1
|
Kim YG, Kang H, Lee B, Jang HJ, Park JH, Ha C, Park H, Kim JW. A spectrum of nonsense-mediated mRNA decay efficiency along the degree of mutational constraint. Commun Biol 2024; 7:1461. [PMID: 39511375 PMCID: PMC11544006 DOI: 10.1038/s42003-024-07136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Despite its importance for regulating gene expression, nonsense-mediated mRNA decay (NMD) remains poorly understood. Here, we extend the findings of a previous landmark study that proposed several factors associated with NMD efficiency using matched genome and transcriptome data from The Cancer Genome Atlas Program (TCGA) by incorporating additional data including Genotype-Tissue Expression (GTEx), gnomAD, and metrics for mutational constraints. Factors affecting NMD efficiency are analyzed using an allele-specific expression (ASE)-based measure to reduce noise caused by random variations. Additionally, by combining our data with the updated allele frequency database of gnomAD, we demonstrate the spectrum of NMD efficiency according to the degree of gene-level mutational constraints (degree of a gene-tolerating loss-of-function variants). The NMD prediction model, trained on TCGA data, shows that gene-level mutational constraint is an important predictor of NMD efficiency. Findings of this study suggest the potential role of NMD on shaping the landscape of mutational constraints.
Collapse
Affiliation(s)
- Young-Gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyunju Kang
- Department of Artificial Intelligence, Sungkyunkwan University College of Computing and Informatics, Suwon, Republic of Korea
| | - Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyeok-Jae Jang
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, Republic of Korea
| | - Jong-Ho Park
- Clinical Genomics Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Changhee Ha
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hogun Park
- Department of Artificial Intelligence, Sungkyunkwan University College of Computing and Informatics, Suwon, Republic of Korea.
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Morais P, Zhang R, Yu YT. Therapeutic Nonsense Suppression Modalities: From Small Molecules to Nucleic Acid-Based Approaches. Biomedicines 2024; 12:1284. [PMID: 38927491 PMCID: PMC11201248 DOI: 10.3390/biomedicines12061284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nonsense mutations are genetic mutations that create premature termination codons (PTCs), leading to truncated, defective proteins in diseases such as cystic fibrosis, neurofibromatosis type 1, Dravet syndrome, Hurler syndrome, Beta thalassemia, inherited bone marrow failure syndromes, Duchenne muscular dystrophy, and even cancer. These mutations can also trigger a cellular surveillance mechanism known as nonsense-mediated mRNA decay (NMD) that degrades the PTC-containing mRNA. The activation of NMD can attenuate the consequences of truncated, defective, and potentially toxic proteins in the cell. Since approximately 20% of all single-point mutations are disease-causing nonsense mutations, it is not surprising that this field has received significant attention, resulting in a remarkable advancement in recent years. In fact, since our last review on this topic, new examples of nonsense suppression approaches have been reported, namely new ways of promoting the translational readthrough of PTCs or inhibiting the NMD pathway. With this review, we update the state-of-the-art technologies in nonsense suppression, focusing on novel modalities with therapeutic potential, such as small molecules (readthrough agents, NMD inhibitors, and molecular glue degraders); antisense oligonucleotides; tRNA suppressors; ADAR-mediated RNA editing; targeted pseudouridylation; and gene/base editing. While these various modalities have significantly advanced in their development stage since our last review, each has advantages (e.g., ease of delivery and specificity) and disadvantages (manufacturing complexity and off-target effect potential), which we discuss here.
Collapse
Affiliation(s)
- Pedro Morais
- Drug Metabolism and Pharmacokinetics, Research and Development, Bayer Pharmaceuticals, 42113 Wuppertal, Germany
| | - Rui Zhang
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| |
Collapse
|
3
|
Yadav P, Tamilselvan R, Mani H, Singh KK. MicroRNA-mediated regulation of nonsense-mediated mRNA decay factors: Insights into microRNA prediction tools and profiling techniques. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195022. [PMID: 38437914 DOI: 10.1016/j.bbagrm.2024.195022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) stands out as a prominent RNA surveillance mechanism within eukaryotes, meticulously overseeing both RNA abundance and integrity by eliminating aberrant transcripts. These defective transcripts are discerned through the concerted efforts of translating ribosomes, eukaryotic release factors (eRFs), and trans-acting NMD factors, with Up-Frameshift 3 (UPF3) serving as a noteworthy component. Remarkably, in humans, UPF3 exists in two paralogous forms, UPF3A (UPF3) and UPF3B (UPF3X). Beyond its role in quality control, UPF3 wields significant influence over critical cellular processes, including neural development, synaptic plasticity, and axon guidance. However, the precise regulatory mechanisms governing UPF3 remain elusive. MicroRNAs (miRNAs) emerge as pivotal post-transcriptional gene regulators, exerting substantial impact on diverse pathological and physiological pathways. This comprehensive review encapsulates our current understanding of the intricate regulatory nexus between NMD and miRNAs, with particular emphasis on the essential role played by UPF3B in neurodevelopment. Additionally, we bring out the significance of the 3'-untranslated region (3'-UTR) as the molecular bridge connecting NMD and miRNA-mediated gene regulation. Furthermore, we provide an in-depth exploration of diverse computational tools tailored for the prediction of potential miRNA targets. To complement these computational approaches, we delineate experimental techniques designed to validate predicted miRNA-mRNA interactions, empowering readers with the knowledge necessary to select the most appropriate methodology for their specific research objectives.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Raja Tamilselvan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harita Mani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
4
|
Ma Z, Sharma R, Rogers AN. Physiological Consequences of Nonsense-Mediated Decay and Its Role in Adaptive Responses. Biomedicines 2024; 12:1110. [PMID: 38791071 PMCID: PMC11117581 DOI: 10.3390/biomedicines12051110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway is a quality control mechanism that degrades aberrant mRNA containing one or more premature termination codons (PTCs). Recent discoveries indicate that NMD also differentially regulates mRNA from wild-type protein-coding genes despite lacking PTCs. Together with studies showing that NMD is involved in development and adaptive responses that influence health and longevity, these findings point to an expanded role of NMD that adds a new layer of complexity in the post-transcriptional regulation of gene expression. However, the extent of its control, whether different types of NMD play different roles, and the resulting physiological outcomes remain unclear and need further elucidation. Here, we review different branches of NMD and what is known of the physiological outcomes associated with this type of regulation. We identify significant gaps in the understanding of this process and the utility of genetic tools in accelerating progress in this area.
Collapse
Affiliation(s)
- Zhengxin Ma
- MDI Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Ratna Sharma
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;
| | | |
Collapse
|
5
|
Liu D, Yu H, Xue N, Bao H, Gao Q, Tian Y. Alternative splicing patterns of hnrnp genes in gill tissues of rainbow trout (Oncorhynchus mykiss) during salinity changes. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110948. [PMID: 38281704 DOI: 10.1016/j.cbpb.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Alternative splicing (AS) plays an important role in various physiological processes in eukaryotes, such as the stress response. However, patterns of AS events remain largely unexplored during salinity acclimation in fishes. In this study, we conducted AS analysis using RNA-seq datasets to explore splicing patterns in the gill tissues of rainbow trout exposed to altered salinity environments, ranging from 0 ‰ (T0) to 30 ‰ (T30). The results revealed 1441, 351, 483, 1051 and 1049 differentially alternatively spliced (DAS) events in 5 pairwise comparisons, including T6 vs. T0, T12 vs. T0, T18 vs. T0, T24 vs. T0, and T30 vs. T0, respectively. These DAS events were derived from 1290, 328, 444, 963 and 948 genes. Enrichment analysis indicated that these DAS genes were related to RNA splicing and processing. Among these, 14 DAS genes were identified as members of the large heterogeneous nuclear RNP (hnRNP) gene family. Alternative 3' splice site (A3SS), exon skipping (SE) and intron retention (RI) events resulted in the fragmentation or even loss of the functional RNA recognition motif (RRM) domains in hnrnpa0, hnrnp1a, hnrnp1b and hnrnpc genes. The incomplete RRM domains would hinder the interactions between hnRNP genes and pre-mRNAs. It would in turn influence the splicing patterns and mRNA stability of downstream target genes in response to salinity changes. The study provides insights into salinity acclimation in gill tissues of rainbow trout and serves as a significant reference on the osmoregulation mechanisms at post-transcription regulation levels in fish.
Collapse
Affiliation(s)
- Dazhi Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Han Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Na Xue
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Hancheng Bao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China
| | - Qinfeng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China.
| | - Yuan Tian
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
6
|
Ghiasi SM, Marchetti P, Piemonti L, Nielsen JH, Porse BT, Mandrup-Poulsen T, Rutter GA. Proinflammatory cytokines suppress nonsense-mediated RNA decay to impair regulated transcript isoform processing in pancreatic β cells. Front Endocrinol (Lausanne) 2024; 15:1359147. [PMID: 38586449 PMCID: PMC10995974 DOI: 10.3389/fendo.2024.1359147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Proinflammatory cytokines are implicated in pancreatic ß cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of nonsense-mediated RNA decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in ß cells. Methods A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-ßH3, or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. The gain- or loss-of-function of two key NMD components, UPF3B and UPF2, is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Results Cyt attenuate NMD activity in insulin-producing cell lines and primary human ß cells. These effects are found to involve ER stress and are associated with the downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing raise or lower Cyt-induced cell death, respectively, in EndoC-ßH3 cells and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increases alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in the extracellular matrix (ECM), including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitizes ß-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signaling, potentially serving as a protective response against Cyt-induced NMD component expression. Conclusion Our findings highlight the central importance of RNA turnover in ß cell responses to inflammatory stress.
Collapse
Affiliation(s)
- Seyed M. Ghiasi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Development and Aging Program, and Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milano, Italy
| | - Jens H. Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T. Porse
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
- Centre Hospitalier de l'Université de Montréal (CHUM) Research Centre (CRCHUM) and Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Ghiasi SM, Marchetti P, Piemonti L, Nielsen JH, Porse BT, Mandrup-Poulsen T, Rutter GA. Proinflammatory Cytokines Suppress Nonsense-Mediated RNA Decay to Impair Regulated Transcript Isoform Processing in Pancreatic β-Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572623. [PMID: 38187722 PMCID: PMC10769295 DOI: 10.1101/2023.12.20.572623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Proinflammatory cytokines are implicated in pancreatic β-cell failure in type 1 and type 2 diabetes and are known to stimulate alternative RNA splicing and the expression of Nonsense-Mediated RNA Decay (NMD) components. Here, we investigate whether cytokines regulate NMD activity and identify transcript isoforms targeted in β-cells. A luciferase-based NMD reporter transiently expressed in rat INS1(832/13), human-derived EndoC-βH3 or dispersed human islet cells is used to examine the effect of proinflammatory cytokines (Cyt) on NMD activity. Gain- or loss-of function of two key NMD components UPF3B and UPF2 is used to reveal the effect of cytokines on cell viability and function. RNA-sequencing and siRNA-mediated silencing are deployed using standard techniques. Cyt attenuate NMD activity in insulin-producing cell lines and primary human β-cells. These effects are found to involve ER stress and are associated with downregulation of UPF3B. Increases or decreases in NMD activity achieved by UPF3B overexpression (OE) or UPF2 silencing, raises or lowers Cyt-induced cell death, respectively, in EndoC-βH3 cells, and are associated with decreased or increased insulin content, respectively. No effects of these manipulations are observed on glucose-stimulated insulin secretion. Transcriptomic analysis reveals that Cyt increase alternative splicing (AS)-induced exon skipping in the transcript isoforms, and this is potentiated by UPF2 silencing. Gene enrichment analysis identifies transcripts regulated by UPF2 silencing whose proteins are localized and/or functional in extracellular matrix (ECM) including the serine protease inhibitor SERPINA1/α-1-antitrypsin, whose silencing sensitises β-cells to Cyt cytotoxicity. Cytokines suppress NMD activity via UPR signalling, potentially serving as a protective response against Cyt-induced NMD component expression. Our findings highlight the central importance of RNA turnover in β-cell responses to inflammatory stress.
Collapse
Affiliation(s)
- Seyed. M. Ghiasi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London Du Cane Road, London W12 0NN, United Kingdom
- Department of Biomedical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen N, Denmark
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126, Pisa, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Jens H. Nielsen
- Department of Biomedical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Bo T. Porse
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen N, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London Du Cane Road, London W12 0NN, United Kingdom
- CHUM Research Centre (CRCHUM) and Faculty of Medicine, University of Montreal, 900 Rue St. Denis, Montreal, QC, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, 637553, Singapore
| |
Collapse
|
8
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2024:10.1007/s12033-024-01062-4. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
9
|
Shen S, Zhang C, Meng Y, Cui G, Wang Y, Liu X, He Q. Sensing of H2O2-induced oxidative stress by the UPF factor complex is crucial for activation of catalase-3 expression in Neurospora. PLoS Genet 2023; 19:e1010985. [PMID: 37844074 PMCID: PMC10578600 DOI: 10.1371/journal.pgen.1010985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
UPF-1-UPF-2-UPF-3 complex-orchestrated nonsense-mediated mRNA decay (NMD) is a well-characterized eukaryotic cellular surveillance mechanism that not only degrades aberrant transcripts to protect the integrity of the transcriptome but also eliminates normal transcripts to facilitate appropriate cellular responses to physiological and environmental changes. Here, we describe the multifaceted regulatory roles of the Neurospora crassa UPF complex in catalase-3 (cat-3) gene expression, which is essential for scavenging H2O2-induced oxidative stress. First, losing UPF proteins markedly slowed down the decay rate of cat-3 mRNA. Second, UPF proteins indirectly attenuated the transcriptional activity of cat-3 gene by boosting the decay of cpc-1 and ngf-1 mRNAs, which encode a well-studied transcription factor and a histone acetyltransferase, respectively. Further study showed that under oxidative stress condition, UPF proteins were degraded, followed by increased CPC-1 and NGF-1 activity, finally activating cat-3 expression to resist oxidative stress. Together, our data illustrate a sophisticated regulatory network of the cat-3 gene mediated by the UPF complex under physiological and H2O2-induced oxidative stress conditions.
Collapse
Affiliation(s)
- Shuangjie Shen
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chengcheng Zhang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuanhao Meng
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guofei Cui
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Sun B, Chen L. Mapping genetic variants for nonsense-mediated mRNA decay regulation across human tissues. Genome Biol 2023; 24:164. [PMID: 37434206 PMCID: PMC10337212 DOI: 10.1186/s13059-023-03004-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/30/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonsense-mediated mRNA decay (NMD) was originally conceived as an mRNA surveillance mechanism to prevent the production of potentially deleterious truncated proteins. Research also shows NMD is an important post-transcriptional gene regulation mechanism selectively targeting many non-aberrant mRNAs. However, how natural genetic variants affect NMD and modulate gene expression remains elusive. RESULTS Here we elucidate NMD regulation of individual genes across human tissues through genetical genomics. Genetic variants corresponding to NMD regulation are identified based on GTEx data through unique and robust transcript expression modeling. We identify genetic variants that influence the percentage of NMD-targeted transcripts (pNMD-QTLs), as well as genetic variants regulating the decay efficiency of NMD-targeted transcripts (dNMD-QTLs). Many such variants are missed in traditional expression quantitative trait locus (eQTL) mapping. NMD-QTLs show strong tissue specificity especially in the brain. They are more likely to overlap with disease single-nucleotide polymorphisms (SNPs). Compared to eQTLs, NMD-QTLs are more likely to be located within gene bodies and exons, especially the penultimate exons from the 3' end. Furthermore, NMD-QTLs are more likely to be found in the binding sites of miRNAs and RNA binding proteins. CONCLUSIONS We reveal the genome-wide landscape of genetic variants associated with NMD regulation across human tissues. Our analysis results indicate important roles of NMD in the brain. The preferential genomic positions of NMD-QTLs suggest key attributes for NMD regulation. Furthermore, the overlap with disease-associated SNPs and post-transcriptional regulatory elements implicates regulatory roles of NMD-QTLs in disease manifestation and their interactions with other post-transcriptional regulators.
Collapse
Affiliation(s)
- Bo Sun
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Eisenack TJ, Trentini DB. Ending a bad start: Triggers and mechanisms of co-translational protein degradation. Front Mol Biosci 2023; 9:1089825. [PMID: 36660423 PMCID: PMC9846516 DOI: 10.3389/fmolb.2022.1089825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Proteins are versatile molecular machines that control and execute virtually all cellular processes. They are synthesized in a multilayered process requiring transfer of information from DNA to RNA and finally into polypeptide, with many opportunities for error. In addition, nascent proteins must successfully navigate a complex folding-energy landscape, in which their functional native state represents one of many possible outcomes. Consequently, newly synthesized proteins are at increased risk of misfolding and toxic aggregation. To maintain proteostasis-the state of proteome balance-cells employ a plethora of molecular chaperones that guide proteins along a productive folding pathway and quality control factors that direct misfolded species for degradation. Achieving the correct balance between folding and degradation therefore represents a fundamental task for the proteostasis network. While many chaperones act co-translationally, protein quality control is generally considered to be a post-translational process, as the majority of proteins will only achieve their final native state once translation is completed. Nevertheless, it has been observed that proteins can be ubiquitinated during synthesis. The extent and the relevance of co-translational protein degradation, as well as the underlying molecular mechanisms, remain areas of open investigation. Recent studies made seminal advances in elucidating ribosome-associated quality control processes, and how their loss of function can lead to proteostasis failure and disease. Here, we discuss current understanding of the situations leading to the marking of nascent proteins for degradation before synthesis is completed, and the emerging quality controls pathways engaged in this task in eukaryotic cells. We also highlight the methods used to study co-translational quality control.
Collapse
Affiliation(s)
- Tom Joshua Eisenack
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Débora Broch Trentini
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Chousal JN, Sohni A, Vitting-Seerup K, Cho K, Kim M, Tan K, Porse B, Wilkinson MF, Cook-Andersen H. Progression of the pluripotent epiblast depends upon the NMD factor UPF2. Development 2022; 149:dev200764. [PMID: 36255229 PMCID: PMC9687065 DOI: 10.1242/dev.200764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.
Collapse
Affiliation(s)
- Jennifer N. Chousal
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
15
|
Rahikkala E, Urpa L, Ghimire B, Topa H, Kurki MI, Koskela M, Airavaara M, Hämäläinen E, Pylkäs K, Körkkö J, Savolainen H, Suoranta A, Bertoli-Avella A, Rolfs A, Mattila P, Daly M, Palotie A, Pietiläinen O, Moilanen J, Kuismin O. A novel variant in SMG9 causes intellectual disability, confirming a role for nonsense-mediated decay components in neurocognitive development. Eur J Hum Genet 2022; 30:619-627. [PMID: 35087184 PMCID: PMC9090808 DOI: 10.1038/s41431-022-01046-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Biallelic loss-of-function variants in the SMG9 gene, encoding a regulatory subunit of the mRNA nonsense-mediated decay (NMD) machinery, are reported to cause heart and brain malformation syndrome. Here we report five patients from three unrelated families with intellectual disability (ID) and a novel pathogenic SMG9 c.551 T > C p.(Val184Ala) homozygous missense variant, identified using exome sequencing. Sanger sequencing confirmed recessive segregation in each family. SMG9 c.551T > C p.(Val184Ala) is most likely an autozygous variant identical by descent. Characteristic clinical findings in patients were mild to moderate ID, intention tremor, pyramidal signs, dyspraxia, and ocular manifestations. We used RNA sequencing of patients and age- and sex-matched healthy controls to assess the effect of the variant. RNA sequencing revealed that the SMG9 c.551T > C variant did not affect the splicing or expression level of SMG9 gene products, and allele-specific expression analysis did not provide evidence that the nonsense mRNA-induced NMD was affected. Differential gene expression analysis identified prevalent upregulation of genes in patients, including the genes SMOX, OSBP2, GPX3, and ZNF155. These findings suggest that normal SMG9 function may be involved in transcriptional regulation without affecting nonsense mRNA-induced NMD. In conclusion, we demonstrate that the SMG9 c.551T > C missense variant causes a neurodevelopmental disorder and impacts gene expression. NMD components have roles beyond aberrant mRNA degradation that are crucial for neurocognitive development.
Collapse
Affiliation(s)
- Elisa Rahikkala
- Department of Clinical Genetics, PEDEGO Research Unit and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Lea Urpa
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Bishwa Ghimire
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hande Topa
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mitja I Kurki
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maryna Koskela
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Katri Pylkäs
- Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, NordLab Oulu, Oulu, Finland
| | - Jarmo Körkkö
- Center for Intellectual Disability Care, Oulu University Hospital, Oulu, Finland
| | - Helena Savolainen
- Center for Intellectual Disability Care, Oulu University Hospital, Oulu, Finland
| | - Anu Suoranta
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Arndt Rolfs
- Centogene GmbH, 18055, Rostock, Germany
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Mark Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Olli Pietiläinen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jukka Moilanen
- Department of Clinical Genetics, PEDEGO Research Unit and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Kuismin
- Department of Clinical Genetics, PEDEGO Research Unit and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Sanderlin EJ, Keenan MM, Mense M, Revenko AS, Monia BP, Guo S, Huang L. CFTR mRNAs with nonsense codons are degraded by the SMG6-mediated endonucleolytic decay pathway. Nat Commun 2022; 13:2344. [PMID: 35487895 PMCID: PMC9054838 DOI: 10.1038/s41467-022-29935-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Approximately 10% of cystic fibrosis patients harbor nonsense mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which can generate nonsense codons in the CFTR mRNA and subsequently activate the nonsense-mediated decay (NMD) pathway resulting in rapid mRNA degradation. However, it is not known which NMD branches govern the decay of CFTR mRNAs containing nonsense codons. Here we utilize antisense oligonucleotides targeting NMD factors to evaluate the regulation of nonsense codon-containing CFTR mRNAs by the NMD pathway. We observe that CFTR mRNAs with nonsense codons G542X, R1162X, and W1282X, but not Y122X, require UPF2 and UPF3 for NMD. Furthermore, we demonstrate that all evaluated CFTR mRNAs harboring nonsense codons are degraded by the SMG6-mediated endonucleolytic pathway rather than the SMG5-SMG7-mediated exonucleolytic pathway. Finally, we show that upregulation of all evaluated CFTR mRNAs with nonsense codons by NMD pathway inhibition improves outcomes of translational readthrough therapy.
Collapse
Affiliation(s)
| | | | - Martin Mense
- Cystic Fibrosis Foundation Therapeutics Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | | | | | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Lulu Huang
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA.
| |
Collapse
|
17
|
Tocchini C, Rohner M, Guerard L, Ray P, Von Stetina SE, Mango SE. Translation-dependent mRNA localization to Caenorhabditis elegans adherens junctions. Development 2021; 148:273751. [PMID: 34846063 PMCID: PMC8722394 DOI: 10.1242/dev.200027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
mRNA localization is an evolutionarily widespread phenomenon that can facilitate subcellular protein targeting. Extensive work has focused on mRNA targeting through ‘zip-codes’ within untranslated regions (UTRs), whereas much less is known about translation-dependent cues. Here, we examine mRNA localization in Caenorhabditis elegans embryonic epithelia. From an smFISH-based survey, we identified mRNAs associated with the cell membrane or cortex, and with apical junctions in a stage- and cell type-specific manner. Mutational analyses for one of these transcripts, dlg-1/discs large, revealed that it relied on a translation-dependent process and did not require its 5′ or 3′ UTRs. We suggest a model in which dlg-1 transcripts are co-translationally localized with the nascent protein: first the translating complex goes to the cell membrane using sequences located at the C-terminal/3′ end, and then apically using N-terminal/5′ sequences. These studies identify a translation-based process for mRNA localization within developing epithelia and determine the necessary cis-acting sequences for dlg-1 mRNA targeting. Summary: An smFISH-based survey identifies a subset of mRNAs encoding junctional components that localize at or in proximity to the adherens junction through a translation-dependent mechanism.
Collapse
Affiliation(s)
| | - Michèle Rohner
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Poulomi Ray
- Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Susan E Mango
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
18
|
Liang Q, Lin X, Wu X, Shao Y, Chen C, Dai J, Lu Y, Wu W, Ding Q, Wang X. Unraveling the molecular basis underlying nine putative splice site variants of von Willebrand factor. Hum Mutat 2021; 43:215-227. [PMID: 34882887 DOI: 10.1002/humu.24312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Approximately 10% of von Willebrand factor (VWF) gene variants are suspected to disrupt messenger RNA (mRNA) processing, the number of which might be underestimated due to the lack of transcript assays. In the present study, we provided a detailed strategy to evaluate the effects of nine putative splice site variants (PSSVs) of VWF on mRNA processing as well as protein properties and establish their genotype-phenotype relationships. Eight of nine PSSVs affected VWF splicing: c.322A>T, c.1534-13_1551delinsCA, and c.8116-2del caused exon skipping; c.221-2A>C, c.323+1G>T, and c.2547-13T>A resulted in the activation of cryptic splice sites; c.2684A>G led to exon skipping and activation of a cryptic splice site; c.2968-14A>G created a new splice site. The remaining c.5171-9del was likely benign. The efficiency of nonsense-mediated mRNA decay (NMD) was much higher in platelets compared to leukocytes, impairing the identification of aberrant transcripts in 4 of 8 PSSVs. The nonsense variant c.322A>T partially impaired mRNA processing, leaking a small amount of correct transcripts with c.322T (p.Arg108*), while the missense variant c.2684A>G totally disrupted normal splicing of VWF, rather than produced mutant protein with the substitution of Gln895Arg. The results of this study would certainly add novel insights into the molecular events behind von Willebrand disease.
Collapse
Affiliation(s)
- Qian Liang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyi Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Shao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
20
|
Ghiasi SM, Rutter GA. Consequences for Pancreatic β-Cell Identity and Function of Unregulated Transcript Processing. Front Endocrinol (Lausanne) 2021; 12:625235. [PMID: 33763030 PMCID: PMC7984428 DOI: 10.3389/fendo.2021.625235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence suggests a role for alternative splicing (AS) of transcripts in the normal physiology and pathophysiology of the pancreatic β-cell. In the apparent absence of RNA repair systems, RNA decay pathways are likely to play an important role in controlling the stability, distribution and diversity of transcript isoforms in these cells. Around 35% of alternatively spliced transcripts in human cells contain premature termination codons (PTCs) and are targeted for degradation via nonsense-mediated decay (NMD), a vital quality control process. Inflammatory cytokines, whose levels are increased in both type 1 (T1D) and type 2 (T2D) diabetes, stimulate alternative splicing events and the expression of NMD components, and may or may not be associated with the activation of the NMD pathway. It is, however, now possible to infer that NMD plays a crucial role in regulating transcript processing in normal and stress conditions in pancreatic β-cells. In this review, we describe the possible role of Regulated Unproductive Splicing and Translation (RUST), a molecular mechanism embracing NMD activity in relationship to AS and translation of damaged transcript isoforms in these cells. This process substantially reduces the abundance of non-functional transcript isoforms, and its dysregulation may be involved in pancreatic β-cell failure in diabetes.
Collapse
Affiliation(s)
- Seyed M. Ghiasi
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Lai HC, James A, Luff J, De Souza P, Quek H, Ho U, Lavin MF, Roberts TL. Regulation of RNA degradation pathways during the lipopolysaccharide response in Macrophages. J Leukoc Biol 2021; 109:593-603. [PMID: 32829531 DOI: 10.1002/jlb.2ab0420-151rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022] Open
Abstract
The innate immune response to LPS is highly dynamic yet tightly regulated. The majority of studies of gene expression have focussed on transcription. However, it is also important to understand how post-transcriptional pathways are regulated in response to inflammatory stimuli as the rate of RNA degradation relative to new transcription is important for overall expression. RNA decay pathways include nonsense-mediated decay, the RNA decay exosome, P-body localized deadenylation, decapping and degradation, and AU-rich element targeted decay mediated by tristetraprolin. Here, bone marrow-derived Mϕs were treated with LPS over a time course of 0, 2, 6, and 24 h and the transcriptional profiles were analyzed by RNA sequencing. The data show that components of RNA degradation pathways are regulated during an LPS response. Processing body associated decapping enzyme DCP2 and regulatory subunit DCP1A, and 5' exonuclease XRN1 and sequence specific RNA decay pathways were upregulated. Nonsense mediated decay was also increased in response to LPS induced signaling, initially by increased activation and at later timepoints at the mRNA and protein levels. This leads to increased nonsense mediated decay efficiency across the 24 h following LPS treatment. These findings suggest that LPS activation of Mϕs results in targeted regulation of RNA degradation pathways in order to change how subsets of mRNAs are degraded during an inflammatory response.
Collapse
Affiliation(s)
- Hui-Chi Lai
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, New South Wales, Australia
| | - Alexander James
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - John Luff
- The University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Paul De Souza
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- Medical Oncology Department, Liverpool Hospital, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Macarthur, New South Wales, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Uda Ho
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
| | - Tara L Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South West Sydney Clinical School, UNSW Australia, Liverpool, New South Wales, Australia
- The University of Queensland Centre for Clinical Research, Herston, Queensland, Australia
- School of Medicine, Western Sydney University, Macarthur, New South Wales, Australia
| |
Collapse
|
22
|
Kim Guisbert KS, Mossiah I, Guisbert E. Titration of SF3B1 Activity Reveals Distinct Effects on the Transcriptome and Cell Physiology. Int J Mol Sci 2020; 21:ijms21249641. [PMID: 33348896 PMCID: PMC7766730 DOI: 10.3390/ijms21249641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
SF3B1 is a core component of the U2 spliceosome that is frequently mutated in cancer. We have previously shown that titrating the activity of SF3B1, using the inhibitor pladienolide B (PB), affects distinct steps of the heat shock response (HSR). Here, we identify other genes that are sensitive to different levels of SF3B1 (5 vs. 100 nM PB) using RNA sequencing. Significant changes to mRNA splicing were identified at both low PB and high PB concentrations. Changes in expression were also identified in the absence of alternative splicing, suggesting that SF3B1 influences other gene expression pathways. Surprisingly, gene expression changes identified in low PB are not predictive of changes in high PB. Specific pathways were identified with differential sensitivity to PB concentration, including nonsense-mediated decay and protein-folding homeostasis, both of which were validated using independent reporter constructs. Strikingly, cells exposed to low PB displayed enhanced protein-folding capacity relative to untreated cells. These data reveal that the transcriptome is exquisitely sensitive to SF3B1 and suggests that the activity of SF3B1 is finely regulated to coordinate mRNA splicing, gene expression and cellular physiology.
Collapse
|
23
|
Zou D, Wang L, Wen F, Xiao H, Duan J, Zhang T, Yin Z, Dong Q, Guo J, Liao J. Genotype-phenotype analysis in Mowat-Wilson syndrome associated with two novel and two recurrent ZEB2 variants. Exp Ther Med 2020; 20:263. [PMID: 33199988 PMCID: PMC7664618 DOI: 10.3892/etm.2020.9393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
The current study aimed to analyze the genotype-phenotype relationship in patients with variants of zinc finger E box-binding homeobox 2 (ZEB2), which is a gene encoding a homeobox transcription factor known to be mutated in Mowat Wilson syndrome (MWS). Whole genome sequencing (WGS) was performed in 530 children, of whom 333 had epilepsy with or without developmental delay and 197 developmental delay alone. Pathogenic variants were identified and verified using Sanger sequencing, and the disease phenotypes of the corresponding patients were analyzed for features of MWS. WGS was performed in 333 children with epilepsy, with or without developmental delays or intellectual disability and 197 children with developmental delay alone. A total of 4 unrelated patients were indicated to be heterozygous for truncating mutations in ZEB2. A total of three of these were nonsense mutations (novel Gln1072X and recurrent Trp97X and Arg921X), and one was a frameshift mutation (novel Val357Aspfs*15). The mutations have occurred de novo as confirmed by Sanger sequence comparisons in patients and their parents. All 4 patients exhibited signs of MWS, whereby the severity increased the closer a mutation was located to the amino terminus of the protein. The results suggest that the clinical outcome in MWS depends on the relative position of the truncation in the ZEB2 gene. A number of interpretations of this genotype/phenotype association are discussed in the present study.
Collapse
Affiliation(s)
- Dongfang Zou
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Hongdou Xiao
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
| | - Tongda Zhang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Zhenzhen Yin
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Qiwen Dong
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jian Guo
- BGI-Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Correspondence to: Professor Jianxiang Liao, Department of Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China
| |
Collapse
|
24
|
The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 2020; 37:143-159. [PMID: 33008628 DOI: 10.1016/j.tig.2020.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.
Collapse
|
25
|
Degen M, Girousi E, Feldmann J, Parisi L, La Scala GC, Schnyder I, Schaller A, Katsaros C. A Novel Van der Woude Syndrome-Causing IRF6 Variant Is Subject to Incomplete Non-sense-Mediated mRNA Decay Affecting the Phenotype of Keratinocytes. Front Cell Dev Biol 2020; 8:583115. [PMID: 33117810 PMCID: PMC7552806 DOI: 10.3389/fcell.2020.583115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 01/02/2023] Open
Abstract
Van der Woude syndrome (VWS) is a genetic syndrome that leads to typical phenotypic traits, including lower lip pits and cleft lip/palate (CLP). The majority of VWS-affected patients harbor a pathogenic variant in the gene encoding for the transcription factor interferon regulatory factor 6 (IRF6), a crucial regulator of orofacial development, epidermal differentiation and tissue repair. However, most of the underlying mechanisms leading from pathogenic IRF6 gene variants to phenotypes observed in VWS remain poorly understood and elusive. The availability of one VWS individual within our cohort of CLP patients allowed us to identify a novel VWS-causing IRF6 variant and to functionally characterize it. Using VWS patient-derived keratinocytes, we reveal that most of the mutated IRF6_VWS transcripts are subject to a non-sense-mediated mRNA decay mechanism, resulting in IRF6 haploinsufficiency. While moderate levels of IRF6_VWS remain detectable in the VWS keratinocytes, our data illustrate that the IRF6_VWS protein, which lacks part of its protein-binding domain and its whole C-terminus, is noticeably less stable than its wild-type counterpart. Still, it maintains transcription factor function. As we report and characterize a so far undescribed VWS-causing IRF6 variant, our results shed light on the physiological as well as pathological role of IRF6 in keratinocytes. This acquired knowledge is essential for a better understanding of the molecular mechanisms leading to VWS and CLP.
Collapse
Affiliation(s)
- Martin Degen
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Eleftheria Girousi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Julia Feldmann
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Giorgio C La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - André Schaller
- Division of Human Genetics, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Liang XH, Nichols JG, De Hoyos CL, Crooke ST. Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity. Nucleic Acids Res 2020; 48:9840-9858. [PMID: 32870273 PMCID: PMC7515700 DOI: 10.1093/nar/gkaa715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023] Open
Abstract
Antisense oligonucleotide (ASO) drugs that trigger RNase H1 cleavage of target RNAs have been developed to treat various diseases. Basic pharmacological principles suggest that the development of tolerance is a common response to pharmacological interventions. In this manuscript, for the first time we report a molecular mechanism of tolerance that occurs with some ASOs. Two observations stimulated our interest: some RNA targets are difficult to reduce with RNase H1 activating ASOs and some ASOs display a shorter duration of activity than the prolonged target reduction typically observed. We found that certain ASOs targeting the coding region of some mRNAs that initially reduce target mRNAs can surprisingly increase the levels of the corresponding pre-mRNAs. The increase in pre-mRNA is delayed and due to enhanced transcription and likely also slower processing. This process requires that the ASOs bind in the coding region and reduce the target mRNA by RNase H1 while the mRNA resides in the ribosomes. The pre-mRNA increase is dependent on UPF3A and independent of the NMD pathway or the XRN1-CNOT pathway. The response is consistent in multiple cell lines and independent of the methods used to introduce ASOs into cells.
Collapse
Affiliation(s)
- Xue-hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
27
|
Nucleocytoplasmic Proteomic Analysis Uncovers eRF1 and Nonsense-Mediated Decay as Modifiers of ALS/FTD C9orf72 Toxicity. Neuron 2020; 106:90-107.e13. [PMID: 32059759 DOI: 10.1016/j.neuron.2020.01.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/08/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
The most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a hexanucleotide repeat expansion in C9orf72 (C9-HRE). While RNA and dipeptide repeats produced by C9-HRE disrupt nucleocytoplasmic transport, the proteins that become redistributed remain unknown. Here, we utilized subcellular fractionation coupled with tandem mass spectrometry and identified 126 proteins, enriched for protein translation and RNA metabolism pathways, which collectively drive a shift toward a more cytosolic proteome in C9-HRE cells. Among these was eRF1, which regulates translation termination and nonsense-mediated decay (NMD). eRF1 accumulates within elaborate nuclear envelope invaginations in patient induced pluripotent stem cell (iPSC) neurons and postmortem tissue and mediates a protective shift from protein translation to NMD-dependent mRNA degradation. Overexpression of eRF1 and the NMD driver UPF1 ameliorate C9-HRE toxicity in vivo. Our findings provide a resource for proteome-wide nucleocytoplasmic alterations across neurodegeneration-associated repeat expansion mutations and highlight eRF1 and NMD as therapeutic targets in C9orf72-associated ALS and/or FTD.
Collapse
|
28
|
Huang L, Aghajan M, Quesenberry T, Low A, Murray SF, Monia BP, Guo S. Targeting Translation Termination Machinery with Antisense Oligonucleotides for Diseases Caused by Nonsense Mutations. Nucleic Acid Ther 2019; 29:175-186. [PMID: 31070517 PMCID: PMC6686700 DOI: 10.1089/nat.2019.0779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efforts to develop treatments for diseases caused by nonsense mutations have focused on identification of small molecules that promote translational read-through of messenger RNAs (mRNAs) harboring nonsense stop codons to produce full-length proteins. However, to date, no small molecule read-through drug has received FDA approval, probably because of a lack of balance between efficacy and safety. Depletion of translation termination factors eukaryotic release factor (eRF) 1 and eRF3a in cells was shown to promote translational read-through of a luciferase reporter gene harboring a nonsense mutation. In this study, we identified antisense oligonucleotides (ASOs) targeting translation termination factors and determined if ASO-mediated depletion of these factors could be a potentially effective and safe therapeutic approach for diseases caused by nonsense mutations. We found that ASO-mediated reduction of either eRF1 or eRF3a to 30%–40% of normal levels in the mouse liver is well tolerated. Hemophilia mice that express a mutant allele of human coagulation factor IX (FIX) containing nonsense mutation R338X were treated with eRF1- or eRF3a-ASO. We found that although eRF1- or eRF3a-ASO alone only elicited a moderate read-through effect on hFIX-R338X mRNA, both worked in synergy with geneticin, a small molecule read-through drug, demonstrating significantly increased production of functional full-length hFIX protein to levels that would rescue disease phenotypes in these mice. Overall our results indicate that modulating the translation termination pathway in the liver by ASOs may provide a novel approach to improving the efficacy of small molecule read-through drugs to treat human genetic diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Lulu Huang
- Ionis Pharmaceuticals, Carlsbad, California
| | | | | | - Audrey Low
- Ionis Pharmaceuticals, Carlsbad, California
| | | | | | | |
Collapse
|
29
|
Kim YK, Maquat LE. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA (NEW YORK, N.Y.) 2019; 25:407-422. [PMID: 30655309 PMCID: PMC6426291 DOI: 10.1261/rna.070136.118] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), which is arguably the best-characterized translation-dependent regulatory pathway in mammals, selectively degrades mRNAs as a means of post-transcriptional gene control. Control can be for the purpose of ensuring the quality of gene expression. Alternatively, control can facilitate the adaptation of cells to changes in their environment. The key to NMD, no matter what its purpose, is the ATP-dependent RNA helicase upstream frameshift 1 (UPF1), without which NMD fails to occur. However, UPF1 does much more than regulate NMD. As examples, UPF1 is engaged in functionally diverse mRNA decay pathways mediated by a variety of RNA-binding proteins that include staufen, stem-loop-binding protein, glucocorticoid receptor, and regnase 1. Moreover, UPF1 promotes tudor-staphylococcal/micrococcal-like nuclease-mediated microRNA decay. In this review, we first focus on how the NMD machinery recognizes an NMD target and triggers mRNA degradation. Next, we compare and contrast the mechanisms by which UPF1 functions in the decay of other mRNAs and also in microRNA decay. UPF1, as a protein polymath, engenders cells with the ability to shape their transcriptome in response to diverse biological and physiological needs.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
30
|
Tan Y, Ma Z, Jin Y, Zong R, Wu J, Ren Z. MicroRNA 4651 regulates nonsense-mediated mRNA decay by targeting SMG9 mRNA. Gene 2019; 701:65-71. [PMID: 30902786 DOI: 10.1016/j.gene.2019.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is originally identified as a conserved RNA surveillance mechanism that rapidly degrades aberrant mRNA containing premature termination codons (PTCs). However, the molecular regulation mechanisms by which microRNAs inhibit NMD has not been well understood. Here we identified that miR-4651 participated in the NMD pathway by downregulating expression levels of SMG9. We provided evidences that (1) Overexpression of miR-4651 mimic significantly inhibited the expression of SMG9 (P < 0.05); (2) NMD substrates genes, TBL2 and GADD45B were both increased at mRNA and protein expression levels when SMG9 was suppressed by siRNA, whereas decreased by SMG9 overexpression; (3) Expression of SMG9 was significantly increased but TBL2, GADD45B were significantly decreased when cells transfected with miR-4651 inhibitor (P < 0.05). These results indicated that miR-4651 regulated NMD by targeting SMG9 mRNA. Our study highlights that miR-4651 represses NMD. miR-4651 targets SMG9 and represses the expression levels of SMG9. NMD activity is decreased additionally when SMG9 is inhibited. The present study provides evidence for microRNA/NMD regulatory mechanism.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhenfa Ma
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ruojun Zong
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jian Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
31
|
Fernandes R, Nogueira G, da Costa PJ, Pinto F, Romão L. Nonsense-Mediated mRNA Decay in Development, Stress and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:41-83. [DOI: 10.1007/978-3-030-19966-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Jaffrey SR, Wilkinson MF. Nonsense-mediated RNA decay in the brain: emerging modulator of neural development and disease. Nat Rev Neurosci 2018; 19:715-728. [PMID: 30410025 PMCID: PMC6396682 DOI: 10.1038/s41583-018-0079-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Steady-state RNA levels are controlled by the balance between RNA synthesis and RNA turnover. A selective RNA turnover mechanism that has received recent attention in neurons is nonsense-mediated RNA decay (NMD). NMD has been shown to influence neural development, neural stem cell differentiation decisions, axon guidance and synaptic plasticity. In humans, NMD factor gene mutations cause some forms of intellectual disability and are associated with neurodevelopmental disorders, including schizophrenia and autism spectrum disorder. Impairments in NMD are linked to neurodegenerative disorders, including amyotrophic lateral sclerosis. We discuss these findings, their clinical implications and challenges for the future.
Collapse
Affiliation(s)
- Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, La Jolla, CA, USA.
| |
Collapse
|
33
|
Ricci F, Candelori A, Brandi A, Alimenti C, Luporini P, Vallesi A. The Sub-Chromosomic Macronuclear Pheromone Genes of the Ciliate Euplotes raikovi: Comparative Structural Analysis and Insights into the Mechanism of Expression. J Eukaryot Microbiol 2018; 66:376-384. [PMID: 30076754 DOI: 10.1111/jeu.12677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/23/2022]
Abstract
In Euplotes raikovi, we have determined the full-length sequences of a family of macronuclear genes that are the transcriptionally active versions of codominant alleles inherited at the mating-type (mat) locus of the micronuclear genome, and encode cell type-distinctive signaling pheromones. These genes include a 225-231-bp coding region flanked by a conserved 544-bp 5'-leader region and a more variable 3'-trailer region. Two transcription initiation start sites and two polyadenylation sites associated with nonconventional signals cooperate with a splicing phenomenon of a 326-bp intron residing in the 5'-leader region in the generation of multiple transcripts from the same gene. In two of them, the synthesis of functional products depends on the reassignment to a sense codon, or readthrough of a strictly conserved leaky UAG stop codon. That this reassignment may take place is suggested by the position this codon occupies in the transcripts, close to the transcript extremity and far from the poly(A) tail. In such a case, one product is a 69-amino acid protein in search of function and the second product is a 126-amino acid protein that represents a membrane-bound pheromone isoform candidate to function as a cell type-specific binding site (receptor) of the soluble pheromones.
Collapse
Affiliation(s)
- Francesca Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Annalisa Candelori
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Anna Brandi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Claudio Alimenti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino (MC), 62032, Italy
| |
Collapse
|
34
|
Huang L, Shum EY, Jones SH, Lou CH, Chousal J, Kim H, Roberts AJ, Jolly LA, Espinoza JL, Skarbrevik DM, Phan MH, Cook-Andersen H, Swerdlow NR, Gecz J, Wilkinson MF. A Upf3b-mutant mouse model with behavioral and neurogenesis defects. Mol Psychiatry 2018; 23:1773-1786. [PMID: 28948974 PMCID: PMC5869067 DOI: 10.1038/mp.2017.173] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA degradation pathway that acts on RNAs terminating their reading frames in specific contexts. NMD is regulated in a tissue-specific and developmentally controlled manner, raising the possibility that it influences developmental events. Indeed, loss or depletion of NMD factors have been shown to disrupt developmental events in organisms spanning the phylogenetic scale. In humans, mutations in the NMD factor gene, UPF3B, cause intellectual disability (ID) and are strongly associated with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and schizophrenia (SCZ). Here, we report the generation and characterization of mice harboring a null Upf3b allele. These Upf3b-null mice exhibit deficits in fear-conditioned learning, but not spatial learning. Upf3b-null mice also have a profound defect in prepulse inhibition (PPI), a measure of sensorimotor gating commonly deficient in individuals with SCZ and other brain disorders. Consistent with both their PPI and learning defects, cortical pyramidal neurons from Upf3b-null mice display deficient dendritic spine maturation in vivo. In addition, neural stem cells from Upf3b-null mice have impaired ability to undergo differentiation and require prolonged culture to give rise to functional neurons with electrical activity. RNA sequencing (RNAseq) analysis of the frontal cortex identified UPF3B-regulated RNAs, including direct NMD target transcripts encoding proteins with known functions in neural differentiation, maturation and disease. We suggest Upf3b-null mice serve as a novel model system to decipher cellular and molecular defects underlying ID and neurodevelopmental disorders.
Collapse
Affiliation(s)
- L Huang
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - E Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - S H Jones
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - C-H Lou
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Chousal
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - H Kim
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - A J Roberts
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - L A Jolly
- Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - J L Espinoza
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - D M Skarbrevik
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - M H Phan
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - H Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - N R Swerdlow
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - J Gecz
- Adelaide Medical School and Robison Research Institute, University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - M F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
MacDonald CC, Grozdanov PN. Nonsense in the testis: multiple roles for nonsense-mediated decay revealed in male reproduction. Biol Reprod 2018; 96:939-947. [PMID: 28444146 PMCID: PMC5803779 DOI: 10.1093/biolre/iox033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Nonsense-mediated mRNA decay, or NMD, is a quality control mechanism that identifies cytoplasmic mRNAs containing translational termination (stop) codons in specific contexts—either premature termination codons or unusually long 3΄ untranslated regions (UTRs)—and targets them for degradation. In recent studies, researchers in different labs have knocked out important genes involved in NMD, the up-frameshift genes Upf2 and Upf3a, and one component of chromatoid bodies, the Tudor domain-containing protein Tdrd6, and examined the consequences for spermatogenesis. Disruption of Upf2 during early stages of spermatogenesis resulted in disappearance of nearly all spermatogenic cells through loss of NMD. However, disruption of Upf2 during postmeiotic stages resulted in decreased long 3΄ UTR-mediated NMD but no interruption of exon junction-associated NMD. This difference in NMD targeting is possibly due to increased expression of Upf3a in postmeiotic germ cells that antagonizes the functions of Upf3b and somehow favors long 3΄ UTR-mediated NMD. Tying these all together, loss of Tdrd6, a structural component of the germ cell-specific cytoplasmic structures called chromatoid bodies, also resulted in loss of long 3΄ UTR-mediated NMD by interfering with UPF1/UPF2 interactions, delocalizing UPF1, and destroying chromatoid body integrity. These results suggest that chromatoid bodies play a specialized role in modulating the NMD machinery in postmeiotic spermatids.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
- Correspondence: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA. Tel: +1-806-743-2524; Fax: +1-806-743-2990; E-mail:
| | - Petar N. Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
36
|
Huang L, Low A, Damle SS, Keenan MM, Kuntz S, Murray SF, Monia BP, Guo S. Antisense suppression of the nonsense mediated decay factor Upf3b as a potential treatment for diseases caused by nonsense mutations. Genome Biol 2018; 19:4. [PMID: 29334995 PMCID: PMC5769327 DOI: 10.1186/s13059-017-1386-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023] Open
Abstract
Background About 11% of all human genetic diseases are caused by nonsense mutations that generate premature translation termination codons (PTCs) in messenger RNAs (mRNA). PTCs not only lead to the production of truncated proteins, but also often result in decreased mRNA abundance due to nonsense-mediated mRNA decay (NMD). Although pharmacological inhibition of NMD could be an attractive therapeutic approach for the treatment of diseases caused by nonsense mutations, NMD also regulates the expression of 10–20% of the normal transcriptome. Results Here, we investigate whether NMD can be inhibited to stabilize mutant mRNAs, which may subsequently produce functional proteins, without having a major impact on the normal transcriptome. We develop antisense oligonucleotides (ASOs) to systematically deplete each component in the NMD pathway. We find that ASO-mediated depletion of each NMD factor elicits different magnitudes of NMD inhibition in vitro and are differentially tolerated in normal mice. Among all of the NMD factors, Upf3b depletion is well tolerated, consistent with previous reports that UPF3B is not essential for development and regulates only a subset of the endogenous NMD substrates. While minimally impacting the normal transcriptome, Upf3b-ASO treatment significantly stabilizes the PTC-containing dystrophin mRNA in mdx mice and coagulation factor IX mRNA in a hemophilia mouse model. Furthermore, when combined with reagents promoting translational read-through, Upf3b-ASO treatment leads to the production of functional factor IX protein in hemophilia mice. Conclusions These data demonstrate that ASO-mediated reduction of the NMD factor Upf3b could be an effective and safe approach for the treatment of diseases caused by nonsense mutations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1386-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lulu Huang
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Audrey Low
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Sagar S Damle
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - Steven Kuntz
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - Brett P Monia
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA.
| |
Collapse
|
37
|
Plank T, Wilkinson MF. RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent. Bioessays 2018; 40:10.1002/bies.201700170. [PMID: 29236296 PMCID: PMC5843485 DOI: 10.1002/bies.201700170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Indexed: 11/12/2022]
Abstract
The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay (NMD) pathway. Feng et al. now report a new function for UPF1-it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important to define other protein substrates of UPF1-driven ubiquitination and to determine whether this biochemical activity is responsible for some of UPF1's previously defined biological functions, including in development and stress responses. The exciting findings presented by Feng et al. open up the possibility that protein turnover and RNA turnover are coupled processes.
Collapse
Affiliation(s)
- Terra Plank
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | - Miles F. Wilkinson
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| |
Collapse
|
38
|
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that has been subject to intense scrutiny. NMD identifies and degrades subsets of normal RNAs, as well as abnormal mRNAs containing premature termination codons. A core factor in this pathway—UPF3B—is an adaptor protein that serves as an NMD amplifier and an NMD branch-specific factor. UPF3B is encoded by an X-linked gene that when mutated causes intellectual disability and is associated with neurodevelopmental disorders, including schizophrenia and autism. Neu-Yilik
et al. now report a new function for UPF3B: it modulates translation termination. Using a fully reconstituted
in vitro translation system, they find that UPF3B has two roles in translation termination. First, UPF3B delays translation termination under conditions that mimic premature translation termination. This could drive more efficient RNA decay by allowing more time for the formation of RNA decay-stimulating complexes. Second, UPF3B promotes the dissociation of post-termination ribosomal complexes that lack nascent peptide. This implies that UPF3B could promote ribosome recycling. Importantly, the authors found that UPF3B directly interacts with both RNA and the factors that recognize stop codons—eukaryotic release factors (eRFs)—suggesting that UPF3B serves as a direct regulator of translation termination. In contrast, a NMD factor previously thought to have a central regulatory role in translation termination—the RNA helicase UPF1—was found to indirectly interact with eRFs and appears to act exclusively in post-translation termination events, such as RNA decay, at least
in vitro. The finding that an RNA decay-promoting factor, UFP3B, modulates translation termination has many implications. For example, the ability of UPF3B to influence the development and function of the central nervous system may be not only through its ability to degrade specific RNAs but also through its impact on translation termination and subsequent events, such as ribosome recycling.
Collapse
Affiliation(s)
- Zhaofeng Gao
- Department of Reproductive Medicine, University of California San Diego Medical Center, La Jolla, CA, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, University of California San Diego Medical Center, La Jolla, CA, USA
| |
Collapse
|
39
|
Lou CH, Chousal J, Goetz A, Shum EY, Brafman D, Liao X, Mora-Castilla S, Ramaiah M, Cook-Andersen H, Laurent L, Wilkinson MF. Nonsense-Mediated RNA Decay Influences Human Embryonic Stem Cell Fate. Stem Cell Reports 2017; 6:844-857. [PMID: 27304915 PMCID: PMC4912386 DOI: 10.1016/j.stemcr.2016.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved pathway that selectively degrades specific subsets of RNA transcripts. Here, we provide evidence that NMD regulates early human developmental cell fate. We found that NMD factors tend to be expressed at higher levels in human pluripotent cells than in differentiated cells, raising the possibility that NMD must be downregulated to permit differentiation. Loss- and gain-of-function experiments in human embryonic stem cells (hESCs) demonstrated that, indeed, NMD downregulation is essential for efficient generation of definitive endoderm. RNA-seq analysis identified NMD target transcripts induced when NMD is suppressed in hESCs, including many encoding signaling components. This led us to test the role of TGF-β and BMP signaling, which we found NMD acts through to influence definitive endoderm versus mesoderm fate. Our results suggest that selective RNA decay is critical for specifying the developmental fate of specific human embryonic cell lineages. The NMD RNA degradation pathway is highly active in pluripotent cells RNA-seq analysis identifies mRNA targets of NMD in human embryonic stem cells NMD degrades mRNAs encoding TGF-β/BMP, WNT, and FGF signaling components NMD acts through signaling pathways to influence endoderm versus mesoderm cell fate
Collapse
Affiliation(s)
- Chih-Hong Lou
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Chousal
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Alexandra Goetz
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Eleen Y Shum
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Xiaoyan Liao
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sergio Mora-Castilla
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Madhuvanthi Ramaiah
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Louise Laurent
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Goetz AE, Wilkinson M. Stress and the nonsense-mediated RNA decay pathway. Cell Mol Life Sci 2017; 74:3509-3531. [PMID: 28503708 PMCID: PMC5683946 DOI: 10.1007/s00018-017-2537-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023]
Abstract
Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway-nonsense-mediated RNA decay (NMD)-serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that "NMD therapy" may provide clinical benefit by downmodulating stress responses.
Collapse
Affiliation(s)
- Alexandra E Goetz
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, USA.
| |
Collapse
|
41
|
Jacoszek A, Pollak A, Płoski R, Ołdak M. Advances in genetic hearing loss: CIB2 gene. Eur Arch Otorhinolaryngol 2017; 274:1791-1795. [PMID: 27771768 PMCID: PMC5340853 DOI: 10.1007/s00405-016-4330-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/29/2016] [Indexed: 11/26/2022]
Abstract
Hearing plays a crucial role in human development. Receiving and processing sounds are essential for the advancement of the speech ability during the early childhood and for a proper functioning in the society. Hearing loss is one of the most frequent disabilities that affect human senses. It can be caused by genetic or environmental factors or both of them. Calcium- and integrin-binding protein 2 (CIB2) is one of the recently identified genes, involved in HI pathogenesis. CIB2 is widely expressed in various human and animal tissues, mainly in skeletal muscle, nervous tissue, inner ear, and retina. The CIB2 protein is responsible for maintaining Ca2+ homeostasis in cells and interacting with integrins-transmembrane receptors essential for cell adhesion, migration, and activation of signaling pathways. Calcium signaling pathway is crucial for signal transduction in the inner ear, and integrins regulate hair cell differentiation and maturation of the stereocilia. To date, mutations detected in CIB2 are causative for nonsyndromic hearing loss (DFNB48) or Usher syndrome type 1 J. Patients harboring biallelic CIB2 mutations suffer from bilateral, early onset, moderate to profound HI. In the paper, we summarize the current status of the research on CIB2.
Collapse
Affiliation(s)
- Agnieszka Jacoszek
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mokra 17, Nadarzyn, Warsaw/Kajetany, 05-830, Poland.
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Mokra 17, Nadarzyn, Warsaw/Kajetany, 05-830, Poland
| |
Collapse
|
42
|
Son HG, Seo M, Ham S, Hwang W, Lee D, An SWA, Artan M, Seo K, Kaletsky R, Arey RN, Ryu Y, Ha CM, Kim YK, Murphy CT, Roh TY, Nam HG, Lee SJV. RNA surveillance via nonsense-mediated mRNA decay is crucial for longevity in daf-2/insulin/IGF-1 mutant C. elegans. Nat Commun 2017; 8:14749. [PMID: 28276441 PMCID: PMC5347137 DOI: 10.1038/ncomms14749] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/30/2017] [Indexed: 12/14/2022] Open
Abstract
Long-lived organisms often feature more stringent protein and DNA quality control. However, whether RNA quality control mechanisms, such as nonsense-mediated mRNA decay (NMD), which degrades both abnormal as well as some normal transcripts, have a role in organismal aging remains unexplored. Here we show that NMD mediates longevity in C. elegans strains with mutations in daf-2/insulin/insulin-like growth factor 1 receptor. We find that daf-2 mutants display enhanced NMD activity and reduced levels of potentially aberrant transcripts. NMD components, including smg-2/UPF1, are required to achieve the longevity of several long-lived mutants, including daf-2 mutant worms. NMD in the nervous system of the animals is particularly important for RNA quality control to promote longevity. Furthermore, we find that downregulation of yars-2/tyrosyl-tRNA synthetase, an NMD target transcript, by daf-2 mutations contributes to longevity. We propose that NMD-mediated RNA surveillance is a crucial quality control process that contributes to longevity conferred by daf-2 mutations.
Collapse
Affiliation(s)
- Heehwa G. Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Mihwa Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, South Korea
| | - Seokjin Ham
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Wooseon Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Seon Woo A. An
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Murat Artan
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Keunhee Seo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Rachel Kaletsky
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Rachel N. Arey
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Youngjae Ryu
- Research Division, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Chang Man Ha
- Research Division, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, South Korea
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Coleen T. Murphy
- Department of Molecular Biology & LSI Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, South Korea
- Department of New Biology, DGIST, Daegu 42988, South Korea
| | - Seung-Jae V. Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
- Information Technology Convergence Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
43
|
Kejiou NS, Palazzo AF. mRNA localization as a rheostat to regulate subcellular gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [DOI: 10.1002/wrna.1416] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nevraj S. Kejiou
- Department of Biochemistry; University of Toronto; Toronto Canada
| | | |
Collapse
|
44
|
Fu W, Ligabue A, Rogers KJ, Akey JM, Monnat RJ. Human RECQ Helicase Pathogenic Variants, Population Variation and "Missing" Diseases. Hum Mutat 2016; 38:193-203. [PMID: 27859906 DOI: 10.1002/humu.23148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022]
Abstract
Heritable loss of function mutations in the human RECQ helicase genes BLM, WRN, and RECQL4 cause Bloom, Werner, and Rothmund-Thomson syndromes, cancer predispositions with additional developmental or progeroid features. In order to better understand RECQ pathogenic and population variation, we systematically analyzed genetic variation in all five human RECQ helicase genes. A total of 3,741 unique base pair-level variants were identified, across 17,605 potential mutation sites. Direct counting of BLM, RECQL4, and WRN pathogenic variants was used to determine aggregate and disease-specific carrier frequencies. The use of biochemical and model organism data, together with computational prediction, identified over 300 potentially pathogenic population variants in RECQL and RECQL5, the two RECQ helicases that are not yet linked to a heritable deficiency syndrome. Despite the presence of these predicted pathogenic variants in the human population, we identified no individuals homozygous for any biochemically verified or predicted pathogenic RECQL or RECQL5 variant. Nor did we find any individual heterozygous for known pathogenic variants in two or more of the disease-associated RECQ helicase genes BLM, RECQL4, or WRN. Several postulated RECQ helicase deficiency syndromes-RECQL or RECQL5 loss of function, or compound haploinsufficiency for the disease-associated RECQ helicases-may remain missing, as they likely incompatible with life.
Collapse
Affiliation(s)
- Wenqing Fu
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Alessio Ligabue
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kai J Rogers
- Department of Microbiology, University of Washington, Seattle, Washington.,University of Iowa College of Medicine, Iowa City, Iowa
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
45
|
Abstract
NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.
Collapse
Affiliation(s)
- Samantha H Jones
- a Department of Reproductive Medicine , School of Medicine, University of California, San Diego , La Jolla , CA , USA
| | - Miles Wilkinson
- a Department of Reproductive Medicine , School of Medicine, University of California, San Diego , La Jolla , CA , USA.,b Institute of Genomic Medicine, University of California , San Diego, La Jolla , CA , USA
| |
Collapse
|
46
|
Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries. Viruses 2016; 8:v8110320. [PMID: 27886048 PMCID: PMC5127034 DOI: 10.3390/v8110320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N⁶-methyladenosine (m⁶A), allowing the recruitment of YTH N⁶-methyladenosine RNA binding protein 2 (YTHDF2), an m⁶A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.
Collapse
|
47
|
Aguiar ERGR, Olmo RP, Marques JT. Virus-derived small RNAs: molecular footprints of host-pathogen interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:824-837. [PMID: 27170499 PMCID: PMC7169819 DOI: 10.1002/wrna.1361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/21/2023]
Abstract
Viruses are obligatory intracellular parasites that require the host machinery to replicate. During their replication cycle, viral RNA intermediates can be recognized and degraded by different antiviral mechanisms that include RNA decay, RNA interference, and RNase L pathways. As a consequence of viral RNA degradation, infected cells can accumulate virus‐derived small RNAs at high levels compared to cellular molecules. These small RNAs are imprinted with molecular characteristics that reflect their origin. First, small RNAs can be used to reconstruct viral sequences and identify the virus from which they originated. Second, other molecular features of small RNAs such as size, polarity, and base preferences depend on the type of viral substrate and host mechanism of degradation. Thus, the pattern of small RNAs generated in infected cells can be used as a molecular footprint to identify and characterize viruses independent on sequence homology searches against known references. Hence, sequencing of small RNAs obtained from infected cells enables virus discovery and characterization using both sequence‐dependent strategies and novel pattern‐based approaches. Recent studies are helping unlock the full application of small RNA sequencing for virus discovery and characterization. WIREs RNA 2016, 7:824–837. doi: 10.1002/wrna.1361 This article is categorized under:
RNA Processing > Processing of Small RNAs RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Methods > RNA Analyses In Vitro and In Silico
Collapse
Affiliation(s)
| | - Roenick Proveti Olmo
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - João Trindade Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
48
|
Bao J, Vitting-Seerup K, Waage J, Tang C, Ge Y, Porse BT, Yan W. UPF2-Dependent Nonsense-Mediated mRNA Decay Pathway Is Essential for Spermatogenesis by Selectively Eliminating Longer 3'UTR Transcripts. PLoS Genet 2016; 12:e1005863. [PMID: 27149259 PMCID: PMC4858225 DOI: 10.1371/journal.pgen.1005863] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/17/2016] [Indexed: 11/18/2022] Open
Abstract
During transcription, most eukaryotic genes generate multiple alternative cleavage and polyadenylation (APA) sites, leading to the production of transcript isoforms with variable lengths in the 3' untranslated region (3'UTR). In contrast to somatic cells, male germ cells, especially pachytene spermatocytes and round spermatids, express a distinct reservoir of mRNAs with shorter 3'UTRs that are essential for spermatogenesis and male fertility. However, the mechanisms underlying the enrichment of shorter 3'UTR transcripts in the developing male germ cells remain unknown. Here, we report that UPF2-mediated nonsense-mediated mRNA decay (NMD) plays an essential role in male germ cells by eliminating ubiquitous genes-derived, longer 3'UTR transcripts, and that this role is independent of its canonical role in degrading "premature termination codon" (PTC)-containing transcripts in somatic cell lineages. This report provides physiological evidence supporting a noncanonical role of the NMD pathway in achieving global 3'UTR shortening in the male germ cells during spermatogenesis.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail: (JB); (BTP); (WY)
| | - Kristoffer Vitting-Seerup
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bioinformatic Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Waage
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Bioinformatic Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Ying Ge
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo T. Porse
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JB); (BTP); (WY)
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
- * E-mail: (JB); (BTP); (WY)
| |
Collapse
|
49
|
Geraets RD, Koh SY, Hastings ML, Kielian T, Pearce DA, Weimer JM. Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis. Orphanet J Rare Dis 2016; 11:40. [PMID: 27083890 PMCID: PMC4833901 DOI: 10.1186/s13023-016-0414-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than "curing" the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs.
Collapse
Affiliation(s)
- Ryan D. Geraets
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Seung yon Koh
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
| | - Michelle L. Hastings
- />Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL USA
| | - Tammy Kielian
- />Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA
| | - David A. Pearce
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| | - Jill M. Weimer
- />Children’s Health Research Center, Sanford Research, Sioux Falls, SD USA
- />Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD USA
| |
Collapse
|
50
|
Shum EY, Jones SH, Shao A, Chousal JN, Krause MD, Chan WK, Lou CH, Espinoza JL, Song HW, Phan MH, Ramaiah M, Huang L, McCarrey JR, Peterson KJ, De Rooij DG, Cook-Andersen H, Wilkinson MF. The Antagonistic Gene Paralogs Upf3a and Upf3b Govern Nonsense-Mediated RNA Decay. Cell 2016; 165:382-95. [PMID: 27040500 PMCID: PMC4826573 DOI: 10.1016/j.cell.2016.02.046] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 01/11/2023]
Abstract
Gene duplication is a major evolutionary force driving adaptation and speciation, as it allows for the acquisition of new functions and can augment or diversify existing functions. Here, we report a gene duplication event that yielded another outcome--the generation of antagonistic functions. One product of this duplication event--UPF3B--is critical for the nonsense-mediated RNA decay (NMD) pathway, while its autosomal counterpart--UPF3A--encodes an enigmatic protein previously shown to have trace NMD activity. Using loss-of-function approaches in vitro and in vivo, we discovered that UPF3A acts primarily as a potent NMD inhibitor that stabilizes hundreds of transcripts. Evidence suggests that UPF3A acquired repressor activity through simple impairment of a critical domain, a rapid mechanism that may have been widely used in evolution. Mice conditionally lacking UPF3A exhibit "hyper" NMD and display defects in embryogenesis and gametogenesis. Our results support a model in which UPF3A serves as a molecular rheostat that directs developmental events.
Collapse
Affiliation(s)
- Eleen Y. Shum
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Samantha H. Jones
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Ada Shao
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Jennifer N. Chousal
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Matthew D. Krause
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Wai-Kin Chan
- Department of Bioinformatics and Computational Biology, University
of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Chih-Hong Lou
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Josh L. Espinoza
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Mimi H. Phan
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Madhuvanthi Ramaiah
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Lulu Huang
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San
Antonio, Texas, USA
| | - Kevin J. Peterson
- Department of Biology, Dartmouth College, Hanover, New Hampshire,
USA
| | - Dirk G. De Rooij
- Reproductive Biology Group, Division of Developmental Biology,
Department of Biology, Faculty of Science, Utrecht University, Utrecht, The
Netherlands
| | - Heidi Cook-Andersen
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA
| | - Miles F. Wilkinson
- Department of Reproductive Medicine, School of Medicine, University
of California, San Diego, La Jolla, California, USA,Institute of Genomic Medicine, University of California, San Diego,
La Jolla, California, USA
| |
Collapse
|