1
|
Osborn JW, Tyshynsky R, Vulchanova L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annu Rev Physiol 2021; 83:429-450. [PMID: 33566672 DOI: 10.1146/annurev-physiol-031620-091656] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.
Collapse
Affiliation(s)
- John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA;
| | - Roman Tyshynsky
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Monaghan MLT, Bailey MA, Unwin RJ. Purinergic signalling in the kidney: In physiology and disease. Biochem Pharmacol 2020; 187:114389. [PMID: 33359067 DOI: 10.1016/j.bcp.2020.114389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Historically, the control of renal vascular and tubular function has, for the most part, concentrated on neural and endocrine regulation. However, in addition to these extrinsic factors, it is now appreciated that several complex humoral control systems exist within the kidney that can act in an autocrine and/or paracrine fashion. These paracrine systems complement neuroendocrine regulation by dynamically fine-tuning renal vascular and tubular function to buffer rapid changes in nephron perfusion and flow rate of tubular fluid. One of the most pervasive is the extracellular nucleotide/P2 receptor system, which is central to many of the intrinsic regulatory feedback loops within the kidney such as renal haemodynamic autoregulation and tubuloglomerular feedback (TGF). Although physiological actions of extracellular adenine nucleotides were reported almost 100 years ago, the conceptual framework for purinergic regulation of renal function owes much to the work of Geoffrey Burnstock. In this review, we reflect on our >20-year collaboration with Professor Burnstock and highlight the research that is still unlocking the potential of the renal purinergic system to understand and treat kidney disease.
Collapse
Affiliation(s)
- Marie-Louise T Monaghan
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Robert J Unwin
- The Department of Renal Medicine, University College London, United Kingdom.
| |
Collapse
|
3
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
5
|
Franco M, Bautista-Pérez R, Pérez-Méndez O. Purinergic receptors in tubulointerstitial inflammatory cells: a pathophysiological mechanism of salt-sensitive hypertension. Acta Physiol (Oxf) 2015; 214:75-87. [PMID: 25683649 DOI: 10.1111/apha.12471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 10/28/2014] [Accepted: 02/09/2015] [Indexed: 12/24/2022]
Abstract
Recent studies have suggested that both the tubulointerstitial inflammatory cells and the activation of purinergic receptors integrate common mechanisms that result in salt-sensitive hypertension. The basis of this hypothesis is that renal endothelial cells release ATP in response to shear stress in the setting of hypertension. It has been demonstrated that the over-expression and activation of the P2X7, P2Y12 and P2X1 receptors favour the elevation of blood pressure induced by high-salt intake. In addition, the release of interleukins and inflammatory mediators in the tubulointerstitial area appears to be related to the activation of these receptors. Renal vasoconstriction and tubulointerstitial injury develop as a result, which increase sodium reabsorption by epithelial cells. Consistent with these effects, the reduction of tubulointerstitial inflammation caused by immunosuppressants, such as mycophenolate mofetil, prevents the development of salt-sensitive hypertension. Also, P2X7-receptor knockout mice develop minor renal injury when hypertension is induced via the administration of deoxycorticosterone acetate and a high-salt diet. In the setting of angiotensin II-induced hypertension, which is an early stage in the development of salt-sensitive hypertension, an acute blockade with the specific, non-selective P2 antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid prevented the renal vasoconstriction induced by angiotensin II. In addition, it normalized glomerular haemodynamics and restored sodium excretion to control values. These findings suggest that chronic administration of P2 purinergic antagonists may prevent the deleterious effects of purinergic receptors during the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- M. Franco
- Renal Physiopathology Laboratory; Department of Nephrology; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| | - R. Bautista-Pérez
- Renal Physiopathology Laboratory; Department of Nephrology; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
- Molecular Biology Department; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| | - O. Pérez-Méndez
- Molecular Biology Department; Instituto Nacional de Cardiología Ignacio Chávez; México City Mexico
| |
Collapse
|
6
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|