1
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Farfán-Pira KJ, Martínez-Cuevas TI, Evans TA, Nahmad M. A cis-regulatory sequence of the selector gene vestigial drives the evolution of wing scaling in Drosophila species. J Exp Biol 2023; 226:jeb244692. [PMID: 37078652 PMCID: PMC10234621 DOI: 10.1242/jeb.244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Scaling between specific organs and overall body size has long fascinated biologists, being a primary mechanism by which organ shapes evolve. Yet, the genetic mechanisms that underlie the evolution of scaling relationships remain elusive. Here, we compared wing and fore tibia lengths (the latter as a proxy of body size) in Drosophila melanogaster, Drosophila simulans, Drosophila ananassae and Drosophila virilis, and show that the first three of these species have roughly a similar wing-to-tibia scaling behavior. In contrast, D. virilis exhibits much smaller wings relative to their body size compared with the other species and this is reflected in the intercept of the wing-to-tibia allometry. We then asked whether the evolution of this relationship could be explained by changes in a specific cis-regulatory region or enhancer that drives expression of the wing selector gene, vestigial (vg), whose function is broadly conserved in insects and contributes to wing size. To test this hypothesis directly, we used CRISPR/Cas9 to replace the DNA sequence of the predicted Quadrant Enhancer (vgQE) from D. virilis for the corresponding vgQE sequence in the genome of D. melanogaster. Strikingly, we discovered that D. melanogaster flies carrying the D. virilis vgQE sequence have wings that are significantly smaller with respect to controls, partially shifting the intercept of the wing-to-tibia scaling relationship towards that observed in D. virilis. We conclude that a single cis-regulatory element in D. virilis contributes to constraining wing size in this species, supporting the hypothesis that scaling could evolve through genetic variations in cis-regulatory elements.
Collapse
Affiliation(s)
- Keity J. Farfán-Pira
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Teresa I. Martínez-Cuevas
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Timothy A. Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Marcos Nahmad
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| |
Collapse
|
3
|
Smith GD, Ching WH, Cornejo-Páramo P, Wong ES. Decoding enhancer complexity with machine learning and high-throughput discovery. Genome Biol 2023; 24:116. [PMID: 37173718 PMCID: PMC10176946 DOI: 10.1186/s13059-023-02955-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Enhancers are genomic DNA elements controlling spatiotemporal gene expression. Their flexible organization and functional redundancies make deciphering their sequence-function relationships challenging. This article provides an overview of the current understanding of enhancer organization and evolution, with an emphasis on factors that influence these relationships. Technological advancements, particularly in machine learning and synthetic biology, are discussed in light of how they provide new ways to understand this complexity. Exciting opportunities lie ahead as we continue to unravel the intricacies of enhancer function.
Collapse
Affiliation(s)
- Gabrielle D Smith
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Wan Hern Ching
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
| | - Paola Cornejo-Páramo
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Emily S Wong
- Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
4
|
van der Sande M, Frölich S, van Heeringen SJ. Computational approaches to understand transcription regulation in development. Biochem Soc Trans 2023; 51:1-12. [PMID: 36695505 PMCID: PMC9988001 DOI: 10.1042/bst20210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Gene regulatory networks (GRNs) serve as useful abstractions to understand transcriptional dynamics in developmental systems. Computational prediction of GRNs has been successfully applied to genome-wide gene expression measurements with the advent of microarrays and RNA-sequencing. However, these inferred networks are inaccurate and mostly based on correlative rather than causative interactions. In this review, we highlight three approaches that significantly impact GRN inference: (1) moving from one genome-wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to measure cell type-specific signals and predict context-specific GRNs, and (3) neural networks as flexible models. Together, these experimental and computational developments have the potential to significantly impact the quality of inferred GRNs. Ultimately, accurately modeling the regulatory interactions between transcription factors and their target genes will be essential to understand the role of transcription factors in driving developmental gene expression programs and to derive testable hypotheses for validation.
Collapse
Affiliation(s)
| | | | - Simon J. van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Jimenez E, Slevin CC, Song W, Chen Z, Frederickson SC, Gildea D, Wu W, Elkahloun AG, Ovcharenko I, Burgess SM. A regulatory network of Sox and Six transcription factors initiate a cell fate transformation during hearing regeneration in adult zebrafish. CELL GENOMICS 2022; 2. [PMID: 36212030 PMCID: PMC9540346 DOI: 10.1016/j.xgen.2022.100170] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using adult zebrafish inner ears as a model for sensorineural regeneration, we ablated the mechanosensory receptors and characterized the single-cell epigenome and transcriptome at consecutive time points during hair cell regeneration. We utilized deep learning on the regeneration-induced open chromatin sequences and identified cell-specific transcription factor (TF) motif patterns. Enhancer activity correlated with gene expression and identified potential gene regulatory networks. A pattern of overlapping Sox- and Six-family TF gene expression and binding motifs was detected, suggesting a combinatorial program of TFs driving regeneration and cell identity. Pseudotime analysis of single-cell transcriptomic data suggested that support cells within the sensory epithelium changed cell identity to a “progenitor” cell population that could differentiate into hair cells. We identified a 2.6 kb DNA enhancer upstream of the sox2 promoter that, when deleted, showed a dominant phenotype that resulted in a hair-cell-regeneration-specific deficit in both the lateral line and adult inner ear. Jimenez et al. interrogate the epigenomic and transcriptomic landscape of regenerating adult zebrafish inner-ear sensory epithelia. They show that the support-cell population transitions to an intermediate “progenitor” cell state that becomes new hair cells, and they demonstrate that the cell fate decisions may be driven by the coordinate regulation and spatial co-binding of Sox and Six transcription factors. By functionally validating a predicted regeneration-responsive enhancer upstream of sox2, they show that precise timing of sox2 expression is critical for hearing regeneration in zebrafish.
Collapse
Affiliation(s)
- Erin Jimenez
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Claire C. Slevin
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Wei Song
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Stephen C. Frederickson
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Derek Gildea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Weiwei Wu
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Abdel G. Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
- Corresponding author
| |
Collapse
|
6
|
Bhatia S, Kleinjan DJ, Uttley K, Mann A, Dellepiane N, Bickmore WA. Quantitative spatial and temporal assessment of regulatory element activity in zebrafish. eLife 2021; 10:65601. [PMID: 34796872 PMCID: PMC8604437 DOI: 10.7554/elife.65601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations or genetic variation in noncoding regions of the genome harbouring cis-regulatory elements (CREs), or enhancers, have been widely implicated in human disease and disease risk. However, our ability to assay the impact of these DNA sequence changes on enhancer activity is currently very limited because of the need to assay these elements in an appropriate biological context. Here, we describe a method for simultaneous quantitative assessment of the spatial and temporal activity of wild-type and disease-associated mutant human CRE alleles using live imaging in zebrafish embryonic development. We generated transgenic lines harbouring a dual-CRE dual-reporter cassette in a pre-defined neutral docking site in the zebrafish genome. The activity of each CRE allele is reported via expression of a specific fluorescent reporter, allowing simultaneous visualisation of where and when in development the wild-type allele is active and how this activity is altered by mutation.
Collapse
Affiliation(s)
- Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk Jan Kleinjan
- Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Kirsty Uttley
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Anita Mann
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Nefeli Dellepiane
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Yousefi S, Deng R, Lanko K, Salsench EM, Nikoncuk A, van der Linde HC, Perenthaler E, van Ham TJ, Mulugeta E, Barakat TS. Comprehensive multi-omics integration identifies differentially active enhancers during human brain development with clinical relevance. Genome Med 2021; 13:162. [PMID: 34663447 PMCID: PMC8524963 DOI: 10.1186/s13073-021-00980-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation, and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains challenging. METHODS Here we performed an integrative computational analysis of virtually all currently available epigenome data sets related to human fetal brain. RESULTS Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic rearrangement during early stages of human brain development, indicating likely biological function. Many of these DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic variation found in individuals with neurodevelopmental disorders, including autism. CONCLUSION This compendium of high-confidence enhancers will assist in deciphering the mechanism behind developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain disorders.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ruizhi Deng
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Kristina Lanko
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eva Medico Salsench
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anita Nikoncuk
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Herma C. van der Linde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Eskeatnaf Mulugeta
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Jindal GA, Farley EK. Enhancer grammar in development, evolution, and disease: dependencies and interplay. Dev Cell 2021; 56:575-587. [PMID: 33689769 PMCID: PMC8462829 DOI: 10.1016/j.devcel.2021.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Each language has standard books describing that language's grammatical rules. Biologists have searched for similar, albeit more complex, principles relating enhancer sequence to gene expression. Here, we review the literature on enhancer grammar. We introduce dependency grammar, a model where enhancers encode information based on dependencies between enhancer features shaped by mechanistic, evolutionary, and biological constraints. Classifying enhancers based on the types of dependencies may identify unifying principles relating enhancer sequence to gene expression. Such rules would allow us to read the instructions for development within genomes and pinpoint causal enhancer variants underlying disease and evolutionary changes.
Collapse
Affiliation(s)
- Granton A Jindal
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Chu JM, Pease NA, Kueh HY. In search of lost time: Enhancers as modulators of timing in lymphocyte development and differentiation. Immunol Rev 2021; 300:134-151. [PMID: 33734444 PMCID: PMC8005465 DOI: 10.1111/imr.12946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022]
Abstract
Proper timing of gene expression is central to lymphocyte development and differentiation. Lymphocytes often delay gene activation for hours to days after the onset of signaling components, which act on the order of seconds to minutes. Such delays play a prominent role during the intricate choreography of developmental events and during the execution of an effector response. Though a number of mechanisms are sufficient to explain timing at short timescales, it is not known how timing delays are implemented over long timescales that may span several cell generations. Based on the literature, we propose that a class of cis-regulatory elements, termed "timing enhancers," may explain how timing delays are controlled over these long timescales. By considering chromatin as a kinetic barrier to state switching, the timing enhancer model explains experimentally observed dynamics of gene expression where other models fall short. In this review, we elaborate on features of the timing enhancer model and discuss the evidence for its generality throughout development and differentiation. We then discuss potential molecular mechanisms underlying timing enhancer function. Finally, we explore recent evidence drawing connections between timing enhancers and genetic risk for immunopathology. We argue that the timing enhancer model is a useful framework for understanding how cis-regulatory elements control the central dimension of timing in lymphocyte biology.
Collapse
Affiliation(s)
- Jonathan M Chu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| |
Collapse
|
10
|
Tobias IC, Abatti LE, Moorthy SD, Mullany S, Taylor T, Khader N, Filice MA, Mitchell JA. Transcriptional enhancers: from prediction to functional assessment on a genome-wide scale. Genome 2020; 64:426-448. [PMID: 32961076 DOI: 10.1139/gen-2020-0104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enhancers are cis-regulatory sequences located distally to target genes. These sequences consolidate developmental and environmental cues to coordinate gene expression in a tissue-specific manner. Enhancer function and tissue specificity depend on the expressed set of transcription factors, which recognize binding sites and recruit cofactors that regulate local chromatin organization and gene transcription. Unlike other genomic elements, enhancers are challenging to identify because they function independently of orientation, are often distant from their promoters, have poorly defined boundaries, and display no reading frame. In addition, there are no defined genetic or epigenetic features that are unambiguously associated with enhancer activity. Over recent years there have been developments in both empirical assays and computational methods for enhancer prediction. We review genome-wide tools, CRISPR advancements, and high-throughput screening approaches that have improved our ability to both observe and manipulate enhancers in vitro at the level of primary genetic sequences, chromatin states, and spatial interactions. We also highlight contemporary animal models and their importance to enhancer validation. Together, these experimental systems and techniques complement one another and broaden our understanding of enhancer function in development, evolution, and disease.
Collapse
Affiliation(s)
- Ian C Tobias
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Sakthi D Moorthy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Shanelle Mullany
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Tiegh Taylor
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mario A Filice
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
11
|
Ryan GE, Farley EK. Functional genomic approaches to elucidate the role of enhancers during development. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1467. [PMID: 31808313 PMCID: PMC7027484 DOI: 10.1002/wsbm.1467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
Abstract
Successful development depends on the precise tissue-specific regulation of genes by enhancers, genetic elements that act as switches to control when and where genes are expressed. Because enhancers are critical for development, and the majority of disease-associated mutations reside within enhancers, it is essential to understand which sequences within enhancers are important for function. Advances in sequencing technology have enabled the rapid generation of genomic data that predict putative active enhancers, but functionally validating these sequences at scale remains a fundamental challenge. Herein, we discuss the power of genome-wide strategies used to identify candidate enhancers, and also highlight limitations and misconceptions that have arisen from these data. We discuss the use of massively parallel reporter assays to test enhancers for function at scale. We also review recent advances in our ability to study gene regulation during development, including CRISPR-based tools to manipulate genomes and single-cell transcriptomics to finely map gene expression. Finally, we look ahead to a synthesis of complementary genomic approaches that will advance our understanding of enhancer function during development. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods.
Collapse
Affiliation(s)
- Genevieve E. Ryan
- Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
- Division of Biological Sciences, Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
| | - Emma K. Farley
- Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
- Division of Biological Sciences, Department of MedicineUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|