1
|
Ale A, Andrade VS, Gutierrez MF, Ayech A, Monserrat JM, Desimone MF, Cazenave J. Metal-based nanomaterials in aquatic environments: What do we know so far about their ecotoxicity? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107069. [PMID: 39241467 DOI: 10.1016/j.aquatox.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The wide range of applications of nanomaterials (NM) in different fields has led to both uncontrolled production and release into environmental compartments, such as aquatic systems, where final disposal occurs. Some efforts have been made to estimate their concentrations in environmental matrices; however, little is known about the actual effects of environmental NM concentrations on biota. The aims of the present review are to (i) expose the state of the art of the most applied NM and their actual concentrations regarding how much is being released to the aquatic environment and which are the predicted ones; (ii) analyze the current literature to elucidate if the aforementioned conditions were proven to cause deleterious effects on the associated organisms; and (iii) identify gaps in the knowledge regarding whether the actual NM concentrations are harmful to aquatic biota. These novel materials are expected to being released into the environment in the range of hundreds to thousands of tons per year, with Si- and Ti-based NM being the two most important. The estimated environmental NM concentrations are in the low range of ng to µg/L, except for Ti-based ones, which concentrations reach values on the order of mg/L. Empirical information regarding the ecotoxicity of environmental NM concentrations mainly focused on metal-based NM, however, it resulted poor and unbalanced in terms of materials and test species. Given its high predicted environmental concentration in comparison with the others, the ecotoxicity of Ti-based NM has been well assessed in algae and fish, while little is known regarding other NM types. While only a few marine species were addressed, the freshwater species Daphnia magna and Danio rerio accounted for the majority of studies on invertebrate and fish groups, respectively. Most of the reported responses are related to oxidative stress. Overall, we consider that invertebrate groups are the most vulnerable, with emphasis on microcrustaceans, as environmentally realistic metal-based NM concentration even caused mortality in some species. In the case of fish, we assumed that environmental concentrations of Ti-based NM represent a growing concern and threat; however, further studies should be carried out by employing other kinds of NM. Furthermore, more ecotoxicological information is needed in the case of carbon-based NM, as they are expected to considerably increase in terms of released amounts and applications in the near future.
Collapse
Affiliation(s)
- Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Santa Fe, Argentina.
| | - Victoria S Andrade
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramon Carrillo" (FBCB-UNL), Santa Fe, Argentina
| | - Alinne Ayech
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil
| | - Martín F Desimone
- Universidade Federal do Rio Grande (FURG), Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas (PPGCF), Rio Grande, RS, Brazil; Universidad de Buenos Aires (UBA), CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (INALI), UNL, CONICET, Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| |
Collapse
|
2
|
Andrade VS, Ale A, Antezana PE, Desimone MF, Cazenave J, Gutierrez MF. Environmental factors modify silver nanoparticles ecotoxicity in Chydorus eurynotus (Cladocera). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:683-696. [PMID: 38861073 DOI: 10.1007/s10646-024-02766-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Silver nanoparticles (AgNPs) are among the most produced nanomaterials in the world and are incorporated into several products due to their biocide and physicochemical properties. Since freshwater bodies are AgNPs main final sink, several consequences for biota are expected to occur. With the hypothesis that AgNPs can interact with environmental factors, we analyzed their ecotoxicity in combination with humic acids and algae. In addition to the specific AgNPs behavior in the media, we analyzed the mortality, growth, and phototactic behavior of Chydorus eurynotus (Cladocera) as response variables. While algae promoted Ag+ release, humic acids reduced it by adsorption, and their combination resulted in an intermediated Ag+ release. AgNPs affected C. eurynotus survival and growth, but algae and humic acids reduced AgNPs lethality, especially when combined. The humic acids mitigated AgNP effects in C. eurynotus growth, and both factors improved its phototactic behavior. It is essential to deepen the study of the isolated and combined influences of environmental factors on the ecotoxicity of nanoparticles to achieve accurate predictions under realistic exposure scenarios.
Collapse
Affiliation(s)
| | - Analía Ale
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Federico Desimone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramon Carrillo", Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
3
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Slomberg DL, Auffan M, Payet M, Carboni A, Ouaksel A, Brousset L, Angeletti B, Grisolia C, Thiéry A, Rose J. Tritiated stainless steel (nano)particle release following a nuclear dismantling incident scenario: Significant exposure of freshwater ecosystem benthic zone. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133093. [PMID: 38056254 DOI: 10.1016/j.jhazmat.2023.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
Nuclear facilities continue to be developed to help meet global energy demands while reducing fossil fuel use. However, an incident during the dismantling of these facilities could accidentally release tritiated particles (e.g. stainless steel) into the environment. Herein, we investigated the environmental dosimetry, fate, and impact of tritiated stainless steel (nano)particles (1 mg.L-1 particles and 1 MBq.L-1 tritium) using indoor freshwater aquatic mesocosms to mimic a pond ecosystem. The tritium (bio)distribution and particle fate and (bio)transformation were monitored in the different environmental compartments over 4 weeks using beta counting and chemical analysis. Impacts on picoplanktonic and picobenthic communities, and the benthic freshwater snail, Anisus vortex, were assessed as indicators of environmental health. Following contamination, some tritium (∼16%) desorbed into the water column while the particles rapidly settled onto the sediment. After 4 weeks, the particles and the majority of the tritium (>80%) had accumulated in the sediment, indicating a high exposure of the benthic ecological niche. Indeed, the benthic grazers presented significant behavioral changes despite low steel uptake (<0.01%). These results provide knowledge on the potential environmental impacts of incidental tritiated (nano)particles, which will allow for improved hazard and risk management.
Collapse
Affiliation(s)
- Danielle L Slomberg
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France.
| | - Mélanie Auffan
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| | | | - Andrea Carboni
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Amazigh Ouaksel
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | - Lenka Brousset
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Bernard Angeletti
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France
| | | | - Alain Thiéry
- CNRS, IRD, IMBE, Aix-Marseille Univ, Avignon Univ., Marseille, France
| | - Jérôme Rose
- CNRS, Aix-Marseille Univ., IRD, INRAE, CEREGE, 13545 Aix-en-Provence, France; Civil and Environmental Engineering Department, Duke University, Durham, NC 27707, United States
| |
Collapse
|
5
|
Zhou Y, Wang Y, Peijnenburg W, Vijver MG, Balraadjsing S, Fan W. Using Machine Learning to Predict Adverse Effects of Metallic Nanomaterials to Various Aquatic Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17786-17795. [PMID: 36730792 DOI: 10.1021/acs.est.2c07039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The wide production and use of metallic nanomaterials (MNMs) leads to increased emissions into the aquatic environments and induces high potential risks. Experimentally evaluating the (eco)toxicity of MNMs is time-consuming and expensive due to the multiple environmental factors, the complexity of material properties, and the species diversity. Machine learning (ML) models provide an option to deal with heterogeneous data sets and complex relationships. The present study established an in silico model based on a machine learning properties-environmental conditions-multi species-toxicity prediction model (ML-PEMST) that can be applied to predict the toxicity of different MNMs toward multiple aquatic species. Feature importance and interaction analysis based on the random forest method indicated that exposure duration, illumination, primary size, and hydrodynamic diameter were the main factors affecting the ecotoxicity of MNMs to a variety of aquatic organisms. Illumination was demonstrated to have the most interaction with the other features. Moreover, incorporating additional detailed information on the ecological traits of the test species will allow us to further optimize and improve the predictive performance of the model. This study provides a new approach for ecotoxicity predictions for organisms in the aquatic environment and will help us to further explore exposure pathways and the risk assessment of MNMs.
Collapse
Affiliation(s)
- Yunchi Zhou
- School of Space and Environment, Beihang University, Beijing100191, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing100191, China
| | - Willie Peijnenburg
- Institute of Environmental Science (CML), Leiden University, Leiden2300, RA, The Netherlands
- Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven3720, BA, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Science (CML), Leiden University, Leiden2300, RA, The Netherlands
| | - Surendra Balraadjsing
- Institute of Environmental Science (CML), Leiden University, Leiden2300, RA, The Netherlands
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing100191, China
| |
Collapse
|
6
|
Ale A, Andrade VS, Gutierrez MF, Bacchetta C, Rossi AS, Orihuela PS, Desimone MF, Cazenave J. Nanotechnology-based pesticides: Environmental fate and ecotoxicity. Toxicol Appl Pharmacol 2023; 471:116560. [PMID: 37230195 DOI: 10.1016/j.taap.2023.116560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The imminent increase in global food demand inevitably leads to an increase in agricultural practices, with an emphasis on pesticide applications. Nanotechnology-based pesticides, or nanopesticides, have gained importance as they are more efficient and, in some cases, less toxic than their conventional counterparts. However, concerns about these novel products have arisen as evidence about their (eco)safety is controversial. This review aims to: (1) introduce the currently applied nanotechnology-based pesticides and their mechanisms of toxic action; (2) describe their fate when released into the environment, with an emphasis on aquatic environments; (3) summarize available research on ecotoxicological studies in freshwater non-target organisms through a bibliometric analysis; and (4) identify gaps in knowledge from an ecotoxicological perspective. Our results show that the environmental fate of nanopesticides is poorly studied and depends on both intrinsic and external factors. There is also a need for comparative research into their ecotoxicity between conventional pesticide formulations and their nano-based counterparts. Among the few available studies, most considered fish species as test organisms, compared to algae and invertebrates. Overall, these new materials generate toxic effects on non-target organisms and threaten the integrity of the environment. Therefore, deepening the understanding of their ecotoxicity is crucial.
Collapse
Affiliation(s)
- Analía Ale
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina.
| | - Victoria S Andrade
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - María F Gutierrez
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramón Carrillo", FBCB, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Andrea S Rossi
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina; Facultad de Humanidades y Ciencias, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| | - Pablo Santo Orihuela
- Universidad de Buenos Aires, Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), CONICET, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Martín F Desimone
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN) UNIDEF-CITIDEF-CONICET, Villa Martelli, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (INALI), CONICET, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina; Facultad de Humanidades y Ciencias, UNL. Ciudad Universitaria UNL, Santa Fe, Argentina
| |
Collapse
|
7
|
Andrade VS, Ale A, Antezana PE, Desimone MF, Cazenave J, Gutierrez MF. Ecotoxicity of nanosilver on cladocerans and the role of algae provision. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27137-27149. [PMID: 36378381 DOI: 10.1007/s11356-022-24154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are applied in diverse industries due to their biocide and physicochemical properties; therefore, they can be released into aquatic systems, interact with environmental factors, and ultimately exert adverse effects on the biota. We analyzed AgNPs effects on Ceriodaphnia reticulata (Cladocera) through mortality and life-history traits, considering the influence of food (Tetradesmus obliquus, Chlorophyceae) presence and concentration. C. reticulata was exposed to AgNPs in acute (absence and two algae concentrations plus five AgNPs treatments) and chronic assays (two algae concentrations plus three AgNPs treatments). AgNPs did not affect algae flocculation but increased Ag+ release, being these ions less toxic than AgNPs (as proved by the exposure to AgNO3). A reduction in AgNPs acute toxicity was observed when algae concentration increased. Acute AgNP exposure decreased C. reticulata body size and heart rate. The chronic AgNP exposure reduced C. reticulata molt number, growth, heart rate, and neonate size:number ratio, being these effects mitigated at the highest algae concentration. Increases in relative size and number of neonates were observed in AgNP treatments suggesting energy trade off. The increased Ag+ release with food presence suggests that the AgNP-algae interaction might be responsible of the decreased toxicity. Although algae reduced AgNP toxicity, they still exerted adverse effects on C. reticulata below predicted environmental concentrations. Since algae presence reduces AgNP effects but increases Ag+ release, studies should be continued to provide evidence on their toxicity to other organisms.
Collapse
Affiliation(s)
| | - Analía Ale
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de La Química Y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Federico Desimone
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de La Química Y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Departamento de Ciencias Naturales, Facultad de Humanidades Y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramon Carrillo" Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
8
|
Kokol V, Novak S, Kononenko V, Kos M, Vivod V, Gunde-Cimerman N, Drobne D. Antibacterial and degradation properties of dialdehyded and aminohexamethylated nanocelluloses. Carbohydr Polym 2023; 311:120603. [PMID: 37028864 DOI: 10.1016/j.carbpol.2023.120603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Dialdehyde cellulose nanofibrils (CNF) and nanocrystals (CNC) were prepared via periodate oxidation (CNF/CNC-ox) and subsequently functionalized with hexamethylenediamine (HMDA) via a Schiff-base reaction, resulting in partially crosslinked micro-sized (0.5-10 μm) particles (CNF/CNC-ox-HMDA) with an aggregation and sedimentation tendency in an aqueous media, as assessed by Dynamic Light Scattering and Scanning Electron Microscopy. The antibacterial efficacy, aquatic in vivo (to Daphnia magna) and human in vitro (to A594 lung cells) toxicities, and degradation profiles in composting soil of all forms of CNF/CNC were assessed to define their safety profile. CNF/CNC-ox-HMDA exhibited higher antibacterial activity than CNF/CNC-ox and higher against Gram-positive S. aureus than Gram-negative E. coli, yielding a bacteria reduction of >90 % after 24 h of exposure at the minimum (≤2 mg/mL), but potentially moderately/aquatic and low/human toxic concentrations (≥50 mg/L). The presence of anionic, un/protonated amino-hydrophobized groups in addition to unconjugated aldehydes of hydrodynamically smaller (<1 μm) CNC-ox-HMDA increased the reduction of both bacteria to log 9 at ≥4 mg/mL and their bactericidal activity. While only CNF/CNC-ox can be considered as biosafe and up to >80 % biodegradable within 24 weeks, this process was inhibited for the CNF/CNC-ox-HMDA. This indicated their different stability, application and disposal after use (composting vs. recycling).
Collapse
Affiliation(s)
- Vanja Kokol
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Sara Novak
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Veno Kononenko
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Monika Kos
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Vera Vivod
- University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Nina Gunde-Cimerman
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q 2022; 42:68-94. [PMID: 35491930 PMCID: PMC9126591 DOI: 10.1080/01652176.2022.2073399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/06/2022] Open
Abstract
The application of high doses of mineral feed additives in the form of inorganic salts increases the growth performance of animals, but at the same, due to their low bioavailability, can contaminate the environment. Therefore, there is a need to find a replacement of administering high doses of minerals with an equally effective alternative. The application of lower doses of metal-containing nanoparticles with the same effect on animal production could be a potential solution. In the present review, zinc, silver, copper, gold, selenium, and calcium nanoparticles are discussed as potential feed additives for animals. Production of nanoparticles under laboratory conditions using traditional chemical and physical methods as well as green and sustainable methods - biosynthesis has been described. Special attention has been paid to the biological properties of nanoparticles, as well as their effect on animal health and performance. Nano-minerals supplemented to animal feed (poultry, pigs, ruminants, rabbits) acting as growth-promoting, immune-stimulating and antimicrobial agents have been highlighted. Metal nanoparticles are known to exert a positive effect on animal performance, productivity, carcass traits through blood homeostasis maintenance, intestinal microflora, oxidative damage prevention, enhancement of immune responses, etc. Metal-containing nanoparticles can also be a solution for nutrient deficiencies in animals (higher bioavailability and absorption) and can enrich animal products with microelements like meat, milk, or eggs. Metal-containing nanoparticles are proposed to partially replace inorganic salts as feed additives. However, issues related to their potential toxicity and safety to livestock animals, poultry, humans, and the environment should be carefully investigated.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Dziergowska
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Rodríguez-Romero A, Ruiz-Gutiérrez G, Gaudron A, Corta BG, Tovar-Sánchez A, Viguri Fuente JR. Modelling the bioconcentration of Zn from commercial sunscreens in the marine bivalve Ruditapes philippinarum. CHEMOSPHERE 2022; 307:136043. [PMID: 35985387 DOI: 10.1016/j.chemosphere.2022.136043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Sunscreens contain ZnO particles used as a UV filter cause adverse effects in the marine environment through the release of this metal into seawater and its bioaccumulation in organisms. A mathematical model using sunscreen colloidal residues, seawater and R. philippinarum clams as differentiated compartments, is proposed in order to interpret both the kinetic pattern and the bioaccumulation of Zn in clams. Two kinetic laboratory experiments were conducted, both with and without clams exposed to sunscreen concentrations from 0 to 200 mg L-1. Both the lowest value of uptake rate coefficient obtained when 5 mg L-1 of sunscreen is added (0.00688 L g-1 d-1) and the highest obtained at sunscreen addition of 100 mg L-1 (0.0670 L g-1 d-1), predict a lower bioavailability of Zn in a complex medium such as the seawater-sunscreen mixtures, in comparison to those studied in the literature. The efflux rate coefficient from clams to seawater increased from 0 to 0.162 d-1 with the sunscreen concentrations. The estimated value of the inlet rate coefficient at all studied concentrations indicates that there is a negligible colloidal Zn uptake rate by clams, probably due to the great stability of the organic colloidal residue. An equilibrium shift to higher values of Zn in water is predicted due to the bioconcentration of Zn in clams. The kinetic model proposed with no constant Zn (aq) concentrations may contribute to a more realistic prediction of the bioaccumulation of Zn from sunscreens in clams.
Collapse
Affiliation(s)
- Araceli Rodríguez-Romero
- Departamento de Química Analítica, Facultad de Ciencias Del Mar y Ambientales, Instituto de Investigaciones Marinas (INMAR), Universidad de Cádiz, Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Gema Ruiz-Gutiérrez
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| | - Amandine Gaudron
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Berta Galan Corta
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| | - Antonio Tovar-Sánchez
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (CSIC). Campus Universitario Río San Pedro, 11519, Puerto Real, Spain.
| | - Javier R Viguri Fuente
- Green Engineering & Resources Research Group (GER), Departamento de Química e Ingeniería de Procesos y Recursos, ETSIIT, Universidad de Cantabria, Avda. de Los Castros 46, 39005, Santander, Cantabria, Spain.
| |
Collapse
|
11
|
Liu W, Li M, Li W, Keller AA, Slaveykova VI. Metabolic alterations in alga Chlamydomonas reinhardtii exposed to nTiO 2 materials. ENVIRONMENTAL SCIENCE. NANO 2022; 9:2922-2938. [PMID: 36093215 PMCID: PMC9367718 DOI: 10.1039/d2en00260d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
Abstract
Nano-sized titanium dioxide (nTiO2) is one of the most commonly used materials, however the knowledge about the molecular basis for metabolic and physiological changes in phytoplankton is yet to be explored. In the present study we use a combination of targeted metabolomics, transcriptomics and physiological response studies to decipher the metabolic perturbation in green alga Chlamydomonas reinhardtii exposed for 72 h to increasing concentrations (2, 20, 100 and 200 mg L-1) of nTiO2 with primary sizes of 5, 15 and 20 nm. Results show that the exposure to all three nTiO2 materials induced perturbation of the metabolism of amino acids, nucleotides, fatty acids, tricarboxylic acids, antioxidants but not in the photosynthesis. The alterations of the most responsive metabolites were concentration and primary size-dependent despite the significant formation of micrometer-size aggregates and their sedimentation. The metabolic perturbations corroborate the observed physiological responses and transcriptomic results and confirmed the importance of oxidative stress as a major toxicity mechanism for nTiO2. Transcriptomics revealed also an important influence of nTiO2 treatments on the transport, adenosine triphosphate binding cassette transporters, and metal transporters, suggesting a perturbation in a global nutrition of the microalgal cell, which was most pronounced for exposure to 5 nm nTiO2. The present study provides for the first-time evidence for the main metabolic perturbations in green alga C. reinhardtii exposed to nTiO2 and helps to improve biological understanding of the molecular basis of these perturbations.
Collapse
Affiliation(s)
- Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology Uni Carl Vogt, 66 Blvd Carl-Vogt CH 1211 Geneva Switzerland
| | - Mengting Li
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology Uni Carl Vogt, 66 Blvd Carl-Vogt CH 1211 Geneva Switzerland
| | - Weiwei Li
- Bren School of Environmental Science & Management, University of California Santa Barbara California 93106-5131 USA
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Santa Barbara California 93106-5131 USA
| | - Vera I Slaveykova
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology Uni Carl Vogt, 66 Blvd Carl-Vogt CH 1211 Geneva Switzerland
| |
Collapse
|
12
|
Lares BA, Vignatti AM, Echaniz SA, Gutiérrez MF. Effects of glyphosate on cladocera: A synthetic review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106232. [PMID: 35809430 DOI: 10.1016/j.aquatox.2022.106232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate [N-(phosphonomethyl) glycine] is currently the most widely used herbicide worldwide. Its application in agricultural and urban areas can lead to the dispersion and arrival to aquatic systems causing environmental deterioration with detrimental effects on the inhabiting biota. This is triggered not only by the herbicide per se but also its metabolite aminomethyl-phosphonic acid (AMPA), which can be highly toxic to many aquatic organisms. Water fleas are some of the key components in aquatic food webs, being one of the most sensitive groups to pollutants. Although being often used in standardized toxicity tests, they are comparatively less studied in relation to glyphosate exposition. Here we examine the current scientific literature regarding the acute and sublethal toxicity of glyphosate in the Cladocera taxonomic group, with special comparisons between the active ingredient (A.I) and formulations. Our results document a high variation in the lethal concentrations reported for different cladoceran species, due to the high diversity of products used in the toxicity tests. Most articles accounting for sublethal effects were performed on the standard Daphnia magna species. Reproduction, including decreased fecundity and delayed age of first reproduction, is usually one of the most severely affected individual traits. Although still scarce, studies documenting metabolic and genetic alterations might provide accurate information on the mechanisms of action of the herbicide.
Collapse
Affiliation(s)
- Betsabé Ailén Lares
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina.
| | - Alicia María Vignatti
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - Santiago Andrés Echaniz
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Santa Rosa, La Pampa, Argentina
| | - María Florencia Gutiérrez
- Instituto Nacional de Limnología, CONICET-UNL, Paraje El Pozo, Ciudad Universitaria UNL, Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramón Carrillo" (FBCB-UNL), Ciudad Universitaria, Santa Fe, Argentina.
| |
Collapse
|
13
|
Martins KP, Albertoni EF. Alternance of alternative stable states influence the functional diversity of microcrustaceans in a shallow subtropical lake. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karoline Pereira Martins
- Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais Laboratório de Limnologia Universidade Federal do Rio Grande‐FURG Av. Itália km 8 Rio Grande Rio Grande do Sul Brazil
| | - Edélti Faria Albertoni
- Programa de Pós Graduação em Biologia de Ambientes Aquáticos Continentais Laboratório de Limnologia Universidade Federal do Rio Grande‐FURG Av. Itália km 8 Rio Grande Rio Grande do Sul Brazil
| |
Collapse
|
14
|
Ghosh D, Das S, Gahlot VK, Pulimi M, Anand S, Chandrasekaran N, Rai PK, Mukherjee A. A comprehensive estimate of the aggregation and transport of nSiO 2 in static and dynamic aqueous systems. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:675-688. [PMID: 35388853 DOI: 10.1039/d2em00016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silicon dioxide nanoparticles (nSiO2) are extensively used in diverse fields and are inevitably released into the natural environment. Their overall aggregation behaviour in the environmental matrix can determine their fate and ecotoxicological effect on terrestrial and aquatic life. The current study systematically evaluates multiple parameters that can influence the stability of colloidal nSiO2 (47 nm) in the natural aquatic environment. At first, the influence of several hydrochemical parameters such as pH (5, 7, and 9), ionic strength (IS) (10, 50, and 100 mM), and humic acid (HA) (0.1, 1, and 10 mg L-1) was examined to understand the overall aggregation process of nSiO2. Furthermore, the synergistic and antagonistic effects of ionic strength and humic acid on the transport of nSiO2 in the aqueous environment were examined. Our experimental findings indicate that pH, ionic strength, and humic acid all had a profound influence on the sedimentation process of nSiO2. The experimental observations were corroborated by calculating the DLVO interaction energy profile, which was shown to be congruent with the transport patterns. The present study also highlights the influence of high and low shear forces on the sedimentation process of nSiO2 in the aqueous medium. The presence of shear force altered the collision efficiency and other interactive forces between the nanoparticles in the colloidal suspension. Under the experimental stirring conditions, a higher abundance of dispersed nSiO2 in the upper layer of the aqueous medium was noted. Additionally, the transport behaviour of nSiO2 was studied in a variety of natural water systems, including rivers, lakes, ground, and tap water. The study significantly contributes to our understanding of the different physical, chemical, and environmental aspects that can critically impact the sedimentation and spatial distribution of nSiO2 in static and dynamic aquatic ecosystems.
Collapse
Affiliation(s)
- Debayan Ghosh
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Vikas Kumar Gahlot
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Shalini Anand
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Pramod Kumar Rai
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
15
|
Corsi I, Desimone MF, Cazenave J. Building the Bridge From Aquatic Nanotoxicology to Safety by Design Silver Nanoparticles. Front Bioeng Biotechnol 2022; 10:836742. [PMID: 35350188 PMCID: PMC8957934 DOI: 10.3389/fbioe.2022.836742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/14/2022] [Indexed: 01/13/2023] Open
Abstract
Nanotechnologies have rapidly grown, and they are considered the new industrial revolution. However, the augmented production and wide applications of engineered nanomaterials (ENMs) and nanoparticles (NPs) inevitably lead to environmental exposure with consequences on human and environmental health. Engineered nanomaterial and nanoparticle (ENM/P) effects on humans and the environment are complex and largely depend on the interplay between their peculiar properties such as size, shape, coating, surface charge, and degree of agglomeration or aggregation and those of the receiving media/body. These rebounds on ENM/P safety and newly developed concepts such as the safety by design are gaining importance in the field of sustainable nanotechnologies. This article aims to review the critical characteristics of the ENM/Ps that need to be addressed in the safe by design process to develop ENM/Ps with the ablility to reduce/minimize any potential toxicological risks for living beings associated with their exposure. Specifically, we focused on silver nanoparticles (AgNPs) due to an increasing number of nanoproducts containing AgNPs, as well as an increasing knowledge about these nanomaterials (NMs) and their effects. We review the ecotoxicological effects documented on freshwater and marine species that demonstrate the importance of the relationship between the ENM/P design and their biological outcomes in terms of environmental safety.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jimena Cazenave
- Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI), CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
- *Correspondence: Jimena Cazenave,
| |
Collapse
|