Box 4478, 70904-970, Brasília, Brazil; Laboratory for Modeling of Physical and Chemical Transformations, Theoretical and Structural Chemistry Group, Goiás State University, 75132-903, Anápolis, Brazil
| | - Julio C O Ribeiro
- Laboratory for Modeling of Physical and Chemical Transformations, Theoretical and Structural Chemistry Group, Goiás State University, 75132-903, Anápolis, Brazil
| | - Valter H Carvalho-Silva
- Institute of Chemistry, University of Brasília, Postal Box 4478, 70904-970, Brasília, Brazil; Laboratory for Modeling of Physical and Chemical Transformations, Theoretical and Structural Chemistry Group, Goiás State University, 75132-903, Anápolis, Brazil.
| | - Antonio Carlos S C Teixeira
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécica, University of São Paulo, São Paulo, 05088000, Brazil.
| | - Caue Ribeiro
- National Nanotechnology Laboratory for Agribusiness (LNNA), EMBRAPA Instrumentation, 13560-970, São Carlos, SP, Brazil
| | - Hamilton B Napolitano
- Theoretical and Structural Chemistry Group, Goiás State University, 75132-903, Anápolis, Brazil
| | - Paulo S Carvalho
- Physics Institute, Federal University of Mato Grosso do Sul, 79074-460, Campo Grande, MS, Brazil.
| |
Collapse
|
23
|
Biela M, Kleinová A, Uhliar M, Klein E. Investigation of substituent effect on O–C bond dissociation enthalpy of methoxy group in meta- and para-substituted anisoles. J Mol Graph Model 2023; 122:108465. [PMID: 37062128 DOI: 10.1016/j.jmgm.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
This paper is focused on the theoretical investigation of O-C Bond Dissociation Enthalpy (BDE) of methoxy OCH3 group in 15 meta- and 15 para-substituted anisoles in gas phase, non-polar environment, and water. Density Functional Theory (DFT) calculations were carried out using M06-2X functional and 6-311++G(d,p) basis set. Obtained BDEs were correlated with Brown and Okamoto σp+ and Hammett σm constants representing commonly used descriptors of electron-donating or electron-withdrawing substituent effect. Obtained linear dependences allow the prediction of substituent effect on BDE using σp+ and σm constants. Calculated reaction enthalpies were also compared with available experimental and theoretical ab initio G4 values. Found results suggest that employed method may provide reliable thermochemistry data for demethylation of naturally occurring (poly)phenolic compounds, as well. In all studied environments, substituent induced changes in O-C BDE can be considered equal to those observed for the dissociation of phenolic O-H bond of substituted phenols.
Collapse
|
24
|
Hu X, Zhao X, Lv X, Wu YB, Bu Y, Lu G. Ab Initio Metadynamics Simulations of Hexafluoroisopropanol Solvent Effects: Synergistic Role of Solvent H-Bonding Networks and Solvent-Solute C-H/π Interactions. Chemistry 2023; 29:e202203879. [PMID: 36575142 DOI: 10.1002/chem.202203879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The solvent effects in Friedel-Crafts cycloalkylation of epoxides and Cope rearrangement of aldimines were investigated by using ab initio molecular dynamics simulations. Explicit molecular treatments were applied for both reactants and solvents. The reaction mechanisms were elucidated via free energy calculations based on metadynamics simulations. The results reveal that both reactions proceed in a concerted fashion. Key solvent-substrate interactions are identified from the structures of transition states with explicit solvent molecules. The remarkable promotion effect of hexafluoroisopropanol solvent is ascribed to the synergistic effect of H-bonding networks and C-H/π interactions with substrates.
Collapse
Affiliation(s)
- Xinmin Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province, and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
25
|
Cavalleri M, Damiano C, Manca G, Gallo E. Protonated Porphyrins: Bifunctional Catalysts for the Metal-Free Synthesis of N-Alkyl-Oxazolidinones. Chemistry 2023; 29:e202202729. [PMID: 36194105 PMCID: PMC10100137 DOI: 10.1002/chem.202202729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/12/2022]
Abstract
The protonation of commercially available porphyrin ligands yields a class of bifunctional catalysts able to promote the synthesis of N-alkyl oxazolidinones by CO2 cycloaddition to corresponding aziridines. The catalytic system does not require the presence of any Lewis base or additive, and shows interesting features both in terms of cost effectiveness and eco-compatibility. The metal-free methodology is active even with a low catalytic loading of 1 % mol, and the chemical stability of the protonated porphyrin allowed it to be recycled three times without any decrease in performance. In addition, a DFT study was performed in order to suggest how a simple protonated porphyrin can mediate CO2 cycloaddition to aziridines to yield oxazolidinones.
Collapse
Affiliation(s)
- Matteo Cavalleri
- Department of ChemistryUniversity of MilanVia C. Golgi 1920133MilanItaly
| | - Caterina Damiano
- Department of ChemistryUniversity of MilanVia C. Golgi 1920133MilanItaly
| | - Gabriele Manca
- Istituto di Chimica dei Composti OrganoMetalliciICCOM-CNRVia Madonna del Piano 1050019Sesto FiorentinoItaly
| | - Emma Gallo
- Department of ChemistryUniversity of MilanVia C. Golgi 1920133MilanItaly
| |
Collapse
|
26
|
Otlyotov AA, Cavallo L, Minenkov Y. Cluster-Continuum Model as a Sanity Check of Sodium Ions’ Gibbs Free Energies of Transfer. Inorg Chem 2022; 61:18365-18379. [DOI: 10.1021/acs.inorgchem.2c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arseniy A. Otlyotov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, Moscow 119991, Russian Federation
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yury Minenkov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, Moscow 119991, Russian Federation
- Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2 Izhorskaya Street, Moscow 125412, Russian Federation
| |
Collapse
|
27
|
Understanding the Liquid States of Cyclic Hydrocarbons Containing N, O, and S Atoms via the 3D-RISM-KH Molecular Solvation Theory. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196563. [PMID: 36235097 PMCID: PMC9572648 DOI: 10.3390/molecules27196563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
The 3D-reference interaction site model (3D-RISM) molecular solvation theory in combination with the Kovalenko-Hirata (KH) closure is extended to seven heterocyclic liquids to understand their liquid states and to test the performance of the theory in solvation free energy (SFE) calculations of solutes in select solvents. The computed solvent site distribution profiles were compared with the all-atom molecular dynamics (MD) simulations, showing comparable performances. The computational results were compared against the structural parameters for liquids, whenever available, as well as against the experimental SFEs. The liquids are found to have local ordered structures held together via weak interactions in both the RISM and MD simulations. The 3D-RISM-KH computed SFEs are in good agreement with the benchmark values for the tetrahydrothiophene-S,S-dioxide, and showed comparatively larger deviations in the case of the SFEs in the tetrahydrofuran continuum.
Collapse
|
28
|
Otlyotov AA, Minenkov Y. Conformational energies of microsolvated Na + clusters with protic and aprotic solvents from GFNn-xTB methods. J Comput Chem 2022; 43:1856-1863. [PMID: 36053781 DOI: 10.1002/jcc.26988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022]
Abstract
Performance of contemporary tight-binding semiempirical GFNn-xTB methods for the conformational energies of singly charged sodium clusters Na+ (S)n (n = 4-8) with 3 protic and 8 aprotic solvents is examined against the reference RI-MP2/CBS method. The median Pearson correlation coefficients of ρ = 0.84 (GFN2-xTB) and ρ = 0.82 (GFN1-xTB) do not give the clear preference to any tested approach. GFN1-xTB method demonstrates more stable performance than its GFN2-xTB successor with the average mean absolute errors (MAEs)/mean signed errors (MSEs) of 1.2/0.2 and 2.3/1.6 kcal mol-1 , respectively. Conformational energies produced by the computationally efficient DFT functional PBE and double-ζ basis set complemented with -D3(BJ) dispersion correction are suitable for the preliminary sampling (median ρ = 0.93), but should be used with a caution for the calculations of the average ensemble properties (MAE/MSE = 1.7/1.1 kcal mol-1 ). Higher-ranking PBE0-D3(BJ) and ωB97M-V with triple-ζ basis sets yield significantly lower MAEs/MSEs of 0.55/0.20 and 0.51/0.23 kcal mol-1 , respectively.
Collapse
Affiliation(s)
- Arseniy A Otlyotov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
| | - Yury Minenkov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation.,Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
29
|
Car-Parrinello molecular dynamics study of CuF, AgF, CuPF6 and AgPF6 in acetonitrile solvent and Cluster-Continuum calculation of the solvation free energy of Cu(I), Ag(I) and Li(I). J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Pliego JR. Copper-Catalyzed Aromatic Fluorination of 2-(2-bromophenyl)pyridine via Cu(I)/Cu(III) Mechanism in Acetonitrile Solvent: Cluster-Continuum Free Energy Profile and Microkinetic Analysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Patel C, Roy D. Octanol-Water Partition Coefficients of Fluorinated Drug Molecules with Continuum Solvation Models. J Phys Chem A 2022; 126:4185-4190. [PMID: 35748869 DOI: 10.1021/acs.jpca.2c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we have examined the efficiency of continuum solvation models, used with density functional theory methods, in calculating octanol-water partition coefficients (logP) of 56 fluorine containing drug molecules. The solvation model based on density model computed logP values that are in good agreement with the benchmark values. The conductor-like polarizable continuum models computed results have issues in predicting correct trend, often with reversal of sign from benchmark. The choice of basis set does not show significant effect, and the selection of atomic radii affects geometry convergence during calculations.
Collapse
Affiliation(s)
- Chandan Patel
- Department of Applied Sciences, College of Engineering, Wellesley Road, Shivajinagar, Pune 411005, India
| | - Dipankar Roy
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg., Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
32
|
Lisboa FM, Pliego JR. S N2 versus E2 reactions in a complex microsolvated environment: theoretical analysis of the equilibrium and activation steps of a nucleophilic fluorination. J Mol Model 2022; 28:159. [PMID: 35596807 DOI: 10.1007/s00894-022-05160-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
The reactivity of the fluoride ion towards alkyl halides is highly dependent on the solvating environment. In polar aprotic solvents with large counter-ions is highly reactive and produces substantial E2 product, whereas in polar protic solvents leads to slow kinetics and high selectivity for SN2 reactions. The use of a more complex environment with stoichiometric addition of tert-butanol to acetonitrile solvent is able to module the reactivity and selectivity of tetrabutylammonium fluoride (TBAF). In the present work, we have performed a detailed theoretical analysis of this complex reaction system by density functional theory, continuum solvation model, and including explicit tert-butanol molecules. A kinetic model based on the free energy profile was also used to predict the reactivity and selectivity. The results indicated that the TBAF(tert-butanol) complex plays the key role to increase the SN2 selectivity, whereas higher aggregates are not relevant. The E2 product is formed exclusively via free TBAF, because the solvating tert-butanol in the TBAF(tert-butanol) complex inhibits the E2 pathway. Our analysis suggests that diols or tetraols could produce an improved selectivity.
Collapse
Affiliation(s)
- Fernando M Lisboa
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil.
| |
Collapse
|
33
|
Spicher S, Plett C, Pracht P, Hansen A, Grimme S. Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods. J Chem Theory Comput 2022; 18:3174-3189. [PMID: 35482317 DOI: 10.1021/acs.jctc.2c00239] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An automated and broadly applicable workflow for the description of solvation effects in an explicit manner is introduced. This method, termed quantum cluster growth (QCG), is based on the semiempirical GFN2-xTB/GFN-FF methods, enabling efficient geometry optimizations and MD simulations. Fast structure generation is provided using the intermolecular force field xTB-IFF. Additionally, the approach uses an efficient implicit solvation model for the electrostatic embedding of the growing clusters. The novel QCG procedure presents a robust cluster generation tool for subsequent application of higher-level (e.g., DFT) methods to study solvation effects on molecular geometries explicitly or to average spectroscopic properties over cluster ensembles. Furthermore, the computation of the solvation free energy with a supermolecular approach can be carried out with QCG. The underlying growing process is physically motivated by computing the leading-order solute-solvent interactions first and can account for conformational and chemical changes due to solvation for low-energy barrier processes. The conformational space is explored with the NCI-MTD algorithm as implemented in the CREST program, using a combination of metadynamics and MD simulations. QCG with GFN2-xTB yields realistic solution geometries and reasonable solvation free energies for various systems without introducing many empirical parameters. Computed IR spectra of some solutes with QCG show a better match to the experimental data compared to well-established implicit solvation models.
Collapse
Affiliation(s)
- Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
34
|
QM/MM and molecular dynamics simulation of the structure and dissociation of CuF in acetonitrile solvent. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Nogueira D, Oliveira RR, Rocha AB. Microsolvation effect on chlorination reaction of simple alcohols. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Diogo Nogueira
- Instituto de Química, Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Ricardo R. Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Alexandre B. Rocha
- Instituto de Química, Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
36
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
37
|
Bensberg M, Türtscher PL, Unsleber JP, Reiher M, Neugebauer J. Solvation Free Energies in Subsystem Density Functional Theory. J Chem Theory Comput 2022; 18:723-740. [PMID: 34985890 DOI: 10.1021/acs.jctc.1c00864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many chemical processes the accurate description of solvent effects are vitally important. Here, we describe a hybrid ansatz for the explicit quantum mechanical description of solute-solvent and solvent-solvent interactions based on subsystem density functional theory and continuum solvation schemes. Since explicit solvent molecules may compromise the scalability of the model and transferability of the predicted solvent effect, we aim to retain both, for different solutes as well as for different solvents. The key for the transferability is the consistent subsystem decomposition of solute and solvent. The key for the scalability is the performance of subsystem DFT for increasing numbers of subsystems. We investigate molecular dynamics and stationary point sampling of solvent configurations and compare the resulting (Gibbs) free energies to experiment and theoretical methods. We can show that with our hybrid model reaction barriers and reaction energies are accurately reproduced compared to experimental data.
Collapse
Affiliation(s)
- Moritz Bensberg
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Paul L Türtscher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jan P Unsleber
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
38
|
Sayyed FB, Kolis SP, Xia H. Quantum Mechanical Methods for Thermal Hazard Risk Assessment in Early Phase Pharmaceutical Development. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fareed Bhasha Sayyed
- Synthetic Molecule Design & Development, Eli Lilly Services India Pvt Ltd., Devarabeesanahalli, Bengaluru 560103, India
| | - Stanley P. Kolis
- Synthetic Molecule Design & Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Han Xia
- Synthetic Molecule Design & Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
39
|
Navo CD, Jiménez-Osés G. Computer Prediction of p K a Values in Small Molecules and Proteins. ACS Med Chem Lett 2021; 12:1624-1628. [PMID: 34795846 DOI: 10.1021/acsmedchemlett.1c00435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Accurately determining the acid dissociation constants (K a or their logarithmic form, pK a) of small molecules and large biomolecules has proven to be pivotal for the study different biological processes and developing new drugs. This Viewpoint summarizes some of the most common methodologies and recent advances described for pK a prediction using computational techniques when experimental values are not easily accessible such as in proteins and/or for the screening of large libraries of new compounds.
Collapse
Affiliation(s)
- Claudio D. Navo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
40
|
Sunoj RB. Coming of Age of Computational Chemistry from a Resilient Past to a Promising Future. Isr J Chem 2021. [DOI: 10.1002/ijch.202100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raghavan B. Sunoj
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| |
Collapse
|
41
|
Das M, Gogoi AR, Sunoj RB. Molecular Insights on Solvent Effects in Organic Reactions as Obtained through Computational Chemistry Tools. J Org Chem 2021; 87:1630-1640. [PMID: 34752092 DOI: 10.1021/acs.joc.1c02222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular understanding of the role of protic solvents in a gamut of organic transformations can be developed using density functional and ab initio computational studies focused on the reaction mechanism. Inclusion of explicit solvent molecules in the vital TSs has been proven to be valuable toward improving the energetic estimates of organocatalytic as well as transition-metal-catalyzed organic reactions. Herein, we provide an overview of the importance of an explicit-implicit solvation model using a number of interesting examples.
Collapse
Affiliation(s)
- Manajit Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achyut Ranjan Gogoi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
42
|
|
43
|
Paul SK, Herbert JM. Probing Interfacial Effects on Ionization Energies: The Surprising Banality of Anion-Water Hydrogen Bonding at the Air/Water Interface. J Am Chem Soc 2021; 143:10189-10202. [PMID: 34184532 DOI: 10.1021/jacs.1c03131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid microjet photoelectron spectroscopy is an increasingly common technique to measure vertical ionization energies (VIEs) of aqueous solutes, but the interpretation of these experiments is subject to questions regarding sensitivity to bulk versus interfacial solvation environments. We have computed aqueous-phase VIEs for a set of inorganic anions, using a combination of molecular dynamics simulations and electronic structure calculations, with results that are in excellent agreement with experiment regardless of whether the simulation data are restricted to ions at the air/water interface or to those in bulk aqueous solution. Although the computed VIEs are sensitive to ion-water hydrogen bonding, we find that the short-range solvation structure is sufficiently similar in both environments that it proves impossible to discriminate between the two on the basis of the VIE, a conclusion that has important implications for the interpretation of liquid-phase photoelectron spectroscopy. More generally, analysis of the simulation data suggests that the surface activity of soft anions is largely a second or third solvation shell effect, arising from disruption of water-water hydrogen bonds and not from significant changes in first-shell anion-water hydrogen bonding.
Collapse
Affiliation(s)
- Suranjan K Paul
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Chansen W, Kungwan N. Theoretical Insights into Excited-State Intermolecular Proton Transfers of 2,7-Diazaindole in Water Using a Microsolvation Approach. J Phys Chem A 2021; 125:5314-5325. [PMID: 34125551 DOI: 10.1021/acs.jpca.1c03120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detailed excited-state intermolecular proton transfer (ESInterPT) mechanism of 2,7-diazaindole with water wires consisting of either one or two shells [2,7-DAI(H2O)n; n = 1-5] has been theoretically explored by time-dependent density functional theory using microsolvation with an implicit solvent model. On the basis of the excited-state potential energy surfaces along the proton transfer (PT) coordinates, among all 2,7-DAI(H2O)n, the multiple ESInterPT of 2,7-DAI(H2O)2+3 through the first hydration shell (inner circuit) is the most easy process to occur with the lowest PT barrier and a highly exothermic reaction. The lowest PT barrier resulted from the outer three waters pushing the inner circuit waters to be much closer to 2,7-DAI, leading to the enhanced intermolecular hydrogen-bonding strength of the inner two waters. Moreover, on-the-fly dynamic simulations show that the multiple ESInterPT mechanism of 2,7-DAI(H2O)2+3 is the triple PT in a stepwise mechanism with the highest PT probability. This solvation effect using microsolvation and dynamic simulation is a cost-effect approach to reveal the solvent-assisted multiple proton relay of chromophores based on excited-state proton transfer.
Collapse
Affiliation(s)
- Warinthon Chansen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nawee Kungwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Material Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
45
|
Mechanisms of a Cyclobutane-Fused Lactone Hydrolysis in Alkaline and Acidic Conditions. Molecules 2021; 26:molecules26123519. [PMID: 34207714 PMCID: PMC8226438 DOI: 10.3390/molecules26123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/03/2022] Open
Abstract
Searching for functional polyesters with stability and degradability is important due to their potential applications in biomedical supplies, biomass fuel, and environmental protection. Recently, a cyclobutane-fused lactone (CBL) polymer was experimentally found to have superior stability and controllable degradability through hydrolysis reactions after activation by mechanical force. In order to provide a theoretical basis for developing new functional degradable polyesters, in this work, we performed a detailed quantum chemical study of the alkaline and acidic hydrolysis of CBL using dispersion-corrected density functional theory (DFT-D3) and mixed implicit/explicit solvent models. Various possible hydrolysis mechanisms were found: BAC2 and BAL2 in the alkaline condition and AAC2, AAL2, and AAL1 in the acidic condition. Our calculations indicated that CBL favors the BAC2 and AAC2 mechanisms in alkaline and acidic conditions, respectively. In addition, we found that incorporating explicit water solvent molecules is highly necessary because of their strong hydrogen-bonding with reactant/intermediate/product molecules.
Collapse
|
46
|
Pliego JR. Diradical character of the bond breaking in the reaction of Br2 with benzene: Reliable barriers using the CR-CC(2,3) method. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Herbert JM. Dielectric continuum methods for quantum chemistry. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1519] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- John M. Herbert
- Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio USA
| |
Collapse
|
48
|
Steiner M, Holzknecht T, Schauperl M, Podewitz M. Quantum Chemical Microsolvation by Automated Water Placement. Molecules 2021; 26:1793. [PMID: 33806731 PMCID: PMC8005176 DOI: 10.3390/molecules26061793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
We developed a quantitative approach to quantum chemical microsolvation. Key in our methodology is the automatic placement of individual solvent molecules based on the free energy solvation thermodynamics derived from molecular dynamics (MD) simulations and grid inhomogeneous solvation theory (GIST). This protocol enabled us to rigorously define the number, position, and orientation of individual solvent molecules and to determine their interaction with the solute based on physical quantities. The generated solute-solvent clusters served as an input for subsequent quantum chemical investigations. We showcased the applicability, scope, and limitations of this computational approach for a number of small molecules, including urea, 2-aminobenzothiazole, (+)-syn-benzotriborneol, benzoic acid, and helicene. Our results show excellent agreement with the available ab initio molecular dynamics data and experimental results.
Collapse
Affiliation(s)
- Miguel Steiner
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Tanja Holzknecht
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
| | - Michael Schauperl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (M.S.); (T.H.); (M.S.)
| |
Collapse
|
49
|
Fornari RP, Silva P. Molecular modeling of organic redox‐active battery materials. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rocco Peter Fornari
- Department of Energy Conversion and Storage Technical University of Denmark Copenhagen Denmark
| | - Piotr Silva
- Department of Energy Conversion and Storage Technical University of Denmark Copenhagen Denmark
| |
Collapse
|
50
|
Maldonado AM, Hagiwara S, Choi TH, Eckert F, Schwarz K, Sundararaman R, Otani M, Keith JA. Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms. J Phys Chem A 2021; 125:154-164. [PMID: 33393781 DOI: 10.1021/acs.jpca.0c08961] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Computational quantum chemistry provides fundamental chemical and physical insights into solvated reaction mechanisms across many areas of chemistry, especially in homogeneous and heterogeneous renewable energy catalysis. Such reactions may depend on explicit interactions with ions and solvent molecules that are nontrivial to characterize. Rigorously modeling explicit solvent effects with molecular dynamics usually brings steep computational costs while the performance of continuum solvent models such as polarizable continuum model (PCM), charge-asymmetric nonlocally determined local-electric (CANDLE), conductor-like screening model for real solvents (COSMO-RS), and effective screening medium method with the reference interaction site model (ESM-RISM) are less well understood for reaction mechanisms. Here, we revisit a fundamental aqueous hydride transfer reaction-carbon dioxide (CO2) reduction by sodium borohydride (NaBH4)-as a test case to evaluate how different solvent models perform in aqueous phase charge migrations that would be relevant to renewable energy catalysis mechanisms. For this system, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations almost exactly reproduced energy profiles from QM simulations, and the Na+ counterion in the QM/MM simulations plays an insignificant role over ensemble averaged trajectories that describe the reaction pathway. However, solvent models used on static calculations gave much more variability in data depending on whether the system was modeled using explicit solvent shells and/or the counterion. We pinpoint this variability due to unphysical descriptions of charge-separated states in the gas phase (i.e., self-interaction errors), and we show that using more accurate hybrid functionals and/or explicit solvent shells lessens these errors. This work closes with recommended procedures for treating solvation in future computational efforts in studying renewable energy catalysis mechanisms.
Collapse
Affiliation(s)
- Alex M Maldonado
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Satoshi Hagiwara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Tae Hoon Choi
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Frank Eckert
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ravishankar Sundararaman
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Minoru Otani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - John A Keith
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|