1
|
Qin Y, Shirakawa J, Xu C, Chen R, Yang X, Ng C, Nakano S, Elguindy M, Deng Z, Prasanth KV, Eissmann MF, Nakagawa S, Ricci WM, Zhao B. Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. RESEARCH SQUARE 2024:rs.3.rs-3793919. [PMID: 38234849 PMCID: PMC10793491 DOI: 10.21203/rs.3.rs-3793919/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The IncRNA Malat1 was initially believed to be dispensable for physiology due to the lack of observable phenotypes in Malat1 knockout (KO) mice. However, our study challenges this conclusion. We found that both Malat1 KO and conditional KO mice in the osteoblast lineage exhibit significant osteoporosis. Mechanistically, Malat1 acts as an intrinsic regulator in osteoblasts to promote osteogenesis. Interestingly, Malat1 does not directly affect osteoclastogenesis but inhibits osteoclastogenesis in a non-autonomous manner in vivo via integrating crosstalk between multiple cell types, including osteoblasts, osteoclasts and chondrocytes. Our findings substantiate the existence of a novel remodeling network in which Malat1 serves as a central regulator by binding to β-catenin and functioning through the β-catenin-OPG/Jagged1 pathway in osteoblasts and chondrocytes. In pathological conditions, Malat1 significantly promotes bone regeneration in fracture healing. Bone homeostasis and regeneration are crucial to well-being. Our discoveries establish a previous unrecognized paradigm model of Malat1 function in the skeletal system, providing novel mechanistic insights into how a lncRNA integrates cellular crosstalk and molecular networks to fine tune tissue homeostasis, remodeling and repair.
Collapse
Affiliation(s)
- Yongli Qin
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Jumpei Shirakawa
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Cheng Xu
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Ruge Chen
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Shinichi Nakano
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Mahmoud Elguindy
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Zhonghao Deng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Moritz F. Eissmann
- Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - William M. Ricci
- Orthopaedic Trauma Service, Hospital for Special Surgery & NewYork-Presbyterian Hospital, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
2
|
Post Y, Lu C, Fletcher RB, Yeh WC, Nguyen H, Lee SJ, Li Y. Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience 2024; 27:109938. [PMID: 38832011 PMCID: PMC11145361 DOI: 10.1016/j.isci.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Wingless-related integration site or Wingless and Int-1 or Wingless-Int (WNT) signaling is crucial for embryonic development, and adult tissue homeostasis and regeneration, through its essential roles in cell fate, patterning, and stem cell regulation. The biophysical characteristics of WNT ligands have hindered efforts to interrogate ligand activity in vivo and prevented their development as therapeutics. Recent breakthroughs have enabled the generation of synthetic WNT signaling molecules that possess characteristics of natural ligands and potently activate the pathway, while also providing distinct advantages for therapeutic development and manufacturing. This review provides a detailed discussion of the protein engineering of these molecular platforms for WNT signaling agonism. We discuss the importance of WNT signaling in several organs and share insights from the initial application of these new classes of molecules in vitro and in vivo. These molecules offer a unique opportunity to enhance our understanding of how WNT signaling agonism promotes tissue repair, enabling targeted development of tailored therapeutics.
Collapse
Affiliation(s)
- Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Chenggang Lu
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Russell B. Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Huy Nguyen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Sung-Jin Lee
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| |
Collapse
|
3
|
Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: Mechanisms of osteoclast-osteoblast communication and potential clinical implications. eLife 2024; 13:e95083. [PMID: 38591777 PMCID: PMC11003748 DOI: 10.7554/elife.95083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Bone remodeling is a complex process involving the coordinated actions of osteoblasts and osteoclasts to maintain bone homeostasis. While the influence of osteoblasts on osteoclast differentiation is well established, the reciprocal regulation of osteoblasts by osteoclasts has long remained enigmatic. In the past few years, a fascinating new role for osteoclasts has been unveiled in promoting bone formation and facilitating osteoblast migration to the remodeling sites through a number of different mechanisms, including the release of factors from the bone matrix following bone resorption and direct cell-cell interactions. Additionally, considerable evidence has shown that osteoclasts can secrete coupling factors known as clastokines, emphasizing the crucial role of these cells in maintaining bone homeostasis. Due to their osteoprotective function, clastokines hold great promise as potential therapeutic targets for bone diseases. However, despite long-standing work to uncover new clastokines and their effect in vivo, more substantial efforts are still required to decipher the mechanisms and pathways behind their activity in order to translate them into therapies. This comprehensive review provides insights into our evolving understanding of the osteoclast function, highlights the significance of clastokines in bone remodeling, and explores their potential as treatments for bone diseases suggesting future directions for the field.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| | - Katrin Henke
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of MedicineAtlantaUnited States
- VA Medical CenterAtlantaUnited States
| |
Collapse
|
4
|
Duarte PM, Miranda TS, Marins LM, da Silva JRB, de Souza Malta F, de Vasconcelos Gurgel BC, Napimoga MH. Lithium chloride stimulates bone formation in extraction socket repair in rats. Oral Maxillofac Surg 2024; 28:169-177. [PMID: 36242702 DOI: 10.1007/s10006-022-01124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Previous evidence shows that lithium chloride (LiCl), a suppressor of glycogen synthase kinase-3β (GSK-3β), may enhance bone formation in several medical and dental conditions. Thus, the purpose of the current study was to assess the effects of LiCl on extraction socket repair in rats. METHODS Thirty rats were randomly assigned into a control group (administration of water; n = 15) or a LiCl group (administration of 150 mg/kg of LiCl; n = 15). LiCl and water were given every other day, starting at 7 days before the extraction of upper first molars until the end of each experiment period. Histological sections from five rats per group were obtained at 10, 20, and 30 days post-extractions. Histometrical analysis of newly formed bone (NB) and the levels of tartrate-resistant acid phosphatase (TRAP)-stained cells were evaluated at 10, 20, and 30 days post-extractions. Immunohistochemical staining for receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), bone sialoprotein (BSP), osteocalcin (OCN), and osteopontin (OPN) was assessed at 10 days post-extractions. RESULTS The LiCl group had a greater proportion of NB than the control group at 20 days (P < 0.05). At 30 days, the rate of TRAP-stained cells was lower in the LiCl group than in the control group (P < 0.05). At 10 days, the LiCl group presented stronger staining for OPG, BSP, OPN, and OCN, when compared to the control group (P < 0.05). CONCLUSION Systemic LiCl enhanced extraction socket repair, stimulated an overall increase in bone formation markers, and restricted the levels of TRAP in rats.
Collapse
Affiliation(s)
- Poliana Mendes Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil.
- Department of Periodontology, College of Dentistry, University of Florida, 1600 SW Archer Rd., Room D10-6, Gainesville, FL, 32610, USA.
| | - Tamires Szeremeske Miranda
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
- Department of Periodontology, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Letícia Macedo Marins
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | | | - Fernando de Souza Malta
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | | | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Área de Imunologia, Campinas, SP, Brazil
| |
Collapse
|
5
|
Bienvenu JG, Chouinard L, Felx M, Boyce RW, Monticello TM. Inhibition of both sclerostin and DKK1 results in novel skull findings in the rat and non-human primate that is not observed with inhibition of sclerostin alone. Bone 2024; 179:116985. [PMID: 38052372 DOI: 10.1016/j.bone.2023.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Sclerostin is an extracellular inhibitor of canonical Wnt signaling that inhibits bone formation and stimulates bone resorption. Anti-sclerostin antibodies (Scl-Ab) have been developed as bone-building agents. DKK1, another extracellular inhibitor of the pathway, is upregulated in osteocytes in response to sclerostin inhibition. To further enhance bone-forming effects, a bispecific antibody inhibiting both sclerostin and DKK1 was created (AMG 147). In nonclinical safety studies, AMG 147 resulted in novel skull findings. In the rat, there was increased thickness of skull bones of neural crest origin due to increased subperiosteal compact lamellar and intramembranous woven bone. Externally, subperiosteal fibroblastic/osteoblastic stromal cell proliferation with woven bone and hemorrhage was also observed. Scl-Ab alone resulted in increased skull thickness in the rat, like AMG 147, but without the stromal cell proliferation/woven bone formation. In contrast to embryonic flat bone development, intramembranous bone formed similar to plexiform bone. In the monkey, AMG 147 resulted in macroscopic skull thickening due to a diffuse increase in appositional lamellar bone and increased intramembranous bone on both periosteal surfaces of all skull bones. These data demonstrate that dual inhibition of sclerostin and DDK1 results in unique effects on the skull not observed with sclerostin inhibition alone.
Collapse
Affiliation(s)
- Jean Guy Bienvenu
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 3R3, Canada
| | - Luc Chouinard
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 3R3, Canada
| | - Melanie Felx
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 3R3, Canada
| | - Rogely Waite Boyce
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Thomas M Monticello
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
6
|
Qiu W, Li Z, Su Z, Cao L, Li L, Chen X, Zhang W, Li Y. Kaempferol prevents aseptic loosening via enhance the Wnt/β-catenin signaling pathway in vitro and in vivo. Eur J Med Res 2023; 28:505. [PMID: 37946300 PMCID: PMC10634165 DOI: 10.1186/s40001-023-01469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Kaempferol has demonstrated notable positive effects on the osteogenic differentiation of mesenchymal stem cells (MSC) and osteoblasts. A substantial body of research has emphasized the role of dislodged titanium particles in aseptic loosening following joint replacement surgery. This study predominantly investigates the suppressive influence of Kaempferol on osteolysis induced by titanium (Ti) alloy particles. In vitro investigations disclosed that Kaempferol effectively enhanced mineralization and alkaline phosphatase (ALP) activity in bone-marrow mesenchymal stem cells exposed to Ti particles. In addition, we conducted a comprehensive analysis of osteogenic differentiation microarray data_sets (GSE37676, GSE79814, and GSE114474) to identify differentially expressed genes. Significantly, Kaempferol upregulated the expression of critical osteogenic markers, including Runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osterix/Sp-7, and β-catenin. In vivo experiments, including H&E staining and Immunohistochemistry, provided compelling evidence that Kaempferol exerted a robust inhibitory effect on periprosthetic osteolysis in mice, with particularly pronounced results at higher doses. Moreover, it elevated the expression levels of osteogenic factors and Wnt/β-catenin signaling components. These findings collectively indicate that Kaempferol mitigates the hindrance to osteogenesis posed by titanium particles by activating the Runx2 and Wnt/β-catenin signaling pathways. This research lays a solid foundation for the prospective utilization of Kaempferol in the management of aseptic loosening following arthroplasty, offering promising therapeutic potential.
Collapse
Affiliation(s)
- Wenkui Qiu
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zhenyan Su
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Lichao Cao
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Lei Li
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Xi Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Wanhong Zhang
- Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Yanqing Li
- Department of Orthopedics, Kaifeng Central Hospital, Kaifeng, 475000, Henan, People's Republic of China.
- School of Life Sciences, Henan University, Kaifeng, 475000, Henan, People's Republic of China.
| |
Collapse
|
7
|
Diegel CR, Michalski MN, Williams BO. β-catenin-dependent High Bone Mass Induced by Loss of APC in Osteoblasts Does Not Require Lrp5 or Lrp6. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001000. [PMID: 37908496 PMCID: PMC10613880 DOI: 10.17912/micropub.biology.001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
The requirement for LRP5 and LRP6 to prevent β-catenin degradation in the absence of the tumor suppressor APC is unclear because cell culture models have yielded conflicting results. We previously established that osteoblast-specific loss of APC causes β-catenin accumulation and increased bone mass, while loss of both LRP5 and LRP6 reduces bone mass. We report here that the simultaneous loss of APC, LRP5, and LRP6 in osteoblasts in mice phenocopies the APC osteoblast-specific knockout. Thus, β-catenin stabilization and increased bone mass after loss of APC in osteoblasts in vivo are not dependent on LRP5 and LRP6.
Collapse
Affiliation(s)
| | | | - Bart O. Williams
- Department of Cell Biology and Director, Core Technologies and Services, Van Andel Institute
| |
Collapse
|
8
|
J C, Thotakura B, M SK, C S J. Effects of Endocrine Disrupting Chemicals (EDCs) on Skeletal System Development: A Review. Cureus 2023; 15:e46109. [PMID: 37900387 PMCID: PMC10612124 DOI: 10.7759/cureus.46109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
INTRODUCTION Endocrine-disrupting chemicals (EDCs) are exogenous substances that alter endocrine function and cause adverse effects on an organism. EDC interference with the endocrine system leads to chronic autoimmune disorders, abnormal osteogenesis, infertility, and reproductive, neurological, cardiovascular, and metabolic disorders. Among the adverse effects of EDCs are their impact on developing fetuses and neonates. EDCs like bisphenol A (BPA), pesticides, and lead interfere with or alter sex steroid hormone synthesis and metabolism, leading to developmental delay, infertility, and urogenital carcinoma in both sexes. OBJECTIVE This review article examines the most harmful EDC, BPA, which affects the skeletal system during the embryonic period. The literature investigates the effects of BPA on various systems in our body, but the mechanism behind skeletal system development during the embryonic period is still unknown. MATERIALS AND METHODS In the present review, 25 articles were reviewed through multiple windows like PubMed, Scopus, and Web of Science. Many articles mention the effects of BPA on the skeletal system after birth and also examine reproductive system abnormalities, hereditary characteristics, excretory system malfunctions, and physical and mental illness in various mechanisms. DISCUSSION The impact of BPA on the skeletal system causes morphological and physiological changes in developing embryos. The general ideology regarding skeletal system development and its mechanism is as follows: the formation of bone (osteocytes) is reduced by the apoptosis of precursor bone cells (osteoblasts) by the effect of BPA. CONCLUSION EDC exposure induces the apoptosis of bone cells and inhibits the formation of osteoblasts, and long-term exposure to these chemicals will also impact immune system development.
Collapse
Affiliation(s)
- Chanemougavally J
- Anatomy, A.C.S Medical College and Hospital, Dr. M.G.R Educational and Research Institute, Chennai, IND
| | - Balaji Thotakura
- Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, IND
| | - Shruthy K M
- Anatomy, A.C.S Medical College and Hospital, Dr. M.G.R Educational and Research Institute, Chennai, IND
| | - Janaki C S
- Anatomy, Bhaarath Medical College and Hospital, Chennai, IND
| |
Collapse
|
9
|
Hayal TB, Doğan A, Şenkal S, Bulut E, Şişli HB, Şahin F. Evaluation of the effect of boron derivatives on cardiac differentiation of mouse pluripotent stem cells. J Trace Elem Med Biol 2023; 79:127258. [PMID: 37451093 DOI: 10.1016/j.jtemb.2023.127258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The heart is one of the first organs to form during embryonic development and has a very important place. So much that the formation of a functional heart is completed on the 55th day of human development and the 15th day of mouse development. Myocardial, endocardial and epicardial cells, which are derived from the mesoderm layer, are the cells that form the basis of the heart. Cardiac development, like other embryonic developments, is tightly controlled and regulated by various signaling pathways. The WNT signaling pathway is the most studied of these signaling pathways and the one with the clearest relationship with heart development. It is known that boron compounds and the Wnt/β-catenin pathway are highly correlated. Therefore, this study aimed to investigate the role of boron compounds in heart development as well as its effect on pluripotency of mouse embryonic stem cells for the first time in the literature. METHODS Toxicity of boron compounds was evaluated by using MTS analysis and obtained results were supported by morphological pictures, Trypan Blue staining and Annexin V staining. Additionally, the possible boron-related change in pluripotency of embryonic stem cells were analyzed with alkaline phosphatase activity and immunocytochemical staining of Oct4 protein as well as gene expression levels of pluripotency related OCT4, SOX2 and KLF4 genes. The alterations in the embryonic body formation capacity of mouse embryonic stem cells due to the application boron derivatives were also evaluated. Three linage differentiation was conducted to clarify the real impact of boron compounds on embryonic development. Lastly, cardiac differentiation of mESCs was investigated by using morphological pictures, cytosolic calcium measurement, gene expression and immunocytochemical analysis of cardiac differentiation related genes and in the presence of boron compounds. RESULTS Obtained results show that boron treatment maintains the pluripotency of embryonic stem cells at non-toxic concentrations. Additionally, endodermal, and mesodermal fate was found to be triggered after boron treatment. Also, initiation of cardiomyocyte differentiation by boron derivative treatments caused an increased gene expression levels of cardiac differentiation related TNNT2, Nkx2.5 and ISL-1 gene expression levels. CONCLUSION This study indicates that boron application, which is responsible for maintaining pluripotency of mESCs, can be used for increased cardiomyocyte differentiation of mESCs.
Collapse
Affiliation(s)
- Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Current affiliation: Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Ezgi Bulut
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
10
|
Xu Q, Luo Y, Chao Z, Zhang J, Liu X, Tang Q, Wang K, Tan S, Fang M. Integrated Analysis of Transcriptome Expression Profiles Reveals miRNA-326-NKX3.2-Regulated Porcine Chondrocyte Differentiation. Int J Mol Sci 2023; 24:ijms24087257. [PMID: 37108419 PMCID: PMC10138716 DOI: 10.3390/ijms24087257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The porcine body length trait is an essential factor affecting meat production and reproductive performance. It is evident that the development/lengthening of individual vertebrae is one of the main reasons for increases in body length; however, the underlying molecular mechanism remains unclear. In this study, RNA-seq analysis was used to profile the transcriptome (lncRNA, mRNA, and miRNA) of the thoracic intervertebral cartilage (TIC) at two time points (1 and 4 months) during vertebral column development in Yorkshire (Y) and Wuzhishan pigs (W). There were four groups: 1- (Y1) and 4-month-old (Y4) Yorkshire pigs and 1- (W1) and 4-month-old (W4) Wuzhishan pigs. In total, 161, 275, 86, and 126 differentially expressed (DE) lncRNAs, 1478, 2643, 404, and 750 DE genes (DEGs), and 74,51, 34, and 23 DE miRNAs (DE miRNAs) were identified in the Y4 vs. Y1, W4 vs. W1, Y4 vs. W4, and Y1 vs. W1 comparisons, respectively. Functional analysis of these DE transcripts (DETs) demonstrated that they had participated in various biological processes, such as cellular component organization or biogenesis, the developmental process, the metabolic process, bone development, and cartilage development. The crucial bone development-related candidate genes NK3 Homeobox 2 (NKX3.2), Wnt ligand secretion mediator (WLS), gremlin 1 (GREM1), fibroblast growth factor receptor 3 (FGFR3), hematopoietically expressed homeobox (HHEX), (collagen type XI alpha 1 chain (COL11A1), and Wnt Family Member 16 (WNT16)) were further identified by functional analysis. Moreover, lncRNA, miRNA, and gene interaction networks were constructed; a total of 55 lncRNAs, 6 miRNAs, and 7 genes formed lncRNA-gene, miRNA-gene, and lncRNA-miRNA-gene pairs, respectively. The aim was to demonstrate that coding and non-coding genes may co-regulate porcine spine development through interaction networks. NKX3.2 was identified as being specifically expressed in cartilage tissues, and it delayed chondrocyte differentiation. miRNA-326 regulated chondrocyte differentiation by targeting NKX3.2. The present study provides the first non-coding RNA and gene expression profiles in the porcine TIC, constructs the lncRNA-miRNA-gene interaction networks, and confirms the function of NKX3.2 in vertebral column development. These findings contribute to the understanding of the potential molecular mechanisms regulating pig vertebral column development. They expand our knowledge about the differences in body length between different pig species and provide a foundation for future studies.
Collapse
Affiliation(s)
- Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhe Chao
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jibin Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA 91006, USA
| | - Ximing Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qiguo Tang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuyi Tan
- Institute of Animal Sciences and Veterinary, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Ali M, Farwa U, Park SS, Kim YS, Lee BT. Physico-biological and in vivo evaluation of irisin loaded 45S5 porous bioglass granules for bone regeneration. BIOMATERIALS ADVANCES 2023; 147:213326. [PMID: 36758281 DOI: 10.1016/j.bioadv.2023.213326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
In this study, we investigated the physico-biological and in-vivo evaluation of irisin loaded 45S5 bioglass bone graft for enhancing osteoblastic differentiation and bone regeneration in rat femur head defect model. Highly porous structure was obtained in the bioglass by burn-out process with varying the concentration of poly (methyl methacrylate) (PMMA) spheres. 10 % polyvinyl alcohol (PVA) was used as a binder for the sustain releasing of irisin on porous bioglass. Different concentrations of irisin were loaded on the selected bioglass samples and these were further evaluated for the biocompatibility and osteoblastic differentiation properties. The in vitro results demonstrated not only its biocompatibility but also that it stimulated pre-osteoblast differentiation. The in vivo data showed new bone formation as well as expression of osteogenic proteins like alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx-2), osteopontin (OPN), and collagen-1 (Col-1). Our results support the use of irisin loaded bioglass for the use of early bone regeneration.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea; Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
12
|
Szulc M, Świątkowska-Stodulska R, Pawłowska E, Derwich M. Vitamin D 3 Metabolism and Its Role in Temporomandibular Joint Osteoarthritis and Autoimmune Thyroid Diseases. Int J Mol Sci 2023; 24:4080. [PMID: 36835491 PMCID: PMC9964750 DOI: 10.3390/ijms24044080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The aim of this review was to present the metabolism of vitamin D3, as well as to discuss the role of vitamin D3 in bone metabolism, temporomandibular joint osteoarthritis (TMJ OA), and autoimmune thyroid diseases (AITD) on the basis of the literature. Vitamin D3 plays a significant role in human health, as it affects the calcium-phosphate balance and regulates the bone metabolism. Calcitriol impresses the pleiotropic effect on human biology and metabolism. Its modulative function upon the immune system is based on the reduction of Th1 cell activity and increased immunotolerance. Vitamin D3 deficiency may lead to an imbalance in the relationship between Th1/Th17 and Th2, Th17/Th reg, and is considered by some authors as one of the possible backgrounds of autoimmune thyroid diseases (AITD), e.g., Hashimoto's thyroiditis or Graves' disease. Moreover, vitamin D3, through its direct and indirect influence on bones and joints, may also play an important role in the development and progression of degenerative joint diseases, including temporomandibular joint osteoarthritis. Further randomized, double blind studies are needed to unequivocally confirm the relationship between vitamin D3 and abovementioned diseases and to answer the question concerning whether vitamin D3 supplementation may be used in the prevention and/or treatment of either AITD or OA diseases.
Collapse
Affiliation(s)
- Michał Szulc
- Department of Endocrinology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland
| | - Renata Świątkowska-Stodulska
- Department of Endocrinology and Internal Medicine, Faculty of Medicine, Medical University of Gdańsk, 80-952 Gdańsk, Poland
| | - Elżbieta Pawłowska
- Department of Pediatric Dentistry, Medical University of Lodz, 90-419 Łódź, Poland
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 90-419 Łódź, Poland
| |
Collapse
|
13
|
Kang Y, Xu J, Meng L, Su Y, Fang H, Liu J, Cheng YY, Jiang D, Nie Y, Song K. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Biofabrication 2023; 15. [PMID: 36756934 DOI: 10.1088/1758-5090/acb6b8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
Abstract
Craniofacial bone regeneration is a coupled process of angiogenesis and osteogenesis, which, associated with infection, still remains a challenge in bone defects after trauma or tumor resection. 3D tissue engineering scaffolds with multifunctional-therapeutic properties can offer many advantages for the angiogenesis and osteogenesis of infected bone defects. Hence, in the present study, a microchannel networks-enriched 3D hybrid scaffold composed of decellularized extracellular matrix (dECM), gelatin (Gel), quaterinized chitosan (QCS) and nano-hydroxyapatite (nHAp) (dGQH) was fabricated by an extrusion 3D bioprinting technology. And enlightened by the characteristics of natural bone microstructure and the demands of vascularized bone regeneration, the exosomes (Exos) isolated from human adipose derived stem cells as angiogenic and osteogenic factors were then co-loaded into the desired dGQH20hybrid scaffold based on an electrostatic interaction. The results of the hybrid scaffolds performance characterization showed that these hybrid scaffolds exhibited an interconnected pore structure and appropriate degradability (>61% after 8 weeks of treatment), and the dGQH20hybrid scaffold displayed the highest porosity (83.93 ± 7.38%) and mechanical properties (tensile modulus: 62.68 ± 10.29 MPa, compressive modulus: 16.22 ± 3.61 MPa) among the dGQH hybrid scaffolds. Moreover, the dGQH20hybrid scaffold presented good antibacterial activities (against 94.90 ± 2.44% ofEscherichia coliand 95.41 ± 2.65% ofStaphylococcus aureus, respectively) as well as excellent hemocompatibility and biocompatibility. Furthermore, the results of applying the Exos to the dGQH20hybrid scaffold showed that the Exo promoted the cell attachment and proliferation on the scaffold, and also showed a significant increase in osteogenesis and vascularity regeneration in the dGQH@Exo scaffoldsin vitroandin vivo. Overall, this novel dECM/Gel/QCS/nHAp hybrid scaffold laden with Exo has a considerable potential application in reservation of craniofacial bone defects.
Collapse
Affiliation(s)
- Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China.,State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Ling'ao Meng
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Huan Fang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, People's Republic of China
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China.,Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
14
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
15
|
Wnt Signaling in the Development of Bone Metastasis. Cells 2022; 11:cells11233934. [PMID: 36497192 PMCID: PMC9739050 DOI: 10.3390/cells11233934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling occurs through evolutionarily conserved pathways that affect cellular proliferation and fate decisions during development and tissue maintenance. Alterations in these highly regulated pathways, however, play pivotal roles in various malignancies, promoting cancer initiation, growth and metastasis and the development of drug resistance. The ability of cancer cells to metastasize is the primary cause of cancer mortality. Bone is one of the most frequent sites of metastases that generally arise from breast, prostate, lung, melanoma or kidney cancer. Upon their arrival to the bone, cancer cells can enter a long-term dormancy period, from which they can be reactivated, but can rarely be cured. The activation of Wnt signaling during the bone metastasis process was found to enhance proliferation, induce the epithelial-to-mesenchymal transition, promote the modulation of the extracellular matrix, enhance angiogenesis and immune tolerance and metastasize and thrive in the bone. Due to the complexity of Wnt pathways and of the landscape of this mineralized tissue, Wnt function during metastatic progression within bone is not yet fully understood. Therefore, we believe that a better understanding of these pathways and their roles in the development of bone metastasis could improve our understanding of the disease and may constitute fertile ground for potential therapeutics.
Collapse
|
16
|
Tao SS, Cao F, Sam NB, Li HM, Feng YT, Ni J, Wang P, Li XM, Pan HF. Dickkopf-1 as a promising therapeutic target for autoimmune diseases. Clin Immunol 2022; 245:109156. [DOI: 10.1016/j.clim.2022.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/03/2022]
|
17
|
DeLorenzo L, DeBrock V, Carmona Baez A, Ciccotto PJ, Peterson EN, Stull C, Roberts NB, Roberts RB, Powder KE. Morphometric and Genetic Description of Trophic Adaptations in Cichlid Fishes. BIOLOGY 2022; 11:biology11081165. [PMID: 36009792 PMCID: PMC9405370 DOI: 10.3390/biology11081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Since Darwin, biologists have sought to understand the evolution and origins of phenotypic adaptations. The skull is particularly diverse due to intense natural selection on feeding biomechanics. We investigated the genetic and molecular origins of trophic adaptation using Lake Malawi cichlids, which have undergone an exemplary evolutionary radiation. We analyzed morphological differences in the lateral and ventral head shape among an insectivore that eats by suction feeding, an obligate biting herbivore, and their F2 hybrids. We identified variation in a series of morphological traits—including mandible width, mandible length, and buccal length—that directly affect feeding kinematics and function. Using quantitative trait loci (QTL) mapping, we found that many genes of small effects influence these craniofacial adaptations. Intervals for some traits were enriched in genes related to potassium transport and sensory systems, the latter suggesting co-evolution of feeding structures and sensory adaptations for foraging. Despite these indications of co-evolution of structures, morphological traits did not show covariation. Furthermore, phenotypes largely mapped to distinct genetic intervals, suggesting that a common genetic basis does not generate coordinated changes in shape. Together, these suggest that craniofacial traits are mostly inherited as separate modules, which confers a high potential for the evolution of morphological diversity. Though these traits are not restricted by genetic pleiotropy, functional demands of feeding and sensory structures likely introduce constraints on variation. In all, we provide insights into the quantitative genetic basis of trophic adaptation, identify mechanisms that influence the direction of morphological evolution, and provide molecular inroads to craniofacial variation.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Victoria DeBrock
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Aldo Carmona Baez
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Patrick J Ciccotto
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biology, Warren Wilson College, Swannanoa, NC 28778, USA
| | - Erin N Peterson
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Clare Stull
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Natalie B Roberts
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Reade B Roberts
- Department of Biological Sciences and Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
18
|
Wang D, Cao H, Hua W, Gao L, Yuan Y, Zhou X, Zeng Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Bone Defect Repair. MEMBRANES 2022; 12:membranes12070716. [PMID: 35877919 PMCID: PMC9315966 DOI: 10.3390/membranes12070716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The repair of critical bone defects is a hotspot of orthopedic research. With the development of bone tissue engineering (BTE), there is increasing evidence showing that the combined application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes, with hydrogels, scaffolds, and other bioactive materials has made great progress, exhibiting a good potential for bone regeneration. Recent studies have found that miRNAs, proteins, and other cargo loaded in EVs are key factors in promoting osteogenesis and angiogenesis. In BTE, the expression profile of the intrinsic cargo of EVs can be changed by modifying the gene expression of MSCs to obtain EVs with enhanced osteogenic activity and ultimately enhance the osteoinductive ability of bone graft materials. However, the current research on MSC-EVs for repairing bone defects is still in its infancy, and the underlying mechanism remains unclear. Therefore, in this review, the effect of bioactive materials such as hydrogels and scaffolds combined with MSC-EVs in repairing bone defects is summarized, and the mechanism of MSC-EVs promoting bone defect repair by delivering active molecules such as internal miRNAs is further elucidated, which provides a theoretical basis and reference for the clinical application of MSC-EVs in repairing bone defects.
Collapse
Affiliation(s)
- Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Lu Gao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (H.C.); (Y.Y.)
- Correspondence: (X.Z.); (Z.Z.)
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China; (D.W.); (W.H.); (L.G.)
- Correspondence: (X.Z.); (Z.Z.)
| |
Collapse
|
19
|
Xu D, Gao HJ, Lu CY, Tian HM, Yu XJ. Vitamin D inhibits bone loss in mice with thyrotoxicosis by activating the OPG/RANKL and Wnt/β-catenin signaling pathways. Front Endocrinol (Lausanne) 2022; 13:1066089. [PMID: 36531471 PMCID: PMC9748851 DOI: 10.3389/fendo.2022.1066089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Vitamin D and thyroid hormones have crucial roles in bone metabolism. This study aims to explore the effects of vitamin D on bone metabolism in mice with thyrotoxicosis and its mechanisms. METHODS 12-week-old mice were randomly divided into 6 groups (6 mice/group), the control (CON) group, vitamin D (VD) group, low-dose LT4 (Low LT4) group, low-dose LT4+VD (Low LT4+VD) group, high-dose LT4 (High LT4) group, high-dose LT4+VD (High LT4+VD) group, LT4 was provided every day and vitamin D3 every other day for 12 weeks. Thyroid function, 25-hydroxy vitamin D, type I collagen carboxy-terminal peptide (CTX), and type I procollagen amino-terminal peptide were determined. In addition, microcomputed tomography, bone histology and histomorphometry, a three-point bending test, and the mRNA expression of osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL) and β-catenin in bone were conducted. RESULTS The BMD of lumbar vertebrae and femur decreased and the bone microstructure was destroyed significantly in thyrotoxicosis mice. Addition of vitamin D improved the BMD and bone microstructure only in the low LT4+VD group. Mice with thyrotoxicosis had a significantly higher level of CTX (P<0.05), which was decreased by treatment with vitamin D (P<0.05). The eroded surface per bone surface (Er. S/BS) of the cancellous bone and elongated surface/endocortical perimeter (Er. S/E Pm) of the cortical bone significantly increased in the Low LT4 and High LT4 groups (P<0.05). Treatment with vitamin D significantly decreased the Er. S/BS and Er. S/E Pm. But, treatment with vitamin D did not significantly improve the toughness and rigidity of bones. The ratio of OPG to RANKL and mRNA expression of β-catenin in the Low LT4+VD group were higher than that in the Low LT4 group (P<0.05). CONCLUSION In mice with thyrotoxicosis, treatment with vitamin D can inhibit bone resorption and improve the BMD and trabecular bone architecture by increasing the ratio of OPG to RANKL and upregulating the expression of Wnt/β-catenin.
Collapse
Affiliation(s)
- Dan Xu
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- Division of Endocrinology & Metabolism, People’s Hospital of Le Shan, Le Shan, China
| | - Hong-Jiao Gao
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology, the Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Chun-Yan Lu
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chun-Yan Lu, ; Hao-Ming Tian,
| | - Hao-Ming Tian
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Chun-Yan Lu, ; Hao-Ming Tian,
| | - Xi-Jie Yu
- Division of Endocrinology and Metabolism Internal Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B, Levchenko O, Geuer S, Verheyen S, Johnson D, Zarate YA, Hančárová M, Amor DJ, Bebin EM, Blatterer J, Brusco A, Cappuccio G, Charrow J, Chatron N, Cooper GM, Courtin T, Dadali E, Delafontaine J, Del Giudice E, Doco M, Douglas G, Eisenkölbl A, Funari T, Giannuzzi G, Gruber-Sedlmayr U, Guex N, Heron D, Holla ØL, Hurst ACE, Juusola J, Kronn D, Lavrov A, Lee C, Lorrain S, Merckoll E, Mikhaleva A, Norman J, Pradervand S, Prchalová D, Rhodes L, Sanders VR, Sedláček Z, Seebacher HA, Sellars EA, Sirchia F, Takenouchi T, Tanaka AJ, Taska-Tench H, Tønne E, Tveten K, Vitiello G, Vlčková M, Uehara T, Nava C, Yalcin B, Kosaki K, Donnai D, Mundlos S, Brunetti-Pierri N, Chung WK, Reymond A. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy. Am J Hum Genet 2021; 108:857-873. [PMID: 33961779 DOI: 10.1016/j.ajhg.2021.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Collapse
Affiliation(s)
- Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Rhonda E Schnur
- GeneDx, Gaithersburg, MD 20877, USA; Cooper Medical School of Rowan University, Division of Genetics, Camden, NJ 08103, USA
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Olga Levchenko
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Sinje Geuer
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield S10 2TQ, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Miroslava Hančárová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - David J Amor
- Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jasmin Blatterer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino 10126, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Joel Charrow
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Genetics Department, Lyon University Hospital, Lyon 69007, France
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Courtin
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Elena Dadali
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | - Ennio Del Giudice
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Martine Doco
- Secteur Génétique, CHU Reims, EA3801, SFR CAPSANTE, 51092 Reims, France
| | | | - Astrid Eisenkölbl
- Department of Pediatrics and Adolescent Medicine, Johannes Kepler University, Kepler University Hospital Linz, Krankenhausstraße 26-30, 4020 Linz, Austria
| | | | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Ursula Gruber-Sedlmayr
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Nicolas Guex
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne 1015, Switzerland
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - David Kronn
- New York Medical College, Valhalla, NY 10595, USA
| | | | - Crystle Lee
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia
| | - Séverine Lorrain
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Protein Analysis Facility, University of Lausanne, Lausanne 1015, Switzerland
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Darina Prchalová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | | | - Victoria R Sanders
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Zdeněk Sedláček
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Heidelis A Seebacher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Elizabeth A Sellars
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Fabio Sirchia
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Toshiki Takenouchi
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Akemi J Tanaka
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Heidi Taska-Tench
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elin Tønne
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Giuseppina Vitiello
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Markéta Vlčková
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Tomoko Uehara
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Caroline Nava
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Kenjiro Kosaki
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
22
|
Mohan S, Muthusamy K, Nagamani S, Kesavan C. Computational prediction of small molecules with predicted binding to FGFR3 and testing biological effects in bone cells. Exp Biol Med (Maywood) 2021; 246:1660-1667. [PMID: 33779341 DOI: 10.1177/15353702211002181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Activating anabolic receptor-mediated signaling is essential for stimulating new bone formation and for promoting bone healing in humans. Fibroblast growth factor receptor (FGFR) 3 is reported to be an important positive regulator of osteogenesis. Presently, recombinant proteins are used to stimulate FGFR3 function but have limitations for therapy due to expense and stability. Therefore, there is a need for identification of novel small molecules binding to FGFR3 that promote biological function. In silico molecular docking and high-throughput virtual screening on zinc database identified seven compounds predicted to bind to an active site within the βC'-βE loop, specific to FGFR3. All seven compounds fall within an acceptable range of ADME/T properties. Four compounds showed a 30-65% oral absorption rate. Density functional theory analysis revealed a high HOMO-LUMO gap, reflecting high molecular stability for compounds 14977614 and 13509082. Five compounds exhibited mutagenicity, while the other three compounds presented irritability. Computational mutagenesis predicted that mutating G322 affected compound binding to FGFR3. Molecular dynamics simulation revealed compound 14977614 is stable in binding to FGFR3. Furthermore, compound 14977614, with an oral absorption rate of 60% and high molecular stability, produced significant increases in both proliferation and differentiation of bone marrow stromal cells in vitro. Anti-FGFR3 treatment completely blocked the stimulatory effect of 14977614 on BMSC proliferation. Ex vivo treatment of mouse calvaria in organ culture for seven days with 14977614 increased mineralization and expression levels of bone formation markers. In conclusion, computational analyses identified seven compounds that bind to the FGFR3, and in vitro studies showed that compound 14977614 exerts significant biological effects on osteogenic cells.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.,Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
23
|
Allard BA, Wang W, Pottorf TS, Mumtaz H, Jack BM, Wang HH, Silva LM, Jacobs DT, Wang J, Bumann EE, Tran PV. Thm2 interacts with paralog, Thm1, and sensitizes to Hedgehog signaling in postnatal skeletogenesis. Cell Mol Life Sci 2021; 78:3743-3762. [PMID: 33683377 DOI: 10.1007/s00018-021-03806-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 11/25/2022]
Abstract
Mutations in the intraflagellar transport-A (IFT-A) gene, THM1, have been identified in skeletal ciliopathies. Here, we report a genetic interaction between Thm1, and its paralog, Thm2, in postnatal skeletogenesis. THM2 localizes to primary cilia, but Thm2 deficiency does not affect ciliogenesis and Thm2-null mice survive into adulthood. However, by postnatal day 14, Thm2-/-; Thm1aln/+ mice exhibit small stature and small mandible. Radiography and microcomputed tomography reveal Thm2-/-; Thm1aln/+ tibia are less opaque and have reduced cortical and trabecular bone mineral density. In the mutant tibial growth plate, the proliferation zone is expanded and the hypertrophic zone is diminished, indicating impaired chondrocyte differentiation. Additionally, mutant growth plate chondrocytes show increased Hedgehog signaling. Yet deletion of one allele of Gli2, a major transcriptional activator of the Hedgehog pathway, exacerbated the Thm2-/-; Thm1aln/+ small phenotype, and further revealed that Thm2-/-; Gli2+/- mice have small stature. In Thm2-/-; Thm1aln/+ primary osteoblasts, a Hedgehog signaling defect was not detected, but bone nodule formation was markedly impaired. This indicates a signaling pathway is altered, and we propose that this pathway may potentially interact with Gli2. Together, our data reveal that loss of Thm2 with one allele of Thm1, Gli2, or both, present new IFT mouse models of osteochondrodysplasia. Our data also suggest Thm2 as a modifier of Hedgehog signaling in postnatal skeletal development.
Collapse
Affiliation(s)
- Bailey A Allard
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Wei Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Hammad Mumtaz
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA
| | - Jinxi Wang
- Department of Orthopedic Surgery, Medical Center, University of Kansas, Kansas City, KS, 66160, USA
| | - Erin E Bumann
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., MS #3038, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Lithium and Copper Induce the Osteogenesis-Angiogenesis Coupling of Bone Marrow Mesenchymal Stem Cells via Crosstalk between Canonical Wnt and HIF-1 α Signaling Pathways. Stem Cells Int 2021; 2021:6662164. [PMID: 33763142 PMCID: PMC7962875 DOI: 10.1155/2021/6662164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 02/01/2021] [Indexed: 01/17/2023] Open
Abstract
The combination of osteogenesis and angiogenesis dual-delivery trace element-carrying bioactive scaffolds and stem cells is a promising method for bone regeneration and repair. Canonical Wnt and HIF-1α signaling pathways are vital for BMSCs' osteogenic differentiation and secretion of osteogenic factors, respectively. Simultaneously, lithium (Li) and copper (Cu) can activate the canonical Wnt and HIF-1α signaling pathway, respectively. Moreover, emerging evidence has shown that the canonical Wnt and HIF signaling pathways are related to coupling osteogenesis and angiogenesis. However, it is still unclear whether the lithium- and copper-doped bioactive scaffold can induce the coupling of the osteogenesis and angiogenesis in BMSCs and the underlying mechanism. So, we fabricated a lithium- (Li+-) and copper- (Cu2+-) doped organic/inorganic (Li 2.5-Cu 1.0-HA/Col) scaffold to evaluate the coupling osteogenesis and angiogenesis effects of lithium and copper on BMSCs and further explore its mechanism. We investigated that the sustained release of lithium and copper from the Li 2.5-Cu 1.0-HA/Col scaffold could couple the osteogenesis- and angiogenesis-related factor secretion in BMSCs seeding on it. Moreover, our results showed that 500 μM Li+ could activate the canonical Wnt signaling pathway and rescue the XAV-939 inhibition on it. In addition, we demonstrated that the 25 μM Cu2+ was similar to 1% oxygen environment in terms of the effectiveness of activating the HIF-1α signaling pathway. More importantly, the combination stimuli of Li+ and Cu2+ could couple the osteogenesis and angiogenesis process and further upregulate the osteogenesis- and angiogenesis-related gene expression via crosstalk between the canonical Wnt and HIF-1α signaling pathway. In conclusion, this study revealed that lithium and copper could crosstalk between the canonical Wnt and HIF-1α signaling pathways to couple the osteogenesis and angiogenesis in BMSCs when they are sustainably released from the Li-Cu-HA/Col scaffold.
Collapse
|
25
|
Rodriguez‐Feo J, Fernandes L, Patel A, Doan T, Boden SD, Drissi H, Presciutti SM. The temporal and spatial expression of sclerostin and Wnt signaling factors during the maturation of posterolateral lumbar spine fusions. JOR Spine 2021; 4:e1100. [PMID: 33778403 PMCID: PMC7984013 DOI: 10.1002/jsp2.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 11/23/2022] Open
Abstract
The bone healing environment in the posterolateral spine following arthrodesis surgery is one of the most challenging in all of orthopedics and our understanding of the molecular signaling pathways mediating osteogenesis during spinal fusion is limited. In this study, the spatial and temporal expression pattern of Wnt signaling factors and inhibitors during spinal fusion was assessed for the first time. Bilateral posterolateral spine arthrodesis with autologous iliac crest bone graft was performed on 21 New Zealand White rabbits. At 1-, 2-, 3-, 4-, and 6-weeks, the expression of sclerostin and a variety of canonical and noncanonical Wnts signaling factors was measured by qRT-PCR from tissue separately collected from the transverse processes, the Outer and Inner Zones of the fusion mass, and the adjancent paraspinal muscle. Immunohistochemistry for sclerostin protein was also performed. Sclerostin and many Wnt factors, especially Wnt3a and Wnt5a, were found to have distinct spatial and temporal expression patterns. For example, harvesting ICBG caused a significant increase in sclerostin expression. Furthermore, the paraspinal muscle immediately adjacent to the transplanted ICBG also had significant increases in sclerostin expression at 3 weeks, suggesting new potential mechanisms for pseudarthroses following spinal arthrodesis. The presented work is the first description of the spatial and temporal expression of sclerostin and Wnt signaling factors in the developing spine fusion, filling an important knowledge gap in the basic biology of spinal fusion and potentially aiding in the development of novel biologics to increase spinal fusion rates.
Collapse
Affiliation(s)
| | - Lorenzo Fernandes
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
- Atlanta Veteran Affairs Medical CenterDecaturGeorgiaUSA
| | - Anuj Patel
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
| | - Thanh Doan
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
| | - Scott D. Boden
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
| | - Hicham Drissi
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
- Atlanta Veteran Affairs Medical CenterDecaturGeorgiaUSA
| | - Steven M. Presciutti
- Department of Orthopaedic SurgeryEmory UniversityAtlantaGeorgiaUSA
- Atlanta Veteran Affairs Medical CenterDecaturGeorgiaUSA
| |
Collapse
|
26
|
Oosthuyse T, Bosch AN, Kariem N, Millen AME. Mountain Bike Racing Stimulates Osteogenic Bone Signaling and Ingesting Carbohydrate-Protein Compared With Carbohydrate-Only Prevents Acute Recovery Bone Resorption Dominance. J Strength Cond Res 2021; 35:292-299. [PMID: 33337693 DOI: 10.1519/jsc.0000000000003928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Oosthuyse, T, Bosch, AN, Kariem, N, and Millen, AME. Mountain bike racing stimulates osteogenic bone signaling and ingesting carbohydrate-protein compared with carbohydrate-only prevents acute recovery bone resorption dominance. J Strength Cond Res 35(2): 292-299, 2021-Mountain biking, unlike road cycling, includes vibrational accelerations but whether it stimulates osteogenic signaling remains unknown. Furthermore, exercise nutrition influences bone turnover, and the effect of ingesting protein during multiday racing was investigated. We measured plasma bone turnover markers, C-terminal telopeptide of type1-collagen (β-CTX) and N-terminal propeptides of type1-procollagen (P1NP), and osteocyte mechanosensory signaling factor, sclerostin (SOST), corrected for plasma volume change, before (pre-day 1) and 20-60 minutes after (post-day 3) a multiday mountain bike race in 18 male cyclists randomly assigned to ingest carbohydrate-only (CHO-only) or carbohydrate-with-casein protein hydrolysate (CHO-PRO) during racing. Fourteen cyclists (n = 7 per group) completed the race, and data were analyzed with p < 0.05 accepted as significant. Plasma SOST decreased similarly in both groups (mean ± SD, CHO-only: 877 ± 451 to 628 ± 473 pg·ml-1, p = 0.004; CHO-PRO: 888 ± 411 to 650 ± 443 pg·ml-1, p = 0.003), suggesting that osteocytes sense mountain biking as mechanical loading. However, the bone formation marker, P1NP, remained unchanged in both groups, whereas the bone resorption marker, β-CTX, increased in CHO-only (0.19 ± 0.034 to 0.31 ± 0.074 ng·ml-1, p = 0.0036) but remained unchanged in CHO-PRO (0.25 ± 0.079 to 0.26 ± 0.074 ng·ml-1, p = 0.95). Mountain bike racing does stimulate osteogenic bone signaling but bone formation is not increased acutely after multiday mountain biking; investigation for a delayed effect is warranted. The acute recovery increase in bone resorption with CHO-only is prevented by ingesting CHO-PRO during racing.
Collapse
Affiliation(s)
- Tanja Oosthuyse
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Johannesburg, South Africa ; and
| | - Andrew N Bosch
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Neezaam Kariem
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Aletta M E Millen
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, Johannesburg, South Africa ; and
| |
Collapse
|
27
|
Martyniak K, Wei F, Ballesteros A, Meckmongkol T, Calder A, Gilbertson T, Orlovskaya N, Coathup MJ. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone 2021; 143:115736. [PMID: 33171312 DOI: 10.1016/j.bone.2020.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related bone loss is inevitable in both men and women and there will soon be more people of extreme old age than ever before. Osteoporosis is a common chronic disease and as the proportion of older people, rate of obesity and the length of life increases, a rise in age-related degenerating bone diseases, disability, and prolonged dependency is projected. Fragility fractures are one of the most severe complications associated with both primary and secondary osteoporosis and current treatment strategies target weight-bearing exercise and pharmacological intervention, both with limited long-term success. Obesity and osteoporosis are intimately interrelated, and diet is a variable that plays a significant role in bone regeneration and repair. The Western Diet is characterized by its unhealthy components, specifically excess amounts of saturated fat intake. This review examines the impact of saturated and polyunsaturated fatty acid consumption on chronic inflammation, osteogenesis, bone architecture, and strength and explores the hypothesis that dietary polyunsaturated fats have a beneficial effect on osteogenesis, reducing bone loss by decreasing chronic inflammation, and activating bone resorption through key cellular and molecular mechanisms in our aging population. We conclude that aging, obesity and a diet high in saturated fatty acids significantly impairs bone regeneration and repair and that consumption of ω-3 polyunsaturated fatty acids is associated with significantly increased bone regeneration, improved microarchitecture and structural strength. However, ω-6 polyunsaturated fatty acids were typically pro-inflammatory and have been associated with an increased fracture risk. This review suggests a potential role for ω-3 fatty acids as a non-pharmacological dietary method of reducing bone loss in our aging population. We also conclude that contemporary amendments to the formal nutritional recommendations made by the Food and Nutrition Board may be necessary such that our aging population is directly considered.
Collapse
Affiliation(s)
- Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Amelia Ballesteros
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of General Surgery, Nemours Children's Hospital, Orlando, FL, United States
| | - Ashley Calder
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Timothy Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
28
|
JAK2 Inhibition by Fedratinib Reduces Osteoblast Differentiation and Mineralisation of Human Mesenchymal Stem Cells. Molecules 2021; 26:molecules26030606. [PMID: 33503825 PMCID: PMC7866227 DOI: 10.3390/molecules26030606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
Several signalling pathways, including the JAK/STAT signalling pathway, have been identified to regulate the differentiation of human bone marrow skeletal (mesenchymal) stem cells (hBMSCs) into bone-forming osteoblasts. Members of the JAK family mediate the intracellular signalling of various of cytokines and growth factors, leading to the regulation of cell proliferation and differentiation into bone-forming osteoblastic cells. Inhibition of JAK2 leads to decoupling of its downstream mediator, STAT3, and the subsequent inhibition of JAK/STAT signalling. However, the crucial role of JAK2 in hBMSCs biology has not been studied in detail. A JAK2 inhibitor, Fedratinib, was identified during a chemical biology screen of a small molecule library for effects on the osteoblastic differentiation of hMSC-TERT cells. Alkaline phosphatase activity and staining assays were conducted as indicators of osteoblastic differentiation, while Alizarin red staining was used as an indicator of in vitro mineralised matrix formation. Changes in gene expression were assessed using quantitative real-time polymerase chain reaction. Fedratinib exerted significant inhibitory effects on the osteoblastic differentiation of hMSC-TERT cells, as demonstrated by reduced ALP activity, in vitro mineralised matrix formation and downregulation of osteoblast-related gene expression, including ALP, ON, OC, RUNX2, OPN, and COL1A1. To identify the underlying molecular mechanisms, we examined the effects of Fedratinib on a molecular signature of several target genes known to affect hMSC-TERT differentiation into osteoblasts. Fedratinib inhibited the expression of LIF, SOCS3, RRAD, NOTCH3, TNF, COMP, THBS2, and IL6, which are associated with various signalling pathways, including TGFβ signalling, insulin signalling, focal adhesion, Notch Signalling, IL-6 signalling, endochondral ossification, TNF-α, and cytokines and inflammatory response. We identified a JAK2 inhibitor (Fedratinib) as a powerful inhibitor of the osteoblastic differentiation of hMSC-TERT cells, which may be useful as a therapeutic option for treating conditions associated with ectopic bone formation or osteosclerotic metastases.
Collapse
|
29
|
Duarte PM, Miranda TS, Marins LM, Perez EG, Copes LG, Tonietto CB, Montalli VAM, Malta FS, Napimoga MH. Systemic Lithium Chloride Administration Improves Tooth Extraction Wound Healing in Estrogen-Deficient Rats. Braz Dent J 2020; 31:640-649. [PMID: 33237236 DOI: 10.1590/0103-6440202003595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
The purpose of this investigation was to evaluate the effects of lithium chloride (LiCl) on the socket healing of estrogen-deficient rats. Seventy-two rats were allocated into one of the following groups: Control, Ovariectomy and LiCl (150 mg/kg/2 every other day orally) + Ovariectomy. Animals received LiCl or water from the 14th day post-ovariectomy, until the completion of the experiment. On the 21st day after ovariectomy, the first molars were extracted. Rats were euthanized on the 10th, 20th and 30th days following extractions. Bone healing (BH), TRAP positive cells and immunohistochemical staining for OPG, RANKL, BSP, OPN and OCN were evaluated. The Ovariectomy group presented decreased BH compared to the LiCl group at 10 days, and the lowest BH at 20 days (p<0.05). At 30 days, the Ovariectomy and LiCl-groups presented lower BH than that of the Control (p<0.05). The number of TRAP-stained cells was the lowest in the LiCl group at 20 days and the highest in the Ovariectomy group at 30 days (p<0.05). At 10 days of healing, the LiCl group demonstrated stronger staining for all bone markers when compared to the other groups, while the Ovariectomy group presented higher RANKL expression than that of the Control (p<0.05). LiCl enhanced bone healing in rats with estrogen deficiency, particularly in the initial healing phases. However, as data on the effects of lithium chloride on bone tissue are still preliminary, more studies related to its toxicity and protocol of administration are necessary before its application in clinical practice.
Collapse
Affiliation(s)
- Poliana M Duarte
- Department of Periodontology, Dental Research Division, UNG - Universidade Guarulhos, Guarulhos, SP, Brazil.,Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Tamires S Miranda
- Department of Periodontology, Dental Research Division, UNG - Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Letícia M Marins
- Department of Periodontology, Dental Research Division, UNG - Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Erick G Perez
- Immunology Area, SLMANDIC - Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, SP, Brazil
| | - Liliana G Copes
- Immunology Area, SLMANDIC - Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, SP, Brazil
| | - Cristine B Tonietto
- Immunology Area, SLMANDIC - Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, SP, Brazil
| | - Victor A M Montalli
- Immunology Area, SLMANDIC - Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, SP, Brazil
| | - Fernando S Malta
- Department of Periodontology, Dental Research Division, UNG - Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Marcelo H Napimoga
- Immunology Area, SLMANDIC - Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Campinas, SP, Brazil
| |
Collapse
|
30
|
Hung KC, Chang JF, Hsu YH, Hsieh CY, Wu MS, Wu MY, Chiu IJ, Syu RS, Wang TM, Wu CC, Hung LY, Zheng CM, Lu KC. Therapeutic Effect of Calcimimetics on Osteoclast-Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease. Int J Mol Sci 2020; 21:ijms21228712. [PMID: 33218086 PMCID: PMC7698938 DOI: 10.3390/ijms21228712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated calcimimetics optimize the balance between osteoclastic bone resorption and osteoblastic mineralization through upregulating Wingless and int-1 (Wnt) signaling pathways in the mouse and cell model. Nonetheless, definitive human data are unavailable concerning therapeutic effects of Cinacalcet on chronic kidney disease and mineral bone disease (CKD-MBD) and osteoclast-osteoblast interaction. We aim to investigate whether Cinacalcet therapy improves bone mineral density (BMD) through optimizing osteocytic homeostasis in a human model. Hemodialysis patients with persistently high intact parathyroid hormone (iPTH) levels > 300 pg/mL for more than 3 months were included and received fixed dose Cinacalcet (25 mg/day, orally) for 6 months. Bone markers presenting osteoclast-osteoblast communication were evaluated at baseline, the 3rd and the 6th month. Eighty percent of study patients were responding to Cinacalcet treatment, capable of improving BMD, T score and Z score (16.4%, 20.7% and 11.1%, respectively). A significant correlation between BMD improvement and iPTH changes was noted (r = -0.26, p < 0.01). Nonetheless, baseline lower iPTH level was associated with better responsiveness to Cinacalcet therapy. Sclerostin, an inhibitor of canonical Wnt/β-catenin signaling, was decreased from 127.3 ± 102.3 pg/mL to 57.9 ± 33.6 pg/mL. Furthermore, Wnt-10b/Wnt 16 expressions were increased from 12.4 ± 24.2/166.6 ± 73.3 pg/mL to 33.8 ± 2.1/217.3 ± 62.6 pg/mL. Notably, procollagen type I amino-terminal propeptide (PINP), a marker of bone formation and osteoblastic activity, was increased from baseline 0.9 ± 0.4 pg/mL to 91.4 ± 42.3 pg/mL. In contrast, tartrate-resistant acid phosphatase isoform 5b (TRACP-5b), a marker of osteoclast activity, was decreased from baseline 16.5 ± 0.4 mIU/mL to 7.7 ± 2.2 mIU/mL. Moreover, C-reactive protein levels were suppressed from 2.5 ± 0.6 to 0.8 ± 0.5 mg/L, suggesting the systemic inflammatory burden may be benefited after optimizing the parathyroid-bone axis. In conclusion, beyond iPTH suppression, our human model suggests Cinacalcet intensifies BMD through inhibiting sclerostin expression and upregulating Wnt-10b/Wnt 16 signaling that activates osteoblastic bone formation and inhibits osteoclastic bone resorption and inflammation. From the perspective of translation to humans, this research trial brings a meaningful insight into the osteoblast-osteoclast homeostasis in Cinacalcet therapy for CKD-MBD.
Collapse
Affiliation(s)
- Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan; (K.-C.H.); (R.-S.S.)
| | - Jia-Feng Chang
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.-F.C.); (Y.-H.H.); (M.-S.W.); (M.-Y.W.); (I.-J.C.); (L.-Y.H.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan
- Renal Care Joint Foundation, New Taipei City 220, Taiwan
| | - Yung-Ho Hsu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.-F.C.); (Y.-H.H.); (M.-S.W.); (M.-Y.W.); (I.-J.C.); (L.-Y.H.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City 320, Taiwan
| | - Chih-Yu Hsieh
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan
- Renal Care Joint Foundation, New Taipei City 220, Taiwan
| | - Mai-Szu Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.-F.C.); (Y.-H.H.); (M.-S.W.); (M.-Y.W.); (I.-J.C.); (L.-Y.H.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Yi Wu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.-F.C.); (Y.-H.H.); (M.-S.W.); (M.-Y.W.); (I.-J.C.); (L.-Y.H.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - I-Jen Chiu
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.-F.C.); (Y.-H.H.); (M.-S.W.); (M.-Y.W.); (I.-J.C.); (L.-Y.H.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ren-Si Syu
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan; (K.-C.H.); (R.-S.S.)
| | - Ting-Ming Wang
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei 106, Taiwan;
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei 106, Taiwan
| | - Chang-Chin Wu
- Department of Orthopedics, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- Department of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Lie-Yee Hung
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.-F.C.); (Y.-H.H.); (M.-S.W.); (M.-Y.W.); (I.-J.C.); (L.-Y.H.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (J.-F.C.); (Y.-H.H.); (M.-S.W.); (M.-Y.W.); (I.-J.C.); (L.-Y.H.)
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (C.-M.Z.); (K.-C.L.)
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence: (C.-M.Z.); (K.-C.L.)
| |
Collapse
|
31
|
Almasoud N, Binhamdan S, Younis G, Alaskar H, Alotaibi A, Manikandan M, Alfayez M, Kassem M, AlMuraikhi N. Tankyrase inhibitor XAV-939 enhances osteoblastogenesis and mineralization of human skeletal (mesenchymal) stem cells. Sci Rep 2020; 10:16746. [PMID: 33028869 PMCID: PMC7541626 DOI: 10.1038/s41598-020-73439-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tankyrase is part of poly (ADP-ribose) polymerase superfamily required for numerous cellular and molecular processes. Tankyrase inhibition negatively regulates Wnt pathway. Thus, Tankyrase inhibitors have been extensively investigated for the treatment of clinical conditions associated with activated Wnt signaling such as cancer and fibrotic diseases. Moreover, Tankyrase inhibition has been recently reported to upregulate osteogenesis through the accumulation of SH3 domain-binding protein 2, an adaptor protein required for bone metabolism. In this study, we investigated the effect of Tankyrase inhibition in osteoblast differentiation of human skeletal (mesenchymal) stem cells (hMSCs). A Tankyrase inhibitor, XAV-939, identified during a functional library screening of small molecules. Alkaline phosphatase activity and Alizarin red staining were employed as markers for osteoblastic differentiation and in vitro mineralized matrix formation, respectively. Global gene expression profiling was performed using the Agilent microarray platform. XAV-939, a Tankyrase inhibitor, enhanced osteoblast differentiation of hBMSCs as evidenced by increased ALP activity, in vitro mineralized matrix formation, and upregulation of osteoblast-related gene expression. Global gene expression profiling of XAV-939-treated cells identified 847 upregulated and 614 downregulated mRNA transcripts, compared to vehicle-treated control cells. It also points towards possible changes in multiple signaling pathways, including TGFβ, insulin signaling, focal adhesion, estrogen metabolism, oxidative stress, RANK-RANKL (receptor activator of nuclear factor κB ligand) signaling, Vitamin D synthesis, IL6, and cytokines and inflammatory responses. Further bioinformatic analysis, employing Ingenuity Pathway Analysis identified significant enrichment in XAV-939-treated cells of functional categories and networks involved in TNF, NFκB, and STAT signaling. We identified a Tankyrase inhibitor (XAV-939) as a powerful enhancer of osteoblastic differentiation of hBMSC that may be useful as a therapeutic option for treating conditions associated with low bone formation.
Collapse
Affiliation(s)
- Nuha Almasoud
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Sarah Binhamdan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Ghaydaa Younis
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Hanouf Alaskar
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.,Science Department, College of Science, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Amal Alotaibi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.,Molecular Endocrinology Unit (KMEB), Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nihal AlMuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.
| |
Collapse
|
32
|
Zhang B, Li R, Wang W, Zhou X, Luo B, Zhu Z, Zhang X, Ding A. The role of WNT1 mutant variant (WNT1 c.677C>T ) in osteogenesis imperfecta. Ann Hum Genet 2020; 84:447-455. [PMID: 32757296 PMCID: PMC7590185 DOI: 10.1111/ahg.12399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Osteogenesis imperfecta (OI), also known as "brittle bone disease," is a rare inherited genetic disorder characterized by bone fragility and often associated with short stature. The mutation in WNT1 causes autosomal recessive OI (AR-OI) due to the key role of WNT/β-catenin signaling in bone formation. WNT1 mutations cause phenotypes in OI of varying degrees of clinical severity, ranging from moderate to progressively deforming forms. The nucleotide change c.677C > T is one of the recurrent variants in the WNT1 alleles in Chinese AR-OI patients. To explore the effects of mutation c.677C > T on WNT1 function, we evaluated the activation of WNT/β-catenin signaling, cell proliferation, osteoblast differentiation, and osteoclast differentiation in WNT1c.677C>T , WNT1c.884C>A , and wild type WNT1 transfected into MC3T3-E1 preosteoblasts. Plasmids containing wild type WNT1, WNT1c.677C>T , and WNT1c.884C>A cDNAs were constructed. Protein levels of phosphorylation at serine 9 of GSK-3β (p-GSK-3β), GSK-3β, nonphosphorylated β-catenin (non-p-β-catenin), and β-catenin were detected with western blot. Cell proliferation was determined using MTS. BMP-2 and RANKL mRNA and protein levels were detected by qPCR and western blot. Our results showed that WNT1c.677C>T failed to activate WNT/β-catenin signaling and impaired the proliferation of preosteoblasts. Moreover, compared to wild type WNT1, WNT1c.677C>T downregulated BMP-2 protein expression and was exhibited a diminished capacity to suppress the RANKL protein level. In conclusion, mutation c.677C > T hindered the ability of WNT1 to induce the WNT/β-catenin signaling pathway and it affected the WNT/β-catenin pathway which might potentially contribute to hampered bone homeostasis.
Collapse
Affiliation(s)
- Bashan Zhang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Rong Li
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Wenfeng Wang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Xueming Zhou
- Department of Orthopedic, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Beijing Luo
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Zinian Zhu
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Xibo Zhang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Aijiao Ding
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
33
|
Liu S, Xu X, Liang S, Chen Z, Zhang Y, Qian A, Hu L. The Application of MSCs-Derived Extracellular Vesicles in Bone Disorders: Novel Cell-Free Therapeutic Strategy. Front Cell Dev Biol 2020; 8:619. [PMID: 32793590 PMCID: PMC7387669 DOI: 10.3389/fcell.2020.00619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is crucial for supporting the body, protecting other organs, providing minerals, and secreting hormone to regulate other organ's function. Bone disorders result in pain and disability, severely affecting human health, reducing the quality of life and increasing costs to society. With the rapid increase in the aging population worldwide, bone disorders have become one major disease. As a result, efficacious therapies of bone disorders have become the focus of attention worldwide. Mesenchymal stem cells (MSCs) have been widely explored as a new therapeutic method for numerous diseases. Recent evidence suggests that the therapeutic effects of MSCs are mainly mediated by their extracellular vesicles (EV). MSCs-derived extracellular vesicles (MSCs-EV) is indicated as a novel cell-free alternative to cell therapy with MSCs in regenerative medicine. Here, we review the current knowledge of EV and highlight the application studies of MSCs-EV in bone disorders by focusing on osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP), and bone fracture. Moreover, we discuss the key issues and perspectives of MSCs-EV as a clinical therapeutic strategy for bone diseases.
Collapse
Affiliation(s)
- Shuyu Liu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Xia Xu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Shujing Liang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhihao Chen
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yan Zhang
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Airong Qian
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lifang Hu
- Laboratary for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
34
|
Saba KH, Cornmark L, Hofvander J, Magnusson L, Nilsson J, van den Bos H, Spierings DC, Foijer F, Staaf J, Brosjö O, Sumathi VP, Lam SW, Szuhai K, Bovée JV, Kovac M, Baumhoer D, Styring E, Nord KH. Loss of NF2 defines a genetic subgroup of non-FOS-rearranged osteoblastoma. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 6:231-237. [PMID: 32542935 PMCID: PMC7578308 DOI: 10.1002/cjp2.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Osteoblastoma is a locally aggressive tumour of bone. Until recently, its underlying genetic features were largely unknown. During the past two years, reports have demonstrated that acquired structural variations affect the transcription factor FOS in a high proportion of cases. These rearrangements modify the terminal exon of the gene and are believed to stabilise both the FOS transcript and the encoded protein, resulting in high expression levels. Here, we applied in‐depth genetic analyses to a series of 29 osteoblastomas, including five classified as epithelioid osteoblastoma. We found recurrent homozygous deletions of the NF2 gene in three of the five epithelioid cases and in one conventional osteoblastoma. These events were mutually exclusive from FOS mutations. Structural variations were determined by deep whole genome sequencing and the number of FOS‐rearranged cases was less than previously reported (10/23, 43%). One conventional osteoblastoma displayed a novel mechanism of FOS upregulation; bringing the entire FOS gene under the control of the WNT5A enhancer that is itself activated by FOS. Taken together, we show that NF2 loss characterises a subgroup of osteoblastomas, distinct from FOS‐rearranged cases. Both NF2 and FOS are involved in regulating bone homeostasis, thereby providing a mechanistic link to the excessive bone growth of osteoblastoma.
Collapse
Affiliation(s)
- Karim H Saba
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Louise Cornmark
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Jakob Hofvander
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Diana Cj Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan Staaf
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Otte Brosjö
- Department of Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Vaiyapuri P Sumathi
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Suk Wai Lam
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Vmg Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michal Kovac
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniel Baumhoer
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Emelie Styring
- Department of Orthopedics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Karolin H Nord
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Zeng X, Wang Y, Dong Q, Ma MX, Liu XD. DLX2 activates Wnt1 transcription and mediates Wnt/β-catenin signal to promote osteogenic differentiation of hBMSCs. Gene 2020; 744:144564. [DOI: 10.1016/j.gene.2020.144564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/08/2020] [Indexed: 12/19/2022]
|
36
|
Ross RD, Sharma A, Shi Q, Hoover DR, Weber KM, Tien PC, French AL, Al-Harthi L, Yin MT. Circulating sclerostin is associated with bone mineral density independent of HIV-serostatus. Bone Rep 2020; 12:100279. [PMID: 32455152 PMCID: PMC7235609 DOI: 10.1016/j.bonr.2020.100279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/14/2023] Open
Abstract
Background Low bone mineral density (BMD) is commonly observed in people living with HIV (PLWH), however the cause for this BMD loss remains unclear. Sclerostin, a bone-derived antagonist to the Wnt/β-catenin-pathway, suppresses bone remodeling and is positively associated with BMD. The goal of the current study was to investigate associations between sclerostin and BMD in a cohort of HIV-seropositive and demographically-matched seronegative women. Methods This cross-sectional analysis used a subset of early postmenopausal women enrolled in the Women's Interagency HIV Study (WIHS). BMD was assessed at the lumbar spine, total hip, femoral neck, and distal and ultradistal radius via dual energy x-ray absorptiometry (DXA). Circulating sclerostin was assessed via commercial ELISAs. Univariate and multivariate linear regression modeling tested associations between sclerostin and BMD after adjusting for a variety of BMD-modifying variables. Results HIV-seropositive women had significantly reduced BMD at all skeletal sites compared to HIV-seronegative women. There was no difference in sclerostin levels according to HIV-serostatus (0.25 vs 0.27 ng/mL in HIV-seronegative and HIV-seropositive, respectively, p = 0.71). Circulating sclerostin was positively associated with BMD at all sites in both univariate and multivariate models adjusting for HIV status, age, BMI, and race, although the coefficients of association were attenuated in HIV-seropositive women. The positive association between sclerostin and BMD among seropositive women remained statistically significant after adjusting for ART or tenofovir disoproxil fumarate (TDF) use. Conclusions The current study suggests that circulating sclerostin is a biomarker for bone mass for both HIV seronegative and seropositive women using and not using ART. The lower coefficients of association between sclerostin and BMD by HIV status may suggest HIV-induced alternation in osteocyte function.
Collapse
Affiliation(s)
- Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America
- Corresponding author.
| | - Anjali Sharma
- State University of New York, Downstate, Brooklyn, NY, United States of America
| | - Qiuhu Shi
- New York Medical College, Valhalla, NY, United States of America
| | - Donald R. Hoover
- Department of Statistics and Institute for Health Health Care Policy and Aging Research Rutgers University, Piscataway, NJ, United States of America
| | - Kathleen M. Weber
- Cook County Health/CORE Center and Hektoen Institute of Medicine, Chicago, IL, United States of America
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, United States of America
| | - Audrey L. French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Rush University, Chicago, IL, United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Michael T. Yin
- Columbia University Medical Center, New York, NY, United States of America
| |
Collapse
|
37
|
Xu W, Yu R, Zhu X, Li Z, Jia J, Li D, Chen Y, Zhang X. Iron-Chelating Agent Can Maintain Bone Homeostasis Disrupted by Iron Overload by Upregulating Wnt/Beta-Catenin Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8256261. [PMID: 32596380 PMCID: PMC7273370 DOI: 10.1155/2020/8256261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND The incidence of osteoporotic fractures is increasing. In this study, we explored the activities of Wnt/β-catenin signaling in bone tissues with iron accumulation. METHODS We established rat bipedal walking models (RBWM), and a portion of our RBWM rats were intraperitoneally injected with ferric ammonium citrate, normal saline, and deferoxamine. Bone mineral density was measured with a small animal in vivo imaging system. The protein levels of ferritin, TRAP-5B, RANKL, and OPG in serum were measured by the enzyme-linked immunosorbent assay (ELISA). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to quantify the RNA and protein expression levels of certain regulators involved in Wnt/β-catenin signaling in bone tissues. RESULTS In the present study, we established a rat bipedal walking model containing 32 bipedal rats, which were randomly classified into four groups, termed as NS, FAC, FAC+NS, and FAC+DFO. Those three experimental groups with FAC injection had significantly lower bone mineral density (BMD) than the control group NS (P < 0.05). The disruption of bone homeostasis and downregulation of Wnt/β-catenin signaling were also observed in the three groups with FAC injection. Moreover, after the injection of deferoxamine, those aberrations in samples with FAC injection seemed repaired as test results returning or getting close to normal ranges. CONCLUSION The osteoporosis could be caused by iron overload, which reduced the bone mineral density by disrupting the homeostasis of bone formation and absorption and attenuating the Wnt/β-catenin signaling in bone tissues. The deferoxamine had the potential to improve the bone health by reducing the accumulation of iron and increasing the bone mass, which might be a promising therapeutic solution for osteoporosis.
Collapse
Affiliation(s)
- Wei Xu
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai 200336, China
| | - Ronghua Yu
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai 200336, China
| | - Xiaodong Zhu
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai 200336, China
| | - Zhikun Li
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai 200336, China
| | - Jianjun Jia
- No.7 College Team, PLA Naval Medical University, 800 Xiangyin Road, Shanghai 200443, China
| | - Dachuan Li
- No.7 College Team, PLA Naval Medical University, 800 Xiangyin Road, Shanghai 200443, China
| | - Yu Chen
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai 200336, China
| | - Xiangyang Zhang
- Department of Orthopedics, TongRen Hospital, School of Medicine Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai 200336, China
| |
Collapse
|
38
|
Zhao Y, Ren J, Hillier J, Lu W, Jones EY. Antiepileptic Drug Carbamazepine Binds to a Novel Pocket on the Wnt Receptor Frizzled-8. J Med Chem 2020; 63:3252-3260. [PMID: 32049522 PMCID: PMC7104226 DOI: 10.1021/acs.jmedchem.9b02020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Misregulation of Wnt signaling is common in human cancer. The development of small molecule inhibitors against the Wnt receptor, frizzled (FZD), may have potential in cancer therapy. During small molecule screens, we observed binding of carbamazepine to the cysteine-rich domain (CRD) of the Wnt receptor FZD8 using surface plasmon resonance (SPR). Cellular functional assays demonstrated that carbamazepine can suppress FZD8-mediated Wnt/β-catenin signaling. We determined the crystal structure of the complex at 1.7 Å resolution, which reveals that carbamazepine binds at a novel pocket on the FZD8 CRD. The unique residue Tyr52 discriminates FZD8 from the closely related FZD5 and other FZDs for carbamazepine binding. The first small molecule-bound FZD structure provides a basis for anti-FZD drug development. Furthermore, the observed carbamazepine-mediated Wnt signaling inhibition may help to explain the phenomenon of bone loss and increased adipogenesis in some patients during long-term carbamazepine treatment.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - Jingshan Ren
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - James Hillier
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - Weixian Lu
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| | - E. Yvonne Jones
- Division of Structural
Biology,
Wellcome Centre for Human Genetics, University
of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
39
|
Posch AT, de Avellar-Pinto JF, Malta FS, Marins LM, Teixeira LN, Peruzzo DC, Martinez EF, Clemente-Napimoga JT, Duarte PM, Napimoga MH. Lithium chloride improves bone filling around implants placed in estrogen-deficient rats. Arch Oral Biol 2020; 111:104644. [DOI: 10.1016/j.archoralbio.2019.104644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
|
40
|
Syx D, De Wandele I, Symoens S, De Rycke R, Hougrand O, Voermans N, De Paepe A, Malfait F. Bi-allelic AEBP1 mutations in two patients with Ehlers-Danlos syndrome. Hum Mol Genet 2020; 28:1853-1864. [PMID: 30668708 DOI: 10.1093/hmg/ddz024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDSs) are a clinically and molecularly diverse group of heritable connective tissue disorders caused by defects in a wide range of genes. Recently, bi-allelic loss-of-function mutations in the adipocyte enhancer-binding protein 1 (AEBP1) gene were reported in three families with an autosomal recessive EDS-like condition characterized by thin and hyperextensible skin, poor wound healing with prominent atrophic scarring, joint hypermobility and osteoporosis. Using whole exome sequencing, we identified novel bi-allelic AEBP1 variants in two unrelated adult patients, previously diagnosed with an undefined EDS type, which shows important clinical resemblance to several other EDS subtypes. Our patients present with similar cutaneous and musculoskeletal features as the previously reported patients. They also show unreported clinical features, including pectus deformity, premature aged appearance, sparse and frizzled hair, fatigue and pain. AEBP1 is ubiquitously expressed and encodes the secreted aortic carboxypeptidase-like protein (ACLP) that can bind fibrillar collagens and assist in collagen polymerization. Transmission electron microscopy studies on the patients' skin biopsies show ultrastructural alterations in collagen fibril diameter and appearance, underscoring an important role for ACLP in collagen fibril organization. This report further expands the clinical, molecular and ultrastructural spectrum associated with AEBP1 defects and highlights the complex and variable phenotype associated with this new EDS variant.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Inge De Wandele
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sofie Symoens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,Center for Inflammation Research and BioImaging Core, VIB, Ghent, Belgium
| | - Olivier Hougrand
- Unit of Electron Microscopy, Department of Pathology, Unilab LG, University Hospital, Liège, Belgium
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, HB Nijmegen, The Netherlands
| | - Anne De Paepe
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
41
|
Yang B, Li S, Chen Z, Feng F, He L, Liu B, He T, Wang X, Chen R, Chen Z, Xie P, Rong L. Amyloid β peptide promotes bone formation by regulating Wnt/β-catenin signaling and the OPG/RANKL/RANK system. FASEB J 2020; 34:3583-3593. [PMID: 31944393 DOI: 10.1096/fj.201901550r] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Amyloid β peptide (Aβ) is involved in osteoporosis, but the effects of Aβ on osteoblast and bone formation remain unclear. In this study, we investigated the effect of Aβ on bone formation. METHODS An animal model of osteoporosis was established by ovariectomy in C57BL/6 mice. The mice received intraperitoneal injection of Aβ. The effect of Aβ on the osteogenic differentiation of human bone marrow stromal stem cells (hBMSCs) and differentiation of both pre-osteoblasts and pre-osteoclasts in a co-culture system were investigated. RESULTS In the animal study, intraperitoneal injection of Aβ for 8 weeks promoted early and late osteogenic differentiation of hBMSCs. Aβ treatment significantly elevated osterix+ (osteoblastic) cells but decreased TRAP+ cells (osteoclasts) in the distal femur bone. In vitro study showed that Aβ treatment significantly enhanced matrix mineralization and osteogenic markers (Runx2 and osteocalcin). Aβ treatment activated Wnt/β-catenin signaling in hBMSCs. The effect of Aβ was blocked by DKK1 (a Wnt/β-catenin inhibitor) treatment. In the co-culture system, Aβ treatment significantly increased the ALP activities of MC3T3-E1 cells (pre-osteoblasts) but reduced the TRAP+ RAW264.7 cells (pre-osteoclasts). Aβ treatment upregulated TCF1 and OPG proteins in MC3T3-E1 cells. Aβ treatment upregulated IκB-α but downregulated NFATc1protein in RAW264.7 cells. These effects were blocked by XAV-939 (a Wnt signaling antagonist), and then rescued by additional Wnt3a (a Wnt agonist). CONCLUSION Aβ treatment simultaneously promoted osteogenic differentiation via Wnt/β-catenin signaling, and inhibited osteoclasts differentiation via the OPG/RANKL/RANK system, suggesting Aβ is a positive regulator of osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Bu Yang
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Shangfu Li
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng Feng
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei He
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Bin Liu
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Tianwei He
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xuan Wang
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Ruiqiang Chen
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zihao Chen
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Peigen Xie
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Limin Rong
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
42
|
Roberts JL, Liu G, Paglia DN, Kinter CW, Fernandes LM, Lorenzo J, Hansen MF, Arif A, Drissi H. Deletion of
Wnt5a
in osteoclasts results in bone loss through decreased bone formation. Ann N Y Acad Sci 2020; 1463:45-59. [DOI: 10.1111/nyas.14293] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Joseph L. Roberts
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - Guanglu Liu
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - David N. Paglia
- Department of Orthopaedics, New Jersey Medical School Rutgers University Newark New Jersey
| | | | | | - Joseph Lorenzo
- Department of Medicine and Department of Orthopaedic Surgery University of Connecticut Health Farmington Connecticut
| | - Marc F. Hansen
- Center for Molecular Medicine University of Connecticut Health Farmington Connecticut
| | - Abul Arif
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| | - Hicham Drissi
- Department of Orthopaedics Emory University School of Medicine Atlanta Georgia
| |
Collapse
|
43
|
Alekos NS, Moorer MC, Riddle RC. Dual Effects of Lipid Metabolism on Osteoblast Function. Front Endocrinol (Lausanne) 2020; 11:578194. [PMID: 33071983 PMCID: PMC7538543 DOI: 10.3389/fendo.2020.578194] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a dynamic and metabolically active organ with the capacity to influence whole body metabolism. This newly recognized function has propagated interest in the connection between bone health and metabolic dysfunction. Osteoblasts, the specialized mesenchymal cells responsible for the production of bone matrix and mineralization, rely on multiple fuel sources. The utilization of glucose by osteoblasts has long been a focus of research, however, lipids and their derivatives, are increasingly recognized as a vital energy source. Osteoblasts possess the necessary receptors and catabolic enzymes for internalization and utilization of circulating lipids. Disruption of these processes can impair osteoblast function, resulting in skeletal deficits while simultaneously altering whole body lipid homeostasis. This article provides an overview of the metabolism of postprandial and stored lipids and the osteoblast's ability to acquire and utilize these molecules. We focus on the requirement for fatty acid oxidation and the pathways regulating this function as well as the negative impact of dyslipidemia on the osteoblast and skeletal health. These findings provide key insights into the nuances of lipid metabolism in influencing skeletal homeostasis which are critical to appreciate the extent of the osteoblast's role in metabolic homeostasis.
Collapse
Affiliation(s)
- Nathalie S. Alekos
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Megan C. Moorer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
- *Correspondence: Ryan C. Riddle
| |
Collapse
|
44
|
Wang D, Gilbert JR, Zhang X, Zhao B, Ker DFE, Cooper GM. Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:46-63. [PMID: 31588853 DOI: 10.1089/ten.teb.2018.0353] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue-engineered graft substitutes have shown great potential to treat large bone defects. While we usually assume that therapeutic approaches developed for appendicular bone healing could be similarly translated for application in craniofacial reconstruction and vice versa, this is not necessarily accurate. In addition to those more well-known healing-associated factors, such as age, lifestyle (e.g., nutrition and smoking), preexisting disease (e.g., diabetes), medication, and poor blood supply, the developmental origins and surrounding tissue of the wound sites can largely affect the fracture healing outcome as well as designed treatments. Therefore, the strategies developed for long bone fracture repair might not be suitable or directly applicable to skull bone repair. In this review, we discuss aspects of development, healing process, structure, and tissue engineering considerations between calvarial and long bones to assist in designing the tailored bone repair strategies. Impact Statement We summarized, in this review, the existing body of knowledge between long bone and calvarial bone with regard to their development and healing, tissue structure, and consideration of current tissue engineering strategies. By highlighting their similarities and differences, we propose that tailored tissue engineering strategies, such as scaffold features, growth factor usage, and the source of cells for tissue or region-specific bone repair, are necessary to ensure an optimized healing outcome.
Collapse
Affiliation(s)
- Dan Wang
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Gilbert
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Zhao
- Department of Stomatology, Tenth People's Hospital of Tongji University, Shanghai, China.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gregory M Cooper
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Li SQ, Tu C, Wan L, Chen RQ, Duan ZX, Ren XL, Li ZH. FGF-induced LHX9 regulates the progression and metastasis of osteosarcoma via FRS2/TGF-β/β-catenin pathway. Cell Div 2019; 14:13. [PMID: 31788020 PMCID: PMC6876112 DOI: 10.1186/s13008-019-0056-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023] Open
Abstract
Background Fibroblast growth factor (FGF) and tumor growth factor-β (TGFβ) have emerged as pivotal regulators during the progression of osteosarcoma (OS). LHX9 is one crucial transcription factor controlled by FGF, however, its function in OS has not been investigated yet. Methods The expression of LHX9, FRS2, BMP4, TGF-beta R1, SMAD2, beta-catenin and metastasis-related proteins was measured by real-time quantitative PCR (RT-qPCR) and Western blot. CCK-8 assay and colony formation assay were employed to determine the proliferation of OS cells, while scratch wound healing assay and transwell assay were used to evaluate their migration and invasion, respectively. In vivo tumor growth and metastasis were determined by subcutaneous or intravenous injection of OS cells into nude mice. Results LHX9 expression was evidently up-regulated in OS tumor tissues and cell lines. Knockdown of LHX9 impaired the proliferation, migration, invasion and metastasis of OS cells. Mechanistically, LHX9 silencing led to the down-regulation of BMP-4, β-catenin and metastasis-related proteins, which was also observed in beta-catenin knockdown OS cells. By contrast, FRS2 knockdown conduced to the up-regulation of LHX9, BMP4, β-catenin and TGF-βR1, while TGF-beta inhibition repressed the expression of LHX9 and metastasis-related proteins. Additionally, let-7c modulates LHX9 and metastasis-related proteins by suppressing TGF-beta R1 expression on transcriptional level. Conclusions This study revealed LHX9 was essential for the proliferation, migration, invasion, and metastasis of OS cells via FGF and TGF-β/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Shuang-Qing Li
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Chao Tu
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Lu Wan
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Rui-Qi Chen
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Zhi-Xi Duan
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Xiao-Lei Ren
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| | - Zhi-Hong Li
- Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, No. 139 Renming Road, Changsha, 410010 Hunan People's Republic of China
| |
Collapse
|
46
|
Hedgehog Signaling Inhibition by Smoothened Antagonist BMS-833923 Reduces Osteoblast Differentiation and Ectopic Bone Formation of Human Skeletal (Mesenchymal) Stem Cells. Stem Cells Int 2019; 2019:3435901. [PMID: 31871467 PMCID: PMC6907053 DOI: 10.1155/2019/3435901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hedgehog (Hh) signaling is essential for osteoblast differentiation of mesenchymal progenitors during endochondral bone formation. However, the critical role of Hh signaling during adult bone remodeling remains to be elucidated. Methods A Smoothened (SMO) antagonist/Hedgehog inhibitor, BMS-833923, identified during a functional screening of a stem cell signaling small molecule library, was investigated for its effects on the osteoblast differentiation of human skeletal (mesenchymal) stem cells (hMSC). Alkaline phosphatase (ALP) activity and Alizarin red staining were employed as markers for osteoblast differentiation and in vitro mineralization capacity, respectively. Global gene expression profiling was performed using the Agilent® microarray platform. Effects on in vivo ectopic bone formation were assessed by implanting hMSC mixed with hydroxyapatite-tricalcium phosphate granules subcutaneously in 8-week-old female nude mice, and the amount of bone formed was assessed using quantitative histology. Results BMS-833923, a SMO antagonist/Hedgehog inhibitor, exhibited significant inhibitory effects on osteoblast differentiation of hMSCs reflected by decreased ALP activity, in vitro mineralization, and downregulation of osteoblast-related gene expression. Similarly, we observed decreased in vivo ectopic bone formation. Global gene expression profiling of BMS-833923-treated compared to vehicle-treated control cells, identified 348 upregulated and 540 downregulated genes with significant effects on multiple signaling pathways, including GPCR, endochondral ossification, RANK-RANKL, insulin, TNF alpha, IL6, and inflammatory response. Further bioinformatic analysis employing Ingenuity Pathway Analysis revealed significant enrichment in BMS-833923-treated cells for a number of functional categories and networks involved in connective and skeletal tissue development and disorders, e.g., NFκB and STAT signaling. Conclusions We identified SMO/Hedgehog antagonist (BMS-833923) as a powerful inhibitor of osteoblastic differentiation of hMSC that may be useful as a therapeutic option for treating conditions associated with high heterotopic bone formation and mineralization.
Collapse
|
47
|
Zhao Y, Yuan X, Bellido T, Helms JA. A Correlation between Wnt/Beta-catenin Signaling and the Rate of Dentin Secretion. J Endod 2019; 45:1357-1364.e1. [PMID: 31522810 PMCID: PMC10900857 DOI: 10.1016/j.joen.2019.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Odontoblasts produce dentin throughout life and in response to trauma. The purpose of this study was to identify the roles of endogenous Wnt signaling in regulating the rate of dentin accumulation. METHODS Histology, immunohistochemistry, vital dye labeling, and histomorphometric assays were used to quantify the rate of dentin accumulation as a function of age. Two strains of Wnt reporter mice were used to identify and follow the distribution and number of Wnt-responsive odontoblasts as a function of age. To show a causal relationship between dentin secretion and Wnt signaling, dentin accumulation was monitored in a strain of mice in which Wnt signaling was aberrantly elevated. RESULTS Dentin deposition occurs throughout life, but the rate of accumulation slows with age. This decline in dentin secretion correlates with a decrease in endogenous Wnt signaling. In a genetically modified strain of mice, instead of tubular dentin, aberrantly elevated Wnt signaling resulted in accumulation of reparative dentin or osteodentin secreted from predontoblasts. CONCLUSIONS Wnt signaling regulates dentin secretion by odontoblasts, and the formation of reparative or osteodentin is the direct consequence of elevated Wnt signaling. These preclinical data have therapeutic implications for the development of a biologically based pulp capping medicant.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Cariology and Endodontology, School of Dentistry, Lanzhou University, Lanzhou, China; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California
| | - Xue Yuan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California
| | - Teresita Bellido
- Departments of Anatomy and Cell Biology and Medicine, Division of Endocrinology, Indiana University School of Medicine and Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, California.
| |
Collapse
|
48
|
de Souza Malta F, Napimoga MH, Marins LM, Miranda TS, de Oliveira FB, Posch AT, Feres M, Duarte PM. Lithium chloride assuages bone loss in experimental periodontitis in estrogen-deficient rats. Clin Oral Investig 2019; 24:2025-2036. [DOI: 10.1007/s00784-019-03067-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/27/2019] [Indexed: 11/27/2022]
|
49
|
Gopinathan G, Foyle D, Luan X, Diekwisch TGH. The Wnt Antagonist SFRP1: A Key Regulator of Periodontal Mineral Homeostasis. Stem Cells Dev 2019; 28:1004-1014. [PMID: 31215318 DOI: 10.1089/scd.2019.0124] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The function of mammalian periodontal tissues depends on the presence of a nonmineralized periodontal ligament (PDL) juxtaposed in between mineralized tooth anchorage tissues alveolar bone (AB) and root cementum. In the present study we have hypothesized that the Wnt antagonist secreted frizzled related protein 1 (SFRP1) is an essential regulator of periodontal tissue mineral homeostasis. Our immunoreactions and western blot data demonstrated that SFRP1 was substantially expressed higher in PDL fibroblasts than in surrounding AB progenitors and cementoblasts. SFRP1 was also detected at higher levels in PDL fibroblasts than in dental follicle (DF) cells, but the difference was less pronounced. Preferential H3K4me3 active histone mark enrichment on the SFRP1 promoter and a lack of H3K27me3 repression were most dramatic in PDL progenitors, to a lesser degree in DF cells, and not detected in AB progenitors and cementoblasts. Selective inhibition of SFRP1 using a small molecule inhibitor WAY-316606 demonstrated that SFRP1 block increased PDL cell mineralization and mineralization gene expression such as β-catenin, alkaline phosphatase, osteocalcin, collagen I, and RUNX2. The effect of SFRP1 inhibition on PDL cell mineral homeostasis was confirmed by RNA silencing. These studies also demonstrated that SFRP1 knockdown promotes PDL differentiation through histone H3K4me3-mediated activation of RUNX2 and SP7. Finally, when SFRP1 inhibition and silencing studies were performed using AB progenitors instead of PDL progenitors, there was little effect on mineralized state control and gene expression, with the exception of osteocalcin, which was dramatically upregulated upon SFRP1 silencing. Together, the results of our study document the highly specific role of the Wnt inhibitor SFRP1 in maintaining the nonmineralized state of PDL progenitors.
Collapse
Affiliation(s)
- Gokul Gopinathan
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| | - Deborah Foyle
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| | - Xianghong Luan
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| | - Thomas G H Diekwisch
- Department of Periodontics, Center for Craniofacial Research and Diagnosis, Texas A&M College of Dentistry, Dallas, Texas
| |
Collapse
|
50
|
Chicana B, Donham C, Millan AJ, Manilay JO. Wnt Antagonists in Hematopoietic and Immune Cell Fate: Implications for Osteoporosis Therapies. Curr Osteoporos Rep 2019; 17:49-58. [PMID: 30835038 PMCID: PMC6715281 DOI: 10.1007/s11914-019-00503-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW We reviewed the current literature on the roles of the Wnt antagonists sclerostin (Sost) and sclerostin-containing domain protein 1 (Sostdc1) on bone homeostasis, the relationship of the hypoxia-inducible factor (Hif) and von Hippel-Lindau (Vhl) pathways on Sost expression, and how changes in bone induced by depletion of Sost, Sostdc1, and Vhl affect hematopoietic cells. RECENT FINDINGS B cell development is adversely affected in Sost-knockout mice and is more severely affected in Vhl-knockout mice. Inflammation in the Sost-/- bone microenvironment could alter hematopoietic stem cell behavior. Sostdc1-/- mice display defects in natural killer cell development and cytotoxicity. Depletion of Sost and Sostdc1 have effects on immune cell function that warrant investigation in patients receiving Wnt antagonist-depleting therapies for treatment of bone diseases. Additional clinical applications for manipulation of Wnt antagonists include cancer immunotherapies, stem cell transplantation, and directed differentiation to immune lineages.
Collapse
Affiliation(s)
- Betsabel Chicana
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Cristine Donham
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Alberto J Millan
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Jennifer O Manilay
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA.
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|