1
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
2
|
Mazahir F, Alam MI, Yadav AK. Development of nanomedicines for the treatment of Alzheimer's disease: Raison d'être, strategies, challenges and regulatory aspects. Ageing Res Rev 2024; 98:102318. [PMID: 38705362 DOI: 10.1016/j.arr.2024.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive loss of memory. Presently, AD is challenging to treat with current drug therapy as their delivery to the brain is restricted by the presence of the blood-brain barrier. Nanomedicines, due to their size, high surface volume ratio, and ease of tailoring drug release characteristics, showed their potential to treat AD. The nanotechnology-based formulations for brain targeting are expected to enter the market in the near future. So, regulatory frameworks are required to ensure the quality, safety, and effectiveness of the nanomedicines to treat AD. In this review, we discuss different strategies, in-vitro blood-brain permeation models, in-vivo permeation assessment, and regulatory aspects for the development of nanomedicine to treat AD.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Md Imtiyaz Alam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Awesh Kumar Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
3
|
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, Thiruvengadam M. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers. Mol Neurobiol 2024; 61:3042-3089. [PMID: 37966683 DOI: 10.1007/s12035-023-03730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Takshashila Tripathi
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Govindasamy Rajakumar
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, 11442, Riyadh, Saudi Arabia
| | - Oriane Onimus
- Faculty of Basic and Biomedical Sciences, University of Paris, Paris, France
| | - Naomi D'souza
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Research Consultation Department, Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Singh D, Nagdev S. Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects. Curr Drug Deliv 2024; 21:1037-1049. [PMID: 38310440 DOI: 10.2174/0115672018275382231215063052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 02/05/2024]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali (140413), India
| | - Sanjay Nagdev
- Department of Quality Assurance, Shri. Prakashchand Jain College of Pharmacy and Research, Jamner, Maharashtra, India
| |
Collapse
|
5
|
Kasi PB, Mallela VR, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. Int J Mol Sci 2023; 24:ijms24097922. [PMID: 37175627 PMCID: PMC10178331 DOI: 10.3390/ijms24097922] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and metastatic CRC is a fatal disease. The CRC-affected tissues show several molecular markers that could be used as a fresh strategy to create newer methods of treating the condition. The liver and the peritoneum are where metastasis occurs most frequently. Once the tumor has metastasized to the liver, peritoneal carcinomatosis is frequently regarded as the disease's final stage. However, nearly 50% of CRC patients with peritoneal carcinomatosis do not have liver metastases. New diagnostic and therapeutic approaches must be developed due to the disease's poor response to present treatment choices in advanced stages and the necessity of an accurate diagnosis in the early stages. Many unique and amazing nanomaterials with promise for both diagnosis and treatment may be found in nanotechnology. Numerous nanomaterials and nanoformulations, including carbon nanotubes, dendrimers, liposomes, silica nanoparticles, gold nanoparticles, metal-organic frameworks, core-shell polymeric nano-formulations, and nano-emulsion systems, among others, can be used for targeted anticancer drug delivery and diagnostic purposes in CRC. Theranostic approaches combined with nanomedicine have been proposed as a revolutionary approach to improve CRC detection and treatment. This review highlights recent studies, potential, and challenges for the development of nanoplatforms for the detection and treatment of CRC.
Collapse
Affiliation(s)
- Phanindra Babu Kasi
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Biber Muftuler FZ. A perspective on PLGA encapsulated radio agents. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Development of a Clioquinol Nanocarrier as a New, Promising Option for the Treatment of Dermatomycosis. Pharmaceutics 2023; 15:pharmaceutics15020531. [PMID: 36839854 PMCID: PMC9965560 DOI: 10.3390/pharmaceutics15020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Dermatomycosis is a common fungal infection, and its treatment is limited by few antifungal agents. Clioquinol (CQ) is an antiparasitic agent that has been studied for new uses, such as antifungal and antiviral applications. CQ was incorporated into a lipid-based nanocarrier as a new, promising option for dermatomycosis. This study aimed to develop a CQ-loaded lipid-based nanocarrier for cutaneous application and to evaluate its antifungal activity. CQ-loaded nanoformulation (LBN-CQ) was developed using the ultrasonication method, and the particle size, polydispersity index (PDI), pH, zeta potential, and drug content were monitored for 45 days. To evaluate antifungal activity, broth microdilution and a time-kill assay were performed. LBN-CQ presented a particle size of 91 ± 3 nm and PDI of 0.102 ± 0.009. The zeta potential and pH values were -9.7 ± 2.0 mV and 6.0 ± 0.1, respectively. The drug content was 96.4 ± 2.3%, and the encapsulation efficiency was 98.4%. LBN-CQ was able to reduce the minimum inhibitory concentration (MIC) in a 2-fold or 4-fold manner in most of the tested strains. Additionally, LBN-CQ presented stable fungistatic action that was not concentration- or time-dependent. In conclusion, the developed CQ-loaded nanocarrier is a promising treatment for skin fungal infections and a promising candidate for future randomized clinical trials.
Collapse
|
8
|
Guo ZH, Khattak S, Rauf MA, Ansari MA, Alomary MN, Razak S, Yang CY, Wu DD, Ji XY. Role of Nanomedicine-Based Therapeutics in the Treatment of CNS Disorders. Molecules 2023; 28:1283. [PMID: 36770950 PMCID: PMC9921752 DOI: 10.3390/molecules28031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023] Open
Abstract
Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.
Collapse
Affiliation(s)
- Zi-Hua Guo
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, No. 54 East Caizhengting St., Kaifeng 475000, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad N. Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Sufyan Razak
- Dow Medical College, John Hopkins Medical Center, School of Medicine, Baltimore, MD 21205, USA
| | - Chang-Yong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Rathod K, Ahmed H, Gomte SS, Chougule S, A P, Dethe MR, Patel RJ, PVP DB, Alexander A. Exploring the potential of anti-inflammatory activity of berberine chloride-loaded mesoporous silica nanoparticles in carrageenan-induced rat paw edema model. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Gautam A, Pal K. Gefitinib conjugated PEG passivated graphene quantum dots incorporated PLA microspheres for targeted anticancer drug delivery. Heliyon 2022; 8:e12512. [PMID: 36619399 PMCID: PMC9816785 DOI: 10.1016/j.heliyon.2022.e12512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In the present study, polyethylene Glycol passivated Graphene Quantum Dots (PEG-GQDs) were successfully synthesized via the hydrothermal method. Furthermore, for the synthesis of anticancer drug loaded GQD embedded microspheres, the anticancer drug was mixed with synthesized PEG-GQD. As prepared, Gefitinib-PEG-GQDs were incorporated into poly-lactic acid (PLA) microspheres using poly-vinyl-acetate (PVA) as surfactant via solvent evaporation technique and single emulsification method. The successful synthesis of anticancer drug loaded microspheres was confirmed by several characterization techniques, including Field-Emission Scanning Electron Microscopy (FE-SEM), which shows the morphology of microspheres, Fourier Transform Infrared Spectroscopy (FTIR) analysis gives an idea about functional group present in the microspheres. X-ray diffraction (XRD) provides information about the crystallinity of the samples respectively. The drug release characteristics were determined by UV-Vis spectrophotometric analysis. Moreover, the in-vitro cell-based cytotoxicity assay indicated almost insignificant cytotoxicity of the NCI-H522 cell line (Human, Lung, Non-small cell lung cancer).
Collapse
Affiliation(s)
- Abhishek Gautam
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India,Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India,Corresponding author.
| |
Collapse
|
11
|
Bakrim S, Aboulaghras S, El Menyiy N, El Omari N, Assaggaf H, Lee LH, Montesano D, Gallo M, Zengin G, AlDhaheri Y, Bouyahya A. Phytochemical Compounds and Nanoparticles as Phytochemical Delivery Systems for Alzheimer's Disease Management. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27249043. [PMID: 36558176 PMCID: PMC9781052 DOI: 10.3390/molecules27249043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Hamza Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| | - Yusra AlDhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (G.Z.); (Y.A.); (A.B.)
| |
Collapse
|
12
|
Calixarenes as Host Molecules for Drug Carriers in the Cosmetic and Medical Field. Macromol Res 2022. [DOI: 10.1007/s13233-022-0094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 2022. [DOI: 10.1007/s11244-022-01697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
15
|
Li P, Feng M, Hu X, Zhang C, Zhu J, Xu G, Li L, Zhao Y. Biological evaluation of acellular bovine bone matrix treated with NaOH. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:58. [PMID: 35838844 PMCID: PMC9287214 DOI: 10.1007/s10856-022-06678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
We mainly proceed from the view of biological effect to study the acellular bovine bone matrix (ABBM) by the low concentration of hydrogen oxidation. After cleaning the bovine bone routinely, it was cleaned with different concentrations of NaOH and stained with hematoxylin-eosin (HE) to observe the effect of decellulization. The effect of bovine bone matrix treated with NaOH were observed by optical microscopy and scanning electron microscopy (SEM), and compared by DNA residue detection. Cell toxicity was also evaluated in MC3T3-E1 cells by CCK-8. For the in vitro osteogenesis detection, alkaline phosphatase (ALP) staining and alizarin red (AR) staining were performed in MC3T3-E1 cells. And the in vivo experiment, Micro CT, HE and Masson staining were used to observe whether the osteogenic effect of the materials treated with 1% NaOH solution was affected at 6 and 12 weeks. After the bovine bone was decellularized with different concentrations of NaOH solution, HE staining showed that ultrasonic cleaning with 1% NaOH solution for 30 min had the best effect of decellularization. The SEM showed that ABBM treated with 1% NaOH solution had few residual cells on the surface of the three-dimensional porous compared to ABBM treated with conventional chemical reagents. DNA residues and cytotoxicity of ABBM treated with 1% NaOH were both reduced. The results of ALP staining and AR staining showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis effect. The results of micro-CT, HE staining and Masson staining in animal experiments also showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis ability. The decellularization treatment of ABBM with the low concentration of NaOH can be more cost-effective, effectively remove the residual cellular components, without affecting the osteogenic ability. Our work may provide a novelty thought and a modified method to applicate the acellular bovine bone matrix clinically better. Graphical abstract.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Mengchun Feng
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Xiantong Hu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Chunli Zhang
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Jialiang Zhu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, PR China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, 116011, Liaoning Province, PR China.
| | - Li Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, PR China.
| |
Collapse
|
16
|
Khan I, Baig MH, Mahfooz S, Imran MA, Khan MI, Dong JJ, Cho JY, Hatiboglu MA. Nanomedicine for Glioblastoma: Progress and Future Prospects. Semin Cancer Biol 2022; 86:172-186. [PMID: 35760272 DOI: 10.1016/j.semcancer.2022.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma is the most aggressive form of brain tumor, accounting for the highest mortality and morbidity rates. Current treatment for patients with glioblastoma includes maximal safe tumor resection followed by radiation therapy with concomitant temozolomide (TMZ) chemotherapy. The addition of TMZ to the conformal radiation therapy has improved the median survival time only from 12 months to 16 months in patients with glioblastoma. Despite these aggressive treatment strategies, patients' prognosis remains poor. This therapeutic failure is primarily attributed to the blood-brain barrier (BBB) that restricts the transport of TMZ from reaching the tumor site. In recent years, nanomedicine has gained considerable attention among researchers and shown promising developments in clinical applications, including the diagnosis, prognosis, and treatment of glioblastoma tumors. This review sheds light on the morphological and physiological complexity of the BBB. It also explains the development of nanomedicine strategies to enhance the permeability of drug molecules across the BBB.
Collapse
Affiliation(s)
- Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Sadaf Mahfooz
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 120-752, Republic of Korea.
| | - Mustafa Aziz Hatiboglu
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıköy St., Beykoz, Istanbul, Turkey; Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey.
| |
Collapse
|
17
|
Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Farjami A, Farjami A, Mahmoudian M, Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr Pharm Des 2022; 28:1985-2000. [PMID: 35676838 DOI: 10.2174/1381612828666220608093639] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society.Researchersare stillstruggling to find effective drugs to treatneurological disordersand drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between the peripheral blood circulation and the neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration.BBB disruption is evident in many neurologicalconditions.Nevertheless, the majority of currently available therapies have tremendous problems for drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered as a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm whichcan encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD as well as the factors affecting their efficacy after systemic administration.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Lazer LM, Kesavan Y, Gor R, Ramachandran I, Pathak S, Narayan S, Anbalagan M, Ramalingam S. Targeting colon cancer stem cells using novel doublecortin like kinase 1 antibody functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles. Colloids Surf B Biointerfaces 2022; 217:112612. [PMID: 35738074 DOI: 10.1016/j.colsurfb.2022.112612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 01/05/2023]
Abstract
The cancer stem cell (CSC) hypothesis is an evolving oncogenesis concept. CSCs have a distinct ability to self-renew themselves and also give rise to a phenotypically diverse population of cells. Targeting CSCs represents a promising strategy for cancer treatment. Plant-derived compounds are potent in restricting the expansion of CSCs. DCLK1 has been already reported as a colon CSC specific marker. Nanoparticles can effectively inhibit multiple types of CSCs by targeting specific markers. We have synthesized DCLK1 functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles (CFH-DCLK1), specifically to target CSCs. In this regard, we have performed proliferation assay, colony formation assay, cell migration assay, apoptosis assay, flow cytometry analysis, real-time RT- PCR and western blot analyses to determine the effect of CFH-DCLK1 and CFH nanoparticles in HCT116-colon cancer cells. In our study, we have determined the median inhibitory concentration (IC50) of CFH (47.8 µM) and CFH-DCLK1 (4.8 µM) nanoparticles in colon cancer cells. CFH-DCLK1 nanoparticles induced apoptosis and inhibited the migration and invasion of colon cancer cells. Real time PCR and western blot results have demonstrated that the treatment with CFH-DCLK1 nanoparticles significantly reduced the expression of CSC markers such as DCLK1, STAT1 and NOTCH1 compared to the CFH alone in HCT116 colon cancer cells. Finally, in the 3D spheroid model, CFH-DCLK1 nanoparticles significantly inhibited the colonosphere growth. Overall, our results highlight the effectiveness of CFH-DCLK1 nanoparticles in targeting the colon cancer cells and CSCs. This study would lead to the development of therapies targeting both cancer cells and CSCs simultaneously using nanoformulated drugs, which could bring changes in the current cancer treatment strategies.
Collapse
Affiliation(s)
- Lizha Mary Lazer
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Yasodha Kesavan
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Ravi Gor
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, Tamil Nadu, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, 603103, India
| | - Muralidharan Anbalagan
- Structural & Cellular Biology, Pre-clinical small animal Imaging Facility, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603203, Tamil Nadu, India.
| |
Collapse
|
19
|
Nokhodi F, Nekoei M, Goodarzi MT. Hyaluronic acid-coated chitosan nanoparticles as targeted-carrier of tamoxifen against MCF7 and TMX-resistant MCF7 cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:24. [PMID: 35157166 PMCID: PMC8843906 DOI: 10.1007/s10856-022-06647-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 05/07/2023]
Abstract
Tamoxifen (TMX) is used to treat hormone-receptor-positive breast cancers at early stages. This research aimed to assess the potential of NPs in targeted delivery of TMX against MCF7 and TMX-resistant MCF7 breast cancer cell lines. For this purpose, a targeted delivery system including chitosan NPs coated with hyaluronic acid (HA-CS NPs) was created and examined in vitro. Chitosan NPs were first fabricated and loaded with TMX using the ionic-gelation method to prepare a drug-delivery system. Then, TMX-loaded CS NPs were coated by crosslinking the amino groups of chitosan to the carboxylic group of hyaluronic acid. The developed TMX delivery system was then optimized and characterized for particle fabrication, drug release, and targeting against cancer cells. The HA-CS particle size was 210 nm and its zeta potential was +25 mv. The encapsulation efficiency of TMX in NPs was 55%. TMX released from the NPs in acidic pH (5-6) was higher than the physiological pH (7.4). The cytotoxic effect of TMX-loaded HA-CS NPs on MCF7 and TMX-resistant MCF7 cells was significantly higher than TMX-loaded CS NPs and free drug. The findings confirmed the significant suppressive impact of TMX-loaded HA-CS NPs on MCF7 and TMX-resistant MCF7 cancer cells compared to the TMX-loaded CS NPs and free TMX. Graphical abstract.
Collapse
Affiliation(s)
- Fariba Nokhodi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehdi Nekoei
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | |
Collapse
|
20
|
Johnson AP, Sabu C, Nivitha K, Sankar R, Shirin VA, Henna T, Raphey V, Gangadharappa H, Kotta S, Pramod K. Bioinspired and biomimetic micro- and nanostructures in biomedicine. J Control Release 2022; 343:724-754. [DOI: 10.1016/j.jconrel.2022.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
21
|
Guido C, Baldari C, Maiorano G, Mastronuzzi A, Carai A, Quintarelli C, De Angelis B, Cortese B, Gigli G, Palamà IE. Nanoparticles for Diagnosis and Target Therapy in Pediatric Brain Cancers. Diagnostics (Basel) 2022; 12:diagnostics12010173. [PMID: 35054340 PMCID: PMC8774904 DOI: 10.3390/diagnostics12010173] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Pediatric brain tumors represent the most common types of childhood cancer and novel diagnostic and therapeutic solutions are urgently needed. The gold standard treatment option for brain cancers in children, as in adults, is tumor resection followed by radio- and chemotherapy, but with discouraging therapeutic results. In particular, the last two treatments are often associated to significant neurotoxicity in the developing brain of a child, with resulting disabilities such as cognitive problems, neuroendocrine, and neurosensory dysfunctions/deficits. Nanoparticles have been increasingly and thoroughly investigated as they show great promises as diagnostic tools and vectors for gene/drug therapy for pediatric brain cancer due to their ability to cross the blood–brain barrier. In this review we will discuss the developments of nanoparticle-based strategies as novel precision nanomedicine tools for diagnosis and therapy in pediatric brain cancers, with a particular focus on targeting strategies to overcome the main physiological obstacles that are represented by blood–brain barrier.
Collapse
Affiliation(s)
- Clara Guido
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Clara Baldari
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
| | - Gabriele Maiorano
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Department of Onco-Haematology, Cell Therapy, Gene Therapy and Haemopoietic Transplant, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Biagio De Angelis
- Department Onco-Haematology, and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (C.Q.); (B.D.A.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-NANOTEC, c/o La Sapienza University, Piazzale A. Moro, 00165 Rome, Italy;
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Monteroni Street, 73100 Lecce, Italy; (C.G.); (C.B.); (G.G.)
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
| | - Ilaria Elena Palamà
- Nanotechnology Institute, CNR-NANOTEC, Monteroni Street, 73100 Lecce, Italy;
- Correspondence:
| |
Collapse
|
22
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
23
|
Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021; 175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
The past decades have witnessed an increased incidence of neurological disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, ischemic stroke, and epilepsy, which significantly lower patients' life quality and increase the economic and social burden. Recently, nanomedicines composed of imaging and/or therapeutic agents have been explored to diagnose and/or treat NDs due to their enhanced bioavailability, blood-brain barrier (BBB) permeability, and targeting capacity. Intriguingly, dynamic nanoassemblies self-assembled from functional nanoparticles to simultaneously interfere with multiple pathogenic substances and pathological changes, have been regarded as one of the foremost candidates to improve the diagnostic and therapeutic efficacy of NDs. To help readers better understand this emerging field, in this review, the pathogenic mechanism of different types of NDs is briefly introduced, then the functional nanoparticles used as building blocks in the construction of dynamic nanoassemblies for NDs theranostics are summarized. Furthermore, dynamic nanoassemblies that can actively cross the BBB to target brain lesions, sensitively and efficiently diagnose or treat NDs, and effectively promote neuroregeneration are highlighted. Finally, we conclude with our perspectives on the future development in this field.
Collapse
|
24
|
Targeting Systems to the Brain Obtained by Merging Prodrugs, Nanoparticles, and Nasal Administration. Pharmaceutics 2021; 13:pharmaceutics13081144. [PMID: 34452105 PMCID: PMC8399330 DOI: 10.3390/pharmaceutics13081144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
About 40 years ago the lipidization of hydrophilic drugs was proposed to induce their brain targeting by transforming them into lipophilic prodrugs. Unfortunately, lipidization often transforms a hydrophilic neuroactive agent into an active efflux transporter (AET) substrate, with consequent rejection from the brain after permeation across the blood brain barrier (BBB). Currently, the prodrug approach has greatly evolved in comparison to lipidization. This review describes the evolution of the prodrug approach for brain targeting considering the design of prodrugs as active influx substrates or molecules able to inhibit or elude AETs. Moreover, the prodrug approach appears strategic in optimization of the encapsulation of neuroactive drugs in nanoparticulate systems that can be designed to induce their receptor-mediated transport (RMT) across the BBB by appropriate decorations on their surface. Nasal administration is described as a valuable alternative to obtain the brain targeting of drugs, evidencing that the prodrug approach can allow the optimization of micro or nanoparticulate nasal formulations of neuroactive agents in order to obtain this goal. Furthermore, nasal administration is also proposed for prodrugs characterized by peripheral instability but potentially able to induce their targeting inside cells of the brain.
Collapse
|
25
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
26
|
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP. Therapeutic Potential of Phytoconstituents in Management of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5578574. [PMID: 34211570 PMCID: PMC8208882 DOI: 10.1155/2021/5578574] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer's disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer's and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Assam 786004, Dibrugarh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464, Bucharest, Romania
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
27
|
Tailoring of P-glycoprotein for effective transportation of actives across blood-brain-barrier. J Control Release 2021; 335:398-407. [PMID: 34087246 DOI: 10.1016/j.jconrel.2021.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
P-Glycoprotein serves as a gatekeeper in the blood-brain-barrier wherein, it shows a vital part in the elimination of xenobiotics, drugs, foreign molecules etc. and guards the central nervous system from infections and external toxic molecules by functioning as an efflux transporter. It plays an essential role in various brain-related conditions like Parkinsonism, Alzheimer's disease, depression, cancer, etc. and terminates the entry of therapeutic agents across blood-brain-barrier which remains a significant challenge serving as major hindrance in pharmacotherapy of disease. The physiological structure and topology of P-glycoprotein and its relation with blood-brain-barrier and central nervous system gives an idea for targeting nanocarriers across the barrier into brain. This review article provides an overview of current understanding of the nanoformulations-based P-gp trafficking strategies like nanocarriers, stem cell therapy, drugs, substrates, polymeric materials, chemical compounds as well as naturally occurring active constituents for improving drug transport in brain across blood-brain-barrier and contributing in effective nanotherapeutic development for treatment of CNS disorders.
Collapse
|
28
|
Raghav N, Sharma MR. Usage of nanocrystalline cellulose phosphate as novel sustained release system for anti-inflammatory drugs. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003937. [PMID: 34026447 PMCID: PMC8132167 DOI: 10.1002/advs.202003937] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Indexed: 05/04/2023]
Abstract
Neurological disorders such as Alzheimer's disease, stroke, and brain cancers are difficult to treat with current drugs as their delivery efficacy to the brain is severely hampered by the presence of the blood-brain barrier (BBB). Drug delivery systems have been extensively explored in recent decades aiming to circumvent this barrier. In particular, polymeric nanoparticles have shown enormous potentials owing to their unique properties, such as high tunability, ease of synthesis, and control over drug release profile. However, careful analysis of their performance in effective drug transport across the BBB should be performed using clinically relevant testing models. In this review, polymeric nanoparticle systems for drug delivery to the central nervous system are discussed with an emphasis on the effects of particle size, shape, and surface modifications on BBB penetration. Moreover, the authors critically analyze the current in vitro and in vivo models used to evaluate BBB penetration efficacy, including the latest developments in the BBB-on-a-chip models. Finally, the challenges and future perspectives for the development of polymeric nanoparticles to combat neurological disorders are discussed.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Ami Mehta
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- IITB Monash Research AcademyBombayMumbai400076India
| | - Ziqiu Tong
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Lars Esser
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVIC3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
30
|
Onyeje C, Lavik E. Highlighting the usage of polymeric nanoparticles for the treatment of traumatic brain injury: A review study. Neurochem Int 2021; 147:105048. [PMID: 33901586 DOI: 10.1016/j.neuint.2021.105048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
There are very limited options for treating traumatic brain injury (TBI). Nanoparticles offer the potential of targeting specific cell types, and, potentially, crossing the BBB under the right conditions making them an area of active research for treating TBI. This review focuses on polymeric nanoparticles and the impact of their chemistry, size, and surface groups on their interactions with the vasculature and cells of the brain following injury. The vast majority of the work in the field focuses on acute injury, and when the work is looked at closely, it suggests that nanoparticles rely on interactions with vascular and immune cells to alter the environment of the brain. Nonetheless, there are promising results from a number of approaches that lead to behavioral improvements coupled with neuroprotection that offer promise for therapeutic outcomes. The majority of approaches have been tested immediately following injury. It is not entirely clear what impact these approaches will have in chronic TBI, but being able to modulate inflammation specifically may have a role both during and after the acute phase of injury.
Collapse
Affiliation(s)
- Chiad Onyeje
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA
| | - Erin Lavik
- University of Maryland, Baltimore County, Piscataway Territories, Baltimore, MD 21250, USA.
| |
Collapse
|
31
|
Qureshi D, Pattanaik S, Mohanty B, Anis A, Kulikouskaya V, Hileuskaya K, Agabekov V, Sarkar P, Maji S, Pal K. Preparation of novel poly(vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03653-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Feng QP, Zhu YT, Yuan YZ, Li WJ, Yu HH, Hu MY, Xiang SY, Yu SQ. Oral administration co-delivery nanoparticles of docetaxel and bevacizumab for improving intestinal absorption and enhancing anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112039. [PMID: 33947539 DOI: 10.1016/j.msec.2021.112039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023]
Abstract
In this study, to improve the intestinal absorption of small molecule chemotherapeutic drug docetaxel (DTX) and macromolecular monoclonal antibody drug bevacizumab (BVZ), we designed and prepared a type of co-delivery nanoparticles for the oral administration of DTX and BVZ. Carboxymethyl chitosan (CMC) and poly(lactic-co-glycolic acid) (PLGA) were used as the carrier of DTX nanoparticles (CPNPDTX), and methoxy polyethylene glycol-poly (β-amino ester) (mPEG-PAE) was used as the carrier of BVZ nanoparticles (PPNPBVZ). Then, the two nanoparticles were physically mixed in mass ratios to form mixed co-delivery nanoparticles, which was named as CPNPDTX&PPNPBVZ. The nanoparticles were characterized with pH-sensitive drug release property. CPNPDTX&PPNPBVZ could significantly increase the bioavailability of DTX and BVZ according to the more cellular uptake in Caco-2 cells and the higher absorption in the intestinal tissue. Compared with free DTX and BVZ, CPNPDTX&PPNPBVZ showed excellent cytotoxic effects on A549 cells. Our study revealed the potential of co-delivery nanoparticles of binary mixture of chemotherapeutic small molecule and macromolecular antibody drug as an oral administration therapeutic system.
Collapse
Affiliation(s)
- Qiu-Ping Feng
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Yu-Ting Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yi-Zhen Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Wen-Jie Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Hao-Han Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng-Yuan Hu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Su-Yun Xiang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
33
|
Sadeghi I, Byrne J, Shakur R, Langer R. Engineered drug delivery devices to address Global Health challenges. J Control Release 2021; 331:503-514. [PMID: 33516755 PMCID: PMC7842133 DOI: 10.1016/j.jconrel.2021.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
There is a dire need for innovative solutions to address global health needs. Polymeric systems have been shown to provide substantial benefit to all sectors of healthcare, especially for their ability to extend and control drug delivery. Herein, we review polymeric drug delivery devices for vaccines, tuberculosis, and contraception.
Collapse
Affiliation(s)
- Ilin Sadeghi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - James Byrne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA
| | - Rameen Shakur
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Mbah C, Ogbonna J, Nzekwe I, Ugwu G, Ezeh R, Builders P, Attama A, Adikwu M, Ofoefule S. Nanovesicle Formulation Enhances Anti-inflammatory Property and Safe Use of Piroxicam. Pharm Nanotechnol 2021; 9:177-190. [PMID: 33511937 DOI: 10.2174/2211738509666210129151844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enhanced utilization of certain drugs may be possible through the development of alternative delivery forms. It has been observed that NSAIDs have adverse gastrointestinal tract effects such as irritation and ulceration during anti-inflammatory therapy. This challenge may be overcome through nano topical formulations. OBJECTIVE This study aimed to explore the potentials of a transdermal nanovesicular formulation for safe and enhanced delivery of piroxicam (PRX), a poorly water-soluble NSAID. METHODS Preformulation studies were conducted using DSC and FTIR. Ethosomal nanovesicular carrier (ENVC) was prepared by thin-film deposition technique using Phospholipon® 90 H (P90H) and ethanol and then converted into gel form. The formulation was characterized using a commercial PRX gel as control. Permeation studies were conducted using rat skin and Franz diffusion cell. Samples were assayed spectrophotometrically, and the obtained data was analyzed by ANOVA using GraphPad Prism software. RESULTS The preformulation studies showed compatibility between PRX and P90H. Spherical vesicles of mean size 343.1 ± 5.9 nm, and polydispersity index 0.510 were produced, which remained stable for over 2 years. The optimized formulation (PE30) exhibited pseudoplastic flow, indicating good consistency. The rate of permeation increased with time in the following order: PE30 > Commercial, with significant difference (p< 0.05). It also showed higher inhibition of inflammation (71.92 ± 9.67%) than the reference (64.12 ± 7.92%). CONCLUSION ENVC gel of PRX was formulated. It showed potentials for enhanced transdermal delivery and anti-inflammatory activity relative to the reference. This may be further developed as a safe alternative to the oral form.
Collapse
Affiliation(s)
- Chukwuemeka Mbah
- Drug Delivery and Nanotechnology Research Unit (RUNDD), Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Josephat Ogbonna
- Drug Delivery and Nanotechnology Research Unit (RUNDD), Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ifeanyi Nzekwe
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - George Ugwu
- Department of Obstetrics and Gynaecology, College of Medicine, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Richard Ezeh
- Department of Medical Biochemistry, Enugu State University of Science and Technology Teaching Hospital, Enugu, Nigeria
| | - Philip Builders
- Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development, Idu, 900001, Abuja, Nigeria
| | - Anthony Attama
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Michael Adikwu
- Drug Delivery and Nanomedicines Research Group, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Sabinus Ofoefule
- Drug Delivery and Nanotechnology Research Unit (RUNDD), Department of Pharmaceutical Technology and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
35
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Nguyen TT, Vo TK, Vo GV. Therapeutic Strategies and Nano-Drug Delivery Applications in Management of Aging Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:183-198. [PMID: 33725354 DOI: 10.1007/978-3-030-55035-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. Existing drugs only suppress symptoms or delay further deterioration but do not address the cause of the disease. In spite of screening numerous drug candidates against various molecular targets of AD, only a few candidates, such as acetylcholinesterase inhibitors, are currently utilized as an effective clinical therapy. Currently, nano-based therapies can make a difference, providing new therapeutic options by helping drugs to cross the blood-brain barrier and enter the brain more effectively. The main aim of this review was to highlight advances in research on the development of nano-based therapeutics for improved treatment of AD.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Hanoi, Vietnam
| | - Giau Van Vo
- Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si, South Korea. .,Department of Bionano Technology, Gachon University, Seongnam-si, South Korea. .,School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
37
|
Dogra A, Narang RS, Narang JK. Recent Advances in Nanotherapeutic Interventions for the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:2257-2279. [PMID: 32321393 DOI: 10.2174/1381612826666200422092620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), with impairment of learning and memory as the common clinical manifestations, is one of the most challenging diseases affecting individuals, their families and society as a whole. The fact that its prevalence is escalating rapidly, with the total number of AD patients estimated to reach 115.4 million by 2050, has made the disease a very challenging ailment worldwide. Several biological barriers like the bloodbrain barrier (BBB), drug efflux by P-glycoprotein and the blood-cerebrospinal fluid barrier restrict the delivery of conventional AD drugs to the central nervous system (CNS), thereby limiting their effectiveness. In order to overcome the above physiological barriers, the development of nanomedicines has been extensively explored. The present review provides an insight into the pathophysiology of AD and risk factors associated with AD. Besides, various nanoformulations reported in the literature for the diagnosis and treatments of AD have been classified and summarised. The patented nanoformulations for AD and details of nanoformulations which are in clinical trials are also mentioned. The review would be helpful to researchers and scientific community by providing them with information related to the recent advances in nanointerventions for the diagnosis and treatment of AD, which they can further explore for better management of the disease. However, although the nanotherapeutics for managing AD have been extensively explored, the factors which hinder their commercialisation, the toxicity concern being one of them, need to be addressed so that effective nanotherapeutics for AD can be developed for clinical use.
Collapse
Affiliation(s)
- Anmol Dogra
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India.,I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India
| | - R S Narang
- Department of Oral & Maxillofacial Pathology and Microbiology, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Jasjeet K Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| |
Collapse
|
38
|
Dong J, Cheng Z, Tan S, Zhu Q. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin Drug Deliv 2020; 18:695-714. [PMID: 33301349 DOI: 10.1080/17425247.2021.1862792] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clay minerals are a class of silicates with chemical inertness, colloid, and thixotropy, which have excellent physicochemical properties, good biocompatibility, low toxicity, and have high application potential in biomedical fields. These inorganic materials have been widely used in pharmaceutical excipients and active substances. In recent years, nanoclay mineral materials have been used as drug vehicles for the delivery of a variety of drugs based on their broad specific surface area, rich porosity, diverse morphology, good adsorption performance, and high ion exchange capacity. AREAS COVERED This review introduces the structures, properties, and applications of various common natural and synthetic nanoclay materials as drug carriers. Natural nanoclays have different morphologies including nanoplates, nanotubes, and nanofibers. Synthetic materials have controllable sizes and flexible structures, where mesoporous silica nanoparticles, laponite, and imogolite are typical ones. These inorganic nanoparticles are often linked to polymers to form multifunctional drug delivery systems for better pharmaceutical performance. EXPERT OPINION The clay nanomaterials have typical properties, including enhanced solubility of insoluble drugs, targeting therapeutic sites, controlled release, and stimulation of responsive drug delivery systems.
Collapse
Affiliation(s)
- Jiani Dong
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Songwen Tan
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Department of Pharmacy, Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Thangudu S, Cheng FY, Su CH. Advancements in the Blood-Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers (Basel) 2020; 12:E3055. [PMID: 33419339 PMCID: PMC7766280 DOI: 10.3390/polym12123055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Noninvasive treatments to treat the brain-related disorders have been paying more significant attention and it is an emerging topic. However, overcoming the blood brain barrier (BBB) is a key obstacle to most of the therapeutic drugs to enter into the brain tissue, which significantly results in lower accumulation of therapeutic drugs in the brain. Thus, administering the large quantity/doses of drugs raises more concerns of adverse side effects. Nanoparticle (NP)-mediated drug delivery systems are seen as potential means of enhancing drug transport across the BBB and to targeted brain tissue. These systems offer more accumulation of therapeutic drugs at the tumor site and prolong circulation time in the blood. In this review, we summarize the current knowledge and advancements on various nanoplatforms (NF) and discusses the use of nanoparticles for successful cross of BBB to treat the brain-related disorders such as brain tumors, Alzheimer's disease, Parkinson's disease, and stroke.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan
| |
Collapse
|
40
|
Curcio M, Cirillo G, Rouaen JRC, Saletta F, Nicoletta FP, Vittorio O, Iemma F. Natural Polysaccharide Carriers in Brain Delivery: Challenge and Perspective. Pharmaceutics 2020; 12:E1183. [PMID: 33291284 PMCID: PMC7762150 DOI: 10.3390/pharmaceutics12121183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Targeted drug delivery systems represent valuable tools to enhance the accumulation of therapeutics in the brain. Here, the presence of the blood brain barrier strongly hinders the passage of foreign substances, often limiting the effectiveness of pharmacological therapies. Among the plethora of materials used for the development of these systems, natural polysaccharides are attracting growing interest because of their biocompatibility, muco-adhesion, and chemical versatility which allow a wide range of carriers with tailored physico-chemical features to be synthetized. This review describes the state of the art in the field of targeted carriers based on natural polysaccharides over the last five years, focusing on the main targeting strategies, namely passive and active transport, stimuli-responsive materials and the administration route. In addition, in the last section, the efficacy of the reviewed carriers in each specific brain diseases is summarized and commented on in terms of enhancement of either blood brain barrier (BBB) permeation ability or drug bioavailability in the brain.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Jourdin R. C. Rouaen
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| |
Collapse
|
41
|
Buosi FS, Alaimo A, Di Santo MC, Elías F, García Liñares G, Acebedo SL, Castañeda Cataña MA, Spagnuolo CC, Lizarraga L, Martínez KD, Pérez OE. Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: Impact on human ARPE-19 culture cells. Int J Biol Macromol 2020; 165:804-821. [DOI: 10.1016/j.ijbiomac.2020.09.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
|
42
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
43
|
Minisy IM, Salahuddin NA, Ayad MM. In vitro release study of ketoprofen-loaded chitosan/polyaniline nanofibers. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03385-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
M Luisa DPA, Griselda RM, Valentín ML, Carmina OS, Cristina VM, JJ M, Maykel GT, David QG, Roberto SS, Gerardo LG. Curcumin-loaded poly-ε-caprolactone nanoparticles show antioxidant and cytoprotective effects in the presence of reactive oxygen species. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520921499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Interest in novel delivery systems that improve the cytoprotective and antioxidant effects of natural drugs has been explored recently due to the increase in the incidence of chronic diseases in which oxidation mechanisms are involved. Curcumin is a phenolic compound recently shown to be clinically significant due to its anti-inflammatory, anticancer, and antioxidant properties. However, this molecule possesses a low bioavailability and a high degradation rate in the presence of light. Therefore, we prepared nanoparticles of poly-ε-caprolactone and Pluronic® F-68 as a stabilizer and loaded these with curcumin (Cur–PCL nanoparticles) for antioxidant and cytoprotective applications. The nanoparticles did not induce cell death, but they did reduce cell proliferation without affecting cell migration and cell adhesion. Interestingly, Cur–PCL and poly-ε-caprolactone nanoparticles reduced the oxidative stress induced by hydrogen peroxide and presented a cytoprotective effect. Remarkably, poly-ε-caprolactone nanoparticles showed a decrement of 30% in reactive oxygen species presence compared to the positive control. The decrease of reactive oxygen species derived from the administration of poly-ε-caprolactone nanoparticles could be attributed to the presence of Pluronic® F-68. Taken together, these data indicated that these nanoparticles might have a clinical application in disorders related to reactive oxygen species formation.
Collapse
Affiliation(s)
- Del Prado-Audelo M Luisa
- Laboratorio de Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Rodríguez-Martínez Griselda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Martínez-López Valentín
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Ortega-Sánchez Carmina
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Velasquillo-Martínez Cristina
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Magaña JJ
- Laboratorio de Medicina Genómica, Departamento de Genómica, Centro Nacional de Investigación y Atención de Quemados (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México, Mexico
| | - González-Torres Maykel
- CONACyT – Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Quintanar-Guerrero David
- Laboratorio de Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Sánchez-Sánchez Roberto
- Unidad de Ingeniería de Tejidos Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Ciudad de México, México
| | - Leyva-Gómez Gerardo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
45
|
Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, Cereda C. Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach. Int J Mol Sci 2020; 21:ijms21093243. [PMID: 32375302 PMCID: PMC7247337 DOI: 10.3390/ijms21093243] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Eveljn Scarian
- Department of Brain and Behavioural Sciences, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy;
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| | - Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milan, Via Grassi, 74, 20157 Milan, Italy
| | - Stella Gagliardi
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (S.C.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milan, Via Grassi, 74, 20157 Milan, Italy
| | - Orietta Pansarasa
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
- Correspondence: ; Tel.: +39-0382-380-248
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (S.G.); (C.C.)
| |
Collapse
|
46
|
Self-assembled drug loaded glycosyl-protein metal nanoconstruct: Detailed synthetic procedure and therapeutic effect in solid tumor treatment. Colloids Surf B Biointerfaces 2020; 193:111082. [PMID: 32361551 DOI: 10.1016/j.colsurfb.2020.111082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
Nanotechnology-based drug delivery research has largely focused on developing well efficient localized delivery therapeutic agents to overcome the limitations of non-specificity and toxicity of conventional chemotherapy. Herein, we constructed a nanoplatform based on a self-assembled polysaccharide-protein conjugate to deliver anti-tumor drug doxorubicin and gold nanoparticles (DOX@PST-BSA AuNPs) for cancer therapy. The self-assembled DOX@PST-BSA AuNPs exhibited higher stability and thermal properties which enable them for drug delivery via passive targeting. The fluorescent property of the drug contributes to the self-monitoring of NPs Biodistribution in vitro and in vivo. Furthermore, the NPs showed negligible cytotoxicity and tissue accumulation in normal cells in vivo. Importantly, the NPs could load the anti-tumor drug with high encapsulation efficiency and competently delivered into the tumor microenvironment thereby inhibit tumor growth significantly through apoptotic induction. Notably, DOX@PST-BSA AuNPs exhibits low systemic toxicity and very few side effects in vivo. Based on the explored features, these NPs could serve as a promising multifunctional drug delivery nanoplatform for cancer therapy.
Collapse
|
47
|
|
48
|
Rajpoot K. Nanotechnology-based Targeting of Neurodegenerative Disorders: A Promising Tool for Efficient Delivery of Neuromedicines. Curr Drug Targets 2020; 21:819-836. [PMID: 31906836 DOI: 10.2174/1389450121666200106105633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
Traditional drug delivery approaches remained ineffective in offering better treatment to various neurodegenerative disorders (NDs). In this context, diverse types of nanocarriers have shown their great potential to cross the blood-brain barrier (BBB) and have emerged as a prominent carrier system in drug delivery. Moreover, nanotechnology-based methods usually involve numerous nanosized carrier platforms, which potentiate the effect of the therapeutic agents in the therapy of NDs especially in diagnosis and drug delivery with negligible side effects. In addition, nanotechnology-based techniques have offered several strategies to cross BBB to intensify the bioavailability of drug moieties in the brain. In the last few years, diverse kinds of nanoparticles (NPs) have been developed by incorporating various biocompatible components (e.g., polysaccharide-based NPs, polymeric NPs, selenium NPs, AuNPs, protein-based NPs, gadolinium NPs, etc.), that showed great therapeutic benefits against NDs. Eventually, this review provides deep insights to explore recent applications of some innovative nanocarriers enclosing active molecules for the efficient treatment of NDs.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495 009, Chhattisgarh, India
| |
Collapse
|
49
|
Savić-Gajić IM, Savić IM. Drug design strategies with metal-hydroxyquinoline complexes. Expert Opin Drug Discov 2019; 15:383-390. [DOI: 10.1080/17460441.2020.1702964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ivan M. Savić
- Faculty of Technology, University of Nis, Leskovac, Republic of Serbia
| |
Collapse
|
50
|
A Role for Nanoparticles in Treating Traumatic Brain Injury. Pharmaceutics 2019; 11:pharmaceutics11090473. [PMID: 31540234 PMCID: PMC6781280 DOI: 10.3390/pharmaceutics11090473] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the main causes of disability in children and young adults, as well as a significant concern for elderly individuals. Depending on the severity, TBI can have a long-term impact on the quality of life for survivors of all ages. The primary brain injury can result in severe disability or fatality, and secondary brain damage can increase the complexities in cellular, inflammatory, neurochemical, and metabolic changes in the brain, which can last decades post-injury. Thus, survival from a TBI is often accompanied by lifelong disabilities. Despite the significant morbidity, mortality, and economic loss, there are still no effective treatment options demonstrating an improved outcome in a large multi-center Phase III trial, which can be partially attributed to poor target engagement of delivered therapeutics. Thus, there is a significant unmet need to develop more effective delivery strategies to overcome the biological barriers that would otherwise inhibit transport of materials into the brain to prevent the secondary long-term damage associated with TBI. The complex pathology of TBI involving the blood-brain barrier (BBB) has limited the development of effective therapeutics and diagnostics. Therefore, it is of great importance to develop novel strategies to target the BBB. The leaky BBB caused by a TBI may provide opportunities for therapeutic delivery via nanoparticles (NP). The focus of this review is to provide a survey of NP-based strategies employed in preclinical models of TBI and to provide insights for improved NP based diagnostic or treatment approaches. Both passive and active delivery of various NPs for TBI are discussed. Finally, potential therapeutic targets where improved NP-mediated delivery could increase target engagement are identified with the overall goal of providing insight into open opportunities for NP researchers to begin research in TBI.
Collapse
|