1
|
Duan X, Zou H, Yang J, Liu S, Xu T, Ding J. Melittin-incorporated nanomedicines for enhanced cancer immunotherapy. J Control Release 2024; 375:285-299. [PMID: 39216597 DOI: 10.1016/j.jconrel.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy is a rapidly developing and effective strategy for cancer therapy. Among various immunotherapy approaches, peptides have garnered significant attention due to their potent immunomodulatory effects. In particular, melittin emerged as a promising candidate to enhance cancer immunotherapy by inducing immunogenic cell death, promoting the maturation of antigen-presenting cells, activating T cells, enhancing the infiltration and cytotoxicity of effector lymphocytes, and modulating macrophage phenotypes for relieving immunosuppression. However, the clinical application of melittin is limited by poor targeting and systemic toxicity. To overcome these challenges, melittin has been incorporated into biomaterials and related nanotechnologies, resulting in extended circulation time in vivo, improved targeting, reduced adverse effects, and enhanced anti-cancer immunological action. This review provides an in-depth analysis of the immunomodulatory effects of melittin-incorporated nanomedicines and examines their development and challenges for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Xuefeng Duan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Haoyang Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
2
|
Stela M, Cichon N, Spławska A, Szyposzynska M, Bijak M. Therapeutic Potential and Mechanisms of Bee Venom Therapy: A Comprehensive Review of Apitoxin Applications and Safety Enhancement Strategies. Pharmaceuticals (Basel) 2024; 17:1211. [PMID: 39338374 PMCID: PMC11434713 DOI: 10.3390/ph17091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Apitoxin therapy (BVT-bee venom therapy) is an emerging complementary treatment utilizing bee venom for various medical conditions. This review explores the potential and therapeutic mechanisms of bee venom, focusing on its chemical composition and the methods for its extraction and purification to enhance safety while maintaining bioactivity. Bee venom contains amphipathic peptides such as melittin and apamin, enzymes like phospholipase A2, and bioamines including histamine and catecholamines, contributing to its pleiotropic effects. The therapeutic applications of bee venom span anti-inflammatory, analgesic, antimicrobial, antiviral, neuroprotective, anti-arthritic, and anti-cancer activities. Clinical and laboratory studies have demonstrated its efficacy in treating chronic and autoimmune diseases, pain management, and improving quality of life. The immunogenic properties of bee venom necessitate ongoing research to mitigate allergic reactions, ensuring its safe and effective use in medical practice. This review summarizes the current state of research on bee venom therapy, highlighting its potential benefits and future research directions.
Collapse
Affiliation(s)
- Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Aleksandra Spławska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Chary PS, Shaikh S, Rajana N, Bhavana V, Mehra NK. Unlocking nature's arsenal: Nanotechnology for targeted delivery of venom toxins in cancer therapy. BIOMATERIALS ADVANCES 2024; 162:213903. [PMID: 38824828 DOI: 10.1016/j.bioadv.2024.213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/24/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of the present review is to shed light on the nanotechnological approaches adopted to overcome the shortcomings associated with the delivery of venom peptides which possess inherent anti-cancer properties. BACKGROUND Venom peptides although have been reported to demonstrate anti-cancer effects, they suffer from several disadvantages such as in vivo instability, off-target adverse effects, limited drug loading and low bioavailability. This review presents a comprehensive compilation of different classes of nanocarriers while underscoring their advantages, disadvantages and potential to carry such peptide molecules for in vivo delivery. It also discusses various nanotechnological aspects such as methods of fabrication, analytical tools to assess these nanoparticulate formulations, modulation of nanocarrier polymer properties to enhance loading capacity, stability and improve their suitability to carry toxic peptide drugs. CONCLUSION Nanotechnological approaches bear great potential in delivering venom peptide-based molecules as anticancer agents by enhancing their bioavailability, stability, efficacy as well as offering a spatiotemporal delivery approach. However, the challenges associated with toxicity and biocompatibility of nanocarriers must be duly addressed. PERSPECTIVES The everlasting quest for new breakthroughs for safer delivery of venom peptides in human subjects is fuelled by unmet clinical needs in the current landscape of chemotherapy. In addition, exhaustive efforts are required in obtaining and purifying the venom peptides followed by designing and optimizing scale up technologies.
Collapse
Affiliation(s)
- Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Samia Shaikh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Gong N, Alameh MG, El-Mayta R, Xue L, Weissman D, Mitchell MJ. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov 2024; 23:607-625. [PMID: 38951662 DOI: 10.1038/s41573-024-00974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| | - Rakan El-Mayta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Yang Y, Chen S, Zhang M, Shi Y, Luo J, Huang Y, Gu Z, Hu W, Zhang Y, He X, Yu C. Mesoporous nanoperforators as membranolytic agents via nano- and molecular-scale multi-patterning. Nat Commun 2024; 15:1891. [PMID: 38424084 PMCID: PMC10904871 DOI: 10.1038/s41467-024-46189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Plasma membrane lysis is an effective anticancer strategy, which mostly relying on soluble molecular membranolytic agents. However, nanomaterial-based membranolytic agents has been largely unexplored. Herein, we introduce a mesoporous membranolytic nanoperforators (MLNPs) via a nano- and molecular-scale multi-patterning strategy, featuring a spiky surface topography (nanoscale patterning) and molecular-level periodicity in the spikes with a benzene-bridged organosilica composition (molecular-scale patterning), which cooperatively endow an intrinsic membranolytic activity. Computational modelling reveals a nanospike-mediated multivalent perforation behaviour, i.e., multiple spikes induce nonlinearly enlarged membrane pores compared to a single spike, and that benzene groups aligned parallelly to a phospholipid molecule show considerably higher binding energy than other alignments, underpinning the importance of molecular ordering in phospholipid extraction for membranolysis. Finally, the antitumour activity of MLNPs is demonstrated in female Balb/c mouse models. This work demonstrates assembly of organosilica based bioactive nanostructures, enabling new understandings on nano-/molecular patterns co-governed nano-bio interaction.
Collapse
Affiliation(s)
- Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- South Australian immunoGENomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Shiwei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Min Zhang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yiru Shi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiangqi Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yiming Huang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
6
|
Ghadiri N, Javidan M, Sheikhi S, Taştan Ö, Parodi A, Liao Z, Tayybi Azar M, Ganjalıkhani-Hakemi M. Bioactive peptides: an alternative therapeutic approach for cancer management. Front Immunol 2024; 15:1310443. [PMID: 38327525 PMCID: PMC10847386 DOI: 10.3389/fimmu.2024.1310443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer is still considered a lethal disease worldwide and the patients' quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Moslem Javidan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Shima Sheikhi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Özge Taştan
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
| | - Ziwei Liao
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mehdi Tayybi Azar
- Department of Biophysics, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Mazdak Ganjalıkhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
7
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
8
|
Barros YVR, de Andrade AO, da Silva LPD, Pedroza LAL, Bezerra IC, Cavalcanti IDL, de Britto Lira Nogueira MC, Mousinho KC, Antoniolli AR, Alves LC, de Lima Filho JL, Moura AV, Rosini Silva ÁA, de Melo Porcari A, Gubert P. Bee Venom Toxic Effect on MDA-MB-231 Breast Cancer Cells and Caenorhabditis Elegans. Anticancer Agents Med Chem 2024; 24:798-811. [PMID: 38500290 DOI: 10.2174/0118715206291634240312062957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Bee venom has therapeutics and pharmacological properties. Further toxicological studies on animal models are necessary due to the severe allergic reactions caused by this product. METHOD Here, Caenorhabditis elegans was used as an in vivo toxicity model, while breast cancer cells were used to evaluate the pharmacological benefits. The bee venom utilized in this research was collected from Apis mellifera species found in Northeast Brazil. The cytotoxicity caused by bee venom was measured by MTT assay on MDA-MB-231 and J774 A.1 cells during 24 - 72 hours of exposure. C. elegans at the L4 larval stage were exposed for three hours to M9 buffer or bee venom. Survival, behavioral parameters, reproduction, DAF-16 transcription factor translocation, the expression of superoxide dismutase (SOD), and metabolomics were analyzed. Bee venom suppressed the growth of MDA-MB-231 cancer cells and exhibited cytotoxic effects on macrophages. Also, decreased C. elegans survival impacted its behaviors by decreasing C. elegans feeding behavior, movement, and reproduction. RESULTS Bee venom did not increase the expression of SOD-3, but it enhanced DAF-16 translocation from the cytoplasm to the nucleus. C. elegans metabolites differed after bee venom exposure, primarily related to aminoacyl- tRNA biosynthesis, glycine, serine and threonine metabolism, and sphingolipid and purine metabolic pathways. Our findings indicate that exposure to bee venom resulted in harmful effects on the cells and animal models examined. CONCLUSION Thus, due to its potential toxic effect and induction of allergic reactions, using bee venom as a therapeutic approach has been limited. The development of controlled-release drug strategies to improve this natural product's efficacy and safety should be intensified.
Collapse
Affiliation(s)
| | | | | | | | | | - Iago Dillion Lima Cavalcanti
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| | - Mariane Cajuba de Britto Lira Nogueira
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Academic Center of Vitória, Federal University of Pernambuco, Pernambuco, Brazil
| | | | | | - Luiz Carlos Alves
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Department of Virology and Experimental Therapy, Recife, Brazil.cr
| | - José Luiz de Lima Filho
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Biological Science, Federal University of Pernambuco, Pernambuco, Recife, Brazil
- Postgraduate Program in Pure and Applied Chemistry, Federal University of Western of Bahia, Bahia, Brazil
| | - Alexandre Varão Moura
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Álex Aparecido Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Andréia de Melo Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Federal University of Pernambuco, Recife, Brazil
- Department of Biochemistry, Federal University of Pernambuco, Pernambuco, Recife, Brazil
| |
Collapse
|
9
|
di Leandro L, Colasante M, Pitari G, Ippoliti R. Hosts and Heterologous Expression Strategies of Recombinant Toxins for Therapeutic Purposes. Toxins (Basel) 2023; 15:699. [PMID: 38133203 PMCID: PMC10748335 DOI: 10.3390/toxins15120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.
Collapse
Affiliation(s)
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.d.L.); (M.C.); (G.P.)
| |
Collapse
|
10
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
11
|
Sjakste N, Gajski G. A Review on Genotoxic and Genoprotective Effects of Biologically Active Compounds of Animal Origin. Toxins (Basel) 2023; 15:165. [PMID: 36828477 PMCID: PMC9961038 DOI: 10.3390/toxins15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Envenomation by animal venoms remains a serious medical and social problem, especially in tropical countries. On the other hand, animal venoms are widely used as a source of biologically active compounds for the development of novel drugs. Numerous derivatives of animal venoms are already used in clinical practice. When analysing the mechanisms of action of animal venoms, attention is usually focused on the main target of the venom's enzymes and peptides such as neurotoxic, cytotoxic or haemorrhagic effects. In the present review, we would like to draw attention to the "hidden" effects of animal venoms and their derivatives in regard to DNA damage and/or protection against DNA damage. Alkaloids and terpenoids isolated from sponges such as avarol, ingenamine G or variolin B manifest the capability to bind DNA in vitro and produce DNA breaks. Trabectidin, isolated from a sea squirt, also binds and damages DNA. A similar action is possible for peptides isolated from bee and wasp venoms such as mastoparan, melectin and melittin. However, DNA lesions produced by the crude venoms of jellyfish, scorpions, spiders and snakes arise as a consequence of cell membrane damage and the subsequent oxidative stress, whereas certain animal venoms or their components produce a genoprotective effect. Current research data point to the possibility of using animal venoms and their components in the development of various potential therapeutic agents; however, before their possible clinical use the route of injection, molecular target, mechanism of action, exact dosage, possible side effects and other fundamental parameters should be further investigated.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
- Genetics and Bioinformatics, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Li R, Tao T, Ren Q, Xie S, Gao X, Wu J, Chen D, Xu C. Key Genes Are Associated with the Prognosis of Glioma, and Melittin Can Regulate the Expression of These Genes in Glioma U87 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1-18. [PMID: 39281062 PMCID: PMC11401668 DOI: 10.1155/2022/7033478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Glioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for glioma. Melittin (MT) is the main component of bee venom, which was found to have therapeutic effects on a variety of tumors. In this study, we explored the relationship between key genes regulated by MT and the prognosis of glioma. In cultured glioma U87 and U251 cells, MT inhibited cell proliferation and induces cell apoptosis in a time- and concentration-dependent manner. RNA-seq revealed that MT upregulated 11 genes and downregulated 37 genes. These genes are mainly enriched in cell membrane signaling pathways, such as surface membrane, membrane-enclosed organelles, integral component of membrane, PPAR signaling pathway, and voltage-gated potassium channel. PPI network analysis and literature analysis of 48 genes were performed, and 8 key genes were identified, and these key genes were closely associated with clinical prognosis. Overexpression of PCDH18, PPL, DEPP1, VASN, KCNE4, MYBPH, and C5AR2 genes or low expression of MARCH4 gene in glioma patients was associated with poor survival. qPCR confirmed that MT can regulate the expression of these genes in glioma U87 cells. This study indicated that MT significantly inhibited the growth and regulated the expression of PCDH18, C5AR2, VASN, DEPP1, MYBPH, KCNE4, PPL, and MARCH4 genes in glioma U87 cells in vitro. These genes are closely related to the prognosis of patients with glioma and can be used as independent prognostic factors in patients with glioma. MT is a potential drug for the treatment of glioma.
Collapse
Affiliation(s)
- Ran Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 288 Daxue Road, Shaoguan, 512005 Guangdong Province, China
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| | - Ting Tao
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| | - Qiuyun Ren
- Brain Function and Disease Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong Province, China
| | - Sujun Xie
- Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou, 510405 Guangdong Province, China
| | - Xiaofen Gao
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong Province, China
| | - Diling Chen
- Guangzhou Laboratory, 9 XingDao HuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005 Guangdong Province, China
| | - Changqiong Xu
- Medical College of Shaoguan University, 108 XinHua Nan Road, Shaoguan, 512005 Guangdong Province, China
- Hunan Yueyang Maternal & Child Health-Care Hospital, 693 Baling Middle Road, Yueyang, 414000 Hunan Province, China
| |
Collapse
|
13
|
Enhanced Therapeutic Effect of Optimized Melittin-dKLA, a Peptide Agent Targeting M2-like Tumor-Associated Macrophages in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms232415751. [PMID: 36555393 PMCID: PMC9779714 DOI: 10.3390/ijms232415751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high possibility of metastasis. M2-like tumor-associated macrophages (TAMs) are the main components of the tumor microenvironment (TME) and play a key role in TNBC metastasis. Therefore, TAMs may be a potential target for reducing TNBC metastasis. Melittin-dKLA, a peptide composed of fused melittin and pro-apoptotic peptide d(KLAKLAK)2 (dKLA), showed a potent therapeutic effect against cancers by depleting TAMs. However, melittin has a strong adverse hemolytic effect. Hence, we attempted to improve the therapeutic potential of melittin-dKLA by reducing toxicity and increasing stability. Nine truncated melittin fragments were synthesized and examined. Of the nine peptides, the melittin-dKLA8-26 showed the best binding properties to M2 macrophages and discriminated M0/M1/M2. All fragments, except melittin, lost their hemolytic effects. To increase the stability of the peptide, melittin-dKLA8-26 fragment was conjugated with PEGylation at the amino terminus and was named PEG-melittin-dKLA8-26. This final drug candidate was assessed in vivo in a murine TNBC model and showed superior effects on tumor growth, survival rates, and lung metastasis compared with the previously used melittin-dKLA. Taken together, our study showed that the novel PEG-melittin-dKLA8-26 possesses potential as a new drug for treating TNBC and TNBC-mediated metastasis by targeting TAMs.
Collapse
|
14
|
Majc B, Novak M, Lah TT, Križaj I. Bioactive peptides from venoms against glioma progression. Front Oncol 2022; 12:965882. [PMID: 36119523 PMCID: PMC9476555 DOI: 10.3389/fonc.2022.965882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Venoms are complex mixtures of different molecules and ions. Among them, bioactive peptides have been found to affect cancer hallmarks, such as cell proliferation, cell invasion, cell migration, and can also modulate the immune response of normal and cancer-bearing organisms. In this article, we review the mechanisms of action on these cancer cell features, focusing on bioactive peptides being developed as potential therapeutics for one of the most aggressive and deadly brain tumors, glioblastoma (GB). Novel therapeutic approaches applying bioactive peptides may contribute to multiple targeting of GB and particularly of GB stem cells. Bioactive peptides selectively target cancer cells without harming normal cells. Various molecular targets related to the effects of bioactive peptides on GB have been proposed, including ion channels, integrins, membrane phospholipids and even immunomodulatory treatment of GB. In addition to therapy, some bioactive peptides, such as disintegrins, can also be used for diagnostics or are used as labels for cytotoxic drugs to specifically target cancer cells. Given the limitations described in the last section, successful application in cancer therapy is rather low, as only 3.4% of such peptides have been included in clinical trials and have passed successfully phases I to III. Combined approaches of added bioactive peptides to standard cancer therapies need to be explored using advanced GB in vitro models such as organoids. On the other hand, new methods are also being developed to improve translation from research to practice and provide new hope for GB patients and their families.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- *Correspondence: Bernarda Majc, ; Igor Križaj,
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor Križaj
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- *Correspondence: Bernarda Majc, ; Igor Križaj,
| |
Collapse
|
15
|
Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A. Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 2022; 22:895-909. [PMID: 35687355 DOI: 10.1080/14712598.2022.2088277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Melittin (MLT), a natural membrane-active component, is the most prominent cytolytic peptide from bee venom. Remarkable biological properties of MLT, including anti-inflammatory, antimicrobial, anticancer, anti-protozoan, and antiarthritic activities, make it an up-and-coming therapeutic candidate for a wide variety of human diseases. Therapeutic applications of MLT may be hindered due to low stability, high toxicity, and weak tissue penetration. Different bio-nano scale modifications hold promise for improving its functionality and therapeutic efficacy. AREAS COVERED In the current review, we aimed to provide a comprehensive insight into strategies used for MLT conjugations and modifications, cellular delivery of modified forms, and their clinical perspectives by reviewing the published literature on PubMed, Scopus, and Google Scholar databases. We also emphasized the MLT structure modifications, mechanism of action, and cellular toxicity. EXPERT OPINION Developing new analogs and conjugates of MLT as a natural drug with improved functions and fewer side effects is crucial for the clinical translation of this approach worldwide, especially where the chemicals and synthetic drugs are more expensive or unavailable in the healthcare system. MLT-nanoconjugation may be one of the best-optimized strategies for improving peptide delivery, increasing its therapeutic efficacy, and providing minimal nonspecific cellular lytic activity. [Figure: see text].
Collapse
Affiliation(s)
- Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir-Hossein Olfati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Varol A, Sezen S, Evcimen D, Zarepour A, Ulus G, Zarrabi A, Badr G, Daştan SD, Orbayoğlu AG, Selamoğlu Z, Varol M. Cellular targets and molecular activity mechanisms of bee venom in cancer: recent trends and developments. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2024576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Serap Sezen
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul, Turkey
| | - Dilhan Evcimen
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gönül Ulus
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Gamal Badr
- Department of Zoology, Faculty of Science, Laboratory of Immunology, Assiut University, Assiut, Egypt
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Asya Gülistan Orbayoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| | - Zeliha Selamoğlu
- Department Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
17
|
Qi J, Liu Y, Xu H, Xue T, Su Y, Lin Z. Anti-cancer effect of melittin-Au25(MHA)18 complexes on human cervical cancer HeLa cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Wang A, Zheng Y, Zhu W, Yang L, Yang Y, Peng J. Melittin-Based Nano-Delivery Systems for Cancer Therapy. Biomolecules 2022; 12:biom12010118. [PMID: 35053266 PMCID: PMC8773652 DOI: 10.3390/biom12010118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Melittin (MEL) is a 26-amino acid polypeptide with a variety of pharmacological and toxicological effects, which include strong surface activity on cell lipid membranes, hemolytic activity, and potential anti-tumor properties. However, the clinical application of melittin is restricted due to its severe hemolytic activity. Different nanocarrier systems have been developed to achieve stable loading, side effects shielding, and tumor-targeted delivery, such as liposomes, cationic polymers, lipodisks, etc. In addition, MEL can be modified on nano drugs as a non-selective cytolytic peptide to enhance cellular uptake and endosomal/lysosomal escape. In this review, we discuss recent advances in MEL’s nano-delivery systems and MEL-modified nano drug carriers for cancer therapy.
Collapse
|
19
|
Nichols JM, Crelli CV, Liu L, Pham HV, Janjic JM, Shepherd AJ. Tracking macrophages in diabetic neuropathy with two-color nanoemulsions for near-infrared fluorescent imaging and microscopy. J Neuroinflammation 2021; 18:299. [PMID: 34949179 PMCID: PMC8697472 DOI: 10.1186/s12974-021-02365-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background The incidence of diabetes and diabetic peripheral neuropathy continues to rise, and studies have shown that macrophages play an important role in their pathogenesis. To date, macrophage tracking has largely been achieved using genetically-encoded fluorescent proteins. Here we present a novel two-color fluorescently labeled perfluorocarbon nanoemulsion (PFC-NE) designed to monitor phagocytic macrophages in diabetic neuropathy in vitro and in vivo using non-invasive near-infrared fluorescent (NIRF) imaging and fluorescence microscopy. Methods Presented PFC-NEs were formulated with perfluorocarbon oil surrounded by hydrocarbon shell carrying two fluorescent dyes and stabilized with non-ionic surfactants. In vitro assessment of nanoemulsions was performed by measuring fluorescent signal stability, colloidal stability, and macrophage uptake and subsequent viability. The two-color PFC-NE was administered to Leprdb/db and wild-type mice by tail vein injection, and in vivo tracking of the nanoemulsion was performed using both NIRF imaging and confocal microscopy to assess its biodistribution within phagocytic macrophages along the peripheral sensory apparatus of the hindlimb. Results In vitro experiments show two-color PFC-NE demonstrated high fluorescent and colloidal stability, and that it was readily incorporated into RAW 264.7 macrophages. In vivo tracking revealed distribution of the two-color nanoemulsion to macrophages within most tissues of Leprdb/db and wild-type mice which persisted for several weeks, however it did not cross the blood brain barrier. Reduced fluorescence was seen in sciatic nerves of both Leprdb/db and wild-type mice, implying that the nanoemulsion may also have difficulty crossing an intact blood nerve barrier. Additionally, distribution of the nanoemulsion in Leprdb/db mice was reduced in several tissues as compared to wild-type mice. This reduction in biodistribution appears to be caused by the increased number of adipose tissue macrophages in Leprdb/db mice. Conclusions The nanoemulsion in this study has the ability to identify phagocytic macrophages in the Leprdb/db model using both NIRF imaging and fluorescence microscopy. Presented nanoemulsions have the potential for carrying lipophilic drugs and/or fluorescent dyes, and target inflammatory macrophages in diabetes. Therefore, we foresee these agents becoming a useful tool in both imaging inflammation and providing potential treatment in diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- James M Nichols
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Caitlin V Crelli
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Lu Liu
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA
| | - Hoang Vu Pham
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA
| | - Jelena M Janjic
- School of Pharmacy, Duquesne University, 600 Forbes Ave., Pittsburgh, PA, 15282, USA.
| | - Andrew J Shepherd
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Mansour GH, El-Magd MA, Mahfouz DH, Abdelhamid IA, Mohamed MF, Ibrahim NS, Hady A Abdel Wahab A, Elzayat EM. Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells. Bioorg Chem 2021; 116:105329. [PMID: 34544028 DOI: 10.1016/j.bioorg.2021.105329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
There are current attempts to find a safe substitute or adjuvant for Sorafenib (Sorf), the standard treatment for advanced hepatocellular carcinoma (HCC), as it triggers very harsh side effects and drug-resistance. The therapeutic properties of Bee Venom (BV) and its active component, Melittin (Mel), make them suitable candidates as potential anti-cancer agents per-se or as adjuvants for cancer chemotherapy. Hence, this study aimed to evaluate the combining effect of BV and Mel with Sorf on HepG2 cells and to investigate their molecular mechanisms of action. Docking between Mel and different tumor-markers was performed. The cytotoxicity of BV, Mel and Sorf on HepG2 and THLE-2 cells was conducted. Combinations of BV/Sorf and Mel/Sorf were performed in non-constant ratios on HepG2. Expression of major cancer-related genes and oxidative stress status was evaluated and the cell cycle was analyzed. The computational analysis showed that Mel can bind to and inhibit XIAP, Bcl2, MDM2, CDK2 and MMP12. Single treatments of BV, Mel and Sorf on HepG2 showed lower IC50than on THLE-2. All combinations revealed a synergistic effect at a combination index (CI) < 1. Significant upregulation (p < 0.05) of p53, Bax, Cas3, Cas7 and PTEN and significant downregulation (p < 0.05) of Bcl-2, Cyclin-D1, Rac1, Nf-κB, HIF-1a, VEGF and MMP9 were observed. The oxidative stress markers including MDA, SOD, CAT and GPx showed insignificant changes, while the cell cycle was arrested at G2/M phase. In conclusion, BV and Mel have a synergistic anticancer effect with Sorf on HepG2 that may represent a new enhancing strategy for HCC treatment.
Collapse
Affiliation(s)
- Ghada H Mansour
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Mohammed A El-Magd
- Anatomy Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Dalia H Mahfouz
- Biotechnology, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ismail A Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Magda F Mohamed
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Chemistry Department, College of Science and Arts, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Nada S Ibrahim
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | | - Emad M Elzayat
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
21
|
Dabbagh Moghaddam F, Akbarzadeh I, Marzbankia E, Farid M, khaledi L, Reihani AH, Javidfar M, Mortazavi P. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00085-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done.
Results
This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups.
Conclusions
Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.
Collapse
|
22
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
23
|
Zhou J, Wan C, Cheng J, Huang H, Lovell JF, Jin H. Delivery Strategies for Melittin-Based Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17158-17173. [PMID: 33847113 DOI: 10.1021/acsami.1c03640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Melittin (MLT) has been studied preclinically as an anticancer agent based on its broad lytic effects in multiple tumor types. However, unsatisfactory tissue distribution, hemolysis, rapid metabolism, and limited specificity are critical obstacles that limit the translation of MLT. Emerging drug delivery strategies hold promise for targeting, controlled drug release, reduced side effects, and ultimately improved treatment efficiency. In this review, we discuss recent advances in the use of diverse carriers to deliver MLT, with an emphasis on the design and mechanisms of action. We further outline the opportunities for MLT-based cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Hao Huang
- Guo Life Science Center, Wuhan Shengrun Biotechnology Co. Ltd, Wuhan 430075, P.R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
24
|
Tender T, Rahangdale RR, Balireddy S, Nampoothiri M, Sharma KK, Raghu Chandrashekar H. Melittin, a honeybee venom derived peptide for the treatment of chemotherapy-induced peripheral neuropathy. Med Oncol 2021; 38:52. [PMID: 33796975 PMCID: PMC8016801 DOI: 10.1007/s12032-021-01496-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of cancer treatment which involves sensory and motor nerve dysfunction. Severe CIPN has been reported in around 5% of patients treated with single and up to 38% of patients treated with multiple chemotherapeutic agents. Present medications available for CIPN are the use of opioids, nonsteroidal anti-inflammatory agents, and tricyclic antidepressants, which are only marginally effective in treating neuropathic symptoms. In reality, symptom reappears after these drugs are discontinued. The pathogenesis of CIPN has not been sufficiently recognized and methods for the prevention and treatment of CIPN remain vulnerable to therapeutic problems. It has witnessed that the present medicines available for the disease offer only symptomatic relief for the short term and have severe adverse side effects. There is no standard treatment protocol for preventing, reducing, and treating CIPN. Therefore, there is a need to develop curative therapy that can be used to treat this complication. Melittin is the main pharmacological active constituent of honeybee venom and has therapeutic values including in chemotherapeutic-induced peripheral neuropathy. It has been shown that melittin and whole honey bee venom are effective in treating paclitaxel and oxaliplatin-induced peripheral neuropathy. The use of melittin against peripheral neuropathy caused by chemotherapy has been limited despite having strong therapeutic efficacy against the disease. Melittin mediated haemolysis is the key reason to restrict its use. In our study, it is found that α-Crystallin (an eye lens protein) is capable of inhibiting melittin-induced haemolysis which gives hope of using an appropriate combination of melittin and α-Crystallin in the treatment of CIPN. The review summarizes the efforts made by different research groups to address the concern with melittin in the treatment of chemotherapeutic-induced neuropathy. It also focuses on the possible approaches to overcome melittin-induced haemolysis.
Collapse
Affiliation(s)
- Tenzin Tender
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rakesh Ravishankar Rahangdale
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sridevi Balireddy
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - K Krishna Sharma
- Department of Ophthalmology and Biochemistry, University of Missouri - Columbia School of Medicine, Columbia, MO, 65211, USA
| | - Hariharapura Raghu Chandrashekar
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
25
|
Replacement of L-amino acid peptides with D-amino acid peptides mitigates anti-PEG antibody generation against polymer-peptide conjugates in mice. J Control Release 2021; 331:142-153. [PMID: 33444669 DOI: 10.1016/j.jconrel.2021.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
The generation of anti-PEG antibodies in response to PEGylated proteins, peptides, and carriers significantly limits their clinical applicability. IgM antibodies mediate the clearance of these therapeutics upon repeat injection, resulting in toxicity and hindered therapeutic efficacy. We observed this phenomenon in our polymer platform, virus-inspired polymer for endosomal release (VIPER), which employs pH-sensitive triggered display of a lytic peptide, melittin, to facilitate endosomal escape. While the polymer-peptide conjugate was well tolerated after a single injection, we observed unexpected mortality upon repeat injection. Thus, the goal of this work was to enhance the safety and tolerability of VIPER for frequent dosing. Based on previous reports on anti-PEG antibodies and the adjuvant activity of melittin, we characterized the antibody response to polymer, peptide, and polymer-peptide conjugates after repeat-dosing and measured high IgM titers that bound PEG. By substituting the L-amino acid peptide for its D-amino acid enantiomer, we significantly attenuated the anti-PEG antibody generation and toxicity, permitting repeat-injections. We attempted to rescue mice from L-melittin induced toxicity by prophylactic injection of platelet activating factor (PAF) antagonist CV-6209, but observed minimal effect, suggesting that PAF is not the primary mediator of the observed hypersensitivity response. Overall, we demonstrated that the D-amino acid polymer-peptide conjugates, unlike L-amino acid polymer-peptide conjugates, exhibit good tolerability in vivo, even upon repeat administration, and do not elicit the generation of anti-PEG antibodies.
Collapse
|
26
|
Adlakha S, Sharma A, Vaghasiya K, Ray E, Verma RK. Inhalation Delivery of Host Defense Peptides (HDP) using Nano- Formulation Strategies: A Pragmatic Approach for Therapy of Pulmonary Ailments. Curr Protein Pept Sci 2021; 21:369-378. [PMID: 31889487 DOI: 10.2174/1389203721666191231110453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/16/2019] [Accepted: 10/05/2019] [Indexed: 01/15/2023]
Abstract
Host defense peptides (HDP) are small cationic molecules released by the immune systems of the body, having multidimensional properties including anti-inflammatory, anticancer, antimicrobial and immune-modulatory activity. These molecules gained importance due to their broad-spectrum pharmacological activities, and hence being actively investigated. Presently, respiratory infections represent a major global health problem, and HDP has an enormous potential to be used as an alternative therapeutics against respiratory infections and related inflammatory ailments. Because of their short half-life, protease sensitivity, poor pharmacokinetics, and first-pass metabolism, it is challenging to deliver HDP as such inside the physiological system in a controlled way by conventional delivery systems. Many HDPs are efficacious only at practically high molar-concentrations, which is not convincing for the development of drug regimen due to their intrinsic detrimental effects. To avail the efficacy of HDP in pulmonary diseases, it is essential to deliver an appropriate payload into the targeted site of lungs. Inhalable HDP can be a potentially suitable alternative for various lung disorders including tuberculosis, Cystic fibrosis, Pneumonia, Lung cancer, and others as they are active against resistant microbes and cells and exhibit improved targeting with reduced adverse effects. In this review, we give an overview of the pharmacological efficacy of HDP and deliberate strategies for designing inhalable formulations for enhanced activity and issues related to their clinical implications.
Collapse
Affiliation(s)
- Suneera Adlakha
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Ankur Sharma
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Kalpesh Vaghasiya
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Phase-10, Mohali, Punjab 160062, India
| |
Collapse
|
27
|
Colella F, Scillitani G, Pierri CL. Sweet as honey, bitter as bile: Mitochondriotoxic peptides and other therapeutic proteins isolated from animal tissues, for dealing with mitochondrial apoptosis. Toxicology 2020; 447:152612. [PMID: 33171268 DOI: 10.1016/j.tox.2020.152612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.
Collapse
Affiliation(s)
- Francesco Colella
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
28
|
Huo XZ, Wang X, Yang R, Qu LB, Zeng HJ. Studies on the effect of a Fupenzi glycoprotein on the fibrillation of bovine serum albumin and its antioxidant activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118387. [PMID: 32416513 DOI: 10.1016/j.saa.2020.118387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of a glycoprotein obtained from Fupenzi (FPZ) (Rubus chingii Hu.) on the fibrillation of bovine serum album (BSA) was investigated by multi-spectroscopic methods and transmission electron microscopy. Moreover, the cytotoxicity of the glycoprotein and the effect of it on H2O2-induced cell viability were investigated by cell counting kit and β-galactosidase kit, respectively. The experimental results indicated that the glycoprotein showed very low toxicity to NRK-52E cells and could obviously delay cell senescence and improve cell viability. Moreover, the glycoprotein could effectively inhibit the formation of BSA fibrils and destroy the stability of preformed BSA fibrils in a concentration-dependent manner. Generally, antioxidant capacities are thought to be related to the anti-amyloidogenic activity of inhibitors; therefore, to reveal the inhibitory mechanism, the anti-oxidative property of the glycoprotein was examined by DPPH and ABTS assays. The results demonstrated that FPZ glycoprotein had a remarkable antioxidant activity and the IC50 values of DPPH and ABTS were 0.249 mg mL-1 and 0.092 mg mL-1, respectively. This work suggested that the FPZ glycoprotein had the potential to be designed a new therapeutic agent for attenuating aging and preventing the age-related diseases.
Collapse
Affiliation(s)
- Xiu-Zhu Huo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ling-Bo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hua-Jin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
29
|
Cao Z, Liu L, Hu G, Bian Y, Li H, Wang J, Zhou Y. Interplay of hydrophobic and hydrophilic interactions in sequence-dependent cell penetration of spontaneous membrane-translocating peptides revealed by bias-exchange metadynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183402. [PMID: 32569587 DOI: 10.1016/j.bbamem.2020.183402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
Abstract
Spontaneous Membrane Translocating Peptides (SMTPs) can translocate silently across the bilayer and, thus, have the best potential to improve the delivery of therapeutic molecules to cells without toxicity. However, how their translocation mechanisms are affected by a specific peptide sequence remains poorly understood. Here, bias-exchange metadynamics simulations were employed to investigate the translocation mechanisms of five SMTPs with the same composition of amino acids (LLRLR, LRLLR, LLLRR, RLLLR, and LRLRL). Simulation results yield sequence-dependent free energy barrier using the FESs along the z-directional distance. An in-depth analysis of sequence-dependent interactions in different regions of the bilayers indicates that the free-energy barrier height of a specific sequence is resulted from the accessibility balance of isolated or clustered hydrophobic residues (L) and hydrophilic residues (R) that leads to different levels of resistance for moving of a peptide into the hydrophobic center of the membrane. At the maximal of the free-energy barrier, all peptides have a conformation parallel to the membrane surface with the barrier height determined by their affinity to the hydrophobic region. The appropriate bilayer perturbation and GDM+ pairing are beneficial for peptide translocation. These results provide an improved microscopic understanding of how peptide sequence influences the translocation efficiency and mechanism.
Collapse
Affiliation(s)
- Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Lei Liu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; College of Information Management, Dezhou University, Dezhou 253023, China.
| | - Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Haiyan Li
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China.
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; Institute for Glycomics, School of Information and Communication Technology, Griffith University, Parklands Dr, Southport, QLD 4222, Australia.
| |
Collapse
|
30
|
Qi J, Chen Y, Xue T, Lin Y, Huang S, Cao S, Wang X, Su Y, Lin Z. Graphene oxide-based magnetic nanocomposites for the delivery of melittin to cervical cancer HeLa cells. NANOTECHNOLOGY 2020; 31:065102. [PMID: 31645027 DOI: 10.1088/1361-6528/ab5084] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Melittin (MEL), the primary active component of bee venom, has recently emerged as a promising cancer chemotherapeutic agent. However, the instability and rapid degradation of MEL is a significant challenge in practical therapeutic applications. In the present study, graphene oxide (GO)-based magnetic nanocomposites (PEG-GO-Fe3O4) were prepared and adopted as the drug delivery vehicles of MEL, and the anticancer effects of PEG-GO-Fe3O4/MEL complexes on human cervical cancer HeLa cells were studied. PEG-GO-Fe3O4 exhibited a series of unique physical and chemical properties resulting in multiple interactions with MEL, and ultimately the release of MEL. In vitro experiments showed that PEG-GO-Fe3O4/MEL not only distinctly enhanced the inhibition effect on HeLa cells, but also induced pore formation in the cell membrane that ultimately led to cell lysis. In this newly developed drug delivery system, PEGylated GO plays the role of a MEL protector while Fe3O4 nanoparticles act as magnetic responders; therefore active MEL can be released over a long period of time (up to 72 h) and maintain its inhibition effect on HeLa cells.
Collapse
Affiliation(s)
- Jinxia Qi
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gui Z, Zhu J, Ye S, Ye J, Chen J, Ling Y, Cai X, Cao P, He Z, Hu C. Prolonged melittin release from polyelectrolyte-based nanocomplexes decreases acute toxicity and improves blood glycemic control in a mouse model of type II diabetes. Int J Pharm 2020; 577:119071. [PMID: 31991184 DOI: 10.1016/j.ijpharm.2020.119071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Gating modifier toxins (GMTs) from animal venom have shown great potential in controlling blood glucose levels in type II diabetes (T2D), but their high acute toxicity and quick clearance in the body hamper their potential therapeutic use. Inspired by their highly positive charge, we have developed a nanocomplex system based on polyelectrolytes, in which strong interactions form between positively charged GMTs and negatively charged dextran sulfate (DS). Using melittin as a model GMT and adapting flash nanocomplexation (FNC) technology for complex preparation, uniform nanocomplexes (polydispersity index: ~0.1) with high melittin encapsulation efficiency (~100%), high payload capacity (~30%), and tunable release profiles were formulated. In contrast to the high acute liver toxicity and low survival rate (60% after 8 days) observed after a single intraperitoneal (i.p.) injection of 3 mg/kg free melittin, melittin-loaded nanocomplexes displayed improved safety (100% survival after 8 days) due to prolonged melittin release. In a mouse model of T2D, a single i.p. injection of nanocomplexes decreased the blood glucose level to 12 mmol/L within 12 h and maintained it within the therapeutic range (<15 mmol/L) for 48 h. In addition, body weight decreased following treatment. This GMT/DS binary system shows great promise due to its simple components, facile preparation method, and enhanced potential druggability, including a decreased dosing frequency, decreased acute toxicity, and improved pathological indicators.
Collapse
Affiliation(s)
- Zaizhi Gui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jinchang Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Song Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuanyuan Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyu He
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
32
|
Use of Selected Carbon Nanoparticles as Melittin Carriers for MCF-7 and MDA-MB-231 Human Breast Cancer Cells. MATERIALS 2019; 13:ma13010090. [PMID: 31878020 PMCID: PMC6981792 DOI: 10.3390/ma13010090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
Despite advanced techniques in medicine, breast cancer caused the deaths of 627,000 women in 2018. Melittin, the main component of bee venom, has lytic properties for many types of cells, including cancer cells. To increase its toxic effect, carbon nanoparticles, graphene oxide, pristine graphene, and diamond were used as carriers of melittin to breast cancer cells. To date, the effects of carbon nanoparticles as carriers of melittin on cancer cells have not been studied. The present study was carried out on MCF-7 and MDA-MB-231 cell lines. The investigation consisted of structural analysis of complexes using transmission electron microscopy, zeta potential measurements, evaluation of cell morphology, assessment of cell viability and membrane integrity, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. Cell death was examined by flow cytometry and a membrane test for 43 apoptotic proteins. The results indicate that melittin complex with nanographene oxide has a stronger toxic effect on breast cancer cells than melittin alone. Moreover, nanodiamonds can protect cells against the lytic effects of melittin. All complexes reduced, but not completely eliminated the level of necrosis, compared to melittin. Thus, results suggest that the use of carbon nanoparticles as carriers for melittin may find use in medicine in the future.
Collapse
|
33
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA. Applications of RNA interference in the treatment of arthritis. Transl Res 2019; 214:1-16. [PMID: 31351032 PMCID: PMC6848781 DOI: 10.1016/j.trsl.2019.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. One of the main challenges to clinical translation is the lack of a suitable delivery vehicle to efficiently and safely access diverse pathologies. Moreover, the ideal targets in treatment of arthritides remain elusive given the complexity and heterogeneity of these disease pathogeneses. Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| | - Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| |
Collapse
|
34
|
Wimley WC, Hristova K. The Mechanism of Membrane Permeabilization by Peptides: Still an Enigma. Aust J Chem 2019; 73:96-103. [PMID: 32341596 DOI: 10.1071/ch19449] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptide-induced permeabilization of lipid vesicles has been measured for decades and has provided many insights into the sequence-structure-function relationships of membrane-active peptides. However, researchers in the field have noted that many experiments show transient permeabilization, in which a burst of leakage occurs immediately after peptide addition, followed by a slowdown or cessation of leakage before all contents have been released. This widely observed, but rarely studied, phenomenon is not explained by standard equilibrium pore models that are commonly invoked in both experimental and computational studies. Here we discuss observations of transient permeabilization, and we outline a pathway towards understanding this enigmatic phenomenon.
Collapse
Affiliation(s)
- William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
35
|
Immunological considerations and concerns as pertinent to whole eye transplantation. Curr Opin Organ Transplant 2019; 24:726-732. [PMID: 31689262 DOI: 10.1097/mot.0000000000000713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The advent of clinical vascularized composite allotransplantation (VCA), offers hope for whole eye transplantation (WET) in patients with devastating vison loss that fails or defies current treatment options. Optic nerve regeneration and reintegration remain the overarching hurdles to WET. However, the realization of WET may indeed be limited by our lack of understanding of the singular immunological features of the eye as pertinent to graft survival and functional vision restoration in the setting of transplantation. RECENT FINDINGS Like other VCA, such as the hand or face, the eye includes multiple tissues with distinct embryonic lineage and differential antigenicity. The ultimate goal of vision restoration through WET requires optimal immune modulation of the graft for successful optic nerve regeneration. Our team is exploring barriers to our understanding of the immunology of the eye in the context of WET including the role of immune privilege and lymphatic drainage on rejection, as well as the effects ischemia, reperfusion injury and rejection on optic nerve regeneration. SUMMARY Elucidation of the unique immunological responses in the eye and adnexa after WET will provide foundational clues that will help inform therapies that prevent immune rejection without hindering optic nerve regeneration or reintegration.
Collapse
|
36
|
Mirtaheri E, Dolatmoradi A, El-Zahab B. Thermally Assisted Acoustofluidic Separation Based on Membrane Protein Content. Anal Chem 2019; 91:13953-13961. [PMID: 31590489 DOI: 10.1021/acs.analchem.9b03485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The over- and under-expression of certain proteins in extracellular vesicles has been observed in many physiological and pathological conditions; however, a simple method to sort vesicles based on contrast in protein content is yet to be developed. We herein present a nonaffinity-based method for rapid and inexpensive isolation of lipid vesicles based on their membrane protein content. Based on a composition-specific thermophysical property change of vesicles at different protein contents, an acoustic property change that enabled an acoustophoretic separation was observed. This change was demonstrated in a thermally modulated acoustofluidic device in the form of a shift in vesicle migration from the nodal plane to antinodal plane at a specific temperature known as the acoustic contrast temperature (TΦ). Using phosphatidylcholine vesicles containing the membrane proteins gramicidin D, alamethicin, and melittin at molar contents ranging from 0.001% to 10%, we observed that increasing the membrane protein content brought about conformational changes in the membrane which afforded the vesicles distinctive acoustic properties. Then, by establishing an acoustic contrast temperature window, vesicles with the same protein but different molar content were successfully separated. The efficiency of the separation was studied for various vesicle mixtures and a separation efficiency as high as 97% was accomplished. In order to confirm the technique's applicability for biological samples, sheep red blood cells with various melittin peptide contents similarly demonstrated the depressing effects of melittin on membrane bending modulus and depressed the TΦ of the cells. This method holds promise for a myriad of applications in the biomedical field, especially in bioanalytical research.
Collapse
Affiliation(s)
- Elnaz Mirtaheri
- Department of Mechanical and Materials Engineering , Florida International University , Miami , Florida 33174 , United States
| | - Ata Dolatmoradi
- Department of Mechanical and Materials Engineering , Florida International University , Miami , Florida 33174 , United States.,Department of Bioengineering and Therapeutic Sciences , University of California, San Francisco , San Francisco , California 94158 , United States
| | - Bilal El-Zahab
- Department of Mechanical and Materials Engineering , Florida International University , Miami , Florida 33174 , United States
| |
Collapse
|
37
|
Soliman C, Eastwood S, Truong VK, Ramsland PA, Elbourne A. The membrane effects of melittin on gastric and colorectal cancer. PLoS One 2019; 14:e0224028. [PMID: 31622415 PMCID: PMC6797111 DOI: 10.1371/journal.pone.0224028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/03/2019] [Indexed: 01/30/2023] Open
Abstract
The cytotoxic effects of melittin, a bee-venom peptide, have been widely studied towards cancer cells. Typically, these studies have examined the effect of melittin over extended-time courses (6-24 hours), meaning that immediate cellular interactions have been overlooked. In this work, we demonstrate the rapid effects of melittin on both gastric and colorectal cancer, specifically AGS, COLO205 and HCT-15 cell lines, over a period of 15 minutes. Melittin exhibited a dose dependent effect at 4 hours of treatment, with complete cellular death occurring at the highest dose of 20 μg/mL. Interestingly, when observed at shorter time points, melittin induced cellular changes within seconds; membrane damage was observed as swelling, breakage or blebbing. High-resolution imaging revealed treated cells to be compromised, showing clear change in cellular morphology. After 1 minute of melittin treatment, membrane changes were observed, and intracellular material could be seen expelled from the cells. Overall, these results enhance our understanding of the fast acting anti-cancer effects of melittin.
Collapse
Affiliation(s)
- Caroline Soliman
- School of Science, RMIT University, Bundoora West Campusm Bundoora, Victoria, Australia
| | - Sarah Eastwood
- School of Science, RMIT University, Bundoora West Campusm Bundoora, Victoria, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Bundoora West Campusm Bundoora, Victoria, Australia
- Nanobiotechnology Laboratory, RMIT University, Melbourne City Campus, Melbourne, Victoria, Australia
| | - Paul A. Ramsland
- School of Science, RMIT University, Bundoora West Campusm Bundoora, Victoria, Australia
- Department of Immunology, Central Clinical School (Monash University), Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
- Department of Surgery Austin Health (University of Melbourne), Austin Health, Heidelberg, Victoria, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Bundoora West Campusm Bundoora, Victoria, Australia
- Nanobiotechnology Laboratory, RMIT University, Melbourne City Campus, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Aaghaz S, Gohel V, Kamal A. Peptides as Potential Anticancer Agents. Curr Top Med Chem 2019; 19:1491-1511. [DOI: 10.2174/1568026619666190125161517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/26/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
Cancer consists of heterogeneous multiple cell subpopulation which at a later stage develop resistant phenotypes, which include resistance to pro-apoptotic stimuli and/or cytotoxic resistance to anticancer compounds. The property of cancerous cells to affect almost any part of the body categorizes cancer to many anatomic and molecular subtypes, each requiring a particular therapeutic intervention. As several modalities are hindered in a variety of cancers and as the cancer cells accrue varied types of oncogenic mutations during their progression the most likely benefit will be obtained by a combination of therapeutic agents that might address the diverse hallmarks of cancer. Natural compounds are the backbone of cancer therapeutics owing to their property of affecting the DNA impairment and restoration mechanisms and also the gene expression modulated via several epigenetic molecular mechanisms. Bioactive peptides isolated from flora and fauna have transformed the arena of antitumour therapy and prompt progress in preclinical studies is promising. The difficulties in creating ACP rest in improving its delivery to the tumour site and it also must maintain a low toxicity profile. The substantial production costs, low selectivity and proteolytic stability of some ACP are some of the factors hindering the progress of peptide drug development. Recently, several publications have tried to edify the field with the idea of using peptides as adjuvants with established drugs for antineoplastic use. This review focuses on peptides from natural sources that precisely target tumour cells and subsequently serve as anticancer agents that are less toxic to normal tissues.
Collapse
Affiliation(s)
- Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, India
| | - Vivek Gohel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Shaw P, Kumar N, Hammerschmid D, Privat-Maldonado A, Dewilde S, Bogaerts A. Synergistic Effects of Melittin and Plasma Treatment: A Promising Approach for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11081109. [PMID: 31382579 PMCID: PMC6721819 DOI: 10.3390/cancers11081109] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Melittin (MEL), a small peptide component of bee venom, has been reported to exhibit anti-cancer effects in vitro and in vivo. However, its clinical applicability is disputed because of its non-specific cytotoxicity and haemolytic activity in high treatment doses. Plasma-treated phosphate buffered saline solution (PT-PBS), a solution rich in reactive oxygen and nitrogen species (RONS) can disrupt the cell membrane integrity and induce cancer cell death through oxidative stress-mediated pathways. Thus, PT-PBS could be used in combination with MEL to facilitate its access into cancer cells and to reduce the required therapeutic dose. The aim of our study is to determine the reduction of the effective dose of MEL required to eliminate cancer cells by its combination with PT-PBS. For this purpose, we have optimised the MEL threshold concentration and tested the combined treatment of MEL and PT-PBS on A375 melanoma and MCF7 breast cancer cells, using in vitro, in ovo and in silico approaches. We investigated the cytotoxic effect of MEL and PT-PBS alone and in combination to reveal their synergistic cytological effects. To support the in vitro and in ovo experiments, we showed by computer simulations that plasma-induced oxidation of the phospholipid bilayer leads to a decrease of the free energy barrier for translocation of MEL in comparison with the non-oxidized bilayer, which also suggests a synergistic effect of MEL with plasma induced oxidation. Overall, our findings suggest that MEL in combination with PT-PBS can be a promising combinational therapy to circumvent the non-specific toxicity of MEL, which may help for clinical applicability in the future.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Naresh Kumar
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium.
| | - Dietmar Hammerschmid
- Laboratory of Protein Science, Proteomics & Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Angela Privat-Maldonado
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Sylvia Dewilde
- Laboratory of Protein Science, Proteomics & Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, BE-2610 Wilrijk-Antwerp, Belgium.
| |
Collapse
|
40
|
Lyu C, Fang F, Li B. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Curr Protein Pept Sci 2019; 20:240-250. [PMID: 29895240 DOI: 10.2174/1389203719666180612084615] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
Melittin, a major component of bee venom, is a water-soluble toxic peptide of which a various biological effects have been identified to be useful in anti-tumor therapy. In addition, Melittin also has anti-parasitic, anti-bacterial, anti-viral, and anti-inflammatory activities. Therefore, it is a very attractive therapeutic candidate for human diseases. However, melittin induces extensive hemolysis, a severe side effect that dampens its future development and clinical application. Thus, studies of melittin derivatives and new drug delivery systems have been conducted to explore approaches for optimizing the efficacy of this compound, while reducing its toxicity. A number of reviews have focused on each side, respectively. In this review, we summarize the research progress on the anti-tumor effects of melittin and its derivatives, and discuss its future potential clinical applications.
Collapse
Affiliation(s)
- Can Lyu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Fanfu Fang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| | - Bai Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
42
|
Sun LJ, Qu L, Yang R, Yin L, Zeng HJ. Cysteamine functionalized MoS2 quantum dots inhibit amyloid aggregation. Int J Biol Macromol 2019; 128:870-876. [DOI: 10.1016/j.ijbiomac.2019.01.212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/28/2023]
|
43
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
44
|
Hilchie AL, Hoskin DW, Power Coombs MR. Anticancer Activities of Natural and Synthetic Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:131-147. [DOI: 10.1007/978-981-13-3588-4_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Li Y, Xu N, Zhu W, Wang L, Liu B, Zhang J, Xie Z, Liu W. Nanoscale Melittin@Zeolitic Imidazolate Frameworks for Enhanced Anticancer Activity and Mechanism Analysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22974-22984. [PMID: 29920061 DOI: 10.1021/acsami.8b06125] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cytolytic peptide melittin (MLT) is an important candidate of anticancer drug owing to its hemolytic properties. Nevertheless, its clinical applications are severely restricted as a result of its nonspecific toxicities like hemolysis. In this work, we reported MLT-loaded zeolitic imidazolate framework-8 (MLT@ZIF-8) nanoparticles (NPs). The formed MLT@ZIF-8 NPs not only possess excellent stability but also efficiently inhibit the hemolysis bioactivity of MLT. Confocal scanning imaging and cytotoxicity experiments revealed that as-synthesized MLT@ZIF-8 NPs exhibit enhanced cellular uptake and cytotoxicity toward cancer cells compared to MLT. The mechanism is well investigated by a series of transcriptome analysis, which indicates that MLT@ZIF-8 NPs can regulate the expression of 3383 genes, and the PI3K/Akt-regulated p53 pathway is involved in MLT@ZIF-8 NPs induced A549 cells apoptosis. Finally, MLT@ZIF-8 NPs exhibit enhanced antitumor activity than free MLT in vivo, while no obvious systemic toxicity has been found. This work emphasizes the great potential of utilizing MOF as a simple and efficient nanoplatform for deliverying cytolytic peptides in cancer treatment, and also the investigation on the antitumor mechanism could provide theoretical support for clinical usage of MLT.
Collapse
Affiliation(s)
- Yawei Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Na Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Wenhe Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
- Jilin Medical University , Jilin , 132013 , P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Bin Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
| | - Jianxu Zhang
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , 130022 , P. R. China
| | - Wensen Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control , Institute of Military Veterinary Medicine, Academy of Military Medical Sciences , Changchun , 130122 , P. R. China
| |
Collapse
|
46
|
Rajabnejad SH, Mokhtarzadeh A, Abnous K, Taghdisi SM, Ramezani M, Razavi BM. Targeted delivery of melittin to cancer cells by AS1411 anti-nucleolin aptamer. Drug Dev Ind Pharm 2018; 44:982-987. [PMID: 29325460 DOI: 10.1080/03639045.2018.1427760] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/17/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023]
Abstract
Melittin, a small water-soluble cationic amphipathic α-helical linear peptide, consisted of 26 amino acids, is the honeybee venom major constituent. Several reports have proved the lytic and apoptotic effects of melittin in several cancerous cell lines. In this study, we aimed to fabricate an AS1411 aptamer-melittin to specifically deliver melittin to nucleolin positive cells (A549). Melittin was covalently attached to antinucleolin aptamer (AS1411) and its toxicity in A549 (nucleolin positive) and L929 (nucleolin negative) was studied using MTT and Annexin V flow cytometry methods. Aptamer-melittin conjugate formation was confirmed by gel electrophoresis. Hemolytic effect of aptamer-melittin conjugate was compared to melittin alone. The aptamer-melittin conjugate showed efficient cell uptake and was more cytotoxic in A549 cells than melittin (p < .001). This complex was less toxic in control cells. Competitive inhibition assay confirmed that aptamer-melittin complex delivery occurred through receptor-ligand interaction on the cell surface. Moreover, aptamer-melittin showed a significantly less hemolytic activity as compared with free melittin. This study showed that melittin could be specifically delivered to A549 cells when it was covalently conjugated to antinucleolin aptamer (AS1411) in vitro. This system can reduce the cytotoxic effects of melittin on cells with no nucleolin receptor overexpression which comprise most of normal cells such as L929 cells.
Collapse
Affiliation(s)
- Seyed Hossein Rajabnejad
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
- b Research Institute of Food Science and Technology , Mashhad , Iran
| | - Ahad Mokhtarzadeh
- c Immunology Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
- d Department of Biotechnology , Higher Education Institute of Rab-Rashid , Tabriz , Iran
| | - Khalil Abnous
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mohammad Taghdisi
- e Targeted Drug Delivery Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- a Pharmaceutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Bibi Marjan Razavi
- e Targeted Drug Delivery Research Center, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
47
|
Li S, Kim SY, Pittman AE, King GM, Wimley WC, Hristova K. Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved Family of Pore-Forming Peptides. J Am Chem Soc 2018; 140:6441-6447. [DOI: 10.1021/jacs.8b03026] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sijia Li
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Y. Kim
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anna E. Pittman
- Physics and Astronomy, University of Missouri, Columbia, Missouri 65201, United States
| | - Gavin M. King
- Physics and Astronomy, University of Missouri, Columbia, Missouri 65201, United States
- Biochemistry, University of Missouri, Columbia, Missouri 65201, United States
| | - William C. Wimley
- Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
48
|
Li M, Guan Y, Zhao A, Ren J, Qu X. Using Multifunctional Peptide Conjugated Au Nanorods for Monitoring β-amyloid Aggregation and Chemo-Photothermal Treatment of Alzheimer's Disease. Theranostics 2017; 7:2996-3006. [PMID: 28839459 PMCID: PMC5566101 DOI: 10.7150/thno.18459] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/02/2017] [Indexed: 01/07/2023] Open
Abstract
Development of sensitive detectors of Aβ aggregates and effective inhibitors of Aβ aggregation are of diagnostic importance and therapeutic implications for Alzheimer's disease (AD) treatment. Herein, a novel strategy has been presented by self-assembly of peptide conjugated Au nanorods (AuP) as multifunctional Aβ fibrillization detectors and inhibitors. Our design combines the unique high NIR absorption property of AuNRs with two known Aβ inhibitors, Aβ15-20 and polyoxometalates (POMs). The synthesized AuP can effectively inhibit Aβ aggregation and dissociate amyloid deposits with NIR irradiation both in buffer and in mice cerebrospinal fluid (CSF), and protect cells from Aβ-related toxicity upon NIR irradiation. In addition, with the shape and size-dependent optical properties, the nanorods can also act as effective diagnostic probes to sensitively detect the Aβ aggregates. This is the first report to integrate 3 segments, an Aβ-targeting element, a reporter and inhibitors, in one drug delivery system for AD treatment.
Collapse
|
49
|
Lai H, Chen F, Lu M, Stenzel MH, Xiao P. Polypeptide-Grafted Nanodiamonds for Controlled Release of Melittin to Treat Breast Cancer. ACS Macro Lett 2017. [DOI: 10.1021/acsmacrolett.7b00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Haiwang Lai
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| | - Mingxia Lu
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| | - Pu Xiao
- Centre for Advanced Macromolecular
Design, School of Chemistry, The University of New South Wales, Sydney, Australia
| |
Collapse
|
50
|
Wang L, Dong C, Li X, Han W, Su X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol Rep 2017; 38:637-651. [PMID: 28677775 DOI: 10.3892/or.2017.5778] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is the most common cause of human death worldwide. Conventional anticancer therapies, including chemotherapy and radiation, are associated with severe side effects and toxicities as well as low specificity. Peptides are rapidly being developed as potential anticancer agents that specifically target cancer cells and are less toxic to normal tissues, thus making them a better alternative for the prevention and management of cancer. Recent research has focused on anticancer peptides from natural animal sources, such as terrestrial mammals, marine animals, amphibians, and animal venoms. However, the mode of action by which bioactive peptides inhibit the proliferation of cancer cells remains unclear. In this review, we present the animal sources from which bioactive peptides with anticancer activity are derived and discuss multiple proposed mechanisms by which these peptides exert cytotoxic effects against cancer cells.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Chao Dong
- College of Basic Medicine of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xian Li
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Wenyan Han
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|