1
|
Wang Y, Wang Y, Cui J, Wu C, Yu B, Wang L. Non-conventional yeasts: promising cell factories for organic acid bioproduction. Trends Biotechnol 2025:S0167-7799(24)00364-0. [PMID: 39799011 DOI: 10.1016/j.tibtech.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025]
Abstract
Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains. We also use selected examples of three-carbon (C3), C4, and C6 organic acids to illustrate the ongoing efforts and challenges of using non-conventional yeasts for organic acid production. This review provides theoretical guidance for the construction of highly robust organic acid producers.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakai Cui
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Chenchen Wu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Limin Wang
- Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Khiaosa-Ard R, Pacífico C, Mahmood M, Mickdam E, Meixner J, Traintinger LS, Zebeli Q. Changes in the solid-associated bacterial and fungal communities following ruminal in vitro fermentation of winery by-products: aspects of the bioactive compounds and feed safety. Anaerobe 2024; 89:102893. [PMID: 39122139 DOI: 10.1016/j.anaerobe.2024.102893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES Feeding winery by-products (WBP) could affect the bovine microbiome because of their phenol compounds and a transfer of WBP-associated microbiota. This work examined changes in the underexplored solid-associated rumen microbiome following the inclusion of WBP. METHODS Using the rumen simulation technique, fermenters were inoculated with the inoculum of donor cows and were fed one of six dietary treatments including a control diet of 70 % hay +30 % concentrate (CON), control diet + 3.7 % commercial grapeseed extract (EXT), 65 % hay + 25 % concentrate + 10 % grape pomace (GP-low), 56 % hay + 24 % concentrate + 20 % grape pomace (GP-high), 70 % hay + 25 % concentrate + 5 % grapeseed meal (GS-low), and 65 % hay + 25 % concentrate + 10 % grapeseed meal (GS-high) (dry matter basis). The compositional changes of bacteria, archaea and fungi in the solid fractions were based on 16S and ITS2 rRNA sequencing. RESULTS The alpha- and beta-diversity of the microbiota were unaffected. However, treatment modified the bacterial composition at low taxonomic levels. Butyrivibrio fibrisolvens, Treponema bryantii, and bacterium MC2010 decreased in EXT, while Treponema berlinense was increased in GP-high and GP-low compared to CON. Concerning fungi, GS-high increased Candida spp., Lachancea spp., Microdochium spp., Mucor spp., Pichia spp., Saturnispora spp., and Zygosaccharomyces spp. compared to CON. Many non-Saccharomyces yeasts were detected in WBP samples but absent in donor cows and CON samples. The genera affected by treatment were not the major contributors to the ruminal degradation of nutrients. CONCLUSIONS The results indicate a sensitivity of rumen solid bacteria to grape phenols when delivered as an extract and a transfer of WBP-associated microbiota into the rumen.
Collapse
Affiliation(s)
- Ratchaneewan Khiaosa-Ard
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Cátia Pacífico
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Mubarik Mahmood
- Animal Nutrition Section, Department of Animal Sciences, University of Veterinary and Animal Sciences, Lahore, Subcampus Jhang, 12 Km Chiniot Road, 35200 Jhang, Pakistan
| | - Elsayed Mickdam
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Julia Meixner
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Laura-Sophie Traintinger
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Qendrim Zebeli
- Centre for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
3
|
Shu M, Yang Y, Pan F, Bian T, Li Q, Liao F, He W, Li S, Xu J, Hu T, Qiao P, Zhong W. Effects of the multi-stress-resistant strain Zygosaccharomyces parabailii MC-5K3 bioaugmentation on microbial communities and metabolomics in tobacco waste extract. Arch Microbiol 2023; 205:299. [PMID: 37525014 DOI: 10.1007/s00203-023-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
Industrial tobacco waste was mainly treated via a reconstituted tobacco process using the paper-making method, which involves aqueous concentrated tobacco waste extract (cTWE) fermentation (aging). The fermentation was done to improve the quality of reconstituted tobacco. However, cTWE is a multi-stress environment that is characterized by low pH (about 4), as well as high sugar (above 150 g/L) and nicotine (above 15 g/L) content. In this study, a specific selection strategy was used to successfully isolate multi-stress-resistant bacterial or fungal strains, that exhibited positive effects on cTWE fermentation, thereby improving the quality of final products. A potential strain Zygosaccharomyces parabailii MC-5K3 was used for the bioaugmentation of cTWE fermentation and it significantly influenced the microbial diversity of the fermented cTWE. Zygosaccharomyces was observed to be the only dominant fungal genus instead of some pathogenic bacterial genera, with an abundance of over 95% after four days, and still more than 80% after a week. Meanwhile, metabolomics profiling showed significant concentration decrease with regard to some flavor-improving relative metabolites, such as 3-hydroxybenzoic acid (log2FC = - 5.25) and sorbitol (log2FC = - 5.54). This finding is extrapolated to be the key influence factor on the quality of the fermented cTWE. The correlation analysis also showed that the alterations in microbial diversity in the fermented cTWE led to some important differential metabolite changes, which finally improved various properties of tobacco products.
Collapse
Affiliation(s)
- Ming Shu
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Yang Yang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Fanda Pan
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Tengfei Bian
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Qi Li
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Fu Liao
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Wenmiao He
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Shitou Li
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China
| | - Jian Xu
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, 310024, Zhejiang, People's Republic of China.
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, People's Republic of China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, People's Republic of China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Serafino G, Di Gianvito P, Giacosa S, Škrab D, Cocolin L, Englezos V, Rantsiou K. Survey of the yeast ecology of dehydrated grapes and strain selection for wine fermentation. Food Res Int 2023; 170:113005. [PMID: 37316074 DOI: 10.1016/j.foodres.2023.113005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
In this study we investigated the yeast population present on partially dehydrated Nebbiolo grapes destined for 'Sforzato di Valtellina', with the aim to select indigenous starters suitable for the production of this wine. Yeasts were enumerated, isolated, and identified by molecular methods (5.8S-ITS-RFLP and D1/D2 domain sequencing). A genetic, physiological (ethanol and sulphur dioxide tolerance, potentially useful enzymatic activities, hydrogen sulphide production, adhesive properties, and killer activity) and oenological (laboratory pure micro-fermentations) characterization was also carried out. Based on relevant physiological features, seven non-Saccharomyces strains were chosen for laboratory-scale fermentations, either in pure or in mixed-culture (simultaneous and sequential inoculum) with a commercial Saccharomyces cerevisiae strain. Finally, the best couples and inoculation strategy were further tested in mixed fermentations in winery. In both laboratory and winery, microbiological and chemical analyses were conducted during fermentation. The most abundant species on grapes were Hanseniaspora uvarum (27.4 % of the isolates), followed by Metschnikowia spp. (21.0 %) and Starmerella bacillaris (12.9 %). Technological characterization highlighted several inter- and intra-species differences. The best oenological aptitude was highlighted for species Starm. bacillaris, Metschnikowia spp., Pichia kluyveri and Zygosaccharomyces bailli. The best fermentation performances in laboratory-scale fermentations were found for Starm. bacillaris and P. kluyveri, due to their ability to reduce ethanol (-0.34 % v/v) and enhance glycerol production (+0.46 g/L). This behavior was further confirmed in winery. Results of this study contribute to the knowledge of yeast communities associated with a specific environment, like those of Valtellina wine region.
Collapse
Affiliation(s)
- Gabriele Serafino
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Paola Di Gianvito
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simone Giacosa
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Domen Škrab
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Vasileios Englezos
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy.
| | - Kalliopi Rantsiou
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
5
|
Dupuis JH, Cheung LKY, Newman L, Dee DR, Yada RY. Precision cellular agriculture: The future role of recombinantly expressed protein as food. Compr Rev Food Sci Food Saf 2023; 22:882-912. [PMID: 36546356 DOI: 10.1111/1541-4337.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Cellular agriculture is a rapidly emerging field, within which cultured meat has attracted the majority of media attention in recent years. An equally promising area of cellular agriculture, and one that has produced far more actual food ingredients that have been incorporated into commercially available products, is the use of cellular hosts to produce soluble proteins, herein referred to as precision cellular agriculture (PCAg). In PCAg, specific animal- or plant-sourced proteins are expressed recombinantly in unicellular hosts-the majority of which are yeast-and harvested for food use. The numerous advantages of PCAg over traditional agriculture, including a smaller carbon footprint and more consistent products, have led to extensive research on its utility. This review is the first to survey proteins currently being expressed using PCAg for food purposes. A growing number of viable expression hosts and recent advances for increased protein yields and process optimization have led to its application for producing milk, egg, and muscle proteins; plant hemoglobin; sweet-tasting plant proteins; and ice-binding proteins. Current knowledge gaps present research opportunities for optimizing expression hosts, tailoring posttranslational modifications, and expanding the scope of proteins produced. Considerations for the expansion of PCAg and its implications on food regulation, society, ethics, and the environment are also discussed. Considering the current trajectory of PCAg, food proteins from any biological source can likely be expressed recombinantly and used as purified food ingredients to create novel and tailored food products.
Collapse
Affiliation(s)
- John H Dupuis
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lennie K Y Cheung
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lenore Newman
- Food and Agriculture Institute, University of the Fraser Valley, Abbotsford, British Columbia, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Natural glycolipids inhibits certain yeasts and lactic acid bacteria pertinent to the spoilage of shelf stable beverages. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Nascimento HM, Prado-Silva L, Brandão LR, Brexó RP, Câmara AA, Rosa CA, Sant'Ana AS. Large scale survey of yeasts in frozen concentrated orange juice (FCOJ): Occurrence, diversity, and resistance to peracetic acid. Int J Food Microbiol 2022; 367:109589. [DOI: 10.1016/j.ijfoodmicro.2022.109589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
|
8
|
Branduardi P, Barroso L, Dato L, Louis EJ, Porro D. Molecular Tools for Leveraging the Potential of the Acid-Tolerant Yeast Zygosaccharomyces bailii as Cell Factory. Methods Mol Biol 2022; 2513:179-204. [PMID: 35781206 DOI: 10.1007/978-1-0716-2399-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microorganisms offer a tremendous potential as cell factories, and they are indeed been used by humans since the previous centuries for biotransformations. Among them, yeasts combine the advantage of a unicellular state with a eukaryotic organization. Moreover, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycete budding yeast, is widely known for its peculiar tolerance to different stresses, among which are organic acids. Moreover, the recent reclassification of the species, including diverse hybrids, is further expanding both fundamental and applied interests. It is therefore reasonable that despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here we describe in detail the methods for determining chromosome number, size, and aneuploidy, transformation, classical target gene disruption or gene integration, and designing of episomal expression plasmids helpful for engineering the yeast Z. bailii .
Collapse
Affiliation(s)
- Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | - Liliane Barroso
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- Department of Genetics & Genome Biology, University of Leicester, Leicester, UK
| | - Laura Dato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Edward J Louis
- Department of Genetics & Genome Biology, University of Leicester, Leicester, UK
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
9
|
Stephan OOH. Interactions, structural aspects, and evolutionary perspectives of the yeast 'START'-regulatory network. FEMS Yeast Res 2021; 22:6461095. [PMID: 34905017 DOI: 10.1093/femsyr/foab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/11/2021] [Indexed: 11/12/2022] Open
Abstract
Molecular signal transduction networks which conduct transcription at the G1 to S phase transition of the eukaryotic cell division cycle have been identified in diverse taxa from mammals to baker´s yeast with analogous functional organization. However, regarding some network components, such as the transcriptional regulators STB1 and WHI5, only few orthologs exist which are confined to individual Saccharomycotina species. While Whi5 has been characterized as yeast analog of human Rb protein, in the particular case of Stb1 (Sin three binding protein 1) identification of functional analogs emerges as difficult because to date its exact functionality still remains obscured. By aiming to resolve Stb1´s enigmatic role this Perspectives article especially surveys works covering relations between Cyclin/CDKs, the heteromeric transcription factor complexes SBF (Swi4/Swi6) and MBF (Mbp1/Swi6), as well as additional coregulators (Whi5, Sin3, Rpd3, Nrm1) which are collectively associated with the orderly transcription at 'Start' of the Saccharomyces cerevisiae cell cycle. In this context, interaction capacities of the Sin3-scaffold protein are widely surveyed because its four PAH domains (Paired Amphiphatic Helix) represent a 'recruitment-code' for gene-specific targeting of repressive histone deacetylase activity (Rpd3) via different transcription factors. Here Stb1 plays a role in Sin3´s action on transcription at the G1/S-boundary. Through bioinformatic analyses a potential Sin3-interaction domain (SID) was detected in Stb1, and beyond that, connections within the G1/S-regulatory network are discussed in structural and evolutionary context thereby providing conceptual perspectives.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Bavaria, Germany
| |
Collapse
|
10
|
Mahmud MS, Hossain MS, Ahmed ATMF, Islam MZ, Sarker ME, Islam MR. Antimicrobial and Antiviral (SARS-CoV-2) Potential of Cannabinoids and Cannabis sativa: A Comprehensive Review. Molecules 2021; 26:7216. [PMID: 34885798 PMCID: PMC8658882 DOI: 10.3390/molecules26237216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance has emerged as a global health crisis and, therefore, new drug discovery is a paramount need. Cannabis sativa contains hundreds of chemical constituents produced by secondary metabolism, exerting outstanding antimicrobial, antiviral, and therapeutic properties. This paper comprehensively reviews the antimicrobial and antiviral (particularly against SARS-CoV-2) properties of C. sativa with the potential for new antibiotic drug and/or natural antimicrobial agents for industrial or agricultural use, and their therapeutic potential against the newly emerged coronavirus disease (COVID-19). Cannabis compounds have good potential as drug candidates for new antibiotics, even for some of the WHO's current priority list of resistant pathogens. Recent studies revealed that cannabinoids seem to have stable conformations with the binding pocket of the Mpro enzyme of SARS-CoV-2, which has a pivotal role in viral replication and transcription. They are found to be suppressive of viral entry and viral activation by downregulating the ACE2 receptor and TMPRSS2 enzymes in the host cellular system. The therapeutic potential of cannabinoids as anti-inflammatory compounds is hypothesized for the treatment of COVID-19. However, more systemic investigations are warranted to establish the best efficacy and their toxic effects, followed by preclinical trials on a large number of participants.
Collapse
Affiliation(s)
- Md Sultan Mahmud
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Mohammad Sorowar Hossain
- Biomedical Research Foundation, Dhaka 1230, Bangladesh;
- School of Environment and Life Sciences, Independent University, Dhaka 1229, Bangladesh
| | - A. T. M. Faiz Ahmed
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Zahidul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Emdad Sarker
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| | - Md Reajul Islam
- Faculty of Textile Engineering, Bangladesh University of Textiles, Dhaka 1208, Bangladesh; (M.S.M.); (A.T.M.F.A.); (M.Z.I.)
| |
Collapse
|
11
|
Iacumin L, Colautti A, Comi G. Zygosaccharomyces rouxii is the predominant species responsible for the spoilage of the mix base for ice cream and ethanol is the best inhibitor tested. Food Microbiol 2021; 102:103929. [PMID: 34809955 DOI: 10.1016/j.fm.2021.103929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/01/2023]
Abstract
A mix base for ice cream (MBIC) is used to produce artisanal or industrial ice creams and desserts and consists of a mixture of different ingredients, including sugar, egg yolk, natural flavors, starch and milk proteins. MBICs, which have chemical-physical characteristics that include a pH of 5.61 and an activity water (Aw) less than or equal to 0.822, are packaged in tin boxes and stored at ambient temperature. Despite the low Aw, MBIC can support osmotolerant and osmophilic yeast growth. The aim of our work was to study the behavior of Zygosaccharomyces rouxii, the main microorganisms responsible of MBIC spoilage, either in the vivo or in a model system in order to inhibit its growth by the selection of antimicrobial agents. Different osmotolerant yeasts belonging to the genus Zygosaccharomyces were isolated and identified from spoiled and unspoiled lots of MBICs. In particular, Z. rouxii was the predominant species responsible for the spoilage, which depended on the high temperature of storage (>20 °C) and was highlighted by the presence of alcohol, esters, acids and gas (CO2), which blew open the tin boxes. To stop spoilage, different antimicrobial compounds were tested: sulfur dioxide, sorbic and benzoic acids and ethanol. However, only 2% v/v ethanol was required to achieve the total inhibition of the Z. rouxii cocktails tested in this work. The use of other antimicrobials cannot be recommended because they were not able to stop yeast spoilage and changed the color and flavor of the products. Conversely, the use of ethanol is suggested because of its extreme effectiveness against osmotolerant yeasts, and the added amount was less than or equal to the taste threshold limit. The MBICs, treated with ethanol, were stable till the end of their shelf-life (6 months).
Collapse
Affiliation(s)
- Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, Università Degli Studi di Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Andrea Colautti
- Department of Agricultural, Food, Environmental and Animal Science, Università Degli Studi di Udine, Via Sondrio 2/a, 33100, Udine, Italy
| | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, Università Degli Studi di Udine, Via Sondrio 2/a, 33100, Udine, Italy.
| |
Collapse
|
12
|
Bertacchi S, Jayaprakash P, Morrissey JP, Branduardi P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb Biotechnol 2021; 15:985-995. [PMID: 34289233 PMCID: PMC8913906 DOI: 10.1111/1751-7915.13886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Biorefineries have a pivotal role in the bioeconomy scenario for the transition from fossil‐based processes towards more sustainable ones relying on renewable resources. Lignocellulose is a prominent feedstock since its abundance and relatively low cost. Microorganisms are often protagonists of biorefineries, as they contribute both to the enzymatic degradation of lignocellulose complex polymers and to the fermentative conversion of the hydrolyzed biomasses into fine and bulk chemicals. Enzymes have therefore become crucial for the development of sustainable biorefineries, being able to provide nutrients to cells from lignocellulose. Enzymatic hydrolysis can be performed by a portfolio of natural enzymes that degrade lignocellulose, often combined into cocktails. As enzymes can be deployed in different operative settings, such as separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF), their characteristics need to be combined with microbial ones to maximize the process. We therefore reviewed how the optimization of lignocellulose enzymatic hydrolysis can ameliorate bioethanol production when Saccharomyces cerevisiae is used as cell factory. Expanding beyond biofuels, enzymatic cocktail optimization can also be pivotal to unlock the potential of non‐Saccharomyces yeasts, which, thanks to broader substrate utilization, inhibitor resistance and peculiar metabolism, can widen the array of feedstocks and products of biorefineries.
Collapse
Affiliation(s)
- Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Pooja Jayaprakash
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.,School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|
13
|
Kimani BG, Kerekes EB, Szebenyi C, Krisch J, Vágvölgyi C, Papp T, Takó M. In Vitro Activity of Selected Phenolic Compounds against Planktonic and Biofilm Cells of Food-Contaminating Yeasts. Foods 2021; 10:1652. [PMID: 34359522 PMCID: PMC8307438 DOI: 10.3390/foods10071652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Phenolic compounds are natural substances that can be obtained from plants. Many of them are potent growth inhibitors of foodborne pathogenic microorganisms, however, phenolic activities against spoilage yeasts are rarely studied. In this study, planktonic and biofilm growth, and the adhesion capacity of Pichia anomala, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Debaryomyces hansenii spoilage yeasts were investigated in the presence of hydroxybenzoic acid, hydroxycinnamic acid, stilbene, flavonoid and phenolic aldehyde compounds. The results showed significant anti-yeast properties for many phenolics. Among the tested molecules, cinnamic acid and vanillin exhibited the highest antimicrobial activity with minimum inhibitory concentration (MIC) values from 500 µg/mL to 2 mg/mL. Quercetin, (-)-epicatechin, resveratrol, 4-hydroxybenzaldehyde, p-coumaric acid and ferulic acid were also efficient growth inhibitors for certain yeasts with a MIC of 2 mg/mL. The D. hansenii, P. anomala and S. pombe biofilms were the most sensitive to the phenolics, while the S. cerevisiae biofilm was quite resistant against the activity of the compounds. Fluorescence microscopy revealed disrupted biofilm matrix on glass surfaces in the presence of certain phenolics. Highest antiadhesion activity was registered for cinnamic acid with inhibition effects between 48% and 91%. The active phenolics can be natural interventions against food-contaminating yeasts in future preservative developments.
Collapse
Affiliation(s)
- Bernard Gitura Kimani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Csilla Szebenyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, H-6724 Szeged, Hungary;
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| |
Collapse
|
14
|
Solieri L. The revenge of Zygosaccharomyces yeasts in food biotechnology and applied microbiology. World J Microbiol Biotechnol 2021; 37:96. [PMID: 33969449 DOI: 10.1007/s11274-021-03066-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022]
Abstract
Non-conventional yeasts refer to a huge and still poorly explored group of species alternative to the well-known model organism Saccharomyces cerevisiae. Among them, Zygosaccharomyces rouxii and the sister species Zygosaccharomyces bailii are infamous for spoiling food and beverages even in presence of several food preservatives. On the other hand, their capability to cope with a wide range of process conditions makes these yeasts very attractive factories (the so-called "ZygoFactories") for bio-converting substrates poorly permissive for the growth of other species. In balsamic vinegar Z. rouxii is the main yeast responsible for converting highly concentrated sugars into ethanol, with a preference for fructose over glucose (a trait called fructophily). Z. rouxii has also attracted much attention for the ability to release important flavor compounds, such as fusel alcohols and the derivatives of 4-hydroxyfuranone, which markedly contribute to fragrant and smoky aroma in soy sauce. While Z. rouxii was successfully proposed in brewing for producing low ethanol beer, Z. bailii is promising for lactic acid and bioethanol production. Recently, several research efforts exploited omics tools to pinpoint the genetic bases of distinctive traits in "ZygoFactories", like fructophily, tolerance to high concentrations of sugars, lactic acid and salt. Here, I provided an overview of Zygosaccharomyces industrially relevant phenotypes and summarized the most recent findings in disclosing their genetic bases. I suggest that the increasing number of genomes available for Z. rouxii and other Zygosaccharomyces relatives, combined with recently developed genetic engineering toolkits, will boost the applications of these yeasts in biotechnology and applied microbiology.
Collapse
Affiliation(s)
- L Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122, Reggio Emilia, Italy.
| |
Collapse
|
15
|
Improvement of Torulaspora delbrueckii Genome Annotation: Towards the Exploitation of Genomic Features of a Biotechnologically Relevant Yeast. J Fungi (Basel) 2021; 7:jof7040287. [PMID: 33920164 PMCID: PMC8070057 DOI: 10.3390/jof7040287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Saccharomyces cerevisiae is the most commonly used yeast in wine, beer, and bread fermentations. However, Torulaspora delbrueckii has attracted interest in recent years due to its properties, ranging from its ability to produce flavor- and aroma-enhanced wine to its ability to survive longer in frozen dough. In this work, publicly available genomes of T. delbrueckii were explored and their annotation was improved. A total of 32 proteins were additionally annotated for the first time in the type strain CBS1146, in comparison with the previous annotation available. In addition, the annotation of the remaining three T. delbrueckii strains was performed for the first time. eggNOG-mapper was used to perform the functional annotation of the deduced T. delbrueckii coding genes, offering insights into its biological significance, and revealing 24 clusters of orthologous groups (COGs), which were gathered in three main functional categories: information storage and processing (28% of the proteins), cellular processing and signaling (27%), and metabolism (23%). Small intraspecies variability was found when considering the functional annotation of the four available T. delbrueckii genomes. A comparative study was also conducted between the T. delbrueckii genome and those from 386 fungal species, revealing a high number of homologous genes with species from the Zygotorulaspora and Zygosaccharomyces genera, but also with Lachancea and S. cerevisiae. Lastly, the phylogenetic placement of T. delbrueckii was clarified using the core homologs that were found across 204 common protein sequences of 386 fungal species and strains.
Collapse
|
16
|
Endoh R, Horiyama M, Ohkuma M. D-Fructose Assimilation and Fermentation by Yeasts Belonging to Saccharomycetes: Rediscovery of Universal Phenotypes and Elucidation of Fructophilic Behaviors in Ambrosiozyma platypodis and Cyberlindnera americana. Microorganisms 2021; 9:758. [PMID: 33916327 PMCID: PMC8065679 DOI: 10.3390/microorganisms9040758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the ability of ascomycetous yeasts to assimilate/ferment d-fructose. This ability of the vast majority of yeasts has long been neglected since the standardization of the methodology around 1950, wherein fructose was excluded from the standard set of physiological properties for characterizing yeast species, despite the ubiquitous presence of fructose in the natural environment. In this study, we examined 388 strains of yeast, mainly belonging to the Saccharomycetes (Saccharomycotina, Ascomycota), to determine whether they can assimilate/ferment d-fructose. Conventional methods, using liquid medium containing yeast nitrogen base +0.5% (w/v) of d-fructose solution for assimilation and yeast extract-peptone +2% (w/v) fructose solution with an inverted Durham tube for fermentation, were used. All strains examined (n = 388, 100%) assimilated d-fructose, whereas 302 (77.8%) of them fermented d-fructose. In addition, almost all strains capable of fermenting d-glucose could also ferment d-fructose. These results strongly suggest that the ability to assimilate/ferment d-fructose is a universal phenotype among yeasts in the Saccharomycetes. Furthermore, the fructophilic behavior of Ambrosiozyma platypodis JCM 1843 and Cyberlindnera americana JCM 3592 was characterized by sugar consumption profiles during fermentation.
Collapse
Affiliation(s)
- Rikiya Endoh
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center (RIKEN BRC-JCM), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; (M.H.); (M.O.)
| | | | | |
Collapse
|
17
|
Bertacchi S, Pagliari S, Cantù C, Bruni I, Labra M, Branduardi P. Enzymatic Hydrolysate of Cinnamon Waste Material as Feedstock for the Microbial Production of Carotenoids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031146. [PMID: 33525450 PMCID: PMC7908450 DOI: 10.3390/ijerph18031146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
In the context of the global need to move towards circular economies, microbial cell factories can be employed thanks to their ability to use side-stream biomasses from the agro-industrial sector to obtain additional products. The valorization of residues allows for better and complete use of natural resources and, at the same time, for the avoidance of waste management to address our needs. In this work, we focused our attention on the microbial valorization of cinnamon waste material after polyphenol extraction (C-PEW) (Cinnamomum verum J.Presl), generally discarded without any additional processing. The sugars embedded in C-PEW were released by enzymatic hydrolysis, more compatible than acid hydrolysis with the subsequent microbial cultivation. We demonstrated that the yeast Rhodosporidium toruloides was able to grow and produce up to 2.00 (±0.23) mg/L of carotenoids in the resulting hydrolysate as a sole carbon and nitrogen source despite the presence of antimicrobial compounds typical of cinnamon. To further extend the potential of our finding, we tested other fungal cell factories for growth on the same media. Overall, these results are opening the possibility to develop separate hydrolysis and fermentation (SHF) bioprocesses based on C-PEW and microbial biotransformation to obtain high-value molecules.
Collapse
Affiliation(s)
- Stefano Bertacchi
- BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.B.); (C.C.)
| | - Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.P.); (I.B.); (M.L.)
| | - Chiara Cantù
- BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.B.); (C.C.)
| | - Ilaria Bruni
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.P.); (I.B.); (M.L.)
| | - Massimo Labra
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.P.); (I.B.); (M.L.)
| | - Paola Branduardi
- BioIndTechLab, Department of Biotechnology and Biosciences, University of Milano—Bicocca, 20126 Milan, Italy; (S.B.); (C.C.)
- Correspondence: ; Tel.: +39-02-64483418
| |
Collapse
|
18
|
Kourmentza K, Gromada X, Michael N, Degraeve C, Vanier G, Ravallec R, Coutte F, Karatzas KA, Jauregi P. Antimicrobial Activity of Lipopeptide Biosurfactants Against Foodborne Pathogen and Food Spoilage Microorganisms and Their Cytotoxicity. Front Microbiol 2021; 11:561060. [PMID: 33505362 PMCID: PMC7829355 DOI: 10.3389/fmicb.2020.561060] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Lipopeptide biosurfactants produced by Bacillus sp. were assessed regarding their antimicrobial activity against foodborne pathogenic and food spoilage microorganisms. Both Gram-positive and Gram-negative bacteria were found not to be susceptible to these lipopeptides. However, mycosubtilin and mycosubtilin/surfactin mixtures were very active against the filamentous fungi Paecilomyces variotti and Byssochlamys fulva, with minimum inhibitory concentrations (MICs) of 1-16 mg/L. They were also active against Candida krusei, MIC = 16-64 mg/L. Moreover it was found that the antifungal activity of these lipopeptides was not affected by differences in isoform composition and/or purity. Furthermore their cytotoxicity tested on two different cell lines mimicking ingestion and detoxification was comparable to those of approved food preservatives such as nisin. Overall, for the first time here mycosubtilin and mycosubtilin/surfactin mixtures were found to have high antifungal activity against food relevant fungi at concentrations lower than their toxicity level hence, suggesting their application for extending the shelf-life of products susceptible to these moulds. In addition combining nisin with mycosubtilin or mycosubtiliin/surfactin mixtures proved to be an effective approach to produce antimicrobials with broader spectrum of action.
Collapse
Affiliation(s)
- Konstantina Kourmentza
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Xavier Gromada
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Nicholas Michael
- Chemical Analysis Facility (CAF), Department of Chemistry, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Gaetan Vanier
- Lipofabrik, Polytech-Lille, Villeneuve d’Ascq, France
| | - Rozenn Ravallec
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
| | - Francois Coutte
- UMR Transfrontalière BioEcoAgro No 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, ICV – Institut Charles Viollette, Lille, France
- Lipofabrik, Polytech-Lille, Villeneuve d’Ascq, France
| | - Kimon Andreas Karatzas
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
19
|
Vinification without Saccharomyces: Interacting Osmotolerant and "Spoilage" Yeast Communities in Fermenting and Ageing Botrytised High-Sugar Wines (Tokaj Essence). Microorganisms 2020; 9:microorganisms9010019. [PMID: 33374579 PMCID: PMC7822429 DOI: 10.3390/microorganisms9010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
The conversion of grape juice to wine starts with complex yeast communities consisting of strains that have colonised the harvested grape and/or reside in the winery environment. As the conditions in the fermenting juice gradually become inhibitory for most species, they are rapidly overgrown by the more adaptable Saccharomyces strains, which then complete the fermentation. However, there are environmental factors that even Saccharomyces cannot cope with. We show that when the sugar content is extremely high, osmotolerant yeasts, usually considered as “spoilage yeasts“, ferment the must. The examination of the yeast biota of 22 botrytised Tokaj Essence wines of sugar concentrations ranging from 365 to 752 g∙L−1 identified the osmotolerant Zygosaccharomyces rouxii, Candida (Starmerella) lactis-condensi and Candida zemplinina (Starmerella bacillaris) as the dominating species. Ten additional species, mostly known as osmotolerant spoilage yeasts or biofilm-producing yeasts, were detected as minor components of the populations. The high phenotypical and molecular (karyotype, mtDNA restriction fragment length polymorphism (RFLP) and microsatellite-primed PCR (MSP-PCR)) diversity of the conspecific strains indicated that diverse clones of the species coexisted in the wines. Genetic segregation of certain clones and interactions (antagonism and crossfeeding) of the species also appeared to shape the fermenting yeast biota.
Collapse
|
20
|
Gil-Rodríguez AM, Garcia-Gutierrez E. Antimicrobial mechanisms and applications of yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:37-72. [PMID: 33934852 DOI: 10.1016/bs.aambs.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yeasts and humans have had a close relationship for millenia. Yeast have been used for food production since the first human societies. Since then, alternative uses have been discovered. Nowadays, antibiotic resistance constitutes a pressing need worldwide. In order to overcome this threat, one of the most important strategies is the search for new antimicrobials in natural sources. Moreover, biopreservation based on natural sources has emerged as an alternative to more common chemical preservatives. Yeasts constitute an underexploited source of antagonistic activity against other microorganisms. Here, we compile a summary of the antagonistic activity of yeast origin against other yeast and other microorganisms, such as bacteria or parasites. We present the mechanisms of action used by yeasts to display these activities. We also provide applications of these antagonistic activities in food industry and agriculture, medicine and veterinary, where yeast promise to play a pivotal role in the near future.
Collapse
|
21
|
Menon AM, Dakal TC. Genomic scanning of the promoter sequence in osmo/halo-tolerance related QTLs in Zygosaccharomyces rouxii. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
22
|
Study on the characterisation and application of synthetic peptide Snakin-1 derived from potato tubers – Action against food spoilage yeast. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107362] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Kuanyshev N, Rao CV, Dien B, Jin YS. Domesticating a food spoilage yeast into an organic acid-tolerant metabolic engineering host: Lactic acid production by engineered Zygosaccharomyces bailii. Biotechnol Bioeng 2020; 118:372-382. [PMID: 33030791 DOI: 10.1002/bit.27576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/29/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Lactic acid represents an important class of commodity chemicals, which can be produced by microbial cell factories. However, due to the toxicity of lactic acid at lower pH, microbial production requires the usage of neutralizing agents to maintain neutral pH. Zygosaccharomyces bailii, a food spoilage yeast, can grow under the presence of organic acids used as food preservatives. This unique trait of the yeast might be useful for producing lactic acid. With the goal of domesticating the organic acid-tolerant yeast as a metabolic engineering host, seven Z. bailii strains were screened in a minimal medium with 10 g/L of acetic, or 60 g/L of lactic acid at pH 3. The Z. bailii NRRL Y7239 strain was selected as the most robust strain to be engineered for lactic acid production. By applying a PAN-ARS-based CRISPR-Cas9 system consisting of a transfer RNA promoter and NAT selection, we demonstrated the targeted deletion of ADE2 and site-specific integration of Rhizopus oryzae ldhA coding for lactate dehydrogenase into the PDC1 locus. The resulting pdc1::ldhA strain produced 35 g/L of lactic acid without ethanol production. This study demonstrates the feasibility of the CRISPR-Cas9 system in Z. bailii, which can be applied for a fundamental study of the species.
Collapse
Affiliation(s)
- Nurzhan Kuanyshev
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V Rao
- The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Bruce Dien
- The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,The Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Shwaiki LN, Arendt EK, Lynch KM. Anti-yeast activity and characterisation of synthetic radish peptides Rs-AFP1 and Rs-AFP2 against food spoilage yeast. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Arıkan M, Mitchell AL, Finn RD, Gürel F. Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. J Food Sci 2020; 85:455-464. [PMID: 31957879 PMCID: PMC7027524 DOI: 10.1111/1750-3841.14992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/26/2023]
Abstract
Kombucha, a fermented tea generated from the co-culture of yeasts and bacteria, has gained worldwide popularity in recent years due to its potential benefits to human health. As a result, many studies have attempted to characterize both its biochemical properties and microbial composition. Here, we have applied a combination of whole metagenome sequencing (WMS) and amplicon (16S rRNA and Internal Transcribed Spacer 1 [ITS1]) sequencing to investigate the microbial communities of homemade Kombucha fermentations from day 3 to day 15. We identified the dominant bacterial genus as Komagataeibacter and dominant fungal genus as Zygosaccharomyces in all samples at all time points. Furthermore, we recovered three near complete Komagataeibacter genomes and one Zygosaccharomyces bailii genome and then predicted their functional properties. Also, we determined the broad taxonomic and functional profile of plasmids found within the Kombucha microbial communities. Overall, this study provides a detailed description of the taxonomic and functional systems of the Kombucha microbial community. Based on this, we conject that the functional complementarity enables metabolic cross talks between Komagataeibacter species and Z. bailii, which helps establish the sustained a relatively low diversity ecosystem in Kombucha.
Collapse
Affiliation(s)
- Muzaffer Arıkan
- Regenerative and Restorative Medicine Research CenterIstanbul Medipol Univ.34810IstanbulTurkey
| | - Alex L. Mitchell
- European Molecular Biology LaboratoryEuropean Bioinformatics Inst. (EMBL‐EBI)Wellcome Trust Genome Campus, HinxtonCambridgeUnited Kingdom
| | - Robert D. Finn
- European Molecular Biology LaboratoryEuropean Bioinformatics Inst. (EMBL‐EBI)Wellcome Trust Genome Campus, HinxtonCambridgeUnited Kingdom
| | - Filiz Gürel
- Molecular Biology and Genetics Dept.Faculty of Science, Istanbul Univ.34134IstanbulTurkey
| |
Collapse
|
26
|
|
27
|
García-Ríos E, Ruiz-Rico M, Guillamón JM, Pérez-Esteve É, Barat JM. Improved antimicrobial activity of immobilised essential oil components against representative spoilage wine microorganisms. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii. Appl Environ Microbiol 2018; 84:AEM.02294-17. [PMID: 29269498 PMCID: PMC5812937 DOI: 10.1128/aem.02294-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae. Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production. IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains.
Collapse
|