1
|
Mendes F, Miranda E, Amaral L, Carvalho C, Castro BB, Sousa MJ, Chaves SR. Novel yeast-based biosensor for environmental monitoring of tebuconazole. Appl Microbiol Biotechnol 2024; 108:10. [PMID: 38170307 PMCID: PMC10764535 DOI: 10.1007/s00253-023-12944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
Due to increasing demand for high and stable crop production, human populations are highly dependent on pesticide use for growing and storing food. Environmental monitoring of these agrochemicals is therefore of utmost importance, because of their collateral effects on ecosystem and human health. Even though most current-use analytical methods achieve low detection limits, they require procedures that are too complex and costly for routine monitoring. As such, there has been an increased interest in biosensors as alternative or complementary tools to streamline detection and quantification of environmental contaminants. In this work, we developed a biosensor for environmental monitoring of tebuconazole (TEB), a common agrochemical fungicide. For that purpose, we engineered S. cerevisiae cells with a reporter gene downstream of specific promoters that are expressed after exposure to TEB and characterized the sensitivity and specificity of this model system. After optimization, we found that this easy-to-use biosensor consistently detects TEB at concentrations above 5 μg L-1 and does not respond to realistic environmental concentrations of other tested azoles, suggesting it is specific. We propose the use of this system as a complementary tool in environmental monitoring programs, namely, in high throughput scenarios requiring screening of numerous samples. KEY POINTS: • A yeast-based biosensor was developed for environmental monitoring of tebuconazole. •The biosensor offers a rapid and easy method for tebuconazole detection ≥ 5 μg L-1. •The biosensor is specific to tebuconazole at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Filipa Mendes
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Eduarda Miranda
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Carla Carvalho
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
- Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Bruno B Castro
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Maria João Sousa
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology/ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
2
|
Ferraresso F, Badior K, Seadler M, Zhang Y, Wietrzny A, Cau MF, Haugen A, Rodriguez GG, Dyer MR, Cullis PR, Jan E, Kastrup CJ. Protein is expressed in all major organs after intravenous infusion of mRNA-lipid nanoparticles in swine. Mol Ther Methods Clin Dev 2024; 32:101314. [PMID: 39253356 PMCID: PMC11382111 DOI: 10.1016/j.omtm.2024.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo delivery of mRNA is promising for the study of gene expression and the treatment of diseases. Lipid nanoparticles (LNPs) enable efficient delivery of mRNA constructs, but protein expression has been assumed to be limited to the liver. With specialized LNPs, delivery to extrahepatic tissue occurs in small animal models; however, it is unclear if global delivery of mRNA to all major organs is possible in humans because delivery may be affected by differences in innate immune response and relative organ size. Furthermore, limited studies with LNPs have been performed in large animal models, such as swine, due to their sensitivity to complement activation-related pseudoallergy (CARPA). In this study, we found that exogenous protein expression occurred in all major organs when swine were injected intravenously with a relatively low dose of mRNA encapsulated in a clinically relevant LNP formulation. Exogenous protein was detected in the liver, spleen, lung, heart, uterus, colon, stomach, kidney, small intestine, and brain of the swine without inducing CARPA. Furthermore, protein expression was detected in the bone marrow, including megakaryocytes, hematopoietic stem cells, and granulocytes, and in circulating white blood cells and platelets. These results show that nearly all major organs contain exogenous protein expression and are viable targets for mRNA therapies.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Monica Seadler
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Youjie Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Haugen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Geoffrey G Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mitchell R Dyer
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Christian J Kastrup
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Glauninger H, Bard JA, Wong Hickernell CJ, Airoldi EM, Li W, Singer RH, Paul S, Fei J, Sosnick TR, Wallace EWJ, Drummond DA. Transcriptome-wide mRNA condensation precedes stress granule formation and excludes stress-induced transcripts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589678. [PMID: 38659805 PMCID: PMC11042329 DOI: 10.1101/2024.04.15.589678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Stress-induced condensation of mRNA and proteins into stress granules is conserved across eukaryotes, yet the function, formation mechanisms, and relation to well-studied conserved transcriptional responses remain largely unresolved. Stress-induced exposure of ribosome-free mRNA following translational shutoff is thought to cause condensation by allowing new multivalent RNA-dependent interactions, with RNA length and associated interaction capacity driving increased condensation. Here we show that, in striking contrast, virtually all mRNA species condense in response to multiple unrelated stresses in budding yeast, length plays a minor role, and instead, stress-induced transcripts are preferentially excluded from condensates, enabling their selective translation. Using both endogenous genes and reporter constructs, we show that translation initiation blockade, rather than resulting ribosome-free RNA, causes condensation. These translation initiation-inhibited condensates (TIICs) are biochemically detectable even when stress granules, defined as microscopically visible foci, are absent or blocked. TIICs occur in unstressed yeast cells, and, during stress, grow before the appearance of visible stress granules. Stress-induced transcripts are excluded from TIICs primarily due to the timing of their expression, rather than their sequence features. Together, our results reveal a simple system by which cells redirect translational activity to newly synthesized transcripts during stress, with broad implications for cellular regulation in changing conditions.
Collapse
Affiliation(s)
- Hendrik Glauninger
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, USA
- Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, USA
| | - Jared A.M. Bard
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Edo M. Airoldi
- Fox School of Business and Management, Temple University, Philadelphia, PA, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sneha Paul
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Tobin R. Sosnick
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - D. Allan Drummond
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Minoia M, Quintana-Cordero J, Jetzinger K, Kotan IE, Turnbull KJ, Ciccarelli M, Masser AE, Liebers D, Gouarin E, Czech M, Hauryliuk V, Bukau B, Kramer G, Andréasson C. Chp1 is a dedicated chaperone at the ribosome that safeguards eEF1A biogenesis. Nat Commun 2024; 15:1382. [PMID: 38360885 PMCID: PMC10869706 DOI: 10.1038/s41467-024-45645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Cotranslational protein folding depends on general chaperones that engage highly diverse nascent chains at the ribosomes. Here we discover a dedicated ribosome-associated chaperone, Chp1, that rewires the cotranslational folding machinery to assist in the challenging biogenesis of abundantly expressed eukaryotic translation elongation factor 1A (eEF1A). Our results indicate that during eEF1A synthesis, Chp1 is recruited to the ribosome with the help of the nascent polypeptide-associated complex (NAC), where it safeguards eEF1A biogenesis. Aberrant eEF1A production in the absence of Chp1 triggers instant proteolysis, widespread protein aggregation, activation of Hsf1 stress transcription and compromises cellular fitness. The expression of pathogenic eEF1A2 variants linked to epileptic-dyskinetic encephalopathy is protected by Chp1. Thus, eEF1A is a difficult-to-fold protein that necessitates a biogenesis pathway starting with dedicated folding factor Chp1 at the ribosome to protect the eukaryotic cell from proteostasis collapse.
Collapse
Affiliation(s)
- Melania Minoia
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Katharina Jetzinger
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ilgin Eser Kotan
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kathryn Jane Turnbull
- Department of Clinical Microbiology, Rigshospitalet, 2200, Copenhagen, Denmark
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dorina Liebers
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Eloïse Gouarin
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marius Czech
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Vasili Hauryliuk
- Science for Life Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
5
|
Yamamoto K, Tochikawa S, Miura Y, Matsunobu S, Hirose Y, Eki T. Sensing chemical-induced DNA damage using CRISPR/Cas9-mediated gene-deletion yeast-reporter strains. Appl Microbiol Biotechnol 2024; 108:188. [PMID: 38300351 PMCID: PMC10834598 DOI: 10.1007/s00253-024-13020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Microorganism-based genotoxicity assessments are vital for evaluating potential chemical-induced DNA damage. In this study, we developed both chromosomally integrated and single-copy plasmid-based reporter assays in budding yeast using a RNR3 promoter-driven luciferase gene. These assays were designed to compare the response to genotoxic chemicals with a pre-established multicopy plasmid-based assay. Despite exhibiting the lowest luciferase activity, the chromosomally integrated reporter assay showed the highest fold induction (i.e., the ratio of luciferase activity in the presence and absence of the chemical) compared with the established plasmid-based assay. Using CRISPR/Cas9 technology, we generated mutants with single- or double-gene deletions, affecting major DNA repair pathways or cell permeability. This enabled us to evaluate reporter gene responses to genotoxicants in a single-copy plasmid-based assay. Elevated background activities were observed in several mutants, such as mag1Δ cells, even without exposure to chemicals. However, substantial luciferase induction was detected in single-deletion mutants following exposure to specific chemicals, including mag1Δ, mms2Δ, and rad59Δ cells treated with methyl methanesulfonate; rad59Δ cells exposed to camptothecin; and mms2Δ and rad10Δ cells treated with mitomycin C (MMC) and cisplatin (CDDP). Notably, mms2Δ/rad10Δ cells treated with MMC or CDDP exhibited significantly enhanced luciferase induction compared with the parent single-deletion mutants, suggesting that postreplication and for nucleotide excision repair processes predominantly contribute to repairing DNA crosslinks. Overall, our findings demonstrate the utility of yeast-based reporter assays employing strains with multiple-deletion mutations in DNA repair genes. These assays serve as valuable tools for investigating DNA repair mechanisms and assessing chemical-induced DNA damage. KEY POINTS: • Responses to genotoxic chemicals were investigated in three types of reporter yeast. • Yeast strains with single- and double-deletions of DNA repair genes were tested. • Two DNA repair pathways predominantly contributed to DNA crosslink repair in yeast.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shintaro Tochikawa
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuuki Miura
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shogo Matsunobu
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Laboratory of Genomics and Photobiology, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
6
|
Kohler V, Kohler A, Berglund LL, Hao X, Gersing S, Imhof A, Nyström T, Höög JL, Ott M, Andréasson C, Büttner S. Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 2024; 15:315. [PMID: 38182580 PMCID: PMC10770042 DOI: 10.1038/s41467-023-44538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andreas Kohler
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
7
|
Buechel ER, Pinkett HW. Activity of the pleiotropic drug resistance transcription factors Pdr1p and Pdr3p is modulated by binding site flanking sequences. FEBS Lett 2024; 598:169-186. [PMID: 37873734 PMCID: PMC10843404 DOI: 10.1002/1873-3468.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleiotropic drug resistance (PDR) in Saccharomyces cerevisiae via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3p can differentially regulate PDR.
Collapse
Affiliation(s)
- Evan R. Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Barba-Aliaga M, Bernal V, Rong C, Zid BM, Alepuz P. eIF5A controls mitoprotein import by relieving ribosome stalling at the TIM50 translocase mRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572290. [PMID: 38187585 PMCID: PMC10769225 DOI: 10.1101/2023.12.19.572290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The efficient import of nuclear-encoded proteins into mitochondria is crucial for proper mitochondrial function. The conserved translation factor eIF5A is primarily known as an elongation factor which binds ribosomes to alleviate ribosome stalling at sequences encoding polyprolines or combinations of proline with glycine and charged amino acids. eIF5A is known to impact the mitochondrial function across a variety of species although the precise molecular mechanism underlying this impact remains unclear. We found that depletion of eIF5A in yeast drives reduced translation and levels of TCA cycle and oxidative phosphorylation proteins. We further found that loss of eIF5A leads to the accumulation of mitoprotein precursors in the cytosol as well as to the induction of a mitochondrial import stress response. Here we identify an essential polyproline-containing protein as a direct eIF5A target for translation: the mitochondrial inner membrane protein Tim50, which is the receptor subunit of the TIM23 translocase complex. We show how eIF5A directly controls mitochondrial protein import through the alleviation of ribosome stalling along TIM50 mRNA at the mitochondrial surface. Removal of the polyprolines from Tim50 rescues the mitochondrial import stress response, as well as the translation of oxidative phosphorylation reporter genes in an eIF5A loss of function. Overall, our findings elucidate how eIF5A impacts the mitochondrial function by reducing ribosome stalling and facilitating protein translation, thereby positively impacting the mitochondrial import process.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Vanessa Bernal
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| | - Cynthia Rong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, United States
| | - Paula Alepuz
- Instituto de Biotecnología y Biomedicina (Biotecmed), Universitat de València, 46100 València, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, 46100 València, Spain
| |
Collapse
|
9
|
Hou W, Harjono V, Harvey AT, Subramaniam AR, Zid BM. Quantification of elongation stalls and impact on gene expression in yeast. RNA (NEW YORK, N.Y.) 2023; 29:1928-1938. [PMID: 37783489 PMCID: PMC10653389 DOI: 10.1261/rna.079663.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Ribosomal pauses are a critical part of cotranslational events including protein folding and localization. However, extended ribosome pauses can lead to ribosome collisions, resulting in the activation of ribosome rescue pathways and turnover of protein and mRNA. While this relationship has been known, there has been little exploration of how ribosomal stalls impact translation duration at a quantitative level. We have taken a method used to measure elongation time and adapted it for use in Saccharomyces cerevisiae to quantify the impact of elongation stalls. We find, in transcripts containing Arg CGA codon repeat-induced stalls, a Hel2-mediated dose-dependent decrease in protein expression and mRNA level and an elongation delay on the order of minutes. In transcripts that contain synonymous substitutions to nonoptimal Leu codons, there is a decrease in protein and mRNA levels, as well as similar elongation delay, but this occurs through a non-Hel2-mediated mechanism. Finally, we find that Dhh1 selectively increases protein expression, mRNA level, and elongation rate. This indicates that distinct poorly translated mRNAs will activate different rescue pathways despite similar elongation stall durations. Taken together, these results provide new quantitative mechanistic insight into the surveillance of translation and the roles of Hel2 and Dhh1 in mediating ribosome pausing events.
Collapse
Affiliation(s)
- Wanfu Hou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Vince Harjono
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Alex T Harvey
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Shichinohe M, Ohkawa S, Hirose Y, Eki T. Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase. PLoS One 2023; 18:e0294571. [PMID: 37992069 PMCID: PMC10664910 DOI: 10.1371/journal.pone.0294571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023] Open
Abstract
Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively. End-point luciferase assays using yeasts with a chromosomally integrated RNR3 promoter (PRNR3)-driven yNluc gene exhibited high levels of chemiluminescence via NanoLuc luciferase and higher fold induction by hydroxyurea than a multi-copy plasmid-based assay. Additionally, the integrated reporter system detected genotoxicity caused by four different types of chemicals. Oxidants (hydrogen peroxide, tert-butyl hydroperoxide, and menadione) were successfully detected through transient expressions of luciferase activity in real-time luciferase assay using yeasts with a chromosomally integrated TRX2 promoter (PTRX2)-linked yNlucCP gene. However, the luciferase activity was gradually induced in yeasts with a multi-copy reporter plasmid, and their expression profiles were notably distinct from those observed in chromosomally integrated yeasts. The responses of yNlucCP gene against three oxidative chemicals, but not diamide and zinc oxide suspension, were observed using chromosomally integrated reporter yeasts. Given that yeast cells with chromosomally integrated PRNR3-linked yNluc and PTRX2-linked yNlucCP genes express strong chemiluminescence signals and are easily maintained and handled without restrictive nutrient medium, these yeast strains with NanoLuc reporters may prove useful for screening potential genotoxic and oxidative chemicals.
Collapse
Affiliation(s)
| | - Shun Ohkawa
- Molecular Genetics Laboratory, Toyohashi, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Laboratory of Genomics and Photobiology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | | |
Collapse
|
11
|
Buechel ER, Pinkett HW. Unraveling the Half and Full Site Sequence Specificity of the Saccharomyces cerevisiae Pdr1p and Pdr3p Transcription Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553033. [PMID: 37609128 PMCID: PMC10441396 DOI: 10.1101/2023.08.11.553033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleotropic drug resistance (PDR) in Saccharomyces cerevisiae , via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3 can differentially regulate PDR.
Collapse
|
12
|
Josefson R, Kumar N, Hao X, Liu B, Nyström T. The GET pathway is a major bottleneck for maintaining proteostasis in Saccharomyces cerevisiae. Sci Rep 2023; 13:9285. [PMID: 37286562 DOI: 10.1038/s41598-023-35666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
A hallmark of aging in a variety of organisms is a breakdown of proteostasis and an ensuing accumulation of protein aggregates and inclusions. However, it is not clear if the proteostasis network suffers from a uniform breakdown during aging or if some distinct components act as bottlenecks especially sensitive to functional decline. Here, we report on a genome-wide, unbiased, screen for single genes in young cells of budding yeast required to keep the proteome aggregate-free under non-stress conditions as a means to identify potential proteostasis bottlenecks. We found that the GET pathway, required for the insertion of tail-anchored (TA) membrane proteins in the endoplasmic reticulum, is such a bottleneck as single mutations in either GET3, GET2 or GET1 caused accumulation of cytosolic Hsp104- and mitochondria-associated aggregates in nearly all cells when growing at 30 °C (non-stress condition). Further, results generated by a second screen identifying proteins aggregating in GET mutants and analyzing the behavior of cytosolic reporters of misfolding, suggest that there is a general collapse in proteostasis in GET mutants that affects other proteins than TA proteins.
Collapse
Affiliation(s)
- Rebecca Josefson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Navinder Kumar
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Fischbach A, Johns A, Schneider KL, Hao X, Tessarz P, Nyström T. Artificial Hsp104-mediated systems for re-localizing protein aggregates. Nat Commun 2023; 14:2663. [PMID: 37160881 PMCID: PMC10169802 DOI: 10.1038/s41467-023-37706-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Spatial Protein Quality Control (sPQC) sequesters misfolded proteins into specific, organelle-associated inclusions within the cell to control their toxicity. To approach the role of sPQC in cellular fitness, neurodegenerative diseases and aging, we report on the construction of Hsp100-based systems in budding yeast cells, which can artificially target protein aggregates to non-canonical locations. We demonstrate that aggregates of mutant huntingtin (mHtt), the disease-causing agent of Huntington's disease can be artificially targeted to daughter cells as well as to eisosomes and endosomes with this approach. We find that the artificial removal of mHtt inclusions from mother cells protects them from cell death suggesting that even large mHtt inclusions may be cytotoxic, a trait that has been widely debated. In contrast, removing inclusions of endogenous age-associated misfolded proteins does not significantly affect the lifespan of mother cells. We demonstrate also that this approach is able to manipulate mHtt inclusion formation in human cells and has the potential to be useful as an alternative, complementary approach to study the role of sPQC, for example in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Angela Johns
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Peter Tessarz
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
14
|
Hou W, Harjono V, Harvey AT, Subramaniam AR, Zid BM. Quantification of elongation stalls and impact on gene expression in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533377. [PMID: 36993688 PMCID: PMC10055187 DOI: 10.1101/2023.03.19.533377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Ribosomal pauses are a critical part of co-translational events including protein folding and localization. However, extended ribosome pauses can lead to ribosome collisions, resulting in the activation of ribosome rescue pathways and turnover of protein and mRNA. While this relationship has been known, the specific threshold between permissible pausing versus activation of rescue pathways has not been quantified. We have taken a method used to measure elongation time and adapted it for use in S. cerevisiae to quantify the impact of elongation stalls. We find, in transcripts containing Arg CGA codon repeat-induced stalls, a Hel2-mediated dose-dependent decrease in protein expression and mRNA level and an elongation delay on the order of minutes. In transcripts that contain synonymous substitutions to non-optimal Leu codons, there is a decrease in protein and mRNA levels, as well as similar elongation delay, but this occurs through a non-Hel2-mediated mechanism. Finally, we find that Dhh1 selectively increases protein expression, mRNA level, and elongation rate. This indicates that distinct poorly translated codons in an mRNA will activate different rescue pathways despite similar elongation stall durations. Taken together, these results provide new quantitative mechanistic insight into the surveillance of translation and the roles of Hel2 and Dhh1 in mediating ribosome pausing events.
Collapse
Affiliation(s)
- Wanfu Hou
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Vince Harjono
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Alex T Harvey
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Brian M Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Vijjamarri AK, Niu X, Vandermeulen MD, Onu C, Zhang F, Qiu H, Gupta N, Gaikwad S, Greenberg ML, Cullen PJ, Lin Z, Hinnebusch AG. Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522830. [PMID: 36711592 PMCID: PMC9881900 DOI: 10.1101/2023.01.05.522830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2 Δ cells that appears to result directly from impaired decapping rather than elevated transcription, which was confirmed by ChIP-Seq analysis of RNA Polymerase II occupancies genome-wide. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Lsm2, Edc3 or Scd6; whereas most of the remaining transcripts utilize NMD factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2 Δ confers widespread changes in relative TEs that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2 Δ, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2 Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are derepressed, and both mitochondrial function and cell filamentation (a strategy for nutrient foraging) are elevated by dcp2 Δ, suggesting that mRNA decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.
Collapse
Affiliation(s)
- Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Xiao Niu
- Department of Biology, Saint Louis University, St. Louis, MO
| | | | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Hongfang Qiu
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Paul J Cullen
- Department of Biological Sciences, State University of Buffalo, Buffalo, NY
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Shih HW, Alas GCM, Paredez AR. A cell-cycle-dependent GARP-like transcriptional repressor regulates the initiation of differentiation in Giardia lamblia. Proc Natl Acad Sci U S A 2022; 119:e2204402119. [PMID: 35613049 PMCID: PMC9295799 DOI: 10.1073/pnas.2204402119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation of differentiation is critical for parasitic pathogens to adapt to environmental changes and regulate transmission. In response to encystation stimuli, Giardia lamblia shifts the distribution of the cell cycle toward G2 and induces the expression of cyst wall proteins (CWPs) within 2 to 4 h, indicating that key regulatory steps occur within the first 4 h of encystation. However, the role of transcription factors (TFs) in encystation has primarily been investigated at later time points. How TFs initiate encystation and link it to the cell cycle remains enigmatic. Here, we systematically screened six putative early up-regulated TFs for nuclear localization, established their dynamic expression profiles, and determined their functional role in regulating encystation. We found a critical repressor, Golden2, ARR-B, Psr-1–like protein 1 (GARP)–like protein 4 (GLP4), that increases rapidly after 30 min of encystation stimuli and down-regulates encystation-specific markers, including CWPs and enzymes in the cyst N-acetylgalactosamine pathway. Depletion of GLP4 increases cyst production. Importantly, we observe that G2+M cells exhibit higher levels of CWP1, resulting from the activation of myeloblastosis domain protein 2 (MYB2), a TF previously linked to encystation in Giardia. GLP4 up-regulation occurs in G1+S cells, suggesting a role in repressing MYB2 and encystation-specific genes in the G1+S phase of the cell cycle. Furthermore, we demonstrate that depletion of GLP4 up-regulates MYB2 and promotes encystation while overexpression of GLP4 down-regulates MYB2 and represses encystation. Together, these results suggest that Giardia employs a dose-dependent transcriptional response that involves the cell-cycle–regulated repressor GLP4 to orchestrate MYB2 and entry into the encystation pathway.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA 98195
| | | | | |
Collapse
|
17
|
Thekke-Veetil T, McCoppin NK, Domier LL, Hajimorad M, Lambert KN, Lim HS, Hartman GL. Transient expression of a luciferase mRNA in plant-parasitic and free-living nematodes by electroporation. Mol Biochem Parasitol 2022; 250:111489. [DOI: 10.1016/j.molbiopara.2022.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
|
18
|
Guzikowski AR, Harvey AT, Zhang J, Zhu S, Begovich K, Cohn MH, Wilhelm JE, Zid BM. Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast. RNA Biol 2022; 19:636-649. [PMID: 35491906 PMCID: PMC9067459 DOI: 10.1080/15476286.2022.2065784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein synthesis is energetically expensive and its rate is influenced by factors such as cell type and environment. Suppression of translation is a canonical response to stressful changes in the cellular environment. In particular, inhibition of the initiation step of translation has been highlighted as the key control step in stress-induced translational suppression as mechanisms that quickly suppress initiation are well-conserved. However, cells have evolved complex regulatory means to control translation apart from initiation. Here, we examine the role of the elongation step of translation in yeast subjected to acute glucose deprivation. The use of ribosome profiling and in vivo reporter assays demonstrated elongation rates slow progressively following glucose removal. We observed that ribosome distribution broadly shifts towards the downstream ends of transcripts after both acute and gradual glucose deprivation but not in response to other stressors. Additionally, on assessed mRNAs, a correlation existed between ribosome occupancy and protein production pre-stress but was lost after stress. These results indicate that stress-induced elongation regulation causes ribosomes to slow down and build up on a considerable proportion of the transcriptome in response to glucose withdrawal. Finally, we report ribosomes that built up along transcripts are competent to resume elongation and complete protein synthesis after readdition of glucose to starved cells. This suggests that yeast has evolved mechanisms to slow translation elongation in response to glucose starvation which do not preclude continuation of protein production from those ribosomes, thereby averting a need for new initiation events to take place to synthesize proteins. Abbreviations: AUG: start codon, bp: base pair(s), CDS: coding sequence, CHX: cycloheximide, eEF2: eukaryotic elongation factor 2, LTM: lactimidomycin, nt: nucleotide, PGK1: 3-phosphoglycerate kinase, ribosomal biogenesis: ribi, RO: ribosome occupancy, RPF: ribosome protected fragment, TE: translational efficiency
Collapse
Affiliation(s)
- Anna R. Guzikowski
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Alex T. Harvey
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Jingxiao Zhang
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Shihui Zhu
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Kyle Begovich
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Molly H. Cohn
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - James E. Wilhelm
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
19
|
Orioka M, Eguchi M, Mizui Y, Ikeda Y, Sakama A, Li Q, Yoshimura H, Ozawa T, Citterio D, Hiruta Y. A Series of Furimazine Derivatives for Sustained Live-Cell Bioluminescence Imaging and Application to the Monitoring of Myogenesis at the Single-Cell Level. Bioconjug Chem 2022; 33:496-504. [PMID: 35184558 DOI: 10.1021/acs.bioconjchem.2c00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioluminescence (BL) imaging, which utilizes light emitted through the enzymatic reaction of luciferase oxidizing its substrate luciferin, enables sensitive and noninvasive monitoring of life phenomena. Herein, we developed a series of caged furimazine (FMZ) derivatives by introducing a protective group at the C-3 position and a hydroxy group at the C-6 phenyl ring to realize long-term live-cell BL imaging based on the NanoLuc (NLuc)/NanoKAZ (NKAZ)-FMZ system. The membrane permeability and cytotoxicity of the substrates were evaluated and related to their hydrophobicity. Among the series, the derivative with the bulkiest protective group (adamantanecarbonyl group) and a hydroxy substituent (named Ad-FMZ-OH) showed significantly prolonged and constant BL signal in cells expressing NLuc compared to the native FMZ substrate. This derivative enabled continuous BL imaging at the single-cell level for 24 h. Furthermore, we applied Ad-FMZ-OH to BL imaging of myocyte fusion and succeeded in the consecutive and sensitive monitoring at a single-cell level over a day. In summary, NLuc/NKAZ-caged FMZ derivatives have the potential to be applied to live-cell BL imaging of various life phenomena that require long-term observation.
Collapse
Affiliation(s)
- Mariko Orioka
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Masatoshi Eguchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Mizui
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuma Ikeda
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akihiro Sakama
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Qiaojing Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Citterio
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
20
|
Heintz VJ, Wang L, LaCount DJ. NanoLuc luciferase as a quantitative yeast two-hybrid reporter. FEMS Yeast Res 2021; 21:6481623. [PMID: 34940882 PMCID: PMC8755890 DOI: 10.1093/femsyr/foab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
The yeast two-hybrid (Y2H) assay is a powerful technique to identify protein-protein interactions. However, the auxotrophic markers that are the most common Y2H reporters take several days to yield data and require subjective assessment of semiquantitative data to identify interactions. Several reporters have been developed to overcome these disadvantages, but there is still a need for a Y2H reporter that is objective, fast and able to be performed with common laboratory equipment. In this report, we replaced the ADE2 reporter in BK100 with NanoLuc luciferase to yield BK100Nano. We developed an optimized assay to measure NanoLuc activity in 96-well plates and analyzed a set of 74 pairs identified in Y2H library screens, which revealed 44 positive interactions using an unbiased cutoff based on the mean luminescence of negative control samples. The same set was also tested for growth on Y2H selection medium via expression of the HIS3 reporter. We found 91% agreement between the two assays, with discrepancies attributed to weak interactions that displayed variable growth on Y2H medium. Overall, the new BK100Nano strain establishes a quantitative and convenient method to identify Y2H interactions and has potential to be applied to a high throughput manner.
Collapse
Affiliation(s)
- Veronica J Heintz
- Department of Medicinal Chemistry and Molecular Pharmacology, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease Purdue University, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Ling Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease Purdue University, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Douglas J LaCount
- Corresponding author: Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, DLR 442, 207 South Martin Jischke Drive, West Lafayette, IN 47907, USA. Tel: 765-496-7835; E-mail:
| |
Collapse
|
21
|
Van Genechten W, Van Dijck P, Demuyser L. Fluorescent toys 'n' tools lighting the way in fungal research. FEMS Microbiol Rev 2021; 45:fuab013. [PMID: 33595628 PMCID: PMC8498796 DOI: 10.1093/femsre/fuab013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although largely overlooked compared to bacterial infections, fungal infections pose a significant threat to the health of humans and other organisms. Many pathogenic fungi, especially Candida species, are extremely versatile and flexible in adapting to various host niches and stressful situations. This leads to high pathogenicity and increasing resistance to existing drugs. Due to the high level of conservation between fungi and mammalian cells, it is hard to find fungus-specific drug targets for novel therapy development. In this respect, it is vital to understand how these fungi function on a molecular, cellular as well as organismal level. Fluorescence imaging allows for detailed analysis of molecular mechanisms, cellular structures and interactions on different levels. In this manuscript, we provide researchers with an elaborate and contemporary overview of fluorescence techniques that can be used to study fungal pathogens. We focus on the available fluorescent labelling techniques and guide our readers through the different relevant applications of fluorescent imaging, from subcellular events to multispecies interactions and diagnostics. As well as cautioning researchers for potential challenges and obstacles, we offer hands-on tips and tricks for efficient experimentation and share our expert-view on future developments and possible improvements.
Collapse
Affiliation(s)
- Wouter Van Genechten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
- Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Celestijnenlaan 200g, 3001 Leuven-Heverlee, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| | - Liesbeth Demuyser
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, 3001 Leuven-heverlee, Belgium
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Belgium
| |
Collapse
|
22
|
Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A, Sieron AL. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front Bioeng Biotechnol 2021; 9:701031. [PMID: 34354988 PMCID: PMC8330802 DOI: 10.3389/fbioe.2021.701031] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Transfection is a powerful analytical tool enabling studies of gene products and functions in eukaryotic cells. Successful delivery of genetic material into cells depends on DNA quantity and quality, incubation time and ratio of transfection reagent to DNA, the origin, type and the passage of transfected cells, and the presence or absence of serum in the cell culture. So far a number of transfection methods that use viruses, non-viral particles or physical factors as the nucleic acids carriers have been developed. Among non-viral carriers, the cationic polymers are proposed as the most attractive ones due to the possibility of their chemical structure modification, low toxicity and immunogenicity. In this review the delivery systems as well as physical, biological and chemical methods used for eukaryotic cells transfection are described and discussed.
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Pawel Prus
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students’ Scientific Society, Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Paulina Teper
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander L. Sieron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
23
|
Meyer CE, Craciun I, Schoenenberger CA, Wehr R, Palivan CG. Catalytic polymersomes to produce strong and long-lasting bioluminescence. NANOSCALE 2021; 13:66-70. [PMID: 33350424 DOI: 10.1039/d0nr07178a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we introduce an artificial bioluminescent nanocompartment based on the encapsulation of light-producing enzymes, luciferases, inside polymersomes. We exploit nanocompartmentalization to enhance luciferase stability in a cellular environment but also to positively modulate enzyme kinetics to achieve a long-lasting glow type signal. These features pave the way for expanding bioluminescence to nanotechnology-based applications.
Collapse
Affiliation(s)
- Claire Elsa Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel-4002, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Hinkley TC, Garing S, Jain P, Williford J, Le Ny ALM, Nichols KP, Peters JE, Talbert JN, Nugen SR. A Syringe-Based Biosensor to Rapidly Detect Low Levels of Escherichia Coli (ECOR13) in Drinking Water Using Engineered Bacteriophages. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1953. [PMID: 32244369 PMCID: PMC7181147 DOI: 10.3390/s20071953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
A sanitized drinking water supply is an unconditional requirement for public health and the overall prosperity of humanity. Potential microbial and chemical contaminants of drinking water have been identified by a joint effort between the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), who together establish guidelines that define, in part, that the presence of Escherichia coli (E. coli) in drinking water is an indication of inadequate sanitation and a significant health risk. As E. coli is a nearly ubiquitous resident of mammalian gastrointestinal tracts, no detectable counts in 100 mL of drinking water is the standard used worldwide as an indicator of sanitation. The currently accepted EPA method relies on filtration, followed by growth on selective media, and requires 24-48 h from sample to results. In response, we developed a rapid bacteriophage-based detection assay with detection limit capabilities comparable to traditional methods in less than a quarter of the time. We coupled membrane filtration with selective enrichment using genetically engineered bacteriophages to identify less than 20 colony forming units (CFU) E. coli in 100 mL drinking water within 5 h. The combination of membrane filtration with phage infection produced a novel assay that demonstrated a rapid, selective, and sensitive detection of an indicator organism in large volumes of drinking water as recommended by the leading world regulatory authorities.
Collapse
Affiliation(s)
- Troy C. Hinkley
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Spencer Garing
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Paras Jain
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - John Williford
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Anne-Laure M. Le Ny
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Kevin P. Nichols
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Joseph E. Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Joey N. Talbert
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
25
|
Calderón-Franco D, Lin Q, van Loosdrecht MCM, Abbas B, Weissbrodt DG. Anticipating Xenogenic Pollution at the Source: Impact of Sterilizations on DNA Release From Microbial Cultures. Front Bioeng Biotechnol 2020; 8:171. [PMID: 32232035 PMCID: PMC7082761 DOI: 10.3389/fbioe.2020.00171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
The dissemination of DNA and xenogenic elements across waterways is under scientific and public spotlight due to new gene-editing tools, such as do-it-yourself (DIY) CRISPR-Cas kits deployable at kitchen table. Over decades, prevention of spread of genetically modified organisms (GMOs), antimicrobial resistances (AMR), and pathogens from transgenic systems has focused on microbial inactivation. However, sterilization methods have not been assessed for DNA release and integrity. Here, we investigated the fate of intracellular DNA from cultures of model prokaryotic (Escherichia coli) and eukaryotic (Saccharomyces cerevisiae) cells that are traditionally used as microbial chassis for genetic modifications. DNA release was tracked during exposure of these cultures to conventional sterilization methods. Autoclaving, disinfection with glutaraldehyde, and microwaving are used to inactivate broths, healthcare equipment, and GMOs produced at kitchen table. DNA fragmentation and PCR-ability were measured on top of cell viability and morphology. Impact of these methods on DNA integrity was verified on a template of free λ DNA. Intense regular autoclaving (121°C, 20 min) resulted in the most severe DNA degradation and lowest household gene amplification capacity: 1.28 ± 0.11, 2.08 ± 0.03, and 4.96 ± 0.28 logs differences to the non-treated controls were measured from E. coli, S. cerevisiae, and λ DNA, respectively. Microwaving exerted strong DNA fragmentation after 100 s of exposure when free λ DNA was in solution (3.23 ± 0.06 logs difference) but a minor effect was observed when DNA was released from E. coli and S. cerevisiae (0.24 ± 0.14 and 1.32 ± 0.02 logs differences with the control, respectively). Glutaraldehyde prevented DNA leakage by preserving cell structures, while DNA integrity was not altered. The results show that current sterilization methods are effective on microorganism inactivation but do not safeguard an aqueous residue exempt of biologically reusable xenogenic material, being regular autoclaving the most severe DNA-affecting method. Reappraisal of sterilization methods is required along with risk assessment on the emission of DNA fragments in urban systems and nature.
Collapse
Affiliation(s)
| | | | | | | | - David G. Weissbrodt
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
26
|
Zhao N, Liu JM, Liu S, Ji XM, Lv H, Hu YZ, Wang ZH, Lv SW, Li CY, Wang S. A novel universal nano-luciferase-involved reporter system for long-term probing food-borne probiotics and pathogenic bacteria in mice by in situ bioluminescence imaging. RSC Adv 2020; 10:13029-13036. [PMID: 35492135 PMCID: PMC9051406 DOI: 10.1039/d0ra01283a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 01/18/2023] Open
Abstract
Food-borne bacteria have received increasing attention due to their great impact on human health. Bioimaging makes it possible to monitor bacteria inside the living body in real time and in situ. Nano-luciferase (NLuc) as a new member of the luciferase family exhibits superior properties than the commonly used luciferases, including small size, high stability and improved luminescence. Herein, NLuc, CBRLuc and FLuc were well expressed in varied food-borne bacteria. Results showed that the signal intensity of E. coli-NLuc was about 41 times higher than E. coli-CBRLuc, L. plantarum-NLuc was nearly 227 times that of L. plantarum-FLuc in vitro. Moreover, NLuc was applied to trace L. plantarum and E. coli in vivo through the whole body and separated digestive tract imaging, as well as the feces bacterium counting and probing. The persistence of bioluminescent strains was predominantly localized in colon and cecum of mice after oral administration. The NLuc system showed its incomparable superiority, especially in the application of intestinal imaging and the universality for food-borne bacteria. We demonstrated that the NLuc system was a brilliant alternative for specific application of food-borne bacteria in vivo, aiming to collect more accurate and real-time information of food-borne bacteria from the living body for further investigation of their damage mechanism and nutrition effect. Schematic illustration of the preparation of bioluminescent bacteria and the experimental design of tracing of the foodborne bacteria in vivo.![]()
Collapse
|
27
|
Yasi EA, Allen AA, Sugianto W, Peralta-Yahya P. Identification of Three Antimicrobials Activating Serotonin Receptor 4 in Colon Cells. ACS Synth Biol 2019; 8:2710-2717. [PMID: 31714751 PMCID: PMC6929040 DOI: 10.1021/acssynbio.9b00310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The serotonin receptor 4b (5-HTR4b) is expressed throughout the gastrointestinal tract, and its agonists are used in the treatment of irritable bowel syndrome with constipation (IBS-C). Today, there are no rapid assays for the identification of 5-HTR4b agonists. Here, we developed a luciferase-based 5-HTR4b assay capable of assessing one compound per second with a 38-fold dynamic range and nM limit of detection for serotonin. We used the assay to screen more than 1000 natural products and anti-infection agents and identified five new 5-HTR4b ligands: hordenine, halofuginone, proflavine, ethacridine, and revaprazan. We demonstrate that hordenine (antibiofilm), halofuginone (antiparasitic), and revaprazan (gastric acid reducer) activate 5-HTR4b in human colon epithelial cells, leading to increased cell motility or wound healing. The 5-HTR4b assay can be used to screen larger pharmaceutical libraries to identify novel treatments for IBS-C. This work shows that antimicrobials interact not only with the gut microbiota, but also with the human host.
Collapse
Affiliation(s)
- Emily A. Yasi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia A. Allen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Pamela Peralta-Yahya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Sasse SK, Gruca M, Allen MA, Kadiyala V, Song T, Gally F, Gupta A, Pufall MA, Dowell RD, Gerber AN. Nascent transcript analysis of glucocorticoid crosstalk with TNF defines primary and cooperative inflammatory repression. Genome Res 2019; 29:1753-1765. [PMID: 31519741 PMCID: PMC6836729 DOI: 10.1101/gr.248187.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
The glucocorticoid receptor (NR3C1, also known as GR) binds to specific DNA sequences and directly induces transcription of anti-inflammatory genes that contribute to cytokine repression, frequently in cooperation with NF-kB. Whether inflammatory repression also occurs through local interactions between GR and inflammatory gene regulatory elements has been controversial. Here, using global run-on sequencing (GRO-seq) in human airway epithelial cells, we show that glucocorticoid signaling represses transcription within 10 min. Many repressed regulatory regions reside within "hyper-ChIPable" genomic regions that are subject to dynamic, yet nonspecific, interactions with some antibodies. When this artifact was accounted for, we determined that transcriptional repression does not require local GR occupancy. Instead, widespread transcriptional induction through canonical GR binding sites is associated with reciprocal repression of distal TNF-regulated enhancers through a chromatin-dependent process, as evidenced by chromatin accessibility and motif displacement analysis. Simultaneously, transcriptional induction of key anti-inflammatory effectors is decoupled from primary repression through cooperation between GR and NF-kB at a subset of regulatory regions. Thus, glucocorticoids exert bimodal restraints on inflammation characterized by rapid primary transcriptional repression without local GR occupancy and secondary anti-inflammatory effects resulting from transcriptional cooperation between GR and NF-kB.
Collapse
Affiliation(s)
- Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Margaret Gruca
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Vineela Kadiyala
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Tengyao Song
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | - Fabienne Gally
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - Arnav Gupta
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| | - Miles A Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
- Computer Science, University of Colorado, Boulder, Colorado 80309, USA
| | - Anthony N Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| |
Collapse
|
29
|
Masser AE, Kang W, Roy J, Mohanakrishnan Kaimal J, Quintana-Cordero J, Friedländer MR, Andréasson C. Cytoplasmic protein misfolding titrates Hsp70 to activate nuclear Hsf1. eLife 2019; 8:47791. [PMID: 31552827 PMCID: PMC6779467 DOI: 10.7554/elife.47791] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Hsf1 is an ancient transcription factor that responds to protein folding stress by inducing the heat-shock response (HSR) that restore perturbed proteostasis. Hsp70 chaperones negatively regulate the activity of Hsf1 via stress-responsive mechanisms that are poorly understood. Here, we have reconstituted budding yeast Hsf1-Hsp70 activation complexes and find that surplus Hsp70 inhibits Hsf1 DNA-binding activity. Hsp70 binds Hsf1 via its canonical substrate binding domain and Hsp70 regulates Hsf1 DNA-binding activity. During heat shock, Hsp70 is out-titrated by misfolded proteins derived from ongoing translation in the cytosol. Pushing the boundaries of the regulatory system unveils a genetic hyperstress program that is triggered by proteostasis collapse and involves an enlarged Hsf1 regulon. The findings demonstrate how an apparently simple chaperone-titration mechanism produces diversified transcriptional output in response to distinct stress loads.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Wenjing Kang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Joydeep Roy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Jany Quintana-Cordero
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Fritzell K, Xu LD, Otrocka M, Andréasson C, Öhman M. Sensitive ADAR editing reporter in cancer cells enables high-throughput screening of small molecule libraries. Nucleic Acids Res 2019; 47:e22. [PMID: 30590609 PMCID: PMC6393238 DOI: 10.1093/nar/gky1228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/19/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Adenosine to inosine editing is common in the human transcriptome and changes of this essential activity is associated with disease. Children with ADAR1 mutations develop fatal Aicardi-Goutières syndrome characterized by aberrant interferon expression. In contrast, ADAR1 overexpression is associated with increased malignancy of breast, lung and liver cancer. ADAR1 silencing in breast cancer cells leads to increased apoptosis, suggesting an anti-apoptotic function that promotes cancer progression. Yet, suitable high-throughput editing assays are needed to efficiently screen chemical libraries for modifiers of ADAR1 activity. We describe the development of a bioluminescent reporter system that facilitates rapid and accurate determination of endogenous editing activity. The system is based on the highly sensitive and quantitative Nanoluciferase that is conditionally expressed upon reporter-transcript editing. Stably introduced into cancer cell lines, the system reports on elevated endogenous ADAR1 editing activity induced by interferon as well as knockdown of ADAR1 and ADAR2. In a single-well setup we used the reporter in HeLa cells to screen a small molecule library of 33 000 compounds. This yielded a primary hit rate of 0.9% at 70% inhibition of editing. Thus, we provide a key tool for high-throughput identification of modifiers of A-to-I editing activity in cancer cells.
Collapse
Affiliation(s)
- Kajsa Fritzell
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Li-Di Xu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Magdalena Otrocka
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| |
Collapse
|
31
|
Lopreside A, Calabretta MM, Montali L, Ferri M, Tassoni A, Branchini BR, Southworth T, D'Elia M, Roda A, Michelini E. Prêt-à-porter nanoYESα and nanoYESβ bioluminescent cell biosensors for ultrarapid and sensitive screening of endocrine-disrupting chemicals. Anal Bioanal Chem 2019; 411:4937-4949. [PMID: 30972468 DOI: 10.1007/s00216-019-01805-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
Cell-based assays utilizing reporter gene technology have been widely exploited for biosensing, as they provide useful information about the bioavailability and cell toxicity of target analytes. The long assay time due to gene transcription and translation is one of the main drawbacks of cell biosensors. We report the development of two yeast biosensors stably expressing human estrogen receptors α and β and employing NanoLuc as the reporter protein to upgrade the widely used yeast estrogen screening (YES) assays. A viability control strain was also developed based on a chimeric green-emitting luciferase, PLG2, expressed for the first time in Saccharomycescerevisiae. Thanks to their brightness, NanoLuc and PLG2 provided excellent sensitivity, enabling the implementation of these biosensors into low-cost smartphone-based devices. The developed biosensors had a rapid (1 h) response and reported on (anti)estrogenic activity via human estrogen receptors α and β as well as general sample toxicity. Under optimized conditions, we obtained LODs of 7.1 ± 0.4 nM and 0.38 ± 0.08 nM for E2 with nanoYESα and nanoYESβ, respectively. As a proof of concept, we analyzed real samples from plants showing significant estrogenic activity or known to contain significant amounts of phytoestrogens. Graphical abstract.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Maura Ferri
- Department of Biological Geological and Environmental Sciences (BIGeA), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological Geological and Environmental Sciences (BIGeA), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Bruce R Branchini
- Department of Chemistry, Connecticut College, 270 Mohegan Ave., New London, CT, 06320, USA
| | - Tara Southworth
- Department of Chemistry, Connecticut College, 270 Mohegan Ave., New London, CT, 06320, USA
| | - Marcello D'Elia
- Gabinetto Regionale di Polizia Scientifica per l'Emilia-Romagna, Via Volto Santo 3, 40123, Bologna, Italy
| | - Aldo Roda
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126, Bologna, Italy.
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy.
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, 40064, Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
32
|
Wan X, Marsafari M, Xu P. Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives. Microb Cell Fact 2019; 18:61. [PMID: 30914048 PMCID: PMC6434827 DOI: 10.1186/s12934-019-1111-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Nature has evolved exquisite sensing mechanisms to detect cellular and environmental signals surrounding living organisms. These biosensors have been widely used to sense small molecules, detect environmental cues and diagnose disease markers. Metabolic engineers and synthetic biologists have been able to exploit metabolites-responsive transcriptional factors (MRTFs) as basic tools to rewire cell metabolism, reprogram cellular activity as well as boost cell’s productivity. This is commonly achieved by integrating sensor-actuator systems with biocatalytic functions and dynamically allocating cellular resources to drive carbon flux toward the target pathway. Up to date, most of identified MRTFs are derived from bacteria. As an endeavor to advance intelligent biomanufacturing in yeast cell factory, we will summarize the opportunities and challenges to transfer the bacteria-derived MRTFs to expand the small-molecule sensing capability in eukaryotic cells. We will discuss the design principles underlying MRTF-based biosensors in eukaryotic cells, including the choice of reliable reporters and the characterization tools to minimize background noise, strategies to tune the sensor dynamic range, sensitivity and specificity, as well as the criteria to engineer activator and repressor-based biosensors. Due to the physical separation of transcription and protein expression in eukaryotes, we argue that nuclear import/export mechanism of MRTFs across the nuclear membrane plays a critical role in regulating the MRTF sensor dynamics. Precisely-controlled MRTF response will allow us to repurpose the vast majority of transcriptional factors as molecular switches to achieve temporal or spatial gene expression in eukaryotes. Uncovering this knowledge will inform us fundamental design principles to deliver robust cell factories and enable the design of reprogrammable and predictable biological systems for intelligent biomanufacturing, smart therapeutics or precision medicine in the foreseeable future.
Collapse
Affiliation(s)
- Xia Wan
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, Hubei, China
| | - Monireh Marsafari
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic Republic of Iran
| | - Peng Xu
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
33
|
Dale NC, Johnstone EKM, White CW, Pfleger KDG. NanoBRET: The Bright Future of Proximity-Based Assays. Front Bioeng Biotechnol 2019; 7:56. [PMID: 30972335 PMCID: PMC6443706 DOI: 10.3389/fbioe.2019.00056] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is a biophysical technique used to monitor proximity within live cells. BRET exploits the naturally occurring phenomenon of dipole-dipole energy transfer from a donor enzyme (luciferase) to an acceptor fluorophore following enzyme-mediated oxidation of a substrate. This results in production of a quantifiable signal that denotes proximity between proteins and/or molecules tagged with complementary luciferase and fluorophore partners. BRET assays have been used to observe an array of biological functions including ligand binding, intracellular signaling, receptor-receptor proximity, and receptor trafficking, however, BRET assays can theoretically be used to monitor the proximity of any protein or molecule for which appropriate fusion constructs and/or fluorophore conjugates can be produced. Over the years, new luciferases and approaches have been developed that have increased the potential applications for BRET assays. In particular, the development of the small, bright and stable Nanoluciferase (NanoLuc; Nluc) and its use in NanoBRET has vastly broadened the potential applications of BRET assays. These advances have exciting potential to produce new experimental methods to monitor protein-protein interactions (PPIs), protein-ligand interactions, and/or molecular proximity. In addition to NanoBRET, Nluc has also been exploited to produce NanoBiT technology, which further broadens the scope of BRET to monitor biological function when NanoBiT is combined with an acceptor. BRET has proved to be a powerful tool for monitoring proximity and interaction, and these recent advances further strengthen its utility for a range of applications.
Collapse
Affiliation(s)
- Natasha C Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Carl W White
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia.,Dimerix Limited, Nedlands, WA, Australia
| |
Collapse
|
34
|
Silao FGS, Ward M, Ryman K, Wallström A, Brindefalk B, Udekwu K, Ljungdahl PO. Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. PLoS Genet 2019; 15:e1007976. [PMID: 30742618 PMCID: PMC6386415 DOI: 10.1371/journal.pgen.1007976] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 01/21/2019] [Indexed: 11/18/2022] Open
Abstract
Amino acids are among the earliest identified inducers of yeast-to-hyphal transitions in Candida albicans, an opportunistic fungal pathogen of humans. Here, we show that the morphogenic amino acids arginine, ornithine and proline are internalized and metabolized in mitochondria via a PUT1- and PUT2-dependent pathway that results in enhanced ATP production. Elevated ATP levels correlate with Ras1/cAMP/PKA pathway activation and Efg1-induced gene expression. The magnitude of amino acid-induced filamentation is linked to glucose availability; high levels of glucose repress mitochondrial function thereby dampening filamentation. Furthermore, arginine-induced morphogenesis occurs more rapidly and independently of Dur1,2-catalyzed urea degradation, indicating that mitochondrial-generated ATP, not CO2, is the primary morphogenic signal derived from arginine metabolism. The important role of the SPS-sensor of extracellular amino acids in morphogenesis is the consequence of induced amino acid permease gene expression, i.e., SPS-sensor activation enhances the capacity of cells to take up morphogenic amino acids, a requisite for their catabolism. C. albicans cells engulfed by murine macrophages filament, resulting in macrophage lysis. Phagocytosed put1-/- and put2-/- cells do not filament and exhibit reduced viability, consistent with a critical role of mitochondrial proline metabolism in virulence.
Collapse
Affiliation(s)
- Fitz Gerald S. Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Meliza Ward
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Axel Wallström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Björn Brindefalk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Klas Udekwu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
35
|
Suhm T, Kaimal JM, Dawitz H, Peselj C, Masser AE, Hanzén S, Ambrožič M, Smialowska A, Björck ML, Brzezinski P, Nyström T, Büttner S, Andréasson C, Ott M. Mitochondrial Translation Efficiency Controls Cytoplasmic Protein Homeostasis. Cell Metab 2018; 27:1309-1322.e6. [PMID: 29754951 DOI: 10.1016/j.cmet.2018.04.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 01/02/2023]
Abstract
Cellular proteostasis is maintained via the coordinated synthesis, maintenance, and breakdown of proteins in the cytosol and organelles. While biogenesis of the mitochondrial membrane complexes that execute oxidative phosphorylation depends on cytoplasmic translation, it is unknown how translation within mitochondria impacts cytoplasmic proteostasis and nuclear gene expression. Here we have analyzed the effects of mutations in the highly conserved accuracy center of the yeast mitoribosome. Decreased accuracy of mitochondrial translation shortened chronological lifespan, impaired management of cytosolic protein aggregates, and elicited a general transcriptional stress response. In striking contrast, increased accuracy extended lifespan, improved cytosolic aggregate clearance, and suppressed a normally stress-induced, Msn2/4-dependent interorganellar proteostasis transcription program (IPTP) that regulates genes important for mitochondrial proteostasis. Collectively, the data demonstrate that cytosolic protein homeostasis and nuclear stress signaling are controlled by mitochondrial translation efficiency in an inter-connected organelle quality control network that determines cellular lifespan.
Collapse
Affiliation(s)
- Tamara Suhm
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Hannah Dawitz
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Carlotta Peselj
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sarah Hanzén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 90 Göteborg, Sweden
| | - Matevž Ambrožič
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Agata Smialowska
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, SE-17165 Solna, Sweden
| | - Markus L Björck
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 90 Göteborg, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden; Institute of Molecular Biosciences, NAWI Graz, University of Graz, A-8010 Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
36
|
Kandasamy G, Andréasson C. Hsp70-Hsp110 chaperones deliver ubiquitin dependent and independent substrates to the 26S proteasome for proteolysis. J Cell Sci 2018; 131:jcs.210948. [DOI: 10.1242/jcs.210948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/14/2018] [Indexed: 02/01/2023] Open
Abstract
In protein quality control, proteotoxic misfolded proteins are recognized by molecular chaperones, ubiquitylated by dedicated quality-control ligases and delivered to 26S proteasome for degradation. The chaperone Hsp70 and its nucleotide exchange factor Hsp110 functions in the degradation of misfolded proteins by the ubiquitin-proteasome system via poorly understood mechanisms. Here we report that yeast Hsp110 (Sse1 and Sse2) functions in the degradation of Hsp70-associated ubiquitin conjugates at the post-ubiquitylation step and is required for the proteasomal degradation of ubiquitin-independent substrates. Hsp110 associates with the 19S regulatory particle of the 26S proteasome and interacts with Hsp70 to facilitate the delivery of Hsp70 substrates for proteasomal degradation. Using a highly defined ubiquitin-independent proteasome substrate we show that the mere introduction of a single Hsp70-binding site renders its degradation dependent on Hsp110. The findings define a dedicated and chaperone-dependent pathway for the efficient shuttling of cellular proteins to the proteasome with profound implications for understanding protein quality control and cellular stress management.
Collapse
Affiliation(s)
- Ganapathi Kandasamy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
37
|
Nucleotide exchange factors Fes1 and HspBP1 mimic substrate to release misfolded proteins from Hsp70. Nat Struct Mol Biol 2018; 25:83-89. [PMID: 29323280 DOI: 10.1038/s41594-017-0008-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/10/2017] [Indexed: 01/25/2023]
Abstract
Protein quality control depends on the tight regulation of interactions between molecular chaperones and polypeptide substrates. Substrate release from the chaperone Hsp70 is triggered by nucleotide-exchange factors (NEFs) that control folding and degradation fates via poorly understood mechanisms. We found that the armadillo-type NEFs budding yeast Fes1 and its human homolog HspBP1 employ flexible N-terminal release domains (RDs) with substrate-mimicking properties to ensure the efficient release of persistent substrates from Hsp70. The RD contacts the substrate-binding domain of the chaperone, competes with peptide substrate for binding and is essential for proper function in yeast and mammalian cells. Thus, the armadillo domain engages Hsp70 to trigger nucleotide exchange, whereas the RD safeguards the release of substrates. Our findings provide fundamental mechanistic insight into the functional specialization of Hsp70 NEFs and have implications for the understanding of proteostasis-related disorders, including Marinesco-Sjögren syndrome.
Collapse
|
38
|
Wong L, Engel J, Jin E, Holdridge B, Xu P. YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metab Eng Commun 2017; 5:68-77. [PMID: 29188186 PMCID: PMC5699529 DOI: 10.1016/j.meteno.2017.09.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022] Open
Abstract
Effective metabolic engineering of microorganisms relies on balanced expression of both heterologous and endogenous genes to channel metabolic flux towards products of interest while achieving reasonable biomass buildup. To facilitate combinatorial pathway engineering and facile genetic operation, we engineered a set of modular cloning vectors compatible with BioBrick standards, called YaliBricks, to allow for rapid assembly of multigene pathways with customized genetic control elements (promoters, intronic sequences and terminators) in the oleaginous yeast Yarrowia lipolytica. We established a sensitive luciferase reporter and characterized a set of 12 native promoters to expand the oleaginous yeast genetic toolbox for transcriptional fine-tuning. We harnessed the intron alternative splicing mechanism and explored three unique gene configurations that allow us to encode genetic structural variations into metabolic function. We elucidated the role of how these genetic structural variations affect gene expression. To demonstrate the simplicity and effectiveness of streamlined genetic operations, we assembled the 12 kb five-gene violacein biosynthetic pathway in one week. We also expanded this set of vectors to accommodate self-cleavage ribozymes and efficiently deliver guide RNA (gRNA) for targeted genome-editing with a codon-optimized CRISPR-Cas9 nuclease. Taken together, the tools built in this study provide a standard procedure to streamline and accelerate metabolic pathway engineering and genetic circuits construction in Yarrowia lipolytica.
Collapse
Affiliation(s)
- Lynn Wong
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Jake Engel
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Erqing Jin
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
- Department of Food Science and Engineering, Jinan University, 601 West Huangpu Road, Guangzhou 510632, China
| | - Benjamin Holdridge
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| |
Collapse
|
39
|
A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals. Anal Bioanal Chem 2017; 410:1237-1246. [DOI: 10.1007/s00216-017-0661-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
|
40
|
Narvaez AJ, Ber S, Crooks A, Emery A, Hardwick B, Guarino Almeida E, Huggins DJ, Perera D, Roberts-Thomson M, Azzarelli R, Hood FE, Prior IA, Walker DW, Boyce R, Boyle RG, Barker SP, Torrance CJ, McKenzie GJ, Venkitaraman AR. Modulating Protein-Protein Interactions of the Mitotic Polo-like Kinases to Target Mutant KRAS. Cell Chem Biol 2017; 24:1017-1028.e7. [PMID: 28807782 PMCID: PMC5563081 DOI: 10.1016/j.chembiol.2017.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/16/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
Abstract
Mutations activating KRAS underlie many forms of cancer, but are refractory to therapeutic targeting. Here, we develop Poloppin, an inhibitor of protein-protein interactions via the Polo-box domain (PBD) of the mitotic Polo-like kinases (PLKs), in monotherapeutic and combination strategies to target mutant KRAS. Poloppin engages its targets in biochemical and cellular assays, triggering mitotic arrest with defective chromosome congression. Poloppin kills cells expressing mutant KRAS, selectively enhancing death in mitosis. PLK1 or PLK4 depletion recapitulates these cellular effects, as does PBD overexpression, corroborating Poloppin's mechanism of action. An optimized analog with favorable pharmacokinetics, Poloppin-II, is effective against KRAS-expressing cancer xenografts. Poloppin resistance develops less readily than to an ATP-competitive PLK1 inhibitor; moreover, cross-sensitivity persists. Poloppin sensitizes mutant KRAS-expressing cells to clinical inhibitors of c-MET, opening opportunities for combination therapy. Our findings exemplify the utility of small molecules modulating the protein-protein interactions of PLKs to therapeutically target mutant KRAS-expressing cancers.
Collapse
Affiliation(s)
- Ana J Narvaez
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Suzan Ber
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Alex Crooks
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Amy Emery
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Bryn Hardwick
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Estrella Guarino Almeida
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - David J Huggins
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; University of Cambridge, Theory of Condensed Matter Group, Cavendish Laboratory, 19 J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - David Perera
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Meredith Roberts-Thomson
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK
| | - Roberta Azzarelli
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fiona E Hood
- Division of Cellular and Molecular Physiology, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | - Ian A Prior
- Division of Cellular and Molecular Physiology, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | - David W Walker
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Richard Boyce
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Robert G Boyle
- Sentinel Oncology Ltd., Cambridge Science Park, Milton Road, Cambridge CB4 0EY, UK
| | - Samuel P Barker
- PhoreMost Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Grahame J McKenzie
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK; PhoreMost Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
41
|
A replication-competent foot-and-mouth disease virus expressing a luciferase reporter. J Virol Methods 2017; 247:38-44. [PMID: 28532601 PMCID: PMC5490781 DOI: 10.1016/j.jviromet.2017.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
We have generated a replication-competent foot-and-mouth disease virus expressing Nanoluciferase, designated as Nano-FMDV. Nano-FMDV is genetically stable. The replication of Nano-FMDV can be monitored by bioluminescent methods. This reporter virus has potential applications in real-time monitoring of FMDV infection in vitro and in vivo, and in screening of antivirals and antibodies.
Bioluminescence is a powerful tool in the study of viral infection both in vivo and in vitro. Foot-and-mouth disease virus (FMDV) has a small RNA genome with a limited tolerance to foreign RNA entities. There has been no success in making a reporter FMDV expressing a luciferase in infected cell culture supernatants. We report here for the first time a replication-competent FMDV encoding Nanoluciferase, named as Nano-FMDV. Nano-FMDV is genetically stable during serial passages in cells and exhibits growth kinetics and plaque morphology similar to its parental virus. There are applications for the use of Nano-FMDV such as real-time monitoring of FMDV replication in vitro and in vivo.
Collapse
|
42
|
A novel method for quantitative measurements of gene expression in single living cells. Methods 2017; 120:65-75. [PMID: 28456689 DOI: 10.1016/j.ymeth.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/12/2017] [Accepted: 04/14/2017] [Indexed: 12/13/2022] Open
Abstract
Gene expression is at the heart of virtually any biological process, and its deregulation is at the source of numerous pathological conditions. While impressive progress has been made in genome-wide measurements of mRNA and protein expression levels, it is still challenging to obtain highly quantitative measurements in single living cells. Here we describe a novel approach based on internal tagging of endogenous proteins with a reporter allowing luminescence and fluorescence time-lapse microscopy. Using luminescence microscopy, fluctuations of protein expression levels can be monitored in single living cells with high sensitivity and temporal resolution over extended time periods. The integrated protein decay reporter allows measuring protein degradation rates in the absence of protein synthesis inhibitors, and in combination with absolute protein levels allows determining absolute amounts of proteins synthesized over the cell cycle. Finally, the internal tag can be excised by inducible expression of Cre recombinase, which enables to estimate endogenous mRNA half-lives. Our method thus opens new avenues in quantitative analysis of gene expression in single living cells.
Collapse
|
43
|
Fukutani Y, Ishii J, Kondo A, Ozawa T, Matsunami H, Yohda M. Split luciferase complementation assay for the analysis of G protein-coupled receptor ligand response in Saccharomyces cerevisiae. Biotechnol Bioeng 2017; 114:1354-1361. [DOI: 10.1002/bit.26255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yosuke Fukutani
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
| | - Jun Ishii
- Graduate School of Science; Technology and Innovation; Kobe university; Kobe Japan
| | - Akihiko Kondo
- Graduate School of Science; Technology and Innovation; Kobe university; Kobe Japan
| | - Takeaki Ozawa
- Department of Chemistry; School of Science; The University of Tokyo; Hongo Tokyo Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology; Duke University Medical Center; Durham North Carolina
- Institute of Global Innovation Research; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science; Tokyo University of Agriculture and Technology; Koganei Tokyo 184-8588 Japan
- Institute of Global Innovation Research; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| |
Collapse
|
44
|
Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity. Anal Bioanal Chem 2016; 408:8859-8868. [DOI: 10.1007/s00216-016-0062-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/29/2016] [Indexed: 11/26/2022]
|
45
|
Masser AE, Kandasamy G, Kaimal JM, Andréasson C. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae. Yeast 2016; 33:191-200. [PMID: 26860732 PMCID: PMC5069653 DOI: 10.1002/yea.3155] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022] Open
Abstract
Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon‐optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half‐lives of 40 and 5 min, respectively. The commercial substrate Nano‐Glo® is compatible with detection of yNluc bioluminescence in < 50 cells. Using the unstable yNlucPEST to report on the rapid and transient expression of a heat‐shock promoter (PCYC1–HSE), we found a close match between the intensity of the bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C‐terminus of a temperature‐sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Ganapathi Kandasamy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | | | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
46
|
Gowda NKC, Kaimal JM, Masser AE, Kang W, Friedländer MR, Andréasson C. Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast. Mol Biol Cell 2016; 27:1210-9. [PMID: 26912797 PMCID: PMC4831876 DOI: 10.1091/mbc.e15-10-0697] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/17/2016] [Indexed: 12/14/2022] Open
Abstract
Yeast Hsp70 nucleotide exchange factor Fes1 is expressed by rare alternative splicing as two isoforms. Fes1L is targeted to the nucleus, and Fes1S localizes to the cytosol and is required for the efficient proteasomal degradation of cytosolic misfolded proteins, as well as of species that are imported into the nucleus for degradation. Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. In Saccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that the FES1 transcript undergoes unique 3′ alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally nonstressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues, or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus.
Collapse
Affiliation(s)
| | | | - Anna E Masser
- Department of Molecular Biosciences, Stockholm University, S-10691 Stockholm, Sweden
| | - Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|