1
|
Xie T, Chen M, Nielsen J, Xia J. Multi-omics analyses of the transition to the Crabtree effect in S. cerevisiae reveals a key role for the citric acid shuttle. FEMS Yeast Res 2022; 22:6590040. [PMID: 35595470 DOI: 10.1093/femsyr/foac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/30/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
The Crabtree effect in the yeast, Saccharomyces cerevisiae, has been extensively studied, but only few studies have analyzed the dynamic conditions across the critical specific growth rate where the Crabtree effect sets in. Here, we carried out a multi-omics analysis of S. cerevisiae undergoing a specific growth rate transition from 0.2 h-1 to 0.35 h-1. The extracellular metabolome, the transcriptome and the proteome were analyzed in an 8-hour transition period after the specific growth rate shifted from 0.2 h-1 to 0.35 h-1. The changing trends of both the transcriptome and proteome were analyzed using principal component analysis, which showed that the transcriptome clustered together after 60 min, while the proteome reached steady-state much later. Focusing on central carbon metabolism, we analyzed both the changes in the transcriptome and proteome, and observed an interesting changing pattern in the tricarboxylic acid (TCA) pathway, which indicates an important role for citric acid shuttling across the mitochondrial membrane for α-ketoglutarate accumulation during the transition from respiratory to respiro-fermentative metabolism. This was supported by a change in the oxaloacetate and malate shuttle. Together, our findings shed new light into the onset of the Crabtree effect in S. cerevisiae.
Collapse
Affiliation(s)
- Tingting Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
2
|
Uranukul B, Woolston BM, Fink GR, Stephanopoulos G. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metab Eng 2018; 51:20-31. [PMID: 30268818 DOI: 10.1016/j.ymben.2018.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Monoethylene glycol (MEG) is an important commodity chemical with applications in numerous industrial processes, primarily in the manufacture of polyethylene terephthalate (PET) polyester used in packaging applications. In the drive towards a sustainable chemical industry, bio-based production of MEG from renewable biomass has attracted growing interest. Recent attempts for bio-based MEG production have investigated metabolic network modifications in Escherichia coli, specifically rewiring the xylose assimilation pathways for the synthesis of MEG. In the present study, we examined the suitability of Saccharomyces cerevisiae, a preferred organism for industrial applications, as platform for MEG biosynthesis. Based on combined genetic, biochemical and fermentation studies, we report evidence for the existence of an endogenous biosynthetic route for MEG production from D-xylose in S. cerevisiae which consists of phosphofructokinase and fructose-bisphosphate aldolase, the two key enzymes in the glycolytic pathway. Further metabolic engineering and process optimization yielded a strain capable of producing up to 4.0 g/L MEG, which is the highest titer reported in yeast to-date.
Collapse
Affiliation(s)
- Boonsom Uranukul
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Whitehead Institute for Biomedical Research, Cambridge, MA 02139, United States
| | - Benjamin M Woolston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Gerald R Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
3
|
Huang J, Luo Z, Ying W, Cao Q, Huang H, Dong J, Wu Q, Zhao Y, Qian X, Dai J. 2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:8782-8787. [PMID: 28768809 PMCID: PMC5565412 DOI: 10.1073/pnas.1700796114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
New types of modifications of histones keep emerging. Recently, histone H4K8 2-hydroxyisobutyrylation (H4K8hib) was identified as an evolutionarily conserved modification. However, how this modification is regulated within a cell is still elusive, and the enzymes adding and removing 2-hydroxyisobutyrylation have not been found. Here, we report that the amount of H4K8hib fluctuates in response to the availability of carbon source in Saccharomyces cerevisiae and that low-glucose conditions lead to diminished modification. The removal of the 2-hydroxyisobutyryl group from H4K8 is mediated by the histone lysine deacetylase Rpd3p and Hos3p in vivo. In addition, eliminating modifications at this site by alanine substitution alters transcription in carbon transport/metabolism genes and results in a reduced chronological life span (CLS). Furthermore, consistent with the glucose-responsive H4K8hib regulation, proteomic analysis revealed that a large set of proteins involved in glycolysis/gluconeogenesis are modified by lysine 2-hydroxyisobutyrylation. Cumulatively, these results established a functional and regulatory network among Khib, glucose metabolism, and CLS.
Collapse
Affiliation(s)
- Jing Huang
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhouqing Luo
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, National Protein Science Center, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Qichen Cao
- State Key Laboratory of Proteomics, National Protein Science Center, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - He Huang
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637
| | - Junkai Dong
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingyu Wu
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingming Zhao
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Protein Science Center, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China;
| | - Junbiao Dai
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Lis P, Jurkiewicz P, Cal-Bąkowska M, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S. Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate. Oncotarget 2016; 7:10153-73. [PMID: 26862728 PMCID: PMC4891110 DOI: 10.18632/oncotarget.7174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/23/2016] [Indexed: 01/19/2023] Open
Abstract
In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway. Single deletions of genes encoding glycolytic enzymes, the TCA cycle enzymes and mitochondrial carriers result in multiple effects after 3-BP treatment. However, it can be concluded that activity of the pentose phosphate pathway is necessary to prevent the toxicity of 3-BP, probably due to the fact that large amounts of NADPH are produced by this pathway, ensuring the reducing force needed for glutathione reduction, crucial to cope with the oxidative stress. Moreover, single deletions of genes encoding the TCA cycle enzymes and mitochondrial carriers generally cause sensitivity to 3-BP, while totally inactive mitochondrial respiration in the rho0 mutant resulted in increased resistance to 3-BP.
Collapse
Affiliation(s)
- Paweł Lis
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Paweł Jurkiewicz
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Magdalena Cal-Bąkowska
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| | - Young H Ko
- KoDiscovery LLC, UM BioPark, Innovation Center, Baltimore, MD, USA
| | - Peter L Pedersen
- Departments of Biological Chemistry and Oncology, Sydney Kimmel Comprehensive Cancer Center and Center for Obesity Research and Metabolism, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andre Goffeau
- Unité de Biochimie Physiologique, Institut des Sciences de la Vie, Université Catholique de Louvain-la-Neuve, Louvain-la-Neuve, Belgium
| | - Stanisław Ułaszewski
- Department of Genetics, Institute of Genetics and Microbiology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
5
|
Willetts JC, Seward R, Dinsdale MG, Suller MTE, Hill B, Lloyd D. VITALITY OF CIDER YEAST GROWN MICRO-AEROBICALLY WITH ADDED ETHANOL, BUTAN-J-OL ORISO-BUTANOL. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1997.tb00938.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Lloyd D. Noninvasive methods for the investigation of organisms at low oxygen levels. ADVANCES IN APPLIED MICROBIOLOGY 2003; 51:155-83. [PMID: 12236057 DOI: 10.1016/s0065-2164(02)51005-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David Lloyd
- School of Biosciences (Microbiology), Main Building, Cardiff University, P. O. Box 915, Cardiff CF10 3TL, Wales, United Kingdom
| |
Collapse
|
7
|
Tallada VA, Daga RR, Palomeque C, Garzón A, Jimenez J. Genome-wide search of Schizosaccharomyces pombe genes causing overexpression-mediated cell cycle defects. Yeast 2002; 19:1139-51. [PMID: 12237855 DOI: 10.1002/yea.902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic studies in yeasts enable an in vivo analysis of gene functions required for the cell division cycle (cdc genes) in eukaryotes. In order to characterize new functions involved in cell cycle regulation, we searched for genes causing cell division defects by overexpression in the fission yeast Schizosaccharomyces pombe. By using this dominant genetic strategy, 26 independent clones were isolated from a Sz. pombe cDNA library. The cloned cDNAs were partially sequenced and identified by computer analysis. The 26 clones isolated corresponded to 21 different genes. Among them, six were genes previously characterized in Sz. pombe, 11 were homologues to genes identified and characterized in other organisms, and four represented genes with unknown functions. In addition to known cell cycle regulators encoding inhibitory protein kinases (wee1, pka1) and DNA checkpoint proteins (Pcna, rad24), we have identified genes that are involved in a number of cellular processes. This includes protein synthesis (ribosomal proteins L7, L10, L29, L41, S6, S11, S17 and the PolyA-Binding Protein PABP), protein degradation (UBI3), nucleolar rRNA expression (fib, imp1, dbp2), cell cytoskeleton (act1) and glycolysis (pfk1). The interference caused in the cell cycle by overexpression of these genes may elucidate novel mechanisms coupling different cellular processes with the control of the cell division. The effect caused by some of them is described in more detail.
Collapse
Affiliation(s)
- Victor A Tallada
- Laboratorio Andaluz de Biología, Universidad Pablo de Olavide, Sevilla, Spain
| | | | | | | | | |
Collapse
|
8
|
Rodicio R, Strauss A, Heinisch JJ. Single point mutations in either gene encoding the subunits of the heterooctameric yeast phosphofructokinase abolish allosteric inhibition by ATP. J Biol Chem 2000; 275:40952-60. [PMID: 11221662 DOI: 10.1074/jbc.m007131200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast phosphofructokinase is a heterooctameric enzyme subject to a complex allosteric regulation. A mutation in the PFK1 gene, encoding the larger -subunits, rendering the enzyme insensitive to allosteric inhibition by ATP was found to be caused by an exchange of proline 728 for a leucine residue. By in vitro mutagenesis, we introduced this mutation in either PFK1 or PFK2 and found that the exchange in either subunit drastically reduced the sensitivity of the holoenzyme to ATP inhibition. This was accompanied by a lack of allosteric activation by AMP, fructose 2,6-bisphosphate, or ammonium and an increased resistance to heat inactivation. Yeast cells carrying either one mutation or both in conjunction did not display a strong phenotype when grown on fermentable carbon sources and did not show any significant changes in intermediary metabolites. Growth on non-fermentable carbon sources was clearly impaired. The strain carrying both mutant alleles was more sensitive to Congo Red than the wild-type strain or the single mutants indicating differences in cell wall composition. In addition, we found single pfk null mutants to be less viable than wild type at different storage temperatures and a pfk2 null mutant to be temperature-sensitive for growth at 37 degrees C. The latter mutant was shown to be respiration-dependent for growth on glucose.
Collapse
Affiliation(s)
- R Rodicio
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | | | | |
Collapse
|
9
|
Abstract
The control of glycolytic flux in the yeast Saccharomyces cerevisiae was studied by using permeabilized cells. Cells were harvested from chemostat cultures and, after removal of the cell wall, nystatin was used to permeabilize the spheroplasts. By this method it is possible to study the performance and regulation of a complete and functional metabolic pathway and not only a single enzymatic step. The results showed that ATP has a strong negative effect on glycolytic activity affecting several of the glycolytic enzymes. However, the main targets for ATP inhibition was phosphofructokinase and pyruvate kinase. Phospofructokinase was inhibited by ATP concentrations starting at about 1-2 mM, while pyruvate kinase required ATP levels above 2.5 mM before any inhibition was visible. These ATP concentrations were in the same range as measured for nitrogen- and glucose-limited cells cultivated in chemostat cultures. Other potential candidates as enzymes susceptible to ATP inhibition included hexokinase and enolase. The ATP:ADP ratio, as well as trehalose-6-phosphate levels, did not seem to influence the glycolytic activity.
Collapse
Affiliation(s)
- C Larsson
- Department of Molecular Biotechnology, Chalmers University of Technology, Box 462, S-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
10
|
Lloyd D, James CJ, Chapman A, Dickinson JR. Combined 13C NMR- and mass-spectrometry for non-invasive monitoring of metabolism. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/bf00157376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|