1
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
2
|
Gene knockdown in HaCaT cells by small interfering RNAs entrapped in grapefruit-derived extracellular vesicles using a microfluidic device. Sci Rep 2023; 13:3102. [PMID: 36813850 PMCID: PMC9947018 DOI: 10.1038/s41598-023-30180-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Small interfering RNAs (siRNAs) knockdown the expression of target genes by causing mRNA degradation and are a promising therapeutic modality. In clinical practice, lipid nanoparticles (LNPs) are used to deliver RNAs, such as siRNA and mRNA, into cells. However, these artificial nanoparticles are toxic and immunogenic. Thus, we focused on extracellular vesicles (EVs), natural drug delivery systems, for the delivery of nucleic acids. EVs deliver RNAs and proteins to specific tissues to regulate various physiological phenomena in vivo. Here, we propose a novel method for the preparation siRNAs encapsulated in EVs using a microfluidic device (MD). MDs can be used to generate nanoparticles, such as LNPs, by controlling flow rate to the device, but the loading of siRNAs into EVs using MDs has not been reported previously. In this study, we demonstrated a method for loading siRNAs into grapefruit-derived EVs (GEVs), which have gained attention in recent years for being plant-derived EVs developed using an MD. GEVs were collected from grapefruit juice using the one-step sucrose cushion method, and then GEVs-siRNA-GEVs were prepared using an MD device. The morphology of GEVs and siRNA-GEVs was observed using a cryogenic transmission electron microscope. Cellular uptake and intracellular trafficking of GEVs or siRNA-GEVs to human keratinocytes were evaluated by microscopy using HaCaT cells. The prepared siRNA-GEVs encapsulated 11% of siRNAs. Moreover, intracellular delivery of siRNA and gene suppression effects in HaCaT cells were achieved using these siRNA-GEVs. Our findings suggested that MDs can be used to prepare siRNA-EV formulations.
Collapse
|
3
|
Azizy R, Otto H, König J, Schreier D, Weigel C, Cierpka C, Strehle S. A microfluidic magnetohydrodynamic pump based on a thermally bonded composite of glass and dry film photoresist. MICRO AND NANO ENGINEERING 2023. [DOI: 10.1016/j.mne.2023.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
4
|
Vashi A, Sreejith KR, Nguyen NT. Lab-on-a-Chip Technologies for Microgravity Simulation and Space Applications. MICROMACHINES 2022; 14:116. [PMID: 36677176 PMCID: PMC9864955 DOI: 10.3390/mi14010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Gravity plays an important role in the development of life on earth. The effect of gravity on living organisms can be investigated by controlling the magnitude of gravity. Most reduced gravity experiments are conducted on the Lower Earth Orbit (LEO) in the International Space Station (ISS). However, running experiments in ISS face challenges such as high cost, extreme condition, lack of direct accessibility, and long waiting period. Therefore, researchers have developed various ground-based devices and methods to perform reduced gravity experiments. However, the advantage of space conditions for developing new drugs, vaccines, and chemical applications requires more attention and new research. Advancements in conventional methods and the development of new methods are necessary to fulfil these demands. The advantages of Lab-on-a-Chip (LOC) devices make them an attractive option for simulating microgravity. This paper briefly reviews the advancement of LOC technologies for simulating microgravity in an earth-based laboratory.
Collapse
|
5
|
Lovecchio N, Costantini F, Nascetti A, de Cesare G, Caputo D. Thin-Film-Based Multifunctional System for Optical Detection and Thermal Treatment of Biological Samples. BIOSENSORS 2022; 12:bios12110969. [PMID: 36354478 PMCID: PMC9688047 DOI: 10.3390/bios12110969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 05/31/2023]
Abstract
In this work, we present a multifunctional Lab-on-Chip (LoC) platform based on hydrogenated amorphous silicon sensors suitable for a wide range of application in the fields of biochemical and food quality control analysis. The proposed system includes a LoC fabricated on a 5 cm × 5 cm glass substrate and a set of electronic boards for controlling the LoC functionalities. The presented Lab-on-Chip comprises light and temperature sensors, a thin film resistor acting as a heating source, and an optional thin film interferential filter suitable for fluorescence analysis. The developed electronics allows to control the thin film heater, a light source for fluorescence and absorption measurements, and the photosensors to acquire luminescent signals. All these modules are enclosed in a black metal box ensuring the portability of the whole platform. System performances have been evaluated in terms of sensor optical performances and thermal control achievements. For optical sensors, we have found a minimum number of detectable photons of 8 × 104 s-1·cm-2 at room temperature, 1.6 × 106 s-1·cm-2 in presence of fluorescence excitation source, and 2.4 × 106 s-1·cm-2 at 90 °C. From a thermal management point of view, we have obtained heating and cooling rates both equal to 2.2 °C/s, and a temperature sensor sensitivity of about 3 mV/°C even in presence of light. The achieved performances demonstrate the possibility to simultaneously use all integrated sensors and actuators, making promising the presented platform for a wide range of application fields.
Collapse
Affiliation(s)
- Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| | - Francesca Costantini
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
- CREA-DC Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, 00138 Rome, Italy
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| |
Collapse
|
6
|
Zommiti M, Connil N, Tahrioui A, Groboillot A, Barbey C, Konto-Ghiorghi Y, Lesouhaitier O, Chevalier S, Feuilloley MGJ. Organs-on-Chips Platforms Are Everywhere: A Zoom on Biomedical Investigation. Bioengineering (Basel) 2022; 9:646. [PMID: 36354557 PMCID: PMC9687856 DOI: 10.3390/bioengineering9110646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/27/2022] [Indexed: 08/28/2023] Open
Abstract
Over the decades, conventional in vitro culture systems and animal models have been used to study physiology, nutrient or drug metabolisms including mechanical and physiopathological aspects. However, there is an urgent need for Integrated Testing Strategies (ITS) and more sophisticated platforms and devices to approach the real complexity of human physiology and provide reliable extrapolations for clinical investigations and personalized medicine. Organ-on-a-chip (OOC), also known as a microphysiological system, is a state-of-the-art microfluidic cell culture technology that sums up cells or tissue-to-tissue interfaces, fluid flows, mechanical cues, and organ-level physiology, and it has been developed to fill the gap between in vitro experimental models and human pathophysiology. The wide range of OOC platforms involves the miniaturization of cell culture systems and enables a variety of novel experimental techniques. These range from modeling the independent effects of biophysical forces on cells to screening novel drugs in multi-organ microphysiological systems, all within microscale devices. As in living biosystems, the development of vascular structure is the salient feature common to almost all organ-on-a-chip platforms. Herein, we provide a snapshot of this fast-evolving sophisticated technology. We will review cutting-edge developments and advances in the OOC realm, discussing current applications in the biomedical field with a detailed description of how this technology has enabled the reconstruction of complex multi-scale and multifunctional matrices and platforms (at the cellular and tissular levels) leading to an acute understanding of the physiopathological features of human ailments and infections in vitro.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| | | | | | | | | | | | | | | | - Marc G. J. Feuilloley
- Research Unit Bacterial Communication and Anti-infectious Strategies (CBSA, UR4312), University of Rouen Normandie, 27000 Evreux, France
| |
Collapse
|
7
|
Zahertar S, Torun H, Sun C, Markwell C, Dong Y, Yang X, Fu Y. Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies. SENSORS (BASEL, SWITZERLAND) 2022; 22:4344. [PMID: 35746129 PMCID: PMC9228408 DOI: 10.3390/s22124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device.
Collapse
Affiliation(s)
- Shahrzad Zahertar
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
- Zepler Institute, University of Southampton, Southampton SO17 1BJ, UK
| | - Hamdi Torun
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
| | - Chao Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Christopher Markwell
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
| | - Yinhua Dong
- Department of Neurology, Tianjin 4th Centre Hospital Affiliated to Nankai University, Tianjin 300140, China;
| | - Xin Yang
- Department of Electrical and Electronic Engineering, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK;
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (S.Z.); (C.M.)
| |
Collapse
|
8
|
Le AV, Fenech M. Image-Based Experimental Measurement Techniques to Characterize Velocity Fields in Blood Microflows. Front Physiol 2022; 13:886675. [PMID: 35574441 PMCID: PMC9099138 DOI: 10.3389/fphys.2022.886675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Predicting blood microflow in both simple and complex geometries is challenging because of the composition and behavior of the blood at microscale. However, characterization of the velocity in microchannels is the key for gaining insights into cellular interactions at the microscale, mechanisms of diseases, and efficacy of therapeutic solutions. Image-based measurement techniques are a subset of methods for measuring the local flow velocity that typically utilize tracer particles for flow visualization. In the most basic form, a high-speed camera and microscope setup are the only requirements for data acquisition; however, the development of image processing algorithms and equipment has made current image-based techniques more sophisticated. This mini review aims to provide a succinct and accessible overview of image-based experimental measurement techniques to characterize the velocity field of blood microflow. The following techniques are introduced: cell tracking velocimetry, kymographs, micro-particle velocimetry, and dual-slit photometry as entry techniques for measuring various velocity fields either in vivo or in vitro.
Collapse
Affiliation(s)
- Andy Vinh Le
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- Centre de Biochimie Structurale, CNRS UMR 5048—INSERM UMR 1054, University of Montpellier, Montpellier, France
| | - Marianne Fenech
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Marianne Fenech,
| |
Collapse
|
9
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|
10
|
Sateesh J, Guha K, Dutta A, Sengupta P, Rao KS. Design and Modeling of Bioreactor Utilizing Electrophoresis and Di-electrophoresis Techniques for Regenerating Reabsorption Function of Human Kidney PCT in Microfluidics Environment. IEEE Trans Nanobioscience 2021; 21:529-541. [PMID: 34847037 DOI: 10.1109/tnb.2021.3131351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The need for innovation in medical device technology is immense; especially to replace the dialysis techniques the necessity is extremely high. The available techniques that promised to replace dialysis have not yet geared up to the marketization level. The utilization of live kidney cells makes these devices costly, delicate, and unreliable. This paper aims to design a bioreactor to mimic the reabsorption function of the kidney that is fully artificial and highly controllable, which can be one step forward to the emerging Kidney-on-Chip (KOC) technology. The additional benefit of the proposed design is that it utilizes size-dependent reabsorption along with charge-dependent reabsorption phenomena to make it more compatible with human kidney function. The electrophoresis (EP), and di-electrophoresis (DEP) techniques are utilized to mimic the reabsorption function in this report. The structure utilized in the present design exactly replicates the proximal convoluted tubule (PCT) dimensions and functions as well. The whole setup is implemented in the COMSOL Multiphysics FEM benchmark tool for simulation, and analysis with appropriate boundary conditions. The device when excited by an electric field, Electrophoresis has produced a maximum velocity of 1.07 m/s for DC excitation and di-electrophoresis has produced a maximum flow velocity of 1.23 m/s, where both the offset voltages are the same (0.7 V). The flow velocity obtained utilizing both EP and DEP produced a reabsorption rate of 50-58% depending on the voltage applied and dimensions considered which is close to 60% reabsorption rate of the normal human kidney PCT. In accordance with the outcomes produced, the di-electrophoresis technique proved to be more efficient in realizing bioreactor as compared to electrophoresis. The novelty of the present work lies in the creation of a simulation environment, rigorous analysis, and optimization of the bioreactor supported by compact mathematical model.
Collapse
|
11
|
Malik M, Yang Y, Fathi P, Mahler GJ, Esch MB. Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS). Front Cell Dev Biol 2021; 9:721338. [PMID: 34568333 PMCID: PMC8459628 DOI: 10.3389/fcell.2021.721338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Identification and approval of new drugs for use in patients requires extensive preclinical studies and clinical trials. Preclinical studies rely on in vitro experiments and animal models of human diseases. The transferability of drug toxicity and efficacy estimates to humans from animal models is being called into question. Subsequent clinical studies often reveal lower than expected efficacy and higher drug toxicity in humans than that seen in animal models. Microphysiological systems (MPS), sometimes called organ or human-on-chip models, present a potential alternative to animal-based models used for drug toxicity screening. This review discusses multi-organ MPS that can be used to model diseases and test the efficacy and safety of drug candidates. The translation of an in vivo environment to an in vitro system requires physiologically relevant organ scaling, vascular dimensions, and appropriate flow rates. Even small changes in those parameters can alter the outcome of experiments conducted with MPS. With many MPS devices being developed, we have outlined some established standards for designing MPS devices and described techniques to validate the devices. A physiologically realistic mimic of the human body can help determine the dose response and toxicity effects of a new drug candidate with higher predictive power.
Collapse
Affiliation(s)
- Mridu Malik
- Department of Bioengineering, University of Maryland, College Park, College Park, MD, United States
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yang Yang
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
- Department of Chemical Engineering, University of Maryland, College Park, College Park, MD, United States
| | - Parinaz Fathi
- Department of Bioengineering, Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States
| | - Mandy B. Esch
- Biophysical and Biomedical Measurement Group, Physical Measurement Laboratory, Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
12
|
Ortega C, Corredor D, Santillán M, Ger W, Noceda J, Pais-Chanfrau J, Trujillo L. Lab on a Chip: Bioreactors miniaturization for rapid optimization of biomedical processes and its impact on SARS-CoV-2 diagnosis. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lab on a Chip (LoC) as part of Microbioreactors (MBRs) constitute an emergent technology to carry out micro-bioprocesses based on microfluidics research. In this review, the usefulness of LoCs is exposed since its inception, demonstrating that it is a multidisciplinary research field, gathering different science branches to develop this technology. As a result, a beneficial point of advancement is reached, producing useful consumables for humanity. Some of the described LoCs throughout this work are also used to detect infectious diseases caused by bacteria or viruses, allowing accelerated studies on emerging or high-impact diseases, such as COVID-19. Here are also displayed with an updated panorama, different strategies to improve the use, applications in the biomedical field, and spread of these devices aimed at their availability to solve social problems.
Collapse
Affiliation(s)
- C.P. Ortega
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - D.A Corredor
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - M.E Santillán
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - W.S Ger
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador
| | - J.M Noceda
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - J.M Pais-Chanfrau
- Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador FICAYA, Universidad Técnica del Norte (UTN), Ibarra, Imbabura, Ecuador
| | - L.E Trujillo
- Departamento de Ciencias de la Vida y la Agricultura, Laboratorio Multidisciplinario, Universidad de las Fuerzas Armadas – ESPE, Sangolquí, Ecuador. Grupo de Investigación de Biotecnología Industrial y Bioproductos Centro de Nanociencia y Nanotecnología – CENCINAT, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| |
Collapse
|
13
|
Fedi A, Vitale C, Ponschin G, Ayehunie S, Fato M, Scaglione S. In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: A systematic review. J Control Release 2021; 335:247-268. [PMID: 34033859 DOI: 10.1016/j.jconrel.2021.05.028] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Absorption, distribution, metabolism and excretion (ADME) studies represent a fundamental step in the early stages of drug discovery. In particular, the absorption of orally administered drugs, which occurs at the intestinal level, has gained attention since poor oral bioavailability often led to failures for new drug approval. In this context, several in vitro preclinical models have been recently developed and optimized to better resemble human physiology in the lab and serve as an animal alternative to accomplish the 3Rs principles. However, numerous models are ineffective in recapitulating the key features of the human small intestine epithelium and lack of prediction potential for drug absorption and metabolism during the preclinical stage. In this review, we provide an overview of in vitro models aimed at mimicking the intestinal barrier for pharmaceutical screening. After briefly describing how the human small intestine works, we present i) conventional 2D synthetic and cell-based systems, ii) 3D models replicating the main features of the intestinal architecture, iii) micro-physiological systems (MPSs) reproducing the dynamic stimuli to which cells are exposed in the native microenvironment. In this review, we will highlight the benefits and drawbacks of the leading intestinal models used for drug absorption and metabolism studies.
Collapse
Affiliation(s)
- Arianna Fedi
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Chiara Vitale
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Giulia Ponschin
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | | | - Marco Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy; National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunications (IEIIT) Institute, 16149 Genoa, Italy.
| |
Collapse
|
14
|
Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14816-14843. [PMID: 33779135 PMCID: PMC8028022 DOI: 10.1021/acsami.0c22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/17/2021] [Indexed: 05/02/2023]
Abstract
The pandemic outbreak of SARS-CoV-2, with millions of infected patients worldwide, has severely challenged all aspects of public health. In this regard, early and rapid detection of infected cases and providing effective therapeutics against the virus are in urgent demand. Along with conventional clinical protocols, nanomaterial-based diagnostics and therapeutics hold a great potential against coronavirus disease 2019 (COVID-19). Indeed, nanoparticles with their outstanding characteristics would render additional advantages to the current approaches for rapid and accurate diagnosis and also developing prophylactic vaccines or antiviral therapeutics. In this review, besides presenting an overview of the coronaviruses and SARS-CoV-2, we discuss the introduced nanomaterial-based detection assays and devices and also antiviral formulations and vaccines for coronaviruses.
Collapse
Affiliation(s)
- Mohammad Ali Derakhshan
- Department
of Medical Nanotechnology, School of Advanced Medical Sciences and
Technologies, Shiraz University of Medical
Sciences, Shiraz, Iran
- Nanomedicine
and Nanobiology Research Center, Shiraz
University of Medical Sciences, Shiraz Iran
| | - Amir Amani
- Natural
Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Faridi-Majidi
- Department
of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Przystupski D, Górska A, Michel O, Podwin A, Śniadek P, Łapczyński R, Saczko J, Kulbacka J. Testing Lab-on-a-Chip Technology for Culturing Human Melanoma Cells under Simulated Microgravity. Cancers (Basel) 2021; 13:402. [PMID: 33499085 PMCID: PMC7866167 DOI: 10.3390/cancers13030402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
The dynamic development of the space industry makes space flights more accessible and opens up new opportunities for biological research to better understand cell physiology under real microgravity. Whereas specialized studies in space remain out of our reach, preliminary experiments can be performed on Earth under simulated microgravity (sµg). Based on this concept, we used a 3D-clinostat (3D-C) to analyze the effect of short exposure to sµg on human keratinocytes HaCaT and melanoma cells A375 cultured on all-glass Lab-on-a-Chip (LOC). Our preliminary studies included viability evaluation, mitochondrial and caspase activity, and proliferation assay, enabling us to determine the effect of sµg on human cells. By comparing the results concerning cells cultured on LOCs and standard culture dishes, we were able to confirm the biocompatibility of all-glass LOCs and their potential application in microgravity research on selected human cell lines. Our studies revealed that HaCaT and A375 cells are susceptible to simulated microgravity; however, we observed an increased caspase activity and a decrease of proliferation in cancer cells cultured on LOCs in comparison to standard cell cultures. These results are an excellent basis to conduct further research on the possible application of LOCs systems in cancer research in space.
Collapse
Affiliation(s)
- Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agata Górska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agnieszka Podwin
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | - Patrycja Śniadek
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| |
Collapse
|
16
|
Abstract
Microfluidic structures and devices have been studied over decades for the transport of liquid through internal channels using versatile microfabrication schemes such as surface and bulk micromachining technologies. One challenge in consideration of the device design involves the breakthrough of microfluidic reservoir and channels being substantially limited in two-dimensional (2D) geometry. However, recent progress of the emerging 3D printing technologies has showed great potential to overcome this problem in a simple manner. This paper comprehensively reports an additive manufacturing of polylactic acid (PLA) layers to significantly improve the complexity in the formation of the 3D microfluidic structures as compared to conventional micro-manufacturing techniques. Moreover, a handheld mechatronic device with a small height of ~10 mm, assembled with a thin planar atomizer and a micro controller, was produced and demonstrated for generation of droplets (~6 μm in diameter). Both the analytical and experimental results indicated that the grids of channel microstructures were simply varied by different line widths (300–500 μm) and spacing (250–400 μm) 3D printed within the device, thereby providing the design capability for capillary flow. In this regard, a variety of complex micro devices fabricated via computer-aided design (CAD) and the 3D printing method could be applied for more applications than ever, such as microfluidic delivery of biomedical materials and health care devices of a small size.
Collapse
|
17
|
Beverung S, Wu J, Steward R. Lab-on-a-Chip for Cardiovascular Physiology and Pathology. MICROMACHINES 2020; 11:E898. [PMID: 32998305 PMCID: PMC7600691 DOI: 10.3390/mi11100898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Lab-on-a-chip technologies have allowed researchers to acquire a flexible, yet relatively inexpensive testbed to study one of the leading causes of death worldwide, cardiovascular disease. Cardiovascular diseases, such as peripheral artery disease, arteriosclerosis, and aortic stenosis, for example, have all been studied by lab-on-a-chip technologies. These technologies allow for the integration of mammalian cells into functional structures that mimic vital organs with geometries comparable to those found in vivo. For this review, we focus on microdevices that have been developed to study cardiovascular physiology and pathology. With these technologies, researchers can better understand the electrical-biomechanical properties unique to cardiomyocytes and better stimulate and understand the influence of blood flow on the human vasculature. Such studies have helped increase our understanding of many cardiovascular diseases in general; as such, we present here a review of the current state of the field and potential for the future.
Collapse
Affiliation(s)
| | | | - Robert Steward
- Department of Mechanical and Aerospace Engineering, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA; (S.B.); (J.W.)
| |
Collapse
|
18
|
Sasserath T, Rumsey JW, McAleer CW, Bridges LR, Long CJ, Elbrecht D, Schuler F, Roth A, Bertinetti‐LaPatki C, Shuler ML, Hickman JJ. Differential Monocyte Actuation in a Three-Organ Functional Innate Immune System-on-a-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000323. [PMID: 32670763 PMCID: PMC7341107 DOI: 10.1002/advs.202000323] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/09/2020] [Indexed: 05/24/2023]
Abstract
A functional, human, multiorgan, pumpless, immune system-on-a-chip featuring recirculating THP-1 immune cells with cardiomyocytes, skeletal muscle, and liver in separate compartments in a serum-free medium is developed. This in vitro platform can emulate both a targeted immune response to tissue-specific damage, and holistic proinflammatory immune response to proinflammatory compound exposure. The targeted response features fluorescently labeled THP-1 monocytes selectively infiltrating into an amiodarone-damaged cardiac module and changes in contractile force measurements without immune-activated damage to the other organ modules. In contrast to the targeted immune response, general proinflammatory treatment of immune human-on-a-chip systems with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) causes nonselective damage to cells in all three-organ compartments. Biomarker analysis indicates upregulation of the proinflammation cytokines TNF-α, IL-6, IL-10, MIP-1, MCP-1, and RANTES in response to LPS + IFN-γ treatment indicative of the M1 macrophage phenotype, whereas amiodarone treatment only leads to an increase in the restorative cytokine IL-6 which is a marker for the M2 phenotype. This system can be used as an alternative to humanized animal models to determine direct immunological effects of biological therapeutics including monoclonal antibodies, vaccines, and gene therapies, and the indirect effects caused by cytokine release from target tissues in response to a drug's pharmacokinetics (PK)/pharmacodynamics (PD) profile.
Collapse
Affiliation(s)
- Trevor Sasserath
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
| | - John W. Rumsey
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
| | | | | | | | - Daniel Elbrecht
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
| | - Franz Schuler
- Hoffmann‐La RochePharmaceuticals DivisionBldg 73, Rm 117bBasel4070Switzerland
| | - Adrian Roth
- Hoffmann‐La RochePharmaceuticals DivisionBldg 73, Rm 117bBasel4070Switzerland
| | | | | | - James J. Hickman
- Hesperos, Inc.12501 Research Parkway, Suite 100OrlandoFL32826USA
- NanoScience Technology Center, University of Central Florida12424 Research Parkway, Suite 400OrlandoFL32826USA
| |
Collapse
|
19
|
Pauliukaite R, Voitechovič E. Multisensor Systems and Arrays for Medical Applications Employing Naturally-Occurring Compounds and Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3551. [PMID: 32585936 PMCID: PMC7349305 DOI: 10.3390/s20123551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
The significant improvement of quality of life achieved over the last decades has stimulated the development of new approaches in medicine to take into account the personal needs of each patient. Precision medicine, providing healthcare customization, opens new horizons in the diagnosis, treatment and prevention of numerous diseases. As a consequence, there is a growing demand for novel analytical devices and methods capable of addressing the challenges of precision medicine. For example, various types of sensors or their arrays are highly suitable for simultaneous monitoring of multiple analytes in complex biological media in order to obtain more information about the health status of a patient or to follow the treatment process. Besides, the development of sustainable sensors based on natural chemicals allows reducing their environmental impact. This review is concerned with the application of such analytical platforms in various areas of medicine: analysis of body fluids, wearable sensors, drug manufacturing and screening. The importance and role of naturally-occurring compounds in the development of electrochemical multisensor systems and arrays are discussed.
Collapse
Affiliation(s)
- Rasa Pauliukaite
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania;
| | | |
Collapse
|
20
|
Karra N, Swindle E, Morgan H. Drug delivery for traditional and emerging airway models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ooc.2020.100002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Bal-Öztürk A, Miccoli B, Avci-Adali M, Mogtader F, Sharifi F, Çeçen B, Yaşayan G, Braeken D, Alarcin E. Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook. Curr Pharm Des 2019; 24:5437-5457. [PMID: 30727878 DOI: 10.2174/1381612825666190206195304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
The skin is the largest and most exposed organ in the human body. Not only it is involved in numerous biological processes essential for life but also it represents a significant endpoint for the application of pharmaceuticals. The area of in vitro skin tissue engineering has been progressing extensively in recent years. Advanced in vitro human skin models strongly impact the discovery of new drugs thanks to the enhanced screening efficiency and reliability. Nowadays, animal models are largely employed at the preclinical stage of new pharmaceutical compounds development for both risk assessment evaluation and pharmacokinetic studies. On the other hand, animal models often insufficiently foresee the human reaction due to the variations in skin immunity and physiology. Skin-on-chips devices offer innovative and state-of-the-art platforms essential to overcome these limitations. In the present review, we focus on the contribution of skin-on-chip platforms in fundamental research and applied medical research. In addition, we also highlighted the technical and practical difficulties that must be overcome to enhance skin-on-chip platforms, e.g. embedding electrical measurements, for improved modeling of human diseases as well as of new drug discovery and development.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, İstinye University, 34010, Zeytinburnu, Istanbul, Turkey,Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey
| | - Beatrice Miccoli
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium,Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
| | - Ferzaneh Mogtader
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Turkey,NanoBMT, Cyberpark, Bilkent 06800, Ankara, Turkey
| | - Fatemeh Sharifi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Berivan Çeçen
- Biomechanics Department, Institute of Health Science, Dokuz Eylul University, 35340, Inciraltı, Izmir, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa, Istanbul, Turkey
| | - Dries Braeken
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa, Istanbul, Turkey
| |
Collapse
|
22
|
Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, remarkable developments have taken place, leading to significant improvements in microfluidic methods to capture subtle biological effects down to single cells. As microfluidic devices are getting sophisticated, design optimization through experimentations is becoming more challenging. As a result, numerical simulations have contributed to this trend by offering a better understanding of cellular microenvironments hydrodynamics and optimizing the functionality of the current/emerging designs. The need for new marketable designs with advantageous hydrodynamics invokes easier access to efficient as well as time-conservative numerical simulations to provide screening over cellular microenvironments, and to emulate physiological conditions with high accuracy. Therefore, an excerpt overview on how each numerical methodology and associated handling software works, and how they differ in handling underlying hydrodynamic of lab-on-chip microfluidic is crucial. These numerical means rely on molecular and continuum levels of numerical simulations. The current review aims to serve as a guideline for researchers in this area by presenting a comprehensive characterization of various relevant simulation techniques.
Collapse
|
23
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
24
|
Kaprou GD, Papadopoulos V, Papageorgiou DP, Kefala I, Papadakis G, Gizeli E, Chatzandroulis S, Kokkoris G, Tserepi A. Ultrafast, low-power, PCB manufacturable, continuous-flow microdevice for DNA amplification. Anal Bioanal Chem 2019; 411:5297-5307. [PMID: 31161322 DOI: 10.1007/s00216-019-01911-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
The design and fabrication of a continuous-flow μPCR device with very short amplification time and low power consumption are presented. Commercially available, 4-layer printed circuit board (PCB) substrates are employed, with in-house designed yet industrially manufactured embedded Cu micro-resistive heaters lying at very close distance from the microfluidic network, where DNA amplification takes place. The 1.9-m-long microchannel in combination with desirably high flow velocities (for fast amplification) challenged the robustness of the sealing that was overcome with the development of a novel bonding method rendering the microdevice robust even at extreme pressure drops (12 bars). The proposed fabrication methods are PCB compatible, allowing for mass and reliable production of the μPCR device in the established PCB industry. The μPCR chip was successfully validated during the amplification of two different DNA fragments (and with different target DNA copies) corresponding to the exon 20 of the BRCA1 gene, and to the plasmid pBR322, a commonly used cloning vector in E. coli. Successful DNA amplification was demonstrated at total reaction times down to 2 min, with a power consumption of 2.7 W, rendering the presented μPCR one of the fastest and lowest power-consuming devices, suitable for implementation in low-resource settings. Detailed numerical calculations of the DNA residence time distributions, within an acceptable temperature range for denaturation, annealing, and extension, performed for the first time in the literature, provide useful information regarding the actual on-chip PCR protocol and justify the maximum volumetric flow rate for successful DNA amplification. The calculations indicate that the shortest amplification time is achieved when the device is operated at its enzyme kinetic limit (i.e., extension rate). Graphical abstract.
Collapse
Affiliation(s)
- Georgia D Kaprou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.,Department of Biology, University of Crete, Voutes, 70013, Heraklion, Greece
| | - Vasileios Papadopoulos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - Dimitris P Papageorgiou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ioanna Kefala
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - George Papadakis
- Institute of Molecular Biology and Biotechnology-FORTH, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Electra Gizeli
- Department of Biology, University of Crete, Voutes, 70013, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology-FORTH, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - Stavros Chatzandroulis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece
| | - George Kokkoris
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E' and 27 Neapoleos Str., PO Box 60037, 15341, Agia Paraskevi, Attica, Greece.
| |
Collapse
|
25
|
Liu D, Ling F, Kumar R, Mallik AK, Tian K, Shen C, Farrell G, Semenova Y, Wu Q, Wang P. Sub-micrometer resolution liquid level sensor based on a hollow core fiber structure. OPTICS LETTERS 2019; 44:2125-2128. [PMID: 30985827 DOI: 10.1364/ol.44.002125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Liquid level measurement in lab on a chip (LOC) devices is a challenging task due to the demand for a sensor with ultra-high resolution but miniature in nature. In this Letter, we report a simple, compact in size, yet highly sensitive liquid level sensor based on a hollow core fiber (HCF) structure. The sensor is fabricated by fusion splicing a short section of HCF between two singlemode fibers (SMFs). Sensor samples with different lengths of HCF have been studied; it is found that the sensor with a HCF length of ∼4.73 mm shows the best sensitivity of ∼0.014 dB/μm, corresponding to a liquid level resolution of ∼0.7 μm, which is over five times higher than that of the previous reported fiber optic sensors to date. In addition, experimental results have demonstrated that the proposed sensor shows good repeatability of measurement and a very low cross sensitivity to changes in the refractive index of the surrounding medium.
Collapse
|
26
|
Nanotheranostics Approaches in Antimicrobial Drug Resistance. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Ashammakhi N, Elkhammas E, Hasan A. Translating advances in organ‐on‐a‐chip technology for supporting organs. J Biomed Mater Res B Appl Biomater 2018; 107:2006-2018. [DOI: 10.1002/jbm.b.34292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/24/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of SurgeryOulu University Hospital Oulu Finland
- Department of BioengineeringUniversity of California Los Angeles Los Angeles California
- School of Technology and InnovationsUniversity of Vaasa Vaasa Finland
- Biotechnology Research CenterAuthority for Natural Sciences Research and Technology Tripoli Libya
| | - Elmahdi Elkhammas
- Division of Transplantation Surgery, Department of SurgeryThe Ohio State University Wexner Medical Center, Comprehensive Transplant Center Columbus Ohio
| | - Anwarul Hasan
- Department of Mechanical and Industrial EngineeringQatar University Doha Qatar
- Biomedical Research CenterQatar University Doha Qatar
| |
Collapse
|
28
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
29
|
Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A. Multiscale bioprinting of vascularized models. Biomaterials 2018; 198:204-216. [PMID: 30244825 DOI: 10.1016/j.biomaterials.2018.08.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
A basic prerequisite for the survival and function of three-dimensional (3D) engineered tissue constructs is the establishment of blood vessels. 3D bioprinting of vascular networks with hierarchical structures that resemble in vivo structures has allowed blood circulation within thick tissue constructs to accelerate vascularization and enhance tissue regeneration. Successful rapid vascularization of tissue constructs requires synergy between fabrication of perfusable channels and functional bioinks that induce angiogenesis and capillary formation within constructs. Combinations of 3D bioprinting techniques and four-dimensional (4D) printing concepts through patterning proangiogenic factors may offer novel solutions for implantation of thick constructs. In this review, we cover current bioprinting techniques for vascularized tissue constructs with vasculatures ranging from capillaries to large blood vessels and discuss how to implement these approaches for patterning proangiogenic factors to maintain long-term, stimuli-controlled formation of new capillaries.
Collapse
Affiliation(s)
- Amir K Miri
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Akbar Khalilpour
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea; Center for Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
30
|
Ye K, Kaplan DL, Bao G, Bettinger C, Forgacs G, Dong C, Khademhosseini A, Ke Y, Leong K, Sambanis A, Sun W, Yin P. Advanced Cell and Tissue Biomanufacturing. ACS Biomater Sci Eng 2018; 4:2292-2307. [PMID: 33435095 DOI: 10.1021/acsbiomaterials.8b00650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This position paper assesses state-of-the-art advanced biomanufacturing and identifies paths forward to advance this emerging field in biotechnology and biomedical engineering, including new research opportunities and translational and corporate activities. The vision for the field is to see advanced biomanufacturing emerge as a discipline in academic and industrial communities as well as a technological opportunity to spur research and industry growth. To navigate this vision, the paths to move forward and to identify major barriers were a focal point of discussions at a National Science Foundation-sponsored workshop focused on the topic. Some of the major needs include but are not limited to the integration of specific scientific and engineering disciplines and guidance from regulatory agencies, infrastructure requirements, and strategies for reliable systems integration. Some of the recommendations, major targets, and opportunities were also outlined, including some "grand challenges" to spur interest and progress in the field based on the participants at the workshop. Many of these recommendations have been expanded, materialized, and adopted by the field. For instance, the formation of an initial collaboration network in the community was established. This report provides suggestions for the opportunities and challenges to help move the field of advanced biomanufacturing forward. The field is in the early stages of effecting science and technology in biomanufacturing with a bright and important future impact evident based on the rapid scientific advances in recent years and industry progress.
Collapse
Affiliation(s)
- Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York 13902, United States
| | - David L Kaplan
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Gang Bao
- Department of Bioengineering, School of Engineering, Rice University, Houston, Texas 77005, United States
| | - Christopher Bettinger
- Department of Materials Science and Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gabor Forgacs
- Department of Bioengineering, College of Engineering, University of Missouri, Columbia, Missouri 65211, United States.,Modern Meadow, Inc., 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | - Cheng Dong
- Department of Biomedical Engineering, College of Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Ali Khademhosseini
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Yonggang Ke
- Department of Biomedical Engineering, College of Engineering, Georgia Tech, Atlanta, Georgia 30332, United States
| | - Kam Leong
- Department of Biomedical Engineering, School of Engineering and Applied Science, Columbia University, New York City, New York 10027, United States
| | | | - Wei Sun
- Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Peng Yin
- Department of Systems Biology, Harvard Medical School, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
31
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
32
|
Caicedo A, Rosenfeld R. Challenges and future for the delivery of growth hormone therapy. Growth Horm IGF Res 2018; 38:39-43. [PMID: 29289483 DOI: 10.1016/j.ghir.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 01/27/2023]
Abstract
Growth hormone (GH) has multiple roles in sustaining human development and homeostasis. Its pulsatile secretion stimulates growth and contributes to an equilibrium in a process tightly regulated and coordinated by many organs. GH deficiency is a medical condition affecting all ages, with not only significant consequences in the health of the patient but also impact on the quality of life. This review gathers the different strategies used today with a glance at future technologies to treat GH deficiency. We present key aspects for consideration when developing new methods to deliver GH, mimicking or replacing its pulsatile activity. Today and in the future, the fusion of biochemistry, biology and nanotechnology will provide hybrid devices using microfluidic systems. But, until new technologies for GH delivery will become available, current methods must be reinforced in conjunction with the development of better communication strategies between the health system and patients. Treating GH deficiency represents a multidisciplinary effort for which this review provides a glance at potential future directions for this therapy.
Collapse
Affiliation(s)
- Andrés Caicedo
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador; Mito-Act Research Consortium, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Ron Rosenfeld
- Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
33
|
Abstract
Small-molecule drug discovery can be viewed as a challenging multidimensional problem in which various characteristics of compounds - including efficacy, pharmacokinetics and safety - need to be optimized in parallel to provide drug candidates. Recent advances in areas such as microfluidics-assisted chemical synthesis and biological testing, as well as artificial intelligence systems that improve a design hypothesis through feedback analysis, are now providing a basis for the introduction of greater automation into aspects of this process. This could potentially accelerate time frames for compound discovery and optimization and enable more effective searches of chemical space. However, such approaches also raise considerable conceptual, technical and organizational challenges, as well as scepticism about the current hype around them. This article aims to identify the approaches and technologies that could be implemented robustly by medicinal chemists in the near future and to critically analyse the opportunities and challenges for their more widespread application.
Collapse
|
34
|
Marques MP, Szita N. Bioprocess microfluidics: applying microfluidic devices for bioprocessing. Curr Opin Chem Eng 2017; 18:61-68. [PMID: 29276669 PMCID: PMC5727670 DOI: 10.1016/j.coche.2017.09.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microfluidic devices as novel bioprocess development tools. Processes with stem cells, microbes and enzymes are viable in microfluidic devices. Microfluidic devices with integrated sensors provide high quality data. Laminar flow enables spatial and temporal control over transport phenomena. Standardization of devices required for automation and industrial uptake.
Scale-down approaches have long been applied in bioprocessing to resolve scale-up problems. Miniaturized bioreactors have thrived as a tool to obtain process relevant data during early-stage process development. Microfluidic devices are an attractive alternative in bioprocessing development due to the high degree of control over process variables afforded by the laminar flow, and the possibility to reduce time and cost factors. Data quality obtained with these devices is high when integrated with sensing technology and is invaluable for scale-translation and to assess the economical viability of bioprocesses. Microfluidic devices as upstream process development tools have been developed in the area of small molecules, therapeutic proteins, and cellular therapies. More recently, they have also been applied to mimic downstream unit operations.
Collapse
Affiliation(s)
- Marco Pc Marques
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gordon Street, London WC1H 0AH, United Kingdom
| |
Collapse
|