1
|
Soares AG, Contreras J, Mironova E, Archer CR, Stockand JD, Abd El-Aziz TM. P2Y2 receptor decreases blood pressure by inhibiting ENaC. JCI Insight 2023; 8:e167704. [PMID: 37279066 PMCID: PMC10443811 DOI: 10.1172/jci.insight.167704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
Stimulating the Gq-coupled P2Y2 receptor (P2ry2) lowers blood pressure. Global knockout of P2ry2 increases blood pressure. Vascular and renal mechanisms are believed to participate in P2ry2 effects on blood pressure. To isolate the role of the kidneys in P2ry2 effects on blood pressure and to reveal the molecular and cellular mechanisms of this action, we test here the necessity of the P2ry2 and the sufficiency of Gq-dependent signaling in renal principal cells to the regulation of the epithelial Na+ channel (ENaC), sodium excretion, and blood pressure. Activating P2ry2 in littermate controls but not principal cell-specific P2ry2-knockout mice decreased the activity of ENaC in renal tubules. Moreover, deletion of P2ry2 in principal cells abolished increases in sodium excretion in response to stimulation of P2ry2 and compromised the normal ability to excrete a sodium load. Consequently, principal cell-specific knockout of P2ry2 prevented decreases in blood pressure in response to P2ry2 stimulation in the deoxycorticosterone acetate-salt (DOCA-salt) model of hypertension. In wild-type littermate controls, such stimulation decreased blood pressure in this model of hypertension by promoting a natriuresis. Pharmacogenetic activation of Gq exclusively in principal cells using targeted expression of Gq-designer receptors exclusively activated by designer drugs and clozapine N-oxide decreased the activity of ENaC in renal tubules, promoting a natriuresis that lowered elevated blood pressure in the DOCA-salt model of hypertension. These findings demonstrate that the kidneys play a major role in decreasing blood pressure in response to P2ry2 activation and that inhibition of ENaC activity in response to P2ry2-mediated Gq signaling lowered blood pressure by increasing renal sodium excretion.
Collapse
Affiliation(s)
- Antonio G. Soares
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jorge Contreras
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Crystal R. Archer
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - James D. Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Tarek Mohamed Abd El-Aziz
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Zoology Department, Faculty of Science, Minia University, El-Minia, Egypt
| |
Collapse
|
2
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
3
|
Belardin LB, Brochu K, Légaré C, Battistone MA, Breton S. Purinergic signaling in the male reproductive tract. Front Endocrinol (Lausanne) 2022; 13:1049511. [PMID: 36419764 PMCID: PMC9676935 DOI: 10.3389/fendo.2022.1049511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Purinergic receptors are ubiquitously expressed throughout the body and they participate in the autocrine and paracrine regulation of cell function during normal physiological and pathophysiological conditions. Extracellular nucleotides activate several types of plasma membrane purinergic receptors that form three distinct families: P1 receptors are activated by adenosine, P2X receptors are activated by ATP, and P2Y receptors are activated by nucleotides including ATP, ADP, UTP, UDP, and UDP-glucose. These specific pharmacological fingerprints and the distinct intracellular signaling pathways they trigger govern a large variety of cellular responses in an organ-specific manner. As such, purinergic signaling regulates several physiological cell functions, including cell proliferation, differentiation and death, smooth muscle contraction, vasodilatation, and transepithelial transport of water, solute, and protons, as well as pathological pathways such as inflammation. While purinergic signaling was first discovered more than 90 years ago, we are just starting to understand how deleterious signals mediated through purinergic receptors may be involved in male infertility. A large fraction of male infertility remains unexplained illustrating our poor understanding of male reproductive health. Purinergic signaling plays a variety of physiological and pathophysiological roles in the male reproductive system, but our knowledge in this context remains limited. This review focuses on the distribution of purinergic receptors in the testis, epididymis, and vas deferens, and their role in the establishment and maintenance of male fertility.
Collapse
Affiliation(s)
- Larissa Berloffa Belardin
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Kéliane Brochu
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Christine Légaré
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Maria Agustina Battistone
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvie Breton
- Centre Hospitalier Universitaire de Québec - Research Centre and Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Maynard JP, Sfanos KS. P2 purinergic receptor dysregulation in urologic disease. Purinergic Signal 2022; 18:267-287. [PMID: 35687210 PMCID: PMC9184359 DOI: 10.1007/s11302-022-09875-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
P2 purinergic receptors are involved in the normal function of the kidney, bladder, and prostate via signaling that occurs in response to extracellular nucleotides. Dysregulation of these receptors is common in pathological states and often associated with disease initiation, progression, or aggressiveness. Indeed, P2 purinergic receptor expression is altered across multiple urologic disorders including chronic kidney disease, polycystic kidney disease, interstitial cystitis, urinary incontinence, overactive bladder syndrome, prostatitis, and benign prostatic hyperplasia. P2 purinergic receptors are likewise indirectly associated with these disorders via receptor-mediated inflammation and pain, a common characteristic across most urologic disorders. Furthermore, select P2 purinergic receptors are overexpressed in urologic cancer including renal cell carcinoma, urothelial carcinoma, and prostate adenocarcinoma, and pre-clinical studies depict P2 purinergic receptors as potential therapeutic targets. Herein, we highlight the compelling evidence for the exploration of P2 purinergic receptors as biomarkers and therapeutic targets in urologic cancers and other urologic disease. Likewise, there is currently optimism for P2 purinergic receptor-targeted therapeutics for the treatment of inflammation and pain associated with urologic diseases. Further exploration of the common pathways linking P2 purinergic receptor dysregulation to urologic disease might ultimately help in gaining new mechanistic insight into disease processes and therapeutic targeting.
Collapse
Affiliation(s)
- Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Himmel NJ, Rogers RT, Redd SK, Wang Y, Blount MA. Purinergic signaling is enhanced in the absence of UT-A1 and UT-A3. Physiol Rep 2021; 9:e14636. [PMID: 33369887 PMCID: PMC7769175 DOI: 10.14814/phy2.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
ATP is an important paracrine regulator of renal tubular water and urea transport. The activity of P2Y2 , the predominant P2Y receptor of the medullary collecting duct, is mediated by ATP, and modulates urinary concentration. To investigate the role of purinergic signaling in the absence of urea transport in the collecting duct, we studied wild-type (WT) and UT-A1/A3 null (UT-A1/A3 KO) mice in metabolic cages to monitor urine output, and collected tissue samples for analysis. We confirmed that UT-A1/A3 KO mice are polyuric, and concurrently observed lower levels of urinary cAMP as compared to WT, despite elevated serum vasopressin (AVP) levels. Because P2Y2 inhibits AVP-stimulated transport by dampening cAMP synthesis, we suspected that, similar to other models of AVP-resistant polyuria, purinergic signaling is increased in UT-A1/A3 KO mice. In fact, we observed that both urinary ATP and purinergic-mediated prostanoid (PGE2 ) levels were elevated. Collectively, our data suggest that the reduction of medullary osmolality due to the lack of UT-A1 and UT-A3 induces an AVP-resistant polyuria that is possibly exacerbated by, or at least correlated with, enhanced purinergic signaling.
Collapse
Affiliation(s)
- Nathaniel J. Himmel
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Richard T. Rogers
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Sara K. Redd
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Yirong Wang
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Mitsi A. Blount
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
- Department of PhysiologyEmory University School of MedicineAtlantaGAUSA
| |
Collapse
|
6
|
Monaghan MLT, Bailey MA, Unwin RJ. Purinergic signalling in the kidney: In physiology and disease. Biochem Pharmacol 2020; 187:114389. [PMID: 33359067 DOI: 10.1016/j.bcp.2020.114389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Historically, the control of renal vascular and tubular function has, for the most part, concentrated on neural and endocrine regulation. However, in addition to these extrinsic factors, it is now appreciated that several complex humoral control systems exist within the kidney that can act in an autocrine and/or paracrine fashion. These paracrine systems complement neuroendocrine regulation by dynamically fine-tuning renal vascular and tubular function to buffer rapid changes in nephron perfusion and flow rate of tubular fluid. One of the most pervasive is the extracellular nucleotide/P2 receptor system, which is central to many of the intrinsic regulatory feedback loops within the kidney such as renal haemodynamic autoregulation and tubuloglomerular feedback (TGF). Although physiological actions of extracellular adenine nucleotides were reported almost 100 years ago, the conceptual framework for purinergic regulation of renal function owes much to the work of Geoffrey Burnstock. In this review, we reflect on our >20-year collaboration with Professor Burnstock and highlight the research that is still unlocking the potential of the renal purinergic system to understand and treat kidney disease.
Collapse
Affiliation(s)
- Marie-Louise T Monaghan
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Robert J Unwin
- The Department of Renal Medicine, University College London, United Kingdom.
| |
Collapse
|
7
|
Teixeira GP, Faria RX. Influence of purinergic signaling on glucose transporters: A possible mechanism against insulin resistance? Eur J Pharmacol 2020; 892:173743. [PMID: 33220279 DOI: 10.1016/j.ejphar.2020.173743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023]
Abstract
Metabolic disorders, such as insulin resistance, affect many people worldwide due to the prevalence of obesity and type 2 diabetes, which are pathologies that impair glycemic metabolism. Glucose is the primary energetic substrate of the body and is essential for cellular function. As the cell membrane is not permeable to glucose molecules, there are two distinct groups of glucose transporters: sodium-glucose-linked transporters (SGLTs) and the glucose transporter (GLUT) family. These transporters facilitate the entry of glucose into the bloodstream or cytoplasm where it functions in the production of adenosine 5 ́-triphosphate (ATP). This nucleotide acts in several cellular mechanisms, such as protein phosphorylation and cellular immune processes. ATP directly and indirectly acts as an agonist for purinergic receptors in high concentrations in the extracellular environment. Composed by P1 and P2 groups, the purinoreceptors cover several cellular mechanisms involving cytokines, tumors, and metabolic signaling pathways. Previous publications have indicated that the purinergic signaling activity in insulin resistance and glucose transporters modulates relevant actions on the deregulations that can affect glycemic homeostasis. Thus, this review focuses on the pharmacological influence of purinergic signaling on the modulation of glucose transporters, aiming for a new way to combat insulin resistance and other metabolic disorders.
Collapse
Affiliation(s)
- Guilherme Pegas Teixeira
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute (IOC), Avenida Brasil, 4365, CEP, Rio de Janeiro, Fiocruz, 21040-900, Brazil.
| | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute (IOC), Avenida Brasil, 4365, CEP, Rio de Janeiro, Fiocruz, 21040-900, Brazil.
| |
Collapse
|
8
|
DeLalio LJ, Masati E, Mendu S, Ruddiman CA, Yang Y, Johnstone SR, Milstein JA, Keller TCS, Weaver RB, Guagliardo NA, Best AK, Ravichandran KS, Bayliss DA, Sequeira-Lopez MLS, Sonkusare SN, Shu XH, Desai B, Barrett PQ, Le TH, Gomez RA, Isakson BE. Pannexin 1 channels in renin-expressing cells influence renin secretion and blood pressure homeostasis. Kidney Int 2020; 98:630-644. [PMID: 32446934 PMCID: PMC7483468 DOI: 10.1016/j.kint.2020.04.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Kidney function and blood pressure homeostasis are regulated by purinergic signaling mechanisms. These autocrine/paracrine signaling pathways are initiated by the release of cellular ATP, which influences kidney hemodynamics and steady-state renin secretion from juxtaglomerular cells. However, the mechanism responsible for ATP release that supports tonic inputs to juxtaglomerular cells and regulates renin secretion remains unclear. Pannexin 1 (Panx1) channels localize to both afferent arterioles and juxtaglomerular cells and provide a transmembrane conduit for ATP release and ion permeability in the kidney and the vasculature. We hypothesized that Panx1 channels in renin-expressing cells regulate renin secretion in vivo. Using a renin cell-specific Panx1 knockout model, we found that male Panx1 deficient mice exhibiting a heightened activation of the renin-angiotensin-aldosterone system have markedly increased plasma renin and aldosterone concentrations, and elevated mean arterial pressure with altered peripheral hemodynamics. Following ovariectomy, female mice mirrored the male phenotype. Furthermore, constitutive Panx1 channel activity was observed in As4.1 renin-secreting cells, whereby Panx1 knockdown reduced extracellular ATP accumulation, lowered basal intracellular calcium concentrations and recapitulated a hyper-secretory renin phenotype. Moreover, in response to stress stimuli that lower blood pressure, Panx1-deficient mice exhibited aberrant "renin recruitment" as evidenced by reactivation of renin expression in pre-glomerular arteriolar smooth muscle cells. Thus, renin-cell Panx1 channels suppress renin secretion and influence adaptive renin responses when blood pressure homeostasis is threatened.
Collapse
Affiliation(s)
- Leon J DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ester Masati
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Suresh Mendu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yang Yang
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jenna A Milstein
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Rachel B Weaver
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Nick A Guagliardo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angela K Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Maria Luisa S Sequeira-Lopez
- Pediatric Center of Excellence in Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Swapnil N Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiaohong H Shu
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Bimal Desai
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Paula Q Barrett
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thu H Le
- Department of Medicine, Division of Nephrology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - R Ariel Gomez
- Pediatric Center of Excellence in Nephrology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
9
|
Gerbino A, De Zio R, Russo D, Milella L, Milano S, Procino G, Pusch M, Svelto M, Carmosino M. Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka. Sci Rep 2020; 10:10268. [PMID: 32581267 PMCID: PMC7314819 DOI: 10.1038/s41598-020-67219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/02/2020] [Indexed: 12/03/2022] Open
Abstract
The physiological role of the renal ClC-Ka/ClC-K1 channels is to confer a high Cl- permeability to the thin Ascending Limb of Henle (tAL), which in turn is essential for establishing the high osmolarity of the renal medulla that drives water reabsorption from collecting ducts. Here, we investigated by whole-cell patch-clamp measurements on HEK293 cells co-expressing ClC-Ka (tagged with GFP) and the accessory subunit barttin (tagged with m-Cherry) the effect of a natural diuretic extract from roots of Dandelion (DRE), and other compounds activating PKC, such as ATP, on ClC-Ka activity and its membrane localization. Treatment with 400 µg/ml DRE significantly inhibited Cl- currents time-dependently within several minutes. Of note, the same effect on Cl- currents was obtained upon treatment with 100 µM ATP. Pretreatment of cells with either the intracellular Ca2+ chelator BAPTA-AM (30 μM) or the PKC inhibitor Calphostin C (100 nM) reduced the inhibitory effect of DRE. Conversely, 1 µM of phorbol meristate acetate (PMA), a specific PKC activator, mimicked the inhibitory effect of DRE on ClC-Ka. Finally, we found that pretreatment with 30 µM Heclin, an E3 ubiquitin ligase inhibitor, did not revert DRE-induced Cl- current inhibition. In agreement with this, live-cell confocal analysis showed that DRE treatment did not induce ClC-Ka internalization. In conclusion, we demonstrate for the first time that the activity of ClC-Ka in renal cells could be significantly inhibited by the activation of PKC elicited by classical maneuvers, such as activation of purinergic receptors, or by exposure to herbal extracts that activates a PKC-dependent pathway. Overall, we provide both new information regarding the regulation of ClC-Ka and a proof-of-concept study for the use of DRE as new diuretic.
Collapse
Affiliation(s)
- Andrea Gerbino
- National Research Council, Institute of Biomembrane and Bioenergetics, Bari, IT, Italy.,Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Roberta De Zio
- Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, Potenza, IT, Italy
| | - Luigi Milella
- Department of Sciences, University of Basilicata, Potenza, IT, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Michael Pusch
- National Research Council, Institute of Biophysics, Genova, IT, Italy
| | - Maria Svelto
- National Research Council, Institute of Biomembrane and Bioenergetics, Bari, IT, Italy.,Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, IT, Italy. .,Department of Biosciences, Biotechnologies and Biopharamceutics, University of Bari, Bari, IT, Italy.
| |
Collapse
|
10
|
Arkhipov SN, Potter DL, Geurts AM, Pavlov TS. Knockout of P2rx7 purinergic receptor attenuates cyst growth in a rat model of ARPKD. Am J Physiol Renal Physiol 2019; 317:F1649-F1655. [PMID: 31630543 DOI: 10.1152/ajprenal.00395.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The severity of polycystic kidney diseases (PKD) depends on the counterbalancing of genetic predisposition and environmental factors exerting permissive or protective influence on cyst development. One poorly characterized phenomenon in the cystic epithelium is abnormal purinergic signaling. Earlier experimental studies revealed the high importance of the ionotropic P2X receptors (particularly, P2X7) in the pathophysiology of the cyst wall. To study mechanisms of P2X7 involvement in cyst growth and aspects of targeting these receptors in PKD treatment we performed a CRISPR/SpCas9-mediated global knockout of the P2rx7 gene in PCK rats, a model of autosomal recessive PKD (ARPKD). A single base insertion in exon 2 of the P2rx7 gene in the renal tissues of homozygous mutant animals leads to lack of P2X7 protein that did not affect their viability or renal excretory function. However, PCK.P2rx7 rats demonstrated slower cyst growth (but not formation of new cysts) compared with heterozygous and PCK.P2rx7+ littermates. P2X7 receptors are known to activate pannexin-1, a plasma channel capable of releasing ATP, and we found here that pannexin-1 expression in the cystic epithelium is significantly higher than in nondilated tubules. P2X7 deficiency reduces renal pannexin-1 protein expression and daily urinary ATP excretion. Patch-clamp analysis revealed that lack of P2X7 increases epithelial sodium channel activity in renal tissues and restores impaired channel activity in cysts. Interpretation of our current data in the context of earlier studies strongly suggests that P2X7 contributes to cyst growth by increasing pannexin-1-dependent pathogenic ATP release into the lumen and reduction of sodium reabsorption across the cyst walls.
Collapse
Affiliation(s)
- Sergey N Arkhipov
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan
| | - D'Anna L Potter
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tengis S Pavlov
- Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
11
|
Mironova E, Suliman F, Stockand JD. Renal Na + excretion consequent to pharmacogenetic activation of G q-DREADD in principal cells. Am J Physiol Renal Physiol 2019; 316:F758-F767. [PMID: 30724104 PMCID: PMC6483033 DOI: 10.1152/ajprenal.00612.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Stimulation of metabotropic Gq-coupled purinergic P2Y2 receptors decreases activity of the epithelial Na+ channel (ENaC) in renal principal cells of the distal nephron. The physiological consequences of P2Y2 receptor signaling disruption in the P2Y2 receptor knockout mouse are decreased Na+ excretion and increased arterial blood pressure. However, because of the global nature of this knockout model, the quantitative contribution of ENaC and distal nephron compared with that of upstream renal vascular and tubular elements to changes in urinary excretion and arterial blood pressure is obscure. Moreover, it is uncertain whether stimulation of P2Y2 receptor inhibition of ENaC is sufficient to drive renal (urinary) Na+ excretion (UNaV). Here, using a pharmacogenetic approach and selective agonism of the P2Y2 receptor, we test the sufficiency of targeted stimulation of Gq signaling in principal cells of the distal nephron and P2Y2 receptors to increase UNaV. Selective stimulation of the P2Y2 receptor with the ligand MRS2768 decreased ENaC activity in freshly isolated tubules (as assessed by patch-clamp electrophysiology) and increased UNaV (as assessed in metabolic cages). Similarly, selective agonism of hM3Dq-designer receptors exclusively activated by designer drugs (DREADD) restrictively expressed in principal cells of the distal nephron with clozapine- N-oxide decreased ENaC activity and, consequently, increased UNaV. Clozapine- N-oxide, when applied to control littermates, failed to affect ENaC and UNaV. This study represents the first use of pharmacogenetic (DREADD) technology in the renal tubule and demonstrated that selective activation of the P2Y2 receptor and Gq signaling in principal cells is sufficient to promote renal salt excretion.
Collapse
Affiliation(s)
- Elena Mironova
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Faroug Suliman
- Division of Nephrology, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
12
|
Characterization of purinergic receptor expression in ARPKD cystic epithelia. Purinergic Signal 2018; 14:485-497. [PMID: 30417216 DOI: 10.1007/s11302-018-9632-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Polycystic kidney diseases (PKDs) are a group of inherited nephropathies marked by formation of fluid-filled cysts along the nephron. Growing evidence suggests that in the kidney formation of cysts and alteration of cystic electrolyte transport are associated with purinergic signaling. PCK/CrljCrl-Pkhd1pck/CRL (PCK) rat, an established model of autosomal recessive polycystic kidney disease (ARPKD), was used here to test this hypothesis. Cystic fluid of PCK rats and their cortical tissues exhibited significantly higher levels of ATP compared to Sprague Dawley rat kidney cortical interstitium as assessed by highly sensitive ATP enzymatic biosensors. Confocal calcium imaging of the freshly isolated cystic monolayers revealed a stronger response to ATP in a higher range of concentrations (above 100 μM). The removal of extracellular calcium results in the profound reduction of the ATP evoked transient, which suggests calcium entry into the cyst-lining cells is occurring via the extracellular (ionotropic) P2X channels. Further use of pharmacological agents (α,β-methylene-ATP, 5-BDBD, NF449, isoPPADS, AZ10606120) and immunofluorescent labeling of isolated cystic epithelia allowed us to narrow down potential candidate receptors. In conclusion, our ex vivo study provides direct evidence that the profile of P2 receptors is shifted in ARPKD cystic epithelia in an age-related manner towards prevalence of P2X4 and/or P2X7 receptors, which opens new avenues for the treatment of this disease.
Collapse
|
13
|
Clopidogrel Partially Counteracts Adenosine-5'-Diphosphate Effects on Blood Pressure and Renal Hemodynamics and Excretion in Rats. Am J Med Sci 2018; 356:287-295. [PMID: 30293555 DOI: 10.1016/j.amjms.2018.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adenosine-5'-diphosphate (ADP) can influence intrarenal vascular tone and tubular transport, partly through activation of purine P2Y12 receptors (P2Y12-R), but their actual in vivo role in regulation of renal circulation and excretion remains unclear. METHODS The effects of intravenous ADP infusions of 2-8mg/kg/hour were examined in anesthetized Wistar rats that were untreated or chronically pretreated with clopidogrel, 20mg/kg/24hours, a selective P2Y12-R antagonist. Renal blood flow (transonic probe) and perfusion of the superficial cortex and medulla (laser-Doppler fluxes) were measured, together with urine osmolality (Uosm), diuresis (V), total solute (UosmV), sodium (UNaV) and potassium (UKV) excretion. RESULTS ADP induced a gradual, dose-dependent 15% decrease of mean arterial pressure, a sustained increase of renal blood flow and a 25% decrease in renal vascular resistance. Clopidogrel pretreatment attenuated the mean arterial pressure decrease, and did not significantly alter renal blood flow or renal vascular resistance. Renal medullary perfusion was not affected by ADP whereas Uosm decreased from 1,080 ± 125 to 685 ± 75 mosmol/kg H20. There were also substantial significant decreases in UosmV, UNaV and UKV; all these changes were attenuated or abolished by clopidogrel pretreatment. Two-weeks' clopidogrel treatment decreased V while UosmUosmV and UNaV increased, most distinctly after 7 days. Acute clopidogrel infusion modestly decreased mean arterial pressure and significantly increased outer- and decreased inner-medullary perfusion. CONCLUSIONS Our functional studies show that ADP can cause systemic and renal vasodilation and a decrease in mean arterial pressure, an action at least partly mediated by P2Y12 receptors. We confirmed that these receptors exert tonic action to reduce tubular water reabsorption and urine concentration.
Collapse
|
14
|
Battistone MA, Nair AV, Barton CR, Liberman RN, Peralta MA, Capen DE, Brown D, Breton S. Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 2017; 29:545-556. [PMID: 29222395 DOI: 10.1681/asn.2017060643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Acidosis is an important complication of AKI and CKD. Renal intercalated cells (ICs) express the proton pumping vacuolar H+-ATPase (V-ATPase) and are extensively involved in acid-base homeostasis. H+ secretion in type A intercalated cells (A-ICs) is regulated by apical vesicle recycling and stimulated by cAMP. In other cell types, cAMP is increased by extracellular agonists, including adenosine, through purinergic receptors. Adenosine is a Food and Drug Administration-approved drug, but very little is known about the effect of adenosine on IC function. Therefore, we investigated the role of adenosine in the regulation of V-ATPase in ICs. Intravenous treatment of mice with adenosine or agonists of ADORA2A and ADORA2B purinergic P1 receptors induced V-ATPase apical membrane accumulation in medullary A-ICs but not in cortical A-ICs or other IC subtypes. Both receptors are located in A-IC apical membranes, and adenosine injection increased urine adenosine concentration and decreased urine pH. Cell fractionation showed that adenosine or an ADORA2A or ADORA2B agonist induced V-ATPase translocation from vesicles to the plasma membrane and increased protein kinase A (PKA)-dependent protein phosphorylation in purified medullary ICs that were isolated from mice. Either ADORA2A or ADORA2B antagonists or the PKA inhibitor mPKI blocked these effects. Finally, a fluorescence pH assay showed that adenosine activates V-ATPase in isolated medullary ICs. Our study shows that medullary A-ICs respond to luminal adenosine through ADORA2A and ADORA2B receptors in a cAMP/PKA pathway-dependent mechanism to induce V-ATPase-dependent H+ secretion.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claire R Barton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel N Liberman
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Peralta
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Gohar EY, Kasztan M, Pollock DM. Interplay between renal endothelin and purinergic signaling systems. Am J Physiol Renal Physiol 2017; 313:F666-F668. [PMID: 28179257 DOI: 10.1152/ajprenal.00639.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
Alterations in extracellular fluid volume regulation and sodium balance may result in the development and maintenance of salt-dependent hypertension, a major risk factor for cardiovascular disease. Numerous pathways contribute to the regulation of sodium excretion and blood pressure, including endothelin and purinergic signaling. Increasing evidence suggests a link between purinergic receptor activation and endothelin production within the renal collecting duct as a means of promoting natriuresis. A better understanding of the relationship between these two systems, especially in regard to sodium homeostasis, will fill a significant knowledge gap and may provide novel antihypertensive treatment options. Therefore, this review focuses on the cross talk between endothelin and purinergic signaling as it relates to the renal regulation of sodium and blood pressure homeostasis.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Morla L, Edwards A, Crambert G. New insights into sodium transport regulation in the distal nephron: Role of G-protein coupled receptors. World J Biol Chem 2016; 7:44-63. [PMID: 26981195 PMCID: PMC4768124 DOI: 10.4331/wjbc.v7.i1.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The renal handling of Na+ balance is a major determinant of the blood pressure (BP) level. The inability of the kidney to excrete the daily load of Na+ represents the primary cause of chronic hypertension. Among the different segments that constitute the nephron, those present in the distal part (i.e., the cortical thick ascending limb, the distal convoluted tubule, the connecting and collecting tubules) play a central role in the fine-tuning of renal Na+ excretion and are the target of many different regulatory processes that modulate Na+ retention more or less efficiently. G-protein coupled receptors (GPCRs) are crucially involved in this regulation and could represent efficient pharmacological targets to control BP levels. In this review, we describe both classical and novel GPCR-dependent regulatory systems that have been shown to modulate renal Na+ absorption in the distal nephron. In addition to the multiplicity of the GPCR that regulate Na+ excretion, this review also highlights the complexity of these different pathways, and the connections between them.
Collapse
|
17
|
Van Beusecum J, Inscho EW. Regulation of renal function and blood pressure control by P2 purinoceptors in the kidney. Curr Opin Pharmacol 2015; 21:82-8. [PMID: 25616035 PMCID: PMC5515225 DOI: 10.1016/j.coph.2015.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/24/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
Kidneys are important regulators of extracellular fluid volume (ECFV) homeostasis. ECFV is a key regulatory component of long-term blood pressure control influenced by controlling tubular sodium transport. In recent decades, renal P2 purinoceptors (P2 receptors) have come to the forefront as a mechanism for regulating ECFV. P2 receptors are broadly distributed in renal tubular and vascular elements where they confer segmental control of renal vascular resistance, autoregulation, and tubular reabsorption. Activation or impairment of renal P2 purinoceptors is implicated in the regulating blood pressure or causing renal pathologies including hypertension. In this brief review, we discuss the role of renal vascular and tubular P2 purinoceptors in the regulation of renal hemodynamics, maintenance of ECFV, regulation of sodium reabsorption and the control of blood pressure.
Collapse
Affiliation(s)
- Justin Van Beusecum
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Azroyan A, Cortez-Retamozo V, Bouley R, Liberman R, Ruan YC, Kiselev E, Jacobson KA, Pittet MJ, Brown D, Breton S. Renal intercalated cells sense and mediate inflammation via the P2Y14 receptor. PLoS One 2015; 10:e0121419. [PMID: 25799465 PMCID: PMC4370445 DOI: 10.1371/journal.pone.0121419] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/01/2015] [Indexed: 12/31/2022] Open
Abstract
Uncontrolled inflammation is one of the leading causes of kidney failure. Pro-inflammatory responses can occur in the absence of infection, a process called sterile inflammation. Here we show that the purinergic receptor P2Y14 (GPR105) is specifically and highly expressed in collecting duct intercalated cells (ICs) and mediates sterile inflammation in the kidney. P2Y14 is activated by UDP-glucose, a damage-associated molecular pattern molecule (DAMP) released by injured cells. We found that UDP-glucose increases pro-inflammatory chemokine expression in ICs as well as MDCK-C11 cells, and UDP-glucose activates the MEK1/2-ERK1/2 pathway in MDCK-C11 cells. These effects were prevented following inhibition of P2Y14 with the small molecule PPTN. Tail vein injection of mice with UDP-glucose induced the recruitment of neutrophils to the renal medulla. This study identifies ICs as novel sensors, mediators and effectors of inflammation in the kidney via P2Y14.
Collapse
Affiliation(s)
- Anie Azroyan
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Virna Cortez-Retamozo
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richard Bouley
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rachel Liberman
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ye Chun Ruan
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Evgeny Kiselev
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis Brown
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sylvie Breton
- Center for Systems Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mironova E, Boiko N, Bugaj V, Kucher V, Stockand JD. Regulation of Na+ excretion and arterial blood pressure by purinergic signalling intrinsic to the distal nephron: consequences and mechanisms. Acta Physiol (Oxf) 2015; 213:213-21. [PMID: 25154328 DOI: 10.1111/apha.12372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 12/13/2022]
Abstract
Discretionary control of Na(+) excretion is a key component of the regulation of arterial blood pressure in mammals. Sodium excretion is fine-tuned in the aldosterone-sensitive distal nephron by the activity of the epithelial Na(+) channel (ENaC). Here, ENaC functions as a final effector of the renin-angiotensin-aldosterone system (RAAS) during negative feedback control of blood pressure. Mutations affecting ENaC activity and abnormal regulation of this channel affect blood pressure through pathological changes to Na(+) excretion. Recent evidence demonstrates that powerful signalling pathways function in parallel with the RAAS to modulate ENaC activity and blood pressure. An inclusive paradigm is emerging with respect to regulation of blood pressure where ENaC serves as a critical point of convergence for several important signalling systems that affect renal Na(+) excretion. A robust inhibitory purinergic signalling system intrinsic to the distal nephron dynamically regulates ENaC through paracrine ATP signalling via the metabotropic P2Y2 purinergic receptor to properly match urinary Na(+) excretion to dietary Na(+) intake. This enables blood pressure to be maintained within a normal range despite broad changes in dietary Na(+) consumption. Loss of purinergic inhibition of ENaC increases blood pressure by causing inappropriate Na(+) excretion. In contrast, stimulation of the P2Y2 receptor promotes natriuresis and a decrease in blood pressure. Such observations identify purinergic signalling in the distal nephron as possibly causative, when dysfunctional, for certain forms of elevated blood pressure, and as a possible therapeutic target for the treatment of elevated blood pressure particularly that associated with salt sensitivity.
Collapse
Affiliation(s)
- E. Mironova
- Department of Physiology; University of Texas Health Science Center; San Antonio TX USA
| | - N. Boiko
- Department of Physiology; University of Texas Health Science Center; San Antonio TX USA
| | - V. Bugaj
- Department of Physiology; University of Texas Health Science Center; San Antonio TX USA
| | - V. Kucher
- Department of Physiology; University of Texas Health Science Center; San Antonio TX USA
| | - J. D. Stockand
- Department of Physiology; University of Texas Health Science Center; San Antonio TX USA
| |
Collapse
|
20
|
Localization and expression profile of Group I and II Activators of G-protein Signaling in the kidney. J Mol Histol 2014; 46:123-36. [PMID: 25533045 DOI: 10.1007/s10735-014-9605-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Activators of G-protein Signaling (AGS) are a family of accessory proteins that were discovered as modulators of heterotrimeric G-protein subunits. The primary aim of the present study was to localize Group I and II AGS proteins and determine the renal expression profile using immunohistochemistry and quantitative RT-PCR, respectively, during normal and injured states of the kidney. Group I AGS1 was found to be predominantly localized to the proximal tubule, Group II AGS3 and AGS5 were exclusively localized to the distal tubular segments, and Group II AGS6 was ubiquitously expressed in every nephron segment of the rodent kidney. In rat kidneys following ischemia-reperfusion injury (IRI), Group I AGS1 mRNA was dramatically increased after 24 h by fivefold (P < 0.05), whereas Group II AGS3 and AGS4 mRNA was significantly decreased at the same time point (P < 0.05). No significant change in the transcript levels were detected at other time points for any of the AGS genes between control and IRI groups. In polycystic diseased kidneys, mRNA levels for AGS3, AGS4 and AGS6 was significantly increased (P < 0.05) by 75-80 % in PCK rat kidneys. The identification of Group I and II AGS mRNA and protein in the kidney may provide insight into the potential mechanism of action during normal and varying states of renal disease or injury.
Collapse
|
21
|
Nakagawa S, Omura T, Yonezawa A, Yano I, Nakagawa T, Matsubara K. Extracellular nucleotides from dying cells act as molecular signals to promote wound repair in renal tubular injury. Am J Physiol Renal Physiol 2014; 307:F1404-11. [PMID: 25354940 DOI: 10.1152/ajprenal.00196.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Acute kidney injury (AKI) often correlates with poor prognosis and is followed by various severe unfavorable systemic outcomes. It is important to understand the pathophysiology of AKI for the development of novel therapeutic approaches toward promoting renal regeneration after injury. Recent studies have indicated that AKI-induced tubular cell death plays an active role in the onset of tissue regeneration; however, the mechanisms underlying renal tubular repair after injury have yet to be understood. In the present study, we explored molecules that might serve as "danger" signals in mediating tubular regeneration. Kidneys of rats systemically administered the nephrotoxicant cisplatin (to induce AKI) exhibited massive cell proliferation. The proportion of proliferating cells in the total cell distribution was highest in the outer stripe of the outer medulla coincided with where the tubular damage was the most severe in this study. This finding suggests that soluble factors may have been released from damaged cells to stimulate the proliferation of neighboring tubular epithelial cells. In elucidating the mechanism of dying cell-to-surviving cell communication using normal rat kidney NRK-52E epithelial cells, we found a significant increase in ATP levels in supernatants of these cells after the induction of cell death using ultraviolet irradiation. Furthermore, treatment of conditioned supernatants with apyrase or suramin, which inhibits purinergic signaling, resulted in significant decreases in cell proliferation and migration activities. These results demonstrate a novel role for extracellular nucleotides, probably as danger signals in aggravating tubular regeneration after AKI.
Collapse
Affiliation(s)
- Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ikuko Yano
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
22
|
Carrisoza-Gaytan R, Liu Y, Flores D, Else C, Lee HG, Rhodes G, Sandoval RM, Kleyman TR, Lee FYI, Molitoris B, Satlin LM, Rohatgi R. Effects of biomechanical forces on signaling in the cortical collecting duct (CCD). Am J Physiol Renal Physiol 2014; 307:F195-204. [PMID: 24872319 DOI: 10.1152/ajprenal.00634.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm(2) of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD.
Collapse
Affiliation(s)
| | - Yu Liu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel Flores
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York
| | - Cindy Else
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Heon Goo Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - George Rhodes
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Ruben M Sandoval
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Francis Young-In Lee
- Department of Orthopedics, Robert Carroll and Jane Chace Carroll Laboratories, Columbia College of Physicians and Surgeons, New York, New York
| | - Bruce Molitoris
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, James J. Peters Veterans Affairs Medical Center, New York, New York;
| |
Collapse
|