1
|
Qiu J, Ahmad F, Ma J, Sun Y, Liu Y, Xiao Y, Xu L, Shu T, Zhang X. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem 2024; 416:3923-3944. [PMID: 38705905 DOI: 10.1007/s00216-024-05303-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.
Collapse
Affiliation(s)
- Jiafeng Qiu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Faisal Ahmad
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxin Ma
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Sun
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Liu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yelan Xiao
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Long Xu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Tong Shu
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xueji Zhang
- Shenzhen Key Laboratory for Nano-Biosensing Technology, Research Center for Biosensor and Nanotheranostic, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
2
|
Sadhu VA, Jha S, Mehta VN, Miditana SR, Park TJ, Kailasa SK. Green Synthetic Approach for the Preparation of Blue Emitting Gold Nanoclusters: A Simple Analytical Method for Detection of Hexaconazole Fungicide. J Fluoresc 2024:10.1007/s10895-024-03714-9. [PMID: 38676770 DOI: 10.1007/s10895-024-03714-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Blue emissive Argyreia nervosa-capped gold nanoclusters (A. nervosa-AuNCs) were synthesized via a simple environment-friendly method. The developed probe exhibits rapid response towards the target analyte (hexaconazole fungicide). Several characterizations, including FT-IR, UV-visible, fluorescence, HR-TEM, XPS, and fluorescence lifetime, were studied to confirm the formation of A. nervosa-AuNCs. The A. nervosa-AuNCs displayed emission and excitation peaks at 470 and 390 nm, respectively. Furthermore, the quantum yield (QY) of A. nervosa-AuNCs was 21.25%. The as-synthesized A. nervosa-AuNCs showed a good linear response with hexaconazole in the concentration range of 0.025-180 μM, with a detection limit (LOD) of 21.94 nM, indicating A. nervosa-AuNCs could be used as a sensitive and selective probe for detecting hexaconazole through a fluorescence "turn-off" mechanism. The A. nervosa-AuNCs were successfully used to detect hexaconazole in real samples. Moreover, A. nervosa-AuNCs were used as a bio-imaging probe for visualization of Saccharomyces cerevisiae cells.
Collapse
Affiliation(s)
- Vibhuti Atulbhai Sadhu
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, Gujarat, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, 39500, Gujarat, India
| | - Vaibhavkumar N Mehta
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, 39500, Gujarat, India
| | - Sankara Rao Miditana
- Department of Chemistry, Govt. Degree College, Puttur, Tirupati -517583, Andhra Pradesh, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395 007, Gujarat, India.
| |
Collapse
|
3
|
Zhao D, Wang J, Gao L, Huang X, Zhu F, Wang F. Visualizing the intracellular aggregation behavior of gold nanoclusters via structured illumination microscopy and scanning transmission electron microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169153. [PMID: 38072282 DOI: 10.1016/j.scitotenv.2023.169153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Given the growing concerns about nanotoxicity, numerous studies have focused on providing mechanistic insights into nanotoxicity by imaging the intracellular fate of nanoparticles. A suitable imaging strategy is necessary to uncover the intracellular behavior of nanoparticles. Although each conventional technique has its own limitations, scanning transmission electron microscopy (STEM) and three-dimensional structured illumination microscopy (3D-SIM) combine the advantages of chemical element mapping, ultrastructural analysis, and cell dynamic tracking. Gold nanoclusters (AuNCs), synthesized using 6-aza-2 thiothymine (ATT) and L-arginine (Arg) as reducing and protecting ligands, referred to as Arg@ATT-AuNCs, have been widely used in biological sensing and imaging, medicine, and catalyst yield. Based on their intrinsic fluorescence and high electron density, Arg@ATT-AuNCs were selected as a model. STEM imaging showed that both the single-particle and aggregated states of Arg@ATT-AuNCs were compartmentally distributed within a single cell. Real-time 3D-SIM imaging showed that the fluorescent Arg@ATT-AuNCs gradually aggregated after being located in the lysosomes of living cells, causing lysosomal damage. The aggregate formation of Arg@ATT-AuNCs was triggered by the low-pH medium, particularly in the lysosomal acidic environment. The proposed dual imaging strategy was verified using other types of AuNCs, which is valuable for studying nano-cell interactions and any associated cytotoxicity, and has the potential to be a useful approach for exploring the interaction of cells with various nanoparticles.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jing Wang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Huang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200052, China.
| | - Fu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Yousefi R, Asgari S, Banitalebi Dehkordi A, Mohammadi Ziarani G, Badiei A, Mohajer F, Varma RS, Iravani S. MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. ENVIRONMENTAL RESEARCH 2023; 226:115664. [PMID: 36913998 DOI: 10.1016/j.envres.2023.115664] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
5
|
Gold nanomaterials and their potential use as cryo-electron tomography labels. J Struct Biol 2022; 214:107880. [PMID: 35809758 DOI: 10.1016/j.jsb.2022.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
Rapid advances in cryo-electron tomography (cryo-ET) are driving a revolution in cellular structural biology. However, unambiguous identification of specific biomolecules within cellular tomograms remains challenging. Overcoming this obstacle and reliably identifying targets in the crowded cellular environment is of major importance for the understanding of cellular function and is a pre-requisite for high-resolution structural analysis. The use of highly-specific, readily visualised and adjustable labels would help mitigate this issue, improving both data quality and sample throughput. While progress has been made in cryo-CLEM and in the development of cloneable high-density tags, technical issues persist and a robust 'cryo-GFP' remains elusive. Readily-synthesized gold nanomaterials conjugated to small 'affinity modules' may represent a solution. The synthesis of materials including gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) is increasingly well understood and is now within the capabilities of non-specialist laboratories. The remarkable chemical and photophysical properties of <3nm diameter nanomaterials and their emergence as tools with widespread biomedical application presents significant opportunities to the cryo-microscopy community. In this review, we will outline developments in the synthesis, functionalisation and labelling uses of both AuNPs and AuNCs in cryo-ET, while discussing their potential as multi-modal probes for cryo-CLEM.
Collapse
|
6
|
Schwartz‐Duval AS, Sokolov KV. Prospecting Cellular Gold Nanoparticle Biomineralization as a Viable Alternative to Prefabricated Gold Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105957. [PMID: 35508715 PMCID: PMC9284136 DOI: 10.1002/advs.202105957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Gold nanoparticles (GNPs) have shown considerable potential in a vast number of biomedical applications. However, currently there are no clinically approved injectable GNP formulations. Conversely, gold salts have been used in the clinic for nearly a century. Further, there is evidence of GNP formation in patients treated with gold salts (i.e., chrysiasis). Recent reports evaluating this phenomenon in human cells and in murine models indicate that the use of gold ions for in situ formation of theranostic GNPs could greatly improve the delivery within dense biological tissues, increase efficiency of intracellular gold uptake, and specificity of GNP formation within cancer cells. These attributes in combination with safe clinical application of gold salts make this process a viable strategy for clinical translation. Here, the first summary of the current knowledge related to GNP biomineralization in mammalian cells is provided along with critical assessment of potential biomedical applications of this newly emergent field.
Collapse
Affiliation(s)
- Aaron S. Schwartz‐Duval
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
| | - Konstantin V. Sokolov
- Department of Imaging PhysicsThe University of Texas MD Anderson Cancer Center1515 Holcombe BoulevardHoustonTX77030USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences6767 Bertner AveHoustonTX77030USA
- Department of BioengineeringRice University6100 Main St.HoustonTX77030USA
- Department of Biomedical EngineeringThe University of Texas at Austin107 W Dean Keeton St.AustinTX78712USA
| |
Collapse
|
7
|
Aires A, Sousaraei A, Möller M, Cabanillas-Gonzalez J, Cortajarena AL. Boosting the Photoluminescent Properties of Protein-Stabilized Gold Nanoclusters through Protein Engineering. NANO LETTERS 2021; 21:9347-9353. [PMID: 34723561 DOI: 10.1021/acs.nanolett.1c03768] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work reports on the use of protein engineering as a versatile tool to rationally design metal-binding proteins for the synthesis of highly photoluminescent protein-stabilized gold nanoclusters (Prot-AuNCs). The use of a single repeat protein scaffold allowed the incorporation of a set of designed metal-binding sites to understand the effect of the metal-coordinating residues and the protein environment on the photoluminescent (PL) properties of gold nanoclusters (AuNCs). The resulting Prot-AuNCs, synthesized by two sustainable procedures, showed size-tunable color emission and outstanding PL properties. In a second stage, tryptophan (Trp) residues were introduced at specific positions to provide an electron-rich protein environment and favor energy transfer from Trps to AuNCs. This modification resulted in improved PL properties relevant for future applications in sensing, biological labeling, catalysis, and optics.
Collapse
Affiliation(s)
- Antonio Aires
- Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA). Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Ahmad Sousaraei
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid 28049, Spain
| | - Marco Möller
- Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA). Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Juan Cabanillas-Gonzalez
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid 28049, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CICbiomaGUNE), Basque Research and Technology Alliance (BRTA). Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Wen W, Li Z, Wang X, Du X, Wen G, Li L. Fluorescent PEI@Pd nanoclusters: facile synthesis and application. RSC Adv 2021; 11:33202-33207. [PMID: 35497538 PMCID: PMC9042264 DOI: 10.1039/d1ra06307c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Metal nanoclusters (NCs) have recently emerged as a novel class of luminescent nanomaterials and held significant potential in analytical chemistry. In this work, novel polyethyleneimine stabilized palladium nanoclusters (PEI-Pd NCs) were synthesized by chemical reduction at 60 °C for 6 h, and used as a fluorescent nanosensor for the detection of oxytetracycline (OTC). The spectral characteristics, surface structure and morphology of the Pd NCs were studied. The selectivity and stability of the nanosensor were also investigated. The experimental results showed that the Pd NCs had good biocompatibility, stability and photobleaching resistance in aqueous solution. The fluorescence quenching effect showed a good linear relationship with the degree of fluorescence quenching of Pd NCs and OTC in the range of 25-440 nM, with a correlation coefficient of 0.99. The limit of detection (LOD) of the proposed nanosensor for OTC was calculated to be 22 nM. The mechanism of determination was thought to be an inner filter effect (IFE) between OTC and Pd NCs. Based on this, we have established a new nanosensing analysis method for detecting OTC.
Collapse
Affiliation(s)
- Wen Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Zhongping Li
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Xu Wang
- Shanxi Research Center for Information and Strategy of Science and Technology Taiyuan 030024 China
| | - Xiaoyan Du
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
| | - Guangming Wen
- Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University Taiyuan 030006 China
- School of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 China
| | - Li Li
- First Hospital of Shanxi Medical University Taiyuan 030001 China
| |
Collapse
|
9
|
Li N, Chen L, Zeng C, Yang H, He S, Wei Q. Comparative Toxicity, Biodistribution and Excretion of Ultra-Small Gold Nanoclusters with Different Emission Wavelengths. J Biomed Nanotechnol 2021; 17:1778-1787. [PMID: 34688322 DOI: 10.1166/jbn.2021.3149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The exponentially increased use of gold nanoclusters in diagnosis and treatment has raised serious concern about their potential threat to living organisms. However, the mechanisms of toxicity of gold nanoclusters in vitro and in vivo remain poorly understood. In this work, comparative toxicity studies, including biodistribution and excretion, were carried out with mildly and chemically synthesized ultra-small L-histidine-protected and bovine serum albumin (BSA)-protected gold nanoclusters in an all-aqueous process. These nanoclusters did not induce a remarkable impact on cell viability, even at relatively high concentrations (100 μg/mL). The haemolytic assay demonstrated that the gold nanoclusters could not destroy blood cell at 600 μg/mL. After intravenous injection with mice, the biocompatibility, biodistribution, and excretion were determined. Quantitative analysis results showed that accumulation varied in the liver, spleen, kidney, and lung, though primarily in the liver and spleen. They were excreted in urine and faeces, but mainly excreted through urine. In our study, no obvious abnormalities were found in body weight, behavioral changes, blood and serum biochemical indicators, and histopathology. These findings suggested that both gold nanoclusters showed similar effects in vivo and were safe and biocompatible, laying the foundation for safe biomedical application in the future.
Collapse
Affiliation(s)
- Na Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Lina Chen
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Chujie Zeng
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Huanggen Yang
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Silian He
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Qingmin Wei
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| |
Collapse
|
10
|
Gao P, Chang X, Zhang D, Cai Y, Chen G, Wang H, Wang T. Synergistic integration of metal nanoclusters and biomolecules as hybrid systems for therapeutic applications. Acta Pharm Sin B 2021; 11:1175-1199. [PMID: 34094827 PMCID: PMC8144895 DOI: 10.1016/j.apsb.2020.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Therapeutic nanoparticles are designed to enhance efficacy, real-time monitoring, targeting accuracy, biocompatibility, biodegradability, safety, and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials. Recently, bio-inspired metal nanoclusters (NCs) consisting of several to roughly dozens of atoms (<2 nm) have attracted increasing research interest, owing to their ultrafine size, tunable fluorescent capability, good biocompatibility, variable metallic composition, and extensive surface bio-functionalization. Hybrid core-shell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules, such as proteins (enzymes, antigens, and antibodies), DNA, and specific cells, create fluorescently visualized molecular nanoparticle. The resultant nanoparticles possess combinatorial properties and synergistic efficacy, such as simplicity, active bio-responsiveness, improved applicability, and low cost, for combination therapy, such as accurate targeting, bioimaging, and enhanced therapeutic and biocatalytic effects. In contrast to larger nanoparticles, bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems. Notably, advances in nanoscience, interfacial chemistry, and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes. The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications, with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds. In the different hybrid platform, we summarize the current challenges and emerging perspectives, which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.
Collapse
Affiliation(s)
- Peng Gao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xin Chang
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Hao Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Lee ES, Cha BS, Kim S, Park KS. Synthesis of Exosome-Based Fluorescent Gold Nanoclusters for Cellular Imaging Applications. Int J Mol Sci 2021; 22:ijms22094433. [PMID: 33922681 PMCID: PMC8122875 DOI: 10.3390/ijms22094433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.
Collapse
|
12
|
Guryev EL, Shanwar S, Zvyagin A, Deyev SM, Balalaeva IV. Photoluminescent Nanomaterials for Medical Biotechnology. Acta Naturae 2021; 13:16-31. [PMID: 34377553 PMCID: PMC8327149 DOI: 10.32607/actanaturae.11180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Creation of various photoluminescent nanomaterials has significantly expanded the arsenal of approaches used in modern biomedicine. Their unique photophysical properties can significantly improve the sensitivity and specificity of diagnostic methods, increase therapy effectiveness, and make a theranostic approach to treatment possible through the application of nanoparticle conjugates with functional macromolecules. The most widely used nanomaterials to date are semiconductor quantum dots; gold nanoclusters; carbon dots; nanodiamonds; semiconductor porous silicon; and up-conversion nanoparticles. This paper considers the promising groups of photoluminescent nanomaterials that can be used in medical biotechnology: in particular, for devising agents for optical diagnostic methods, sensorics, and various types of therapy.
Collapse
Affiliation(s)
- E. L. Guryev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - S. Shanwar
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| | - A.V. Zvyagin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, 119991 Russia
| | - I. V. Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022 Russia
| |
Collapse
|
13
|
Wey K, Epple M. Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:117. [PMID: 33247365 PMCID: PMC7695662 DOI: 10.1007/s10856-020-06449-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV-Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370 nm with excitation maxima at 250/270 nm and emission maxima at 620/640 nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140 nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV-Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC).
Collapse
Affiliation(s)
- Karolin Wey
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
14
|
Xu S, Zhang Y, Wei Y, Tian G. Ground and excited state geometrical and optical properties of Au (n = 2–13) nanoclusters: A first-principles study. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Yadav A, Verma NC, Rao C, Mishra PM, Jaiswal A, Nandi CK. Bovine Serum Albumin-Conjugated Red Emissive Gold Nanocluster as a Fluorescent Nanoprobe for Super-resolution Microscopy. J Phys Chem Lett 2020; 11:5741-5748. [PMID: 32597664 DOI: 10.1021/acs.jpclett.0c01354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The gold nanocluster (GNC), because of its interesting photoluminescence properties and easy renal clearance from the body, has tremendous biomedical applications. Unfortunately, it has never been explored for super-resolution microscopy (SRM). Here, we present a protein-conjugated red emissive GNC for super-resolution radial fluctuation (SRRF) of the lysosome in HeLa cells. The diameter of the lysosome obtained in SRRF is ∼59 nm, which is very close to the original diameter of the smallest lysosome in HeLa cells. Conjugation of protein to GNC aided in the specific labeling of the lysosome. We hope that GNC not only will replace some of the common dyes used in SRM but due to its electron beam contrast could also be used as a multimodal probe for several other correlative bioimaging techniques.
Collapse
Affiliation(s)
- Aditya Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
| | - Navneet C Verma
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
| | - Chethana Rao
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
| | - Pushpendra M Mishra
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
- BioX Centre, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
- BioX Centre, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
| | - Chayan K Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
- BioX Centre, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175075, H.P., India
| |
Collapse
|
16
|
Lai WF, Wong WT, Rogach AL. Development of Copper Nanoclusters for In Vitro and In Vivo Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906872. [PMID: 31975469 DOI: 10.1002/adma.201906872] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Indexed: 05/24/2023]
Abstract
Theranostics refers to the incorporation of therapeutic and diagnostic functions into one material system. An important class of nanomaterials exploited for theranostics is metal nanoclusters (NCs). In contrast to gold and silver NCs, copper is an essential trace element for humans. It can be more easily removed from the body. This, along with the low cost of copper that offers potential large-scale nanotechnology applications, means that copper NCs have attracted great interest in recent years. The latest advances in the design, synthesis, surface engineering, and applications of copper NCs in disease diagnosis, monitoring, and treatment are reviewed. Strategies to control and enhance the emission of copper NCs are considered. With this synopsis of the up-to-date development of copper NCs as theranostic agents, it is hoped that insights and directions for translating current advances from the laboratory to the clinic can be further advanced and accelerated.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, P. R. China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
17
|
Yang TQ, Peng B, Shan BQ, Zong YX, Jiang JG, Wu P, Zhang K. Origin of the Photoluminescence of Metal Nanoclusters: From Metal-Centered Emission to Ligand-Centered Emission. NANOMATERIALS 2020; 10:nano10020261. [PMID: 32033058 PMCID: PMC7075164 DOI: 10.3390/nano10020261] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Recently, metal nanoclusters (MNCs) emerged as a new class of luminescent materials and have attracted tremendous interest in the area of luminescence-related applications due to their excellent luminous properties (good photostability, large Stokes shift) and inherent good biocompatibility. However, the origin of photoluminescence (PL) of MNCs is still not fully understood, which has limited their practical application. In this mini-review, focusing on the origin of the photoemission emission of MNCs, we simply review the evolution of luminescent mechanism models of MNCs, from the pure metal-centered quantum confinement mechanics to ligand-centered p band intermediate state (PBIS) model via a transitional ligand-to-metal charge transfer (LMCT or LMMCT) mechanism as a compromise model.
Collapse
Affiliation(s)
| | | | | | | | | | - Peng Wu
- Correspondence: (P.W.); (K.Z.)
| | | |
Collapse
|
18
|
Poderys V, Jarockyte G, Bagdonas S, Karabanovas V, Rotomskis R. Protein-stabilized gold nanoclusters for PDT: ROS and singlet oxygen generation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111802. [PMID: 31981990 DOI: 10.1016/j.jphotobiol.2020.111802] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/10/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
Suitable properties as well as eco-friendly synthesis of photoluminescent Au nanoclusters (NCs) make them promising compounds for biomedical diagnostics and visualization applications. However, the potential photochemical activity of such agents on cancerous cells is largely unknown. The nanoclusters (BSA-Au NCs) were synthetized in the presence of BSA (an average hydrodynamic diameter was about 9.4 nm, while the size of the metal cluster was <1.3 nm according to atomic force microscopy measurements) and possessed a broad photoluminescence band at 680 nm in buffered (pH 7.2) aqueous medium. The photochemical activity was studied by adding two fluorescent probes (dihydrorhodamine or Singlet Oxygen Sensor Green) for detection of reactive oxygen species in samples irradiated at 405 nm to minimize direct excitation of the probes. The photoluminescence measurements evidenced the capability of BSA-Au NCs to generate reactive oxygen species upon light exposure, while the observed sensitivity of the photoluminescence properties might be used to indicate photooxidative processes in the medium. The viability test performed on breast cancer cells after incubation with BSA-Au NCs and subsequent irradiation revealed notable difference in induced phototoxicity between two cell lines, which was not the case after the corresponding treatment using the photosensitizer chlorin e6.
Collapse
Affiliation(s)
- Vilius Poderys
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| | - Greta Jarockyte
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| | - Saulius Bagdonas
- Biophotonics group of Laser Research Center, Faculty of Physics of Vilnius University, Sauletekio 9, bldg. 3, LT-10222 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio 11, LT-10223 Vilnius, Lithuania.
| | - Ricardas Rotomskis
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania; Biophotonics group of Laser Research Center, Faculty of Physics of Vilnius University, Sauletekio 9, bldg. 3, LT-10222 Vilnius, Lithuania.
| |
Collapse
|
19
|
El‐Sayed N, Trouillet V, Clasen A, Jung G, Hollemeyer K, Schneider M. NIR-Emitting Gold Nanoclusters-Modified Gelatin Nanoparticles as a Bioimaging Agent in Tissue. Adv Healthc Mater 2019; 8:e1900993. [PMID: 31769613 DOI: 10.1002/adhm.201900993] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/09/2019] [Indexed: 12/30/2022]
Abstract
Gold nanocluster (AuNC) synthesis using a well-distinguished polymer for nanoparticle-mediated drug delivery paves the way for developing efficient theranostics based on pharmaceutically accepted materials. Gelatin-stabilized AuNCs are synthesized and modified by glutathione for tuning the emission spectra. Addition of silver ions enhances the fluorescence, reaching also high quantum yield (26.7%). A simplified model can be proposed describing the nanoclusters' properties-structure relationship based on X-ray photoelectron spectroscopy data and synthesis sequence. Furthermore, these modifications improve fluorescence stability toward pH changes and enzymatic degradation, offering different AuNCs for various applications. The impact of nanocluster formation on gelatin structure integrity is investigated by Fourier transform infrared spectrometry and matrix-assisted laser desorption/ionization time of flight mass spectroscopy, being important to further formulate gelatin nanoparticles (GNPs). The 218 nm-sized NPs show no cytotoxicity up to 600 µg mL-1 and are imaged in skin, as a challenging autofluorescent tissue, by confocal microscopy, when transcutaneously delivered using dissolving microneedles. Linear unmixing allows simultaneous imaging of AuNCs-GNPs and skin with accurate signal separation. This underlines the great potential for bioimaging of this system to better understand nanomaterials' behavior in tissue. Additionally, it is drug delivery system also potentially serving as a theranostic system.
Collapse
Affiliation(s)
- Nesma El‐Sayed
- Department of PharmacyBiopharmaceutics and Pharmaceutical TechnologySaarland University Campus C4 1 D‐66123 Saarbrücken Germany
- Department of PharmaceuticsFaculty of PharmacyAlexandria University 21521 Alexandria Egypt
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF)Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Anne Clasen
- Department of Biophysical ChemistrySaarland University Campus B2 2 D‐66123 Saarbrücken Germany
| | - Gregor Jung
- Department of Biophysical ChemistrySaarland University Campus B2 2 D‐66123 Saarbrücken Germany
| | - Klaus Hollemeyer
- Physical Chemistry and Didactics of ChemistrySaarland University Campus B2 2 D‐66123 Saarbrücken Germany
| | - Marc Schneider
- Department of PharmacyBiopharmaceutics and Pharmaceutical TechnologySaarland University Campus C4 1 D‐66123 Saarbrücken Germany
| |
Collapse
|
20
|
Zhao Y, Zhou H, Zhang S, Xu J. The synthesis of metal nanoclusters and their applications in bio-sensing and imaging. Methods Appl Fluoresc 2019; 8:012001. [PMID: 31726445 DOI: 10.1088/2050-6120/ab57e7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Noble metal nanomaterials have been studied by many researchers for their ultra-small size, excellent photophysical properties and good biocompatibility. Metal nanoclusters are a kind of nanoscale ultrafine particle, which have completely different properties from macroscopic metals. In the visible region, they do not usually show the characteristic surface plasmon resonance absorption but instead show fluorescence in the visible to near infrared region. In particular, the noble metallic (Au, Ag, Cu, etc) nanoclusters (NMNCs) have broad application prospects in the field of biomedicine as probes for fluorescence sensing. Their strong photoluminescence, living cell compatibility, and easy availability make up for the shortcomings of traditional fluorescent probes such as organic fluorescent dyes, fluorescent proteins, and fluorescent quantum dots. In this review, we summarize the synthetic method and application of metal nanoclusters as fluorescent probes in bio-sensing and imaging, especially in the early diagnosis of cancer cells.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Iakimov NP, Abdullina VR, Sharanov PA, Alov NV, Orlov VN, Grozdova ID, Melik-Nubarov NS. Interaction of Glutathione-Stabilized Gold Nanoclusters with Doxorubicin and Polycation. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Li Y, Yuan M, Khan AJ, Wang L, Zhang F. Peptide-gold nanocluster synthesis and intracellular Hg2+ sensing. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Kaur N, Aditya RN, Singh A, Kuo TR. Biomedical Applications for Gold Nanoclusters: Recent Developments and Future Perspectives. NANOSCALE RESEARCH LETTERS 2018; 13:302. [PMID: 30259230 PMCID: PMC6158143 DOI: 10.1186/s11671-018-2725-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/18/2018] [Indexed: 05/30/2023]
Abstract
Gold nanoclusters (AuNCs) have been extensively applied as a fluorescent probe for biomedical applications in imaging, detection, and therapy due to their unique chemical and physical properties. Fluorescent probes of AuNCs have exhibited high compatibility, superior photostablility, and excellent water solubility which resulted in remarkable biomedical applications for long-term imaging, high-sensitivity detection, and target-specific treatment. Recently, great efforts have been made in the developments of AuNCs as the fluorescent probes for various biomedical applications. In this review, we have collected fluorescent AuNCs prepared by different ligands, including small molecules, polymers, and biomacromolecules, and highlighted current achievements of AuNCs in biomedical applications for imaging, detection, and therapy. According to these advances, we further provided conclusions of present challenges and future perspectives of AuNCs for fundamental investigations and practical biomedical applications.
Collapse
Affiliation(s)
- Navdeep Kaur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031 Taiwan
| | - Robby Nur Aditya
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 11031 Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031 Taiwan
| |
Collapse
|
24
|
Wang XY, Zhu GB, Cao WD, Liu ZJ, Pan CG, Hu WJ, Zhao WY, Sun JF. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H 2O 2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta 2018; 191:46-53. [PMID: 30262085 DOI: 10.1016/j.talanta.2018.08.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/27/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
Abstract
In this work, a ratiometric fluorescent probe (RF-probe) for highly sensitive and selective detection of uric acid was reported for the first time toward H2O2 based on inner filter effect (IFE) between bimetallic gold/silver nanoclusters (Au/Ag NCs) and 2,3-diaminophenazine (DAP). For this RF-probe, uric acid was degraded to allantoin and H2O2. Upon the addition of HRP, o-phenylenediamine (OPD) could be catalytically oxidized to DAP in the presence of H2O2, then the fluorescence intensity corresponding to DAP at 580 nm increased dramatically with a fluorescence quenching of BSA-Au/Ag NCs at 690 nm, resulting in a RF-probe toward uric acid. This RF-probe allowed for the sensitive detection of uric acid in range of 5.0 × 10-6 M to 5.0 × 10-5 M with a detection limit (S/N = 3) as low as 5.1 × 10-6 M. At the same time, it has been successfully used for uric acid levels detection in human serum, and the results are consistent with those of the hospital. RF-probe built may provide a ratiometric fluorescence universal platform for detection of various species involving in the production of H2O2 in other biological systems.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Gang-Bing Zhu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wu-di Cao
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen-Jiang Liu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Chang-Gang Pan
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen-Jie Hu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wan-Ying Zhao
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian-Fan Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
25
|
Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-Lived Emissive Probes for Time-Resolved Photoluminescence Bioimaging and Biosensing. Chem Rev 2018; 118:1770-1839. [DOI: 10.1021/acs.chemrev.7b00425] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qi Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Huanjie Wei
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Shaanxi
Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, P. R. China
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, P. R. China
| |
Collapse
|
26
|
Fu C, Ding C, Sun X, Fu A. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 87:149-154. [PMID: 29549944 DOI: 10.1016/j.msec.2017.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 01/03/2023]
Abstract
Nanotechnology plays an important role in the development of drug delivery, imaging, and diagnosis. In this study, nanocapsules containing protein-functionalized gold nanoclusters (AuNCs) as the shell and hydrophobic drug curcumin as the core were prepared as a tumor cell theranostic agent. After the nanocapsules were added into tumor cell media, they entered the cells with high efficiency and exhibited strong fluorescence within the cells. The results indicated that the nanocapsules were broken up in the cells and curcumin was released. Simultaneously, the nanocapsules exhibited significant inhibition effect against tumor cell proliferation in a concentration- and time-dependent manner, and the images of atomic force microscopy (AFM) showed that the cell morphology underwent obvious changes after the capsule treatment. Additionally, cell membrane appeared wrinkles after the cells treated with the nanocapsules, resulting in a rough cell surface, implying that the cytoskeleton would involve in the cell uptake of nanocapsules. Moreover, the AuNCs and curcumin in the system could exert synergistic effect on the inhibition of tumor cell growth and induction of cell apoptosis. The study highlights the potential of the system as a promising agent for drug delivery and tumor cell theranosis.
Collapse
Affiliation(s)
- Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Chizhu Ding
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
27
|
Li D, Chen Z, Mei X. Fluorescence enhancement for noble metal nanoclusters. Adv Colloid Interface Sci 2017; 250:25-39. [PMID: 29132640 DOI: 10.1016/j.cis.2017.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/11/2017] [Accepted: 11/01/2017] [Indexed: 01/22/2023]
Abstract
Noble metal nanoclusters have attracted great attentions in the area of fluorescence related applications due to their special properties such as low toxicity, excellent photostability and bio-compatibility. However, they still describe disadvantages for low quantum yield compared to quantum dots and organic dyes though the brightness of the fluorescence play an important role for the efficiency of the applications. Attentions have been attracted for exploring strategies to enhance the fluorescence based on the optical fundamentals through various protocols. Some methods have already been successfully proposed for obtaining relative highly fluorescent nanoclusters, which will potentially describe advantages for the application. In this review, we summarize the approach for enhancement of the fluorescence of the nanoclusters based on the modification of the properties, improvement of the synthesis process and optimization of the environment. The limitation and directions for future development of the fabrication of highly fluorescent metal nanoclusters are demonstrated.
Collapse
|
28
|
Yu Q, Gao P, Zhang KY, Tong X, Yang H, Liu S, Du J, Zhao Q, Huang W. Luminescent gold nanocluster-based sensing platform for accurate H 2S detection in vitro and in vivo with improved anti-interference. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17107. [PMID: 30167221 PMCID: PMC6062025 DOI: 10.1038/lsa.2017.107] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 05/05/2023]
Abstract
Gold nanoclusters (Au NCs) are promising luminescent nanomaterials due to their outstanding optical properties. However, their relatively low quantum yields and environment-dependent photoluminescence properties have limited their biological applications. To address these problems, we developed a novel strategy to prepare chitosan oligosaccharide lactate (Chi)-functionalized Au NCs (Au NCs@Chi), which exhibited emission with enhanced quantum yield and elongated emission lifetime as compared to the Au NCs, as well as exhibited environment-independent photoluminescence properties. In addition, utilizing the free amino groups of Chi onto Au NCs@Chi, we designed a FRET-based sensing platform for the detection of hydrogen sulfide (H2S). The Au NCs and the specific H2S-sensitive merocyanine compound were respectively employed as an energy donor and acceptor in the platform. The addition of H2S induced changes in the emission profile and luminescence lifetime of the platform with high sensitivity and selectivity. Utilization of the platform was demonstrated to detect exogenous and endogenous H2S in vitro and in vivo through wavelength-ratiometric and time-resolved luminescence imaging (TLI). Compared to previously reported luminescent molecules, the platform was less affected by experimental conditions and showed minimized autofluorescence interference and improved accuracy of detection.
Collapse
Affiliation(s)
- Qi Yu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Pengli Gao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiao Tong
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Huiran Yang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jing Du
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
29
|
JIANG H, WANG XM. Progress of Metal Nanoclusters-based Electrochemiluminescent Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61054-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Cantelli A, Guidetti G, Manzi J, Caponetti V, Montalti M. Towards Ultra‐Bright Gold Nanoclusters. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700735] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea Cantelli
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Gloria Guidetti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Jeannette Manzi
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Valeria Caponetti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| | - Marco Montalti
- Department of Chemistry “G. Ciamician” University of Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
31
|
Zhang W, Lin D, Wang H, Li J, Nienhaus GU, Su Z, Wei G, Shang L. Supramolecular Self-Assembly Bioinspired Synthesis of Luminescent Gold Nanocluster-Embedded Peptide Nanofibers for Temperature Sensing and Cellular Imaging. Bioconjug Chem 2017; 28:2224-2229. [DOI: 10.1021/acs.bioconjchem.7b00312] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wensi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haixia Wang
- Institute of Applied Physics, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
| | - Jingfeng Li
- Faculty of Production Engineering, University of Bremen D-28359 Bremen, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
- Institute of Nanotechnology and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen D-28359 Bremen, Germany
| | - Li Shang
- Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
32
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 186.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
33
|
Lei Z, Wan XK, Yuan SF, Wang JQ, Wang QM. Alkynyl-protected gold and gold–silver nanoclusters. Dalton Trans 2017; 46:3427-3434. [DOI: 10.1039/c6dt04763g] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alkynyl-protected coinage metal nanoclusters show new structural features and have interesting luminescence properties and catalytic behavior.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
| | - Xian-Kai Wan
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
- Department of Chemistry
| | - Shang-Fu Yuan
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
- Department of Chemistry
| | - Jia-Qi Wang
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
| | - Quan-Ming Wang
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
- Department of Chemistry
| |
Collapse
|
34
|
Dutta D, Chattopadhyay A, Ghosh SS. Cationic BSA Templated Au–Ag Bimetallic Nanoclusters As a Theranostic Gene Delivery Vector for HeLa Cancer Cells. ACS Biomater Sci Eng 2016; 2:2090-2098. [DOI: 10.1021/acsbiomaterials.6b00517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Deepanjalee Dutta
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, ‡Department of Chemistry, §Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
35
|
Bhardwaj S, Itteboina R, Sau TK. Observing Ultra-Small Gold Cluster to Plasmonic Nanoparticle Evolution in a One-Pot Aqueous Synthesis. ChemistrySelect 2016. [DOI: 10.1002/slct.201600778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shweta Bhardwaj
- Centre for Computational Natural Sciences and Bioinformatics; International Institute of Information Technology-Hyderabad; Gachibowli Hyderabad - 500032 India
| | - Ramakrishna Itteboina
- Centre for Computational Natural Sciences and Bioinformatics; International Institute of Information Technology-Hyderabad; Gachibowli Hyderabad - 500032 India
| | - Tapan K. Sau
- Centre for Computational Natural Sciences and Bioinformatics; International Institute of Information Technology-Hyderabad; Gachibowli Hyderabad - 500032 India
| |
Collapse
|
36
|
Yu Y, Mok BYL, Loh XJ, Tan YN. Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications. Adv Healthc Mater 2016; 5:1844-59. [PMID: 27377035 DOI: 10.1002/adhm.201600192] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Biomolecule-templated or biotemplated metal nanoclusters (NCs) are ultrasmall (<2 nm) metal (Au, Ag) particles stabilized by a certain type of biomolecular template (e.g., peptides, proteins, and DNA). Due to their unique physiochemical properties, biotemplated metal NCs have been widely used in sensing, imaging, delivery and therapy. The overwhelming applications in these individual areas imply the great promise of harnessing biotemplated metal NCs in more advanced biomedical aspects such as theranostics. Although applications of biotemplated metal NCs as theranostic agents are trending, the rational design of biomolecular templates suitable for the synthesis of multifunctional metal NCs for theranostics is comparatively underexplored. This progress report first identifies the essential attributes of biotemplated metal NCs for theranostics by reviewing the state-of-art applications in each of the four modalities of theranostics, namely sensing, imaging, delivery and therapy. To achieve high efficacy in these modalities, we elucidate the design principles underlying the use of biomolecules (proteins, peptides and nucleic acids) to control the NC size, emission color and surface chemistries for post-functionalization of therapeutic moieties. We then propose a unified strategy to engineer biomolecular templates that combine all these modalities to produce multifunctional biotemplated metal NCs that can serve as the next-generation personalized theranostic agents.
Collapse
Affiliation(s)
- Yong Yu
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Beverly Y. L. Mok
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering; The Agency for Science, Technology and Research (A*STAR); 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| |
Collapse
|
37
|
Chen D, Monteiro-Riviere NA, Zhang LW. Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27418010 DOI: 10.1002/wnan.1419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/08/2016] [Accepted: 06/24/2016] [Indexed: 01/12/2023]
Abstract
Metallic nanoparticles (NP) have been used for biomedical applications especially for imaging. Compared to nonmetallic NP, metallic NP provide high contrast images because of their optical light scattering, magnetic resonance, X-ray absorption, or other physicochemical properties. In this review, a series of in vitro imaging techniques for metallic NP will be introduced, meanwhile their strengths and weaknesses will be discussed. By utilizing these imaging methods, the cellular uptake of metallic NP can be easily visualized to better understand the endocytic mechanisms of NP intracellular delivery. Several types of metallic NP that are used for imaging or as contrast agents such as quantum dots, gold, iron oxide, and other metallic NP will be presented. Cellular uptake of metallic NP and associated endocytic mechanisms highly depends upon the NP size, charge, surface coating, shape, or other factors such as cell type, cell differentiation status, cell surface status, external forces, protein binding, temperature, and the biological milieu. Classical endocytic routes such as lipid raft-mediated pathways, clathrin or caveolae-mediated pathways, macropinocytosis, and phagocytosis have been investigated, yet there is still a demand to determine other endocytic pathways. Knowing the different methodologies used to determine the endocytic pathways will increase the understanding of NP toxicity, cancer cell targeting, and imaging, so that surface coatings can be created for efficient cell uptake of metallic NP with minimal cytotoxicity WIREs Nanomed Nanobiotechnol 2017, 9:e1419. doi: 10.1002/wnan.1419 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Dandan Chen
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS, United States
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
38
|
Jiang H, Su X, Zhang Y, Zhou J, Fang D, Wang X. Unexpected Thiols Triggering Photoluminescent Enhancement of Cytidine Stabilized Au Nanoclusters for Sensitive Assays of Glutathione Reductase and Its Inhibitors Screening. Anal Chem 2016; 88:4766-71. [PMID: 27054760 DOI: 10.1021/acs.analchem.6b00112] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The photoluminescence (PL) of nonthiolate ligand capped Au nanoclusters (NCs) is usually quenched by thiols due to the tight adsorption of thiols to the Au surface and formation of larger non-PL species. However, we here report an unexpected PL enhancement of cytidine stabilized Au (AuCyt) NCs triggered by thiols, such as reduced glutathione (GSH) at sub-μM level, while such phenomena have not been observed for Au NCs capped with similar adenosine/cytidine nucleotides. The mass spectroscopic results indicate that this enhancement may be caused by the formation of smaller, but highly fluorescent, Au species etched by thiols. This enables the sensitive detection of GSH from 20 nM to 3 μM, with an ultralow detection limit of 2.0 nM. Moreover, the glutathione reductase (GR) activity can be determined by the initial rate of GSH production, i.e., the maximum PL increasing rate, with a linear range of 0.34-17.0 U/L (1 U means reduction of 1.0 μmol of oxidized glutathione per min at pH 7.6 at 25 °C) and a limit of detection of 0.34 U/L. This method allows the accurate assays of GR in clinical serum samples as well as the rapid screening of GR inhibitors, indicating its promising biomedical applications.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Bioelectronics and School of Biological Science and Medical Engineering, Southeast University , Nanjing, Jiangsu 210096, P. R. China
| | - Xiaoqing Su
- State Key Laboratory of Bioelectronics and School of Biological Science and Medical Engineering, Southeast University , Nanjing, Jiangsu 210096, P. R. China
| | - Yuanyuan Zhang
- State Key Laboratory of Bioelectronics and School of Biological Science and Medical Engineering, Southeast University , Nanjing, Jiangsu 210096, P. R. China
| | - Junyu Zhou
- Department of Pharmacology, Nanjing Medical University , Nanjing, Jiangsu 210029, China
| | - Danjun Fang
- Department of Pharmacology, Nanjing Medical University , Nanjing, Jiangsu 210029, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics and School of Biological Science and Medical Engineering, Southeast University , Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
39
|
Su X, Jiang H, Wang X. Thiols-Induced Rapid Photoluminescent Enhancement of Glutathione-Capped Gold Nanoparticles for Intracellular Thiols Imaging Applications. Anal Chem 2015; 87:10230-6. [PMID: 26368068 DOI: 10.1021/acs.analchem.5b02559] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rapid detection and imaging of intracellular thiols is of great importance during the occurrence and development of some chronic diseases. Here we demonstrate the rapid thiols-induced photoluminescence (PL) enhancement of the low luminescent glutathione (GSH) stabilized Au nanoparticles, AuGSH (low). The dynamic PL investigation reveals that the PL enhancement fits a first-order reaction model. The X-ray photoelectron spectroscopic and mass spectroscopic results indicate that AuGSH (low) are mainly comprised of "thiols-insufficient" Au species and the additional thiols can efficiently attach to the "unsaturated" surface of Au nanoparticles, accompanied by significant PL enhancement. The noncytotoxic AuGSH (low) probe can be successfully applied for imaging of intracellular thiols. Generally, this work illustrates the great prospects of facile-prepared AuGSH (low) as a candidate for thiols labeling and imaging.
Collapse
Affiliation(s)
- Xiaoqing Su
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, People's Republic of China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, People's Republic of China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, Southeast University , Nanjing 210096, People's Republic of China
| |
Collapse
|
40
|
Gholami J, Manteghian M, Badiei A, Javanbakht M, Ueda H. Label free Detection of Vitamin B12 Based on Fluorescence Quenching of Graphene Oxide Nanolayer. FULLERENES, NANOTUBES AND CARBON NANOSTRUCTURES 2015; 23:878-884. [DOI: 10.1080/1536383x.2015.1012583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
41
|
Prasad R, Pandey R, Barman I. Engineering tailored nanoparticles with microbes: quo vadis? WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:316-30. [PMID: 26271947 DOI: 10.1002/wnan.1363] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 01/10/2023]
Abstract
In the quest for less toxic and cleaner methods of nanomaterials production, recent developments in the biosynthesis of nanoparticles have underscored the important role of microorganisms. Their intrinsic ability to withstand variable extremes of temperature, pressure, and pH coupled with the minimal downstream processing requirements provide an attractive route for diverse applications. Yet, controlling the dispersity and facile tuning of the morphology of the nanoparticles of desired chemical compositions remains an ongoing challenge. In this Focus Review, we critically review the advances in nanoparticle synthesis using microbes, ranging from bacteria and fungi to viruses, and discuss new insights into the cellular mechanisms of such formation that may, in the near future, allow complete control over particle morphology and functionalization. In addition to serving as paradigms for cost-effective, biocompatible, and eco-friendly synthesis, microbes hold the promise for a unique template for synthesis of tailored nanoparticles targeted at therapeutic and diagnostic platform technologies.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rishikesh Pandey
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Unnikrishnan B, Wei SC, Chiu WJ, Cang J, Hsu PH, Huang CC. Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: mechanism and application. Analyst 2015; 139:2221-8. [PMID: 24634911 DOI: 10.1039/c3an02291a] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescence quenching is an interesting phenomenon which is highly useful in developing fluorescence based sensors. A thorough understanding of the fluorescence quenching mechanism is essential to develop efficient sensors. In this work, we investigate different aspects governing the nitrite ion-induced fluorescence quenching of luminescent bovine serum albumin stabilized gold nanoclusters (BSA-Au NCs) and their application for detection of nitrite in urine. The probable events leading to photoluminescence (PL) quenching by nitrite ions were discussed on the basis of the results obtained from ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence measurements, circular dichroism (CD) spectroscopy, zeta potential and dynamic light scattering (DLS) studies. These studies suggested that PL quenching mainly occurred through the oxidation of Au(0) atoms to Au(i) atoms in the core of BSA-Au NCs mediated by nitrite ions. The interference caused by certain species such as Hg(2+), Cu(2+), CN(-), S(2-), glutathione, cysteine, etc. during the nitrite determination by fluorescence quenching was eliminated by using masking agents and optimising the conditions. Based on these findings we proposed a BSA-Au NC-modified membrane based sensor which would be more convenient for the real life applications such as nitrite detection in urine samples. The BSA-Au NC-modified nitrocellulose membrane (NCM) enabled the detection of nitrite at a level as low as 100 nM in aqueous solutions. This Au NC-based paper probe was validated to exhibit good performance for nitrite analysis in environmental water and urine samples, which makes it useful in practical applications.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, 20224, Keelung, Taiwan.
| | | | | | | | | | | |
Collapse
|
43
|
Garg B, Sung CH, Ling YC. Graphene-based nanomaterials as molecular imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:737-58. [PMID: 25857851 DOI: 10.1002/wnan.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022]
Abstract
Molecular imaging (MI) is a noninvasive, real-time visualization of biochemical events at the cellular and molecular level within tissues, living cells, and/or intact objects that can be advantageously applied in the areas of diagnostics, therapeutics, drug discovery, and development in understanding the nanoscale reactions including enzymatic conversions and protein-protein interactions. Consequently, over the years, great advancement has been made in the development of a variety of MI agents such as peptides, aptamers, antibodies, and various nanomaterials (NMs) including single-walled carbon nanotubes. Recently, graphene, a material popularized by Geim & Novoselov, has ignited considerable research efforts to rationally design and execute a wide range of graphene-based NMs making them an attractive platform for developing highly sensitive MI agents. Owing to their exceptional physicochemical and biological properties combined with desirable surface engineering, graphene-based NMs offer stable and tunable visible emission, small hydrodynamic size, low toxicity, and high biocompatibility and thus have been explored for in vitro and in vivo imaging applications as a promising alternative of traditional imaging agents. This review begins by describing the intrinsic properties of graphene and the key MI modalities. After which, we provide an overview on the recent advances in the design and development as well as physicochemical properties of the different classes of graphene-based NMs (graphene-dye conjugates, graphene-antibody conjugates, graphene-nanoparticle composites, and graphene quantum dots) being used as MI agents for potential applications including theranostics. Finally, the major challenges and future directions in the field will be discussed.
Collapse
Affiliation(s)
- Bhaskar Garg
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Chu-Hsun Sung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
44
|
Sasidharan A, Monteiro-Riviere NA. Biomedical applications of gold nanomaterials: opportunities and challenges. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:779-96. [PMID: 25808787 DOI: 10.1002/wnan.1341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/17/2015] [Indexed: 01/26/2023]
Abstract
In the past few years, there has been an unprecedented development of gold nanomaterials (AuNMs) for potential clinical applications. Owing to their advantageous physical, chemical, and biological properties, AuNMs have attracted great attention in the nanomedicine arena for applications in biological sensing, biomedical imaging, drug delivery, and photothermal therapy. Their tunable size, shape, and surface characteristics coupled with excellent biocompatibility render them ideal candidates for translation from bench-top to bedside. This review summarizes the recent research on the applications of AuNM with a focus on biomedical diagnostics and therapeutics. The bio-interaction of these NM with cells and their in vivo responses are presented. After reviewing these potential applications, future challenges and prospects are discussed and the suitability of how AuNMs are used as effective tools in clinical medicine is assessed.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
45
|
Yang Y, Nan J, Hou J, Yu B, Zhao T, Xu S, Lv S, Zhang H. Cytotoxicity of gold nanoclusters in human liver cancer cells. Int J Nanomedicine 2014; 9:5441-8. [PMID: 25473282 PMCID: PMC4251742 DOI: 10.2147/ijn.s69013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we synthesized water-soluble fluorescent gold nanoclusters (Au NCs) stabilized with dihydrolipoic acid (DHLA). The cytotoxicity of these Au NCs was then assessed in the normal human hepatic cell line (L02) and the human hepatoma cell line (HepG2) at different exposure times. Cell viability was normal in both cell lines at 24 hours and 48 hours; however, the growth of HepG2 cells was significantly inhibited at 72 hours. The change in lactate dehydrogenase level was strongly correlated with cell viability after 72 hours incubation with DHLA–capped Au NCs, and the increase in cellular reactive oxygen species may be related to the decrease in cell viability. Growth inhibition of HepG2 cells was possibly due to difficultly passing the checkpoint between G1 phase and S phase. The anticancer activity of DHLA–capped Au NCs should be considered when used in biomedical imaging and drug delivery.
Collapse
Affiliation(s)
- Yanjie Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, People's Republic of China ; School of Medicine, Henan University, Kaifeng, People's Republic of China
| | - Jing Nan
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Jianwen Hou
- School of Life Sciences, Lanzhou University, Lanzhou, People's Republic of China
| | - Bianfei Yu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, People's Republic of China
| | - Tong Zhao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, People's Republic of China
| | - Shuang Xu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, People's Republic of China
| | - Shuangyu Lv
- School of Medicine, Henan University, Kaifeng, People's Republic of China
| | - Haixia Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|