1
|
Bakir G, Dahms TES, Martin-Yken H, Bechtel HA, Gough KM. Saccharomyces cerevisiae CellWall Remodeling in the Absence of Knr4 and Kre6 Revealed by Nano-FourierTransform Infrared Spectroscopy. APPLIED SPECTROSCOPY 2024; 78:355-364. [PMID: 38378014 PMCID: PMC10935619 DOI: 10.1177/00037028231213658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/17/2023] [Indexed: 02/22/2024]
Abstract
The cell wall integrity (CWI) signaling pathway regulates yeast cell wall biosynthesis, cell division, and responses to external stress. The cell wall, comprised of a dense network of chitin, β-1,3- and β-1,6- glucans, and mannoproteins, is very thin, <100 nm. Alterations in cell wall composition may activate the CWI pathway. Saccharomyces cerevisiae, a model yeast, was used to study the role of individual wall components in altering the structure and biophysical properties of the yeast cell wall. Near-field Fourier transform infrared spectroscopy (nano-FT-IR) was used for the first direct, spectrochemical identification of cell wall composition in a background (wild-type) strain and two deletion mutants from the yeast knock-out collection: kre6Δ and knr4Δ. Killer toxin resistant 6 (Kre6) is an integral membrane protein required for biosynthesis of β-1,6-glucan, while Knr4 is a cell signaling protein involved in the control of cell wall biosynthesis, in particular, biosynthesis and deposition of chitin. Complementary spectral data were obtained with far-field (FF)-FT-IR, in transmission, and with attenuated total reflectance (ATR) spectromicroscopy with 3-10 μm wavelength-dependent spatial resolution. The FF-FT-IR spectra of cells and spectra of isolated cell wall components showed that components of the cell body dominated transmission spectra and were still evident in ATR spectra. In contrast, the nano-FT-IR at ∼25 nm spatial resolution could be used to characterize the yeast wall chemical structure. Our results show that the β-1,6-glucan content is decreased in kre6Δ, while all glucan content is decreased in the knr4Δ cell wall. The latter may be thinner than in wild type, since not only are mannan and chitin detectable by nano-FT-IR, but also lipid membranes and protein, indicative of cell interior.
Collapse
Affiliation(s)
- Gorkem Bakir
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Helene Martin-Yken
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- LAAS–CNRS, Université de Toulouse, Toulouse, France
| | - Hans A. Bechtel
- Advanced Light Source Division, Lawrence Berkeley National Lab, Berkeley, California, USA
| | - Kathleen M. Gough
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Winter H, Wagner R, Ehlbeck J, Urich T, Schnabel U. Deep Impact: Shifts of Native Cultivable Microbial Communities on Fresh Lettuce after Treatment with Plasma-Treated Water. Foods 2024; 13:282. [PMID: 38254583 PMCID: PMC10815073 DOI: 10.3390/foods13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Foods consumed raw, such as lettuce, can host food-borne human-pathogenic bacteria. In the worst-case, these diseases cause to death. To limit illness and industrial losses, one innovative sanitation method is non-thermal plasma, which offers an extremely efficient reduction of living microbial biomass. Unfortunately, the total viable count (TVC), one of the most common methods for quantifying antimicrobial effects, provides no detailed insights into the composition of the surviving microbial community after treatment. To address this information gap, different special agars were used to investigate the reduction efficiency of plasma-treated water (PTW) on different native cultivable microorganisms. All tested cultivable microbial groups were reduced using PTW. Gram-negative bacteria showed a reduction of 3.81 log10, and Gram-positive bacteria showed a reduction of 3.49 log10. Fungi were reduced by 3.89 log10. These results were further validated using a live/dead assay. MALDI-ToF (matrix-assisted laser-desorption-ionization time-of-flight)-based determination was used for a diversified overview. The results demonstrated that Gram-negative bacteria were strongly reduced. Interestingly, Gram-positive bacteria and fungi were reduced by nearly equal amounts, but could still recover from PTW treatment. MALDI-ToF mainly identified Pseudomonas spp. and groups of Bacillus on the tested lettuce. These results indicate that the PTW treatment could efficiently achieve a ubiquitous, spectrum-wide reduction of microbial life.
Collapse
Affiliation(s)
- Hauke Winter
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany;
| | - Robert Wagner
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
| | - Tim Urich
- Institute of Microbiology, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany;
| | - Uta Schnabel
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany; (H.W.); (R.W.); (J.E.)
| |
Collapse
|
3
|
Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol. Sci Rep 2023; 13:727. [PMID: 36639688 PMCID: PMC9839728 DOI: 10.1038/s41598-023-27451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Open burning of agricultural residues causes numerous complications including particulate matter pollution in the air, soil degradation, global warming and many more. Since they possess bio-conversion potential, agro-industrial residues including sugarcane bagasse (SCB), rice straw (RS), corncob (CC) and sweet sorghum bagasse (SSB) were chosen for the study. Yeast strains, Candida tropicalis, C. shehatae, Saccharomyces cerevisiae, and Kluyveromyces marxianus var. marxianus were compared for their production potential of bioethanol and phenylacetylcarbinol (PAC), an intermediate in the manufacture of crucial pharmaceuticals, namely, ephedrine, and pseudoephedrine. Among the substrates and yeasts evaluated, RS cultivated with C. tropicalis produced significantly (p ≤ 0.05) higher ethanol concentration at 15.3 g L-1 after 24 h cultivation. The product per substrate yield (Yeth/s) was 0.38 g g-1 with the volumetric productivity (Qp) of 0.64 g L-1 h-1 and fermentation efficiency of 73.6% based on a theoretical yield of 0.51 g ethanol/g glucose. C. tropicalis grown in RS medium produced 0.303 U mL-1 pyruvate decarboxylase (PDC), a key enzyme that catalyzes the production of PAC, with a specific activity of 0.400 U mg-1 protein after 24 h cultivation. This present study also compared the whole cells biomass of C. tropicalis with its partially purified PDC preparation for PAC biotransformation. The whole cells C. tropicalis PDC at 1.29 U mL-1 produced an overall concentration of 62.3 mM PAC, which was 68.4% higher when compared to partially purified enzyme preparation. The results suggest that the valorization of lignocellulosic residues into bioethanol and PAC will not only aid in mitigating the environmental challenge posed by their surroundings but also has the potential to improve the bioeconomy.
Collapse
|
4
|
|
5
|
Novak M, Vetvicka V. Beta-glucans, history, and the present: immunomodulatory aspects and mechanisms of action. J Immunotoxicol 2009; 5:47-57. [PMID: 18382858 DOI: 10.1080/15476910802019045] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The present paper represents a comprehensive up-to-date review of beta -glucans, their chemical and biological properties, and their role in immunological reactions. beta -D-Glucans belong to a group of physiologically active compounds called biological response modifiers and represent highly conserved structural components of cell walls in yeast, fungi, or seaweed. Despite almost 150 years of research, the exact mechanisms of their action remain unclear. The present review starts with the history of glucans. Next, attention is focused on sources and structure, comparing the effects of physicochemical properties, and sources on biological effects. As glucans belong to natural products useful in preventing various diseases, they have been highly sought after throughout human history. Based on extensive recent research, this paper explains the various mechanisms of effects and the ways glucans mediate their effects on defense reactions against infections. Despite the fact that predominately pharmacological effects of glucans are positive, their unfavorable and potentially toxic side effects were not overlooked. In addition, attention was focused on the future research, possible alternatives such as synthetic oligosaccharides, and on clinical applications.
Collapse
Affiliation(s)
- M Novak
- Institute of Chemical Technology, Prague, Czech Republic
| | | |
Collapse
|
6
|
Zhang M, Liang Y, Zhang X, Xu Y, Dai H, Xiao W. Deletion of yeast CWP genes enhances cell permeability to genotoxic agents. Toxicol Sci 2008; 103:68-76. [PMID: 18281714 DOI: 10.1093/toxsci/kfn034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported the development of a novel genotoxic testing system based on the transcriptional response of the yeast RNR3-lacZ reporter gene to DNA damage. This system appears to be more sensitive than other similar tests in microorganisms, and is comparable with the Ames test. In an effort to further enhance detection sensitivity, we examined the effects of altering major cell wall components on cell permeability and subsequent RNR3-lacZ sensitivity to genotoxic agents. Although inactivation of single CWP genes encoding cell wall mannoproteins had little effect, the simultaneous inactivation of both CWP1 and CWP2 had profound effects on the cell wall structure and permeability. Consequently, the RNR3-lacZ detection sensitivity is markedly enhanced, especially to high molecular weight compounds such as 4-nitroquinoline-N-oxide (> sevenfold) and phleomycin (> 13-fold). In contrast, deletion of genes encoding representative membrane components or membrane transporters had minor effects on cell permeability. We conclude that the yeast cell wall mannoproteins constitute the major barrier to environmental genotoxic agents and that their removal will significantly enhance the sensitivity of RNR-lacZ as well as other yeast-based genotoxic tests.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072 China
| | | | | | | | | | | |
Collapse
|
7
|
Satianegara G, Rogers PL, Rosche B. Comparative studies on enzyme preparations and role of cell components for (R)-phenylacetylcarbinol production in a two-phase biotransformation. Biotechnol Bioeng 2006; 94:1189-95. [PMID: 16685710 DOI: 10.1002/bit.20959] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whole cell pyruvate decarboxylase (PDC) from Candida utilis enhanced the enzymatic production of (R)-phenylacetylcarbinol (PAC) in an aqueous/octanol biotransformation compared to the partially purified PDC especially for a lower range of initial activities (0.3-2.5 U/mL). With an initial activity of 1.1 U/mL and at a 1:1 phase volume ratio, whole cell PDC achieved a maximum specific PAC production of 42 mg/U (2.8 g/L/h) in comparison to 13 mg/U (0.9 g/L/h) for partially purified PDC. The enhanced performance of whole cell PDC was associated with high stability towards the substrate benzaldehyde. The strong PDC inactivation by benzaldehyde was minimal even when whole cells were broken as long as cell debris was not removed from the broken cells. Biotransformations with various cellular components added to partially purified PDC revealed that membrane components especially 2 mg/mL phosphatidylcholine enhanced PAC concentrations. The role of surfactants was further confirmed from the results with synthetic surfactant sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT). It was apparent that the membrane components in whole cells were sufficient for optimal PAC production and no further surfactant addition is required for optimal performance.
Collapse
Affiliation(s)
- Gernalia Satianegara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
8
|
Stavrinidis E, Delitheos A, Tiligada E. Induction of morphological alterations by antineoplastic agents in yeast. Folia Microbiol (Praha) 2003; 47:157-60. [PMID: 12058394 DOI: 10.1007/bf02817674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Saccharomyces cerevisiae was used as an alternative experimental model in order to investigate the effects of antineoplastic agents on eukaryotic cells. After being exposed to the most common clinically used antineoplastic agents, yeast cells were examined under the light microscope. Folate and pyrimidine antagonists, platinum derivatives, mitomycin C, actinomycin D and bleomycin induced alterations in yeast cellular morphology, which were not observed following treatment with drugs belonging to any category other than the antineoplastics, leading to the suggestion that these alterations could potentially be used as an experimental tool in pre-screening for new chemotherapeutic leads.
Collapse
Affiliation(s)
- E Stavrinidis
- Department of Experimental Pharmacology, Medical School, University of Athens, 11527 Athens, Greece
| | | | | |
Collapse
|
9
|
Frieman MB, McCaffery JM, Cormack BP. Modular domain structure in the Candida glabrata adhesin Epa1p, a beta1,6 glucan-cross-linked cell wall protein. Mol Microbiol 2002; 46:479-92. [PMID: 12406223 DOI: 10.1046/j.1365-2958.2002.03166.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yeast pathogen Candida glabrata adheres avidly to cultured human epithelial cells. This interaction depends on the expression of EPA1, which encodes a lectin belonging to a large family of GPI-anchored glucan-cross-linked cell wall proteins (GPI-CWPs) found in diverse fungal species. To understand the relationship between different domains of EPA1 and its function, we have mapped functional domains of Epa1p and analysed their contribution to Epa1p function. We found that the N-terminal third of the protein contains the ligand-binding domain, and that the GPI anchor is essential both for cross-linking in the cell wall and for Epa1p-mediated adherence. We also found that the C-terminal Ser/Thr-rich domain, characteristic of many GPI-CWPs, was absolutely essential for function. Although Epa1p derivatives lacking the Ser/Thr domain were expressed abundantly in the cell wall, they were localized to internal layers of the cell wall; such constructs were unable to mediate adherence. The outer layer of the yeast cell wall is known to act as a permeability barrier; we found that the C-terminal Ser/Thr-rich region was absolutely required to project the N-terminal domain of Epa1p through this permeability barrier and into the external environment. Thus, the Ser/Thr-rich domain of Epa1p and, presumably, of other related GPI-CWPs serves an essential structural role in localization of the protein at the external surface of the yeast cell where it can interact with its ligand. In conclusion, Epa1p has a modular structure, with each domain serving a distinct and essential role in the function of the adhesin.
Collapse
Affiliation(s)
- Matthew B Frieman
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
10
|
Bernard M, Mouyna I, Dubreucq G, Debeaupuis JP, Fontaine T, Vorgias C, Fuglsang C, Latgé JP. Characterization of a cell-wall acid phosphatase (PhoAp) in Aspergillus fumigatus. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2819-2829. [PMID: 12213928 DOI: 10.1099/00221287-148-9-2819] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the filamentous fungus Aspergillus fumigatus, the vast majority of the cell-wall-associated proteins are secreted proteins that are in transit in the cell wall. These proteins can be solubilized by detergents and reducing agents. Incubation of a SDS/beta-mercaptoethanol-treated cell-wall extract with various recombinant enzymes that hydrolyse cell-wall polysaccharides resulted in the release of a unique protein in minute amounts only after incubation of the cell wall in the presence of 1,3-beta-glucanase. Sequence analysis and biochemical studies showed that this glycoprotein, with an apparent molecular mass of 80 kDa, was an acid phosphatase (PhoAp) that was active on both phosphate monoesters and phosphate diesters. PhoAp is a glycosylphosphatidylinositol-anchored protein that was recovered in the culture filtrate and cell-wall fraction of A. fumigatus after cleavage of its anchor. It is also a phosphate-repressible acid phosphatase. The absence of PhoAp from a phosphate-rich medium was not associated with a reduction in fungal growth, indicating that this cell-wall-associated protein does not play a role in the morphogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Muriel Bernard
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Isabelle Mouyna
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Guy Dubreucq
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Jean-Paul Debeaupuis
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Thierry Fontaine
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | | | - Claus Fuglsang
- Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark3
| | - Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
11
|
Yu XQ, Kanost MR. Binding of hemolin to bacterial lipopolysaccharide and lipoteichoic acid. An immunoglobulin superfamily member from insects as a pattern-recognition receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1827-34. [PMID: 11952784 DOI: 10.1046/j.1432-1033.2002.02830.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hemolin, a plasma protein from lepidopteran insects, is composed of four immunoglobulin domains. Its synthesis is induced by microbial challenge. We investigated the biological functions of hemolin in Manduca sexta. It was found to bind to the surface of bacteria and yeast, and caused these micro-organisms to aggregate. Hemolin was demonstrated to bind to lipopolysaccharide (LPS) from Gram-negative bacteria and to lipoteichoic acid from Gram-positive bacteria. Binding of hemolin to smooth-type forms of LPS was competed for efficiently by lipoteichoic acid and by rough mutant (Ra and Rc) forms of LPS, which differ in polysaccharide length. Binding of hemolin to LPS was partially inhibited by calcium and phosphate. Hemolin bound to the lipid A component of LPS, and this binding was completely blocked by free phosphate. Our results suggest that hemolin has two binding sites for LPS, one that interacts with the phosphate groups of lipid A and one that interacts with the O-specific antigen and the outer-core carbohydrates of LPS. The binding properties of M. sexta hemolin suggest that it functions as a pattern-recognition protein with broad specificity in the defense against micro-organisms.
Collapse
Affiliation(s)
- Xiao-Qiang Yu
- Department of Biochemistry, Kansas State University, Manhattan 66506, USA
| | | |
Collapse
|
12
|
Arvindekar AU, Patil NB. Glycogen--a covalently linked component of the cell wall in Saccharomyces cerevisiae. Yeast 2002; 19:131-9. [PMID: 11788968 DOI: 10.1002/yea.802] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Glycogen in Saccharomyces cerevisiae is present in two pools, one soluble and intracellular, the other present in the cell wall and rendered water-insoluble owing to its covalent linkage to cell wall beta-glucan. The insoluble glycogen fraction was solubilized using beta-1,3-glucanase. The alpha beta-glucan complex obtained showed intense red staining with iodine and was isolated from free beta-glucans by affinity chromatography using concanavalin A sepharose 4B. Further use of molecular sieving has confirmed that glycogen is linked to beta-glucan as the non-retained fraction on Biogel P2 split into two peaks on treatment with amyloglucosidase. Partial acid hydrolysis and subsequent paper chromatography of the alpha beta-glucan complex isolated revealed the presence of gentiobiose and other higher oligosaccharides, indicating that glycogen is linked to beta-1,3-glucan through a beta-1,6 branch. The insoluble glycogen can be extracted in a soluble form by acetic acid treatment and is known as acid-soluble glycogen. The presence of glycogen in the cell wall is confirmed by controlled enzymatic release of alpha beta-glucan complex using lyticase from Arthobacter luteus without disruption of the plasma membrane, as can be visualized using electron microscopy.
Collapse
|
13
|
Abstract
This study examined the flocculation behavior of two Saccharomyces cerevisiae strains expressing either Flo1 (LCC1209) genotype or NewFlo (LCC125) phenotype in a laminar flow field by measurement of the fundamental flocculation parameter, the orthokinetic capture coefficient. This orthokinetic capture coefficient was measured as a function of shear rate (5.95-223 s(-1)) and temperature (5-45 degrees C). The capture coefficients of these suspensions were directly proportional to the inverse of shear rate, and exhibited an increase as the temperature was increased to 45 degrees C. The capture coefficient of pronase-treated cells was also measured over similar shear rate and temperature range. A theory, which predicts capture coefficient values due to zymolectin interactions, was simplified from that developed by Long et al. [Biophys. J. 76: (1999) 1112]. This new modified theory uses estimates of: (1) cell wall densities of zymolectins and carbohydrate ligands; (2) cell wall collision contact area; and (3) the forward rate coefficient of binding to predict theoretical capture coefficients. A second model that involves both zymolectin interactions and DLVO forces was used to describe the phenomenon of yeast flocculation at intermediate shear ranges, to explain yeast flocculation in laminar flow.
Collapse
Affiliation(s)
- J W Hsu
- Department of Food Science and Technology, Dalhousie University, P.O. Box 1000, Halifax, Nova Scotia, Canada B3J 2X4
| | | | | |
Collapse
|
14
|
|
15
|
Rhymes MR, Smart KA. Effect of Storage Conditions on the Flocculation and Cell Wall Characteristics of an Ale Brewing Yeast Strain. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2001. [DOI: 10.1094/asbcj-59-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Maureen R. Rhymes
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, OX3 OBP, England
| | - Katherine A. Smart
- School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, OX3 OBP, England
| |
Collapse
|
16
|
Porro D, Venturini M, Brambilla L, Alberghina L, Vanoni M. Relating growth dynamics and glucoamylase excretion of individual Saccharomyces cerevisiae cells. J Microbiol Methods 2000; 42:49-55. [PMID: 11000430 DOI: 10.1016/s0167-7012(00)00171-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have developed a novel flow cytometric procedure that allows determinations of properties of protein excretion in the growth medium on a cell-by-cell basis in Saccharomyces cerevisiae. The procedure is based on labelling of a periplasmically secreted protein with antibodies conjugated to a fluorescent marker such as fluorescein isothiocyanate (FITC). The staining conditions did not perturb cell growth after resuspension of stained cells in growth medium. Decrease in fluorescence was found to correlate with excretion of glucoamylase into the growth medium. The analysis of the staining pattern over time provides information on the behaviour of individual cells belonging to different cell-cycle phases and can be used to calculate the specific excretion rate of the overall population.
Collapse
Affiliation(s)
- D Porro
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, P.zza della Scienza N degrees 2, 20126, Milan, Italy.
| | | | | | | | | |
Collapse
|
17
|
Mallet L, Renault G, Jacquet M. Functional cloning of the adenylate cyclase gene of Candida albicans in Saccharomyces cerevisiae within a genomic fragment containing five other genes, including homologues of CHS6 and SAP185. Yeast 2000; 16:959-66. [PMID: 10870107 DOI: 10.1002/1097-0061(200007)16:10<959::aid-yea592>3.0.co;2-q] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned a genomic fragment of Candida albicans by complementation of a Saccharomyces cerevisiae cyr1 mutant. This fragment contains the two-thirds C-terminal part of the adenylate cyclase CaCYR1. The complete gene has been sequenced from PCR fragments amplified from genomic DNA, and contains an ORF of 1690 amino acids closely related to other fungal adenylate cyclases. Adjacent to the adenylate cyclase gene, we have sequenced six other putative genes. CaCHS6, CaYNL191 and CaYJL098 are named on the basis of their close similarity with S. cerevisiae genes. ORFs CaYJL097a and CaYJL097b represent two repeated homologues of the S. cerevisiae YJL097w, which probably arose from an ancient duplication. The last one is a hypothetical ORF, CaYKR049, which presents only a very weak similarity with YKR049. The S. cerevisiae homologues of three of these genes are co-localized on chromosome X but with a different order and orientation.
Collapse
Affiliation(s)
- L Mallet
- Laboratoire Information Génétique et Développement, Institut de Génétique et Microbiologie, UMR CNRS C8621, Université Paris-Sud, Bâtiment 400, 91405 Orsay cedex, France
| | | | | |
Collapse
|
18
|
Popolo L, Vai M. The Gas1 glycoprotein, a putative wall polymer cross-linker. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1426:385-400. [PMID: 9878845 DOI: 10.1016/s0304-4165(98)00138-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The yeast cell wall, which for years has been regarded as a static cellular component, has been revealed to be dynamic in its structure and composition and complex in its enzymatic activity. The S. cerevisiae cell wall is composed of beta-1,3/beta-1,6-glucans, mannoproteins, and chitin, which are assembled into an extracellular matrix essential for maintenance of cell integrity. Gas1p, a glycoprotein anchored to the outer leaflet of the plasma membrane through a glycosylphosphatidylinositol, plays a key role in cell wall assembly. Loss of Gas1p leads to several morphogenetic defects and to a decrease in the amount of cross-links between the cell wall glucans. These defects in turn trigger a compensatory response that guarantees cell viability. Several Gas1p homologs have been isolated from Candida species and S. pombe. The Gas1p family also includes two plant proteins with endo-beta-1,3-glucanase activity. Sequence comparisons reveal that Gas1p family proteins have a modular organization of domains. The genetic and molecular analyses reviewed here suggest that Gas1p could play a role as a polymer cross-linker, presumably by catalyzing a transglycosylation reaction.
Collapse
Affiliation(s)
- L Popolo
- Università degli Studi di Milano, Dipartimento di Fisiologia e Biochimica Generali, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
19
|
Silberstein S, Schlenstedt G, Silver PA, Gilmore R. A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J Cell Biol 1998; 143:921-33. [PMID: 9817751 PMCID: PMC2132949 DOI: 10.1083/jcb.143.4.921] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Revised: 09/14/1998] [Indexed: 01/16/2023] Open
Abstract
Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Deltascj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Deltascj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.
Collapse
Affiliation(s)
- S Silberstein
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0103, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Mrsă V, Seidl T, Gentzsch M, Tanner W. Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of Saccharomyces cerevisiae. Yeast 1997; 13:1145-54. [PMID: 9301021 DOI: 10.1002/(sici)1097-0061(19970930)13:12<1145::aid-yea163>3.0.co;2-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Intact Saccharomyces cerevisiae cells were biotinylated with the non-permeable sulfosuccinimidyl-6-(biotinamido) hexanoate reagent. Twenty specifically labelled cell wall proteins would be extracted and visualized on SDS gels via streptavidin/horseradish peroxidase. Nine cell wall proteins were released by SDS extraction under reducing conditions and were designated Scw1-9p for (soluble cell wall proteins); five proteins were released from SDS-extracted cell walls by laminarinase (Ccw1-5p for covalently linked cell wall proteins) and six with mild (30 mM-NaOH, 4 degrees C, 14 h) alkali treatment (Ccw6-11p). N-terminal sequences of the Ccw proteins 6, 7, 8 and 11 showed that these cell wall proteins are members of the PIR gene family (predicted proteins with internal repeats), CCW6 being identical to PIR1 and CCW8 to PIR3. Single gene disruptions of all four genes did not yield a phenotype. In the CCW11 disruption the Ccw11p as well as the laminarinase-extracted Ccw5 protein was missing. The new cell wall proteins are O-mannosylated, contain a Kex2 processing site, but no C-terminal GPI anchor sequence.
Collapse
Affiliation(s)
- V Mrsă
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
22
|
Luján HD, Mowatt MR, Nash TE. Mechanisms of Giardia lamblia differentiation into cysts. Microbiol Mol Biol Rev 1997; 61:294-304. [PMID: 9293183 PMCID: PMC232612 DOI: 10.1128/mmbr.61.3.294-304.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbiologists have long been intrigued by the ability of parasitic organisms to adapt to changes in the environment. Since most parasites occupy several niches during their journey between vectors and hosts, they have developed adaptive responses which allow them to survive under adverse conditions. Therefore, the life cycles of protozoan and helminthic parasites are excellent models with which to study numerous mechanisms involved in cell differentiation, such as the regulation of gene expression, signal transduction pathways, and organelle biogenesis. Unfortunately, many of these studies are very difficult because the conditions needed to elicit developmental changes in parasites remain undetermined in most cases. Recently, several interesting findings were reported on the process of differentiation of Giardia lamblia trophozoites into cysts. G. lamblia is a flagellated protozoan that inhabits the upper small intestine of its vertebrate host and is a major cause of enteric disease worldwide. It belongs to the earliest identified lineage among eukaryotes and therefore offers a unique insight into the progression from primitive to more complex eukaryotic cells. The discovery of a specific stimulus that induces trophozoites to differentiate into cysts, the identification and characterization of encystation-specific molecules, the elucidation of novel biochemical pathways, and the development of useful reagents and techniques have made this parasite an excellent model with which to study differentiation in eukaryotic cells. In this review, we summarize the most recent fundings on several aspects of Giardia differentiation and discuss the significance of these findings within the context of current knowledge in the field.
Collapse
Affiliation(s)
- H D Luján
- Department of Biological Chemistry, School of Medicine, National University of Córdoba, Argentina
| | | | | |
Collapse
|
23
|
Bony M, Thines-Sempoux D, Barre P, Blondin B. Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p. J Bacteriol 1997; 179:4929-36. [PMID: 9244284 PMCID: PMC179343 DOI: 10.1128/jb.179.15.4929-4936.1997] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Saccharomyces cerevisiae FLO1 gene encodes a large 1,536-amino-acid serine- and threonine-rich protein involved in flocculation. We have assessed the localization of Flo1p by immunoelectron microscopy, and in this study we show that this protein is located in the external mannoprotein layer of the cell wall, at the plasma membrane level and in the periplasm. The protein was also visualized in the endoplasmic reticulum and in the nuclear envelope, indicating that it was secreted through the secretory pathway. The protein was detected by Western blotting in cell wall extracts as a high-molecular-mass (>200 kDa) polydisperse material obviously as a result of extensive N and probably O glycosylation. Flo1p was extracted from cell walls in large amounts by boiling in sodium dodecyl sulfate, suggesting that it is noncovalently anchored to the cell wall network. The membranous forms of Flo1p were shown to be solubilized by phosphatidylinositol-phospholipase C treatment, suggesting that Flo1p is glycosyl phosphatidylinositol (GPI) anchored to this organelle. The expression of truncated forms with the hydrophobic C-terminal domain deleted led to the secretion of the protein in the culture medium. The hydrophobic C terminus, which is a putative GPI anchoring domain, is therefore necessary for the attachment of Flo1p in the cell wall. Deletion analysis also revealed that the N-terminal domain of Flo1p was essential for cellular aggregation. On the whole, our data indicate that Flo1p is a true cell wall protein which plays a direct role in cell-cell interaction.
Collapse
Affiliation(s)
- M Bony
- Laboratoire de Microbiologie et Technologie des Fermentations, IPV, INRA-ENSA, Montpellier, France
| | | | | | | |
Collapse
|
24
|
Abstract
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed.
Collapse
Affiliation(s)
- W Magliani
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | |
Collapse
|
25
|
Sipos G, Reggiori F, Vionnet C, Conzelmann A. Alternative lipid remodelling pathways for glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae. EMBO J 1997; 16:3494-505. [PMID: 9218792 PMCID: PMC1169975 DOI: 10.1093/emboj/16.12.3494] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins of Saccharomyces cerevisiae exist with two types of lipid moiety--diacylglycerol or ceramide--both of which contain 26:0 fatty acids. To understand at which stage of biosynthesis these long-chain fatty acids become incorporated into diacylglycerol anchors, we compared the phosphatidylinositol moieties isolated from myo-[2-(3)H]inositol-labelled protein anchors and from GPI intermediates. There is no evidence for the presence of long-chain fatty acids in any intermediate of GPI biosynthesis. However, GPI-anchored proteins contain either the phosphatidylinositol moiety characteristic of the precursor lipids or a version with a long-chain fatty acid in the sn-2 position of glycerol. The introduction of long-chain fatty acids into sn-2 occurs in the endoplasmic reticulum (ER) and is independent of the sn-2-specific acyltransferase SLC1. Analysis of ceramide anchors revealed the presence of two types of ceramide, one added in the ER and another more polar molecule which is found only on proteins which have reached the mid Golgi. In summary, the lipid of GPI-anchored proteins can be exchanged by at least three different remodelling pathways: (i) remodelling from diacylglycerol to ceramide in the ER as proposed previously; (ii) remodelling from diacylglycerol to a more hydrophobic diacylglycerol with a long-chain fatty acid in sn-2 in the ER; and (iii) remodelling to a more polar ceramide in the Golgi.
Collapse
Affiliation(s)
- G Sipos
- Institute of Biochemistry, University of Fribourg, Switzerland
| | | | | | | |
Collapse
|
26
|
Reggiori F, Canivenc-Gansel E, Conzelmann A. Lipid remodeling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. EMBO J 1997; 16:3506-18. [PMID: 9218793 PMCID: PMC1169976 DOI: 10.1093/emboj/16.12.3506] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous experiments with Saccharomyces cerevisiae had suggested that diacylglycerol-containing glycosylphosphatidylinositols (GPIs) are added to newly synthesized proteins in the endoplasmic reticulum (ER) and that ceramides subsequently are incorporated into GPI proteins by lipid remodeling. Here we prove this hypothesis by labeling yeast cells with [3H]dihydrosphingosine ([3H]DHS) and showing that this tracer is incorporated into many GPI proteins even when protein synthesis and, hence, anchor addition, is blocked by cycloheximide. [3H]DHS incorporation is greatly enhanced if endogenous synthesis of DHS is inhibited by myriocin. Labeled GPI anchors contain three types of ceramides which, based on previous and present results, are identified as DHS-C26:0, phytosphingosine-C26:0 and phytosphingosine-C26:0-OH, the latter being found only on proteins which have reached the Golgi. Lipid remodeling can occur both in the ER and in a later secretory compartment. In addition, ceramide is incorporated into GPI proteins a long time after their initial synthesis by a process in which one ceramide gets replaced by another ceramide. Remodeling outside the ER requires vesicular flow from the ER to the Golgi, possibly to supply the remodeling enzymes with ceramides.
Collapse
Affiliation(s)
- F Reggiori
- Institute of Biochemistry, University of Fribourg, Switzerland
| | | | | |
Collapse
|
27
|
Christodoulidou A, Bouriotis V, Thireos G. Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. J Biol Chem 1996; 271:31420-5. [PMID: 8940152 DOI: 10.1074/jbc.271.49.31420] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The formation of the ascospore wall of Saccharomyces cerevisiae requires the coordinate activity of enzymes involved in the biosynthesis of its components such as chitosan, the deacetylated form of chitin. We have cloned the CDA1 and CDA2 genes which together account for the total chitin deacetylase activity of the organism. We have shown that expression of these genes is restricted to a distinct time period during sporulation. The two genes are functionally redundant, each contributing equally to the total chitin deacetylase activity. Diploids disrupted for both genes sporulate as efficiently as wild type cells, and the resulting mutant spores are viable under standard laboratory conditions. However, they fail to emit the natural fluorescence of yeast spores imparted by the dityrosine residues of the outermost ascospore wall layer. Moreover, mutant spores are relatively sensitive to hydrolytic enzymes, ether, and heat shock, a fact that underscores the importance of the CDA genes for the proper formation of the ascospore wall.
Collapse
Affiliation(s)
- A Christodoulidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-HELLAS, Greece.
| | | | | |
Collapse
|
28
|
Lo WS, Dranginis AM. FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 1996; 178:7144-51. [PMID: 8955395 PMCID: PMC178626 DOI: 10.1128/jb.178.24.7144-7151.1996] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We report the characterization of a gene encoding a novel flocculin related to the STA genes of yeast, which encode secreted glucoamylase. The STA genes comprise sequences that are homologous to the sporulation-specific glucoamylase SGA and to two other sequences, S2 and S1. We find that S2 and S1 are part of a single gene which we have named FLO11. The sequence of FLO11 reveals a 4,104-bp open reading frame on chromosome IX whose predicted product is similar in overall structure to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. An amino-terminal domain containing a signal sequence and a carboxy-terminal domain with homology to GPI (glycosyl-phosphatidyl-inositol) anchor-containing proteins are separated by a central domain containing a highly repeated threonine- and serine-rich sequence. Yeast cells that express FLO11 aggregate in the calcium-dependent process of flocculation. Flocculation is abolished when FLO11 is disrupted. The product of STA1 also is shown to have flocculating activity. When a green fluorescent protein fusion of FLO11 was expressed from the FLO11 promoter on a single-copy plasmid, fluorescence was observed in vivo at the periphery of cells. We propose that FLO11 encodes a flocculin because of its demonstrated role in flocculation, its structural similarity to other members of the FLO gene family, and the cell surface location of its product. FLO11 gene sequences are present in all yeast strains tested, including all standard laboratory strains, unlike the STA genes which are present only in the variant strain Saccharomyces cerevisiae var. diastaticus. FLO11 differs from all other yeast flocculins in that it is located near a centromere rather than a telomere, and its expression is regulated by mating type. Repression of FLO11-dependent flocculation in diploids is conferred by the mating-type repressor al/alpha2.
Collapse
Affiliation(s)
- W S Lo
- Department of Biological Sciences, St. John's University, Jamaica, New York 11439, USA
| | | |
Collapse
|
29
|
Mendoza I, Quintero FJ, Bressan RA, Hasegawa PM, Pardo JM. Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J Biol Chem 1996; 271:23061-7. [PMID: 8798496 DOI: 10.1074/jbc.271.38.23061] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The PP2B protein phosphatase, also known as calcineurin, is a regulator of ion homeostasis in yeast cells. We have investigated the physiological consequences of constitutive expression of a recombinant form of calcineurin in which the Ca2+/calmodulin-binding and autoinhibitory domains of the catalytic subunit were deleted. The concomitant expression of the regulatory subunit along with the truncated catalytic subunit resulted in high tolerance to toxic levels of Na+ and Li+. This activated form of calcineurin substituted for the Na+ stress signal to promote the expression of the ENA1 gene, encoding a P-ATPase pump, and to induce the transition of the K+ uptake system to the high affinity mode that restricts influx of Na+ and Li+. In addition, the transcriptional responsiveness of ENA1 to Na+ stress was enhanced. These results demonstrate that calcineurin has a pivotal role in a signaling cascade activated by ion stress in yeast. Moreover, we found that changes in the level of calcineurin activity affected budding pattern and cell morphology. Cells expressing the truncated calcineurin were elongated and budded in an unipolar pattern, whereas calcineurin-deficient mutants budded randomly. These results suggest that calcineurin may also act in the establishment of cell polarity.
Collapse
Affiliation(s)
- I Mendoza
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, P. O. Box 1052, Sevilla 41080, Spain
| | | | | | | | | |
Collapse
|
30
|
Jiang B, Sheraton J, Ram AF, Dijkgraaf GJ, Klis FM, Bussey H. CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in beta 1,6-glucan assembly. J Bacteriol 1996; 178:1162-71. [PMID: 8576053 PMCID: PMC177780 DOI: 10.1128/jb.178.4.1162-1171.1996] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
CWH41 encodes a novel type II integral membrane N-glycoprotein located in the endoplasmic reticulum. Disruption of the CWH41 gene leads to a K1 killer toxin-resistant phenotype and a 50% reduction in the cell wall beta 1,6-glucan level. CWH41 also displays strong genetic interactions with KRE1 and KRE6, two genes known to be involved in the beta 1,6-glucan biosynthetic pathway. The cwh41 delta kre6 delta double mutant is nonviable; and the cwh41 delta kre1 delta double mutation results in strong synergistic defects, with a severely slow-growth phenotype, a 75% reduction in beta 1,6-glucan level, and the secretion of a cell wall glucomannoprotein, Cwp1p. These results provide strong genetic evidence indicating that Cwh41p plays a functional role, possibly as a new synthetic component, in the assembly of cell wall beta 1,6-glucan.
Collapse
Affiliation(s)
- B Jiang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Ganeva V, Galutzov B, Teissié J. Electric field mediated loading of macromolecules in intact yeast cells is critically controlled at the wall level. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1240:229-36. [PMID: 8541294 DOI: 10.1016/0005-2736(95)00181-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed on wall free systems. Penetration of a 70 kDa FITC dextran was obtained only by using drastic conditions and only a very limited number of yeast cells which took up macromolecules remained viable. Most dextrans were trapped in the wall. A dramatic improvement in transfer of dextrans was observed when the cells were treated by dithiothreitol before pulsation. A cytoplasmic protein leakage was detected after the electric treatment suggesting that an irreversible damage took place in the walls of many pulsed cells. Electroloading of macromolecules in intact yeast cells appears to be controlled by a field induced short lived alteration of the envelope organization.
Collapse
Affiliation(s)
- V Ganeva
- Dept. 3, Glycoconjugués et Biomembranes, LPTF CNRS 118 Route de Narbonne, Toulouse, France
| | | | | |
Collapse
|
32
|
Luján HD, Mowatt MR, Conrad JT, Bowers B, Nash TE. Identification of a novel Giardia lamblia cyst wall protein with leucine-rich repeats. Implications for secretory granule formation and protein assembly into the cyst wall. J Biol Chem 1995; 270:29307-13. [PMID: 7493963 DOI: 10.1074/jbc.270.49.29307] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Giardia lamblia trophozoites, like most intestinal parasitic protozoa, undergo fundamental biological changes to survive outside the intestine of their mammalian host by differentiating into infective cysts. This complex process entails the coordinated production, processing, and transport of cyst wall constituents for assembly into a protective cyst wall. Yet, little is known about this process and the identity of cyst wall constituents. We previously identified a 26-kDa cyst wall protein, CWP1. In the present work, using monoclonal antibodies to cyst wall antigens, we cloned the gene that encodes a novel 39-kDa cyst wall protein, CWP2. Expression of CWP1 and CWP2 was induced during encystation with identical kinetics. Soon after synthesis, these two proteins combine to form a stable complex, which is concentrated within the encystation-specific secretory granules before incorporation into the cyst wall. Both proteins contain five tandem copies of a 24-residue leucine-rich repeat, a motif implicated in protein-protein interactions. Unlike CWP1, CWP2 has an extremely basic 121-residue COOH-terminal extension that might be involved in the sorting of these proteins to the secretory granules.
Collapse
Affiliation(s)
- H D Luján
- Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
33
|
Silberstein S, Collins PG, Kelleher DJ, Gilmore R. The essential OST2 gene encodes the 16-kD subunit of the yeast oligosaccharyltransferase, a highly conserved protein expressed in diverse eukaryotic organisms. J Cell Biol 1995; 131:371-83. [PMID: 7593165 PMCID: PMC2199988 DOI: 10.1083/jcb.131.2.371] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oligosaccharyltransferase catalyzes the transfer of a preassembled high mannose oligosaccharide from a dolichol-oligosaccharide donor to consensus glycosylation acceptor sites in newly synthesized proteins in the lumen of the rough endoplasmic reticulum. The Saccharomyces cerevisiae oligosaccharyltransferase is an oligomeric complex composed of six non-identical subunits (alpha-zeta). The alpha, beta, gamma, and delta subunits of the oligosaccharyltransferase are encoded by the OST1, WBP1, OST3, and SWP1 genes, respectively. Here we describe the functional characterization of the OST2 gene that encodes the epsilon-subunit of the oligosaccharyltransferase. Genomic disruption of the OST2 locus was lethal in haploid yeast showing that expression of the Ost2 protein is essential for viability. Overexpression of the Ost2 protein suppresses the temperature-sensitive phenotype of the wbp1-2 allele and increases in vivo and in vitro oligosaccharyltransferase activity in a wbp1-2 strain. An analysis of a series of conditional ost2 mutants demonstrated that defects in the Ost2 protein cause pleiotropic underglycosylation of soluble and membrane-bound glycoproteins. Microsomal membranes isolated from ost2 mutant yeast show marked reductions in the in vitro transfer of high mannose oligosaccharide from exogenous lipid-linked oligosaccharide to a glycosylation site acceptor tripeptide. Surprisingly, the Ost2 protein was found to be 40% identical to the DAD1 protein (defender against apoptotic cell death), a highly conserved protein initially identified in vertebrate organisms. The protein sequence of ost2 mutant alleles revealed mutations at highly conserved residues in the Ost2p/DAD1 protein sequence.
Collapse
Affiliation(s)
- S Silberstein
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655-0103, USA
| | | | | | | |
Collapse
|
34
|
Teunissen AW, Steensma HY. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 1995; 11:1001-13. [PMID: 7502576 DOI: 10.1002/yea.320111102] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The quality of brewing strains is, in large part, determined by their flocculation properties. By classical genetics, several dominant, semidominant and recessive flocculation genes have been recognized. Recent results of experiments to localize the flocculation genes FLO5 and FLO8, combined with the in silicio analysis of the available sequence data of the yeast genome, have revealed that the flocculation genes belong to a family which comprises at least four genes and three pseudogenes. All members of this gene family are located near the end of chromosomes, just like the SUC, MEL and MAL genes, which are also important for good quality baking or brewing strains. Transcription of the flocculation genes is repressed by several regulatory genes. In addition, a number of genes have been found which cause cell aggregation upon disruption or overexpression in an as yet unknown manner. In total, 33 genes have been reported that are involved in flocculation or cell aggregation.
Collapse
Affiliation(s)
- A W Teunissen
- Institute for Molecular Plant Sciences, Leiden University, The Netherlands
| | | |
Collapse
|
35
|
Benghezal M, Lipke PN, Conzelmann A. Identification of six complementation classes involved in the biosynthesis of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae. J Biophys Biochem Cytol 1995; 130:1333-44. [PMID: 7559756 PMCID: PMC2120569 DOI: 10.1083/jcb.130.6.1333] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are synthesized by the posttranslational attachment of a preformed glycolipid to newly made glycoproteins. alpha-Agglutinin is a GPI-anchored glycoprotein that gets expressed at the cell surface of MAT alpha cells after induction with type a mating factor. Mutants affecting the biosynthesis of GPI anchors were obtained by selecting for the absence of alpha-agglutinin from the cell wall after induction with a-factor at 37 degrees C. 10 recessive mutants were grouped into 6 complementation classes, gpi4 to gpi9. Mutants are considered to be deficient in the biosynthesis of GPI anchors, since each mutant accumulates an abnormal, incomplete GPI glycolipid containing either zero, two, or four mannoses. One mutant accumulates a complete precursor glycolipid, suggesting that it might be deficient in the transfer of complete precursor lipids to proteins. When labeled with [2-3H]inositol, mutants accumulate reduced amounts of radiolabeled GPI-anchored proteins, and the export of the GPI-anchored Gas1p out of the ER is severely delayed in several mutant strains. On the other hand, invertase and acid phosphatase are secreted by all but one mutant. All mutants show an increased sensitivity to calcofluor white and hygromycin B. This suggests that GPI-anchored proteins are required for the integrity of the yeast cell wall.
Collapse
Affiliation(s)
- M Benghezal
- Institute of Biochemistry, University of Fribourg, Switzerland
| | | | | |
Collapse
|