1
|
Wiezel GA, Oliveira IS, Ferreira IG, Bordon KCF, Arantes EC. Hyperglycosylation impairs the inhibitory activity of rCdtPLI2, the first recombinant beta-phospholipase A 2 inhibitor. Int J Biol Macromol 2024; 280:135581. [PMID: 39270892 DOI: 10.1016/j.ijbiomac.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Crotoxin, a phospholipase A2 (PLA2) complex and the major Crotalus venom component, is responsible for the main symptoms described in crotalic snakebite envenomings and a key target for PLA2 inhibitors (PLIs). PLIs comprise the alpha, beta and gamma families, and, due to a lack of reports on beta-PLIs, this study aimed to heterologously express CdtPLI2 from Crotalus durissus terrificus venom gland to improve the knowledge of the neglected beta-PLI family. Thereby, recombinant CdtPLI2 (rCdtPLI2) was produced in the eukaryotic Pichia pastoris system to keep some native post-translational modifications. rCdtPLI2 (~41 kDa) presents both N- and O-linked glycans. Alpha-mannosidase digested-rCdtPLI2 (1 mol) strongly inhibited (73%) CB-Cdc catalytic activity (5 moles), demonstrating that glycosylations performed by P. pastoris affect rCdtPLI2 action. Digested-rCdtPLI2 also inhibited PLA2s from diverse Brazilian snake venoms. Furthermore, rCdtPLI2 (1 mol) abolished the catalytic activity of Lmr-PLA2 (5 moles) and reduced the CTx-Cdc (5 moles) enzyme activity by 65%, suppressing basic and acidic snake venom PLA2s. Additionally, crotalic antivenom did not recognize rCdtPLI2, suggesting a lack of neutralization by antivenom antibodies. These findings demonstrate that studying snake venom components may reveal interesting novel molecules to be studied in the snakebite treatment and help to understand these underexplored inhibitors.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
García-González G, Ascacio-Martínez JÁ, Hernández-Bello R, González GM, Palma-Nicolás JP. Expression of recombinant protease MarP from Mycobacterium tuberculosis in Pichia pastoris and its effect on human monocytes. Biotechnol Lett 2021; 43:1787-1798. [PMID: 34028659 DOI: 10.1007/s10529-021-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Mycobacterial acid-resistant protease (MarP) is a membrane-associated serine protease involved in the survival of Mycobacterium tuberculosis in macrophages; here we produced MarP in the yeast Pichia pastoris and study its involvement in macrophage immune modulation. RESULTS Pichia pastoris vectors, harboring a full-length or a partial sequence of MarP, were constructed. GS115 clones were selected, and homologous recombination at the AOX1 locus was assessed by PCR. Protein was purified by nickel affinity chromatography, and its effect on the cytokine profile was tested in human monocytes. Only the partial MarP protein (121-397 a.a.) lacking the transmembrane domain was successfully expressed as an N-glycosylated proteolytically active protease. In vitro stimulation of THP-1 cells with MarP promoted the release of TNF-α and IL-10. CONCLUSION Mycobacterial MarP was successfully expressed in P. pastoris, and it is capable of cytokine release in vitro.
Collapse
Affiliation(s)
- Gerardo García-González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - Jorge Ángel Ascacio-Martínez
- Departamento de Bioquímica y medicina molecular, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Romel Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - Gloria María González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico
| | - José Prisco Palma-Nicolás
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Ave. Francisoco I. Madero y Dr. Eduardo Aguirre Pequeño s/n, Col. Mitras Centro, C.P. 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
3
|
Expression and Characterization of a Novel Antifungal Exo-β-1,3-glucanase from Chaetomium cupreum. Appl Biochem Biotechnol 2016; 182:261-275. [DOI: 10.1007/s12010-016-2325-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
4
|
Eaton CJ, Dupont PY, Solomon P, Clayton W, Scott B, Cox MP. A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in Epichloë spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:218-31. [PMID: 25496592 DOI: 10.1094/mpmi-09-14-0293-fi] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. In contrast, phytopathogenic fungi fall at the opposite end of the symbiotic spectrum, causing reduced host growth or even death. In order to exploit beneficial interactions and prevent pathogenic ones, it is essential to understand the molecular differences underlying these alternative states. The association between the endophyte Epichloë festucae and Lolium perenne (perennial ryegrass) is an excellent system for studying these molecular patterns due to the existence of several fungal mutants that have an antagonistic rather than a mutualistic interaction with the host plant. By comparing gene expression in a wild-type beneficial association with three mutant antagonistic associations disrupted in key signaling genes, we identified a core set of 182 genes that show common differential expression patterns between these two states. These gene expression changes are indicative of a nutrient-starvation response, as supported by the upregulation of genes encoding degradative enzymes, transporters, and primary metabolism, and downregulation of genes encoding putative small-secreted proteins and secondary metabolism. These results suggest that disruption of a mutualistic symbiotic interaction may lead to an elevated uptake and degradation of host-derived nutrients and cell-wall components, reminiscent of phytopathogenic interactions.
Collapse
|
5
|
Yang L, Xu B, He W, Zhang L. The HrpW protein of Lonsdalea quercina N-5-1 has pectate lyase activity and is required for full bacterial virulence. J Basic Microbiol 2014; 54:1126-35. [PMID: 24395334 DOI: 10.1002/jobm.201300342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/23/2013] [Indexed: 11/12/2022]
Abstract
Lonsdalea quercina N-5-1 is a bacterial pathogen that causes poplar bark cankers. It has been isolated from the branch of Populus × euramericana cv. "74/76" in Henan, China. Previous studies have revealed that the Type III secretion system (T3SS) acts as an essential pathogenic factor in L. quercina N-5-1. HrpW is a putative effector of T3SS in strain N-5-1, which has a typical harpin domain at the amino terminal and a pectate lyase (Pel) domain at its carboxyl terminal. Genetic evidence had shown that, compared to the wild-type and the complementary strain, the hrpW mutation causes a small but significant reduction in virulence when inoculated on the poplar branches. The amino terminal domain of HrpW was found to trigger tobacco hypersensitive response, but the carboxyl terminal domain of HrpW was not. Unlike most HrpW homologs in other bacteria, the carboxyl terminal domain of HrpW of strain N-5-1 exhibited detectable pectate lyase activity. Site-direction mutations (W104A, W171M) further demonstrated that two tryptophan residues were essential to its pectate lyase activity. The results of the present work suggest that HrpW in L. quercina N-5-1 possesses pectate lyase activity and acts as a nonessential but important pathogenic factor in poplar bark canker disease.
Collapse
Affiliation(s)
- Li Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | | | | | | |
Collapse
|
6
|
Damak N, Abdeljalil S, Koubaa A, Trigui S, Ayadi M, Trigui-Lahiani H, Kallel E, Turki N, Djemal L, Belghith H, Taieb NH, Gargouri A. Cloning and heterologous expression of a thermostable pectate lyase from Penicillium occitanis in Escherichia coli. Int J Biol Macromol 2013; 62:549-56. [PMID: 24141072 DOI: 10.1016/j.ijbiomac.2013.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
The entire pectate lyase cDNA (Pel1) of Penicillium occitanis was cloned from a cDNA bank and sequenced. The ORF exhibited a great homology to Penicillium marneffei and conservation of all features of fungal pectate lyases such as the barrel structure with "eight right-handed parallel β-helix" architecture. The structure modeling also showed the interesting resemblance with thermostable pectate lyases since several specific residues were also shared by Pel1 and these thermostable enzymes. Having shown that the enzyme retains its activity after endoH-mediated deglycosylation, we investigated its expression in Escherichia coli BL21 using the pET28-a vector. This expression was shown to be optimum when cells were induced at room temperature in 2YT medium rather than at 37 °C and LB medium. In such conditions, the recombinant protein was apparently produced more in soluble form than as inclusion bodies. The effect of NaCl concentration was investigated during the binding and elution steps of recombinant His-tagged enzyme on MagneHis Ni-particles. The purified enzyme was shown to retain its thermo-activity as well as a great tolerance to high concentration of NaCl and imidazole.
Collapse
Affiliation(s)
- Naourez Damak
- Laboratoire de Valorisation de la Biomasse et Production des Protéines chez les Eucaryotes, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6, PO Box 1177, 3018 Sfax, Tunisia; University of Sfax, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Damak N, Hadj-Taieb N, Bonnin E, Ben Bacha A, Gargouri A. Purification and biochemical characterization of a novel thermoactive fungal pectate lyase from Penicillium occitanis. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 2006; 98:1177-85. [PMID: 16574901 PMCID: PMC1523425 DOI: 10.1161/01.res.0000220106.64661.71] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1; CCL2)-mediated inflammation plays a critical role in the development of ischemic heart disease (IHD). However, the gene expression changes caused by signal transduction, triggered by MCP-1 binding to its receptor CCR2, and their possible role in the development of IHD are not understood. We present evidence that MCP-1 binding to CCR2 induces a novel transcription factor (MCP-induced protein [MCPIP]) that causes cell death. Gene microarray analysis showed that when expressed in hiuman embryonic kidney 293 cells, MCPIP induced apoptotic gene families before causing cell death. Mutagenesis studies showed that the structural features required for transcription factor-like activity were also required for causing cell death. Activation of caspase-3 was detected after MCPIP transfection and Z-VAD-fmk partially inhibited cell death. Cardiomyocyte-targeted expression of MCP-1 in mice caused death by heart failure at 6 months of age. MCPIP expression increased in parallel with the development of ventricular dysfunction. In situ hybridization showed the presence of MCPIP transcripts in the cardiomyocytes and immunohistochemistry showed that MCPIP was associated with the cardiomyocyte nuclei of apoptotic cardiomyocytes. CCR2 expression in cardiomyocytes increased with the development of IHD. MCPIP production induced by MCP-1 binding to CCR2 in the cardiomyocytes is probably involved in the development of IHD in this murine model. MCPIP transcript levels were much higher in the explanted human hearts with IHD than with nonischemic heart disease. These results provide a molecular insight into how chronic inflammation and exposure to MCP-1 contributes to heart failure and suggest that MCPIP could be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pappachan E. Kolattukudy
- Correspondence to Dr P.E. Kolattukudy, Burnett College of Biomedical Sciences, University of Central Florida, Building 20, Room 136, Orlando, FL 32816-2364. E-mail
| |
Collapse
|
9
|
Wei Y, Shih J, Li J, Goodwin PH. Two pectin lyase genes, pnl-1 and pnl-2, from Colletotrichum gloeosporioides f. sp. malvae differ in a cellulose-binding domain and in their expression during infection of Malva pusilla. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2149-2157. [PMID: 12101302 DOI: 10.1099/00221287-148-7-2149] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two pectin lyase genes, designated pnl-1 and pnl-2, were cloned from Colletotrichum gloeosporioides f. sp. malvae, a pathogen of round-leaved mallow (Malva pusilla). pnl-1 was isolated using cDNA from infected plant material; pnl-2 was isolated using cDNA from 3-day-old mycelia grown in mallow-cell-wall extract (MCWE) broth. pnl-1 is the first pectinase gene described thus far to encode a cellulose-binding domain (CBD), which is common in cellulases and xylanases, whereas pnl-2 encodes a pectin lyase that lacks a CBD. In pure culture, pnl-1 expression could be detected when purified pectin or glucose was the sole carbon source, but not when MCWE was the sole carbon source. The lack of pnl-1 expression appeared to be due to gene repression by some unknown factor(s) in the cell-wall extract. In contrast, expression of pnl-2 was detected in cultures when MCWE, but not when purified pectin or glucose, was the sole carbon source. In infected tissue, detection of pnl-1 expression by Northern-blot hybridization and by RT-PCR began with the onset of the necrotrophic phase of infection. Expression ofpnl-2 was not detectable by Northern-blot hybridization, but was observed byRT-PCR in both the biotrophic and necrotrophic phases of infection. The differences between pnl-1 and pnl-2 (i.e. pnl-1 encoding a CBD and differences in the expression patterns of both genes) may be related to the requirements of C. gloeosporioides f. sp. malvae to be able to grow in host tissue under the different conditions present during the biotrophic and necrotrophic phases of infection.
Collapse
Affiliation(s)
- Yangdou Wei
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, , Canada N1G 2W11
| | - Jenny Shih
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, , Canada N1G 2W11
| | - Jieran Li
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, , Canada N1G 2W11
| | - Paul H Goodwin
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, , Canada N1G 2W11
| |
Collapse
|
10
|
Rogers LM, Kim YK, Guo W, González-Candelas L, Li D, Kolattukudy PE. Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. Proc Natl Acad Sci U S A 2000; 97:9813-8. [PMID: 10931947 PMCID: PMC16947 DOI: 10.1073/pnas.160271497] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2000] [Accepted: 06/13/2000] [Indexed: 11/18/2022] Open
Abstract
Fungal pathogens usually have multiple genes that encode extracellular hydrolytic enzymes that may degrade the physical barriers in their hosts during the invasion process. Nectria hematococca, a plant pathogen, has two inducible pectate lyase (PL) genes (pel) encoding PL that can help degrade the carbohydrate barrier in the host. pelA is induced by pectin, whereas pelD is induced only in planta. We show that the disruption of either the pelA or pelD genes alone causes no detectable decrease in virulence. Disruption of both pelA and pelD drastically reduces virulence. Complementation of the double disruptant with pelD gene, or supplementation of the infection droplets of the double disruptant with either purified enzyme, PLA, or PLD, caused a recovery in virulence. These results show that PL is a virulence factor. Thus, we demonstrate that disruption of all functionally redundant genes is required to demonstrate the role of host barrier-degrading enzymes in pathogenesis and that dismissal of the role of such enzymes based on the effects of single-gene disruption may be premature.
Collapse
Affiliation(s)
- L M Rogers
- Ohio State University, Columbus 43210, USA
| | | | | | | | | | | |
Collapse
|
11
|
Hatada Y, Saito K, Koike K, Yoshimatsu T, Ozawa T, Kobayashi T, Ito S. Deduced amino-acid sequence and possible catalytic residues of a novel pectate lyase from an alkaliphilic strain of Bacillus. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2268-75. [PMID: 10759850 DOI: 10.1046/j.1432-1327.2000.01243.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nucleotide sequence of the gene for a highly alkaline, low-molecular-mass pectate lyase (Pel-15) from an alkaliphilic Bacillus isolate was determined. It harbored an open reading frame of 672 bp encoding the mature enzyme of 197 amino acids with a predicted molecular mass of 20 924 Da. The deduced amino-acid sequence of the mature enzyme showed very low homology (< 20.4% identity) to those of known pectinolytic enzymes in the large pectate lyase superfamily (the polysaccharide lyase family 1). In an integrally conserved region designated the BF domain, Pel-15 showed a high degree of identity (40.5% to 79.4%) with pectate lyases in the polysaccharide lyase family 3, such as PelA, PelB, PelC, and PelD from Fusarium solani f. sp. pisi, PelB from Erwinia carotovora ssp. carotovora, PelI from E. chrysanthemi, and PelA from a Bacillus strain. By site-directed mutagenesis of the Pel-15 gene, we replaced Lys20 in the N-terminal region, Glu38, Lys41, Glu47, Asp63, His66, Trp78, Asp80, Glu83, Asp84, Lys89, Asp106, Lys107, Asp126, Lys129, and Arg132 in the BF domain, and Arg152, Tyr174, Lys182, and Lys185 in the C-terminal region of the enzyme individually with Ala and/or other amino acids. Consequently, some carboxylate and basic residues selected from Glu38, Asp63, Glu83, Asp106, Lys107, Lys129, and Arg132 were suggested to be involved in catalysis and/or calcium binding. We constructed a chimeric enzyme composed of Ala1 to Tyr105 of Pel-15 in the N-terminal regions, Asp133 to Arg159 of FsPelB in the internal regions, and Gln133 to Tyr197 of Pel-15 in the C-terminal regions. The substituted PelB segment could also express beta-elimination activity in the chimeric molecule, confirming that Pel-15 and PelB share a similar active-site topology.
Collapse
Affiliation(s)
- Y Hatada
- Tochigi Research Laboratories of Kao Corporation, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Shih J, Wei Y, Goodwin PH. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f.sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Gene 2000; 243:139-50. [PMID: 10675622 DOI: 10.1016/s0378-1119(99)00546-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular pectic lyase and polygalacturonase activities of Colletotrichum gloeosporioides f.sp. malvae were detected in broths containing mallow cell wall extract, pectin or glucose as the carbon source. The initial pH of the broth as well as the carbon source had major influences on pectinase enzyme activities. In the host, only pectic lyase activity was detected, which began at the end of the biotrophic phase and increased in the necrotrophic phase of infection. Two full-length pectate lyase cDNAs, pel-1 and pel-2, were cloned from the fungus. Both genes showed similar patterns of expression when the fungus was grown in mallow cell-wall extract and pectin medium, and the only major difference in expression in culture was that only pel-2 was expressed in glucose broth. Expression of pel-1 and pel-2 was also affected by the initial pH of the medium. Expression of pel-2, but not pel-1, was detected during infection of the host, round-leaved mallow, Malva pusilla. Transcripts of pel-2 were first detectable during the necrotrophic phase of infection approx. 24h after the first detection of pectic lyase enzyme activity. A comparison of expression of pel-1 and pel-2 in culture and in planta with other pectinase genes of C. gloeosporioides f.sp. malvae, as well as with other plant pathogenic fungi, indicates that expression during necrotrophic infection correlates with the ability to be expressed in media containing glucose.
Collapse
Affiliation(s)
- J Shih
- Department of Environmental Biology, University of Guelph, Guelph, Canada
| | | | | |
Collapse
|
13
|
Soriano M, Blanco A, Dı Az P, Pastor FIJ. An unusual pectate lyase from a Bacillus sp. with high activity on pectin: cloning and characterization. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 1):89-95. [PMID: 10658655 DOI: 10.1099/00221287-146-1-89] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene pelA encoding a pectate lyase from the strain Bacillus sp. BP-23 was cloned and expressed in Escherichia coli. The nucleotide sequence of a 1214 bp DNA fragment containing pelA gene was determined, revealing an ORF of 666 nucleotides that encoded a protein of 23233 Da. The deduced amino acid sequence of the encoded enzyme showed homology to pectate lyases A, B, C and D from Fusarium solani, Pel-3 and PelB from Erwinia carotovora and Pell from Erwinia chrysanthemi. Homology was also found to the protein deduced from the Bacillus subtilis yvpA gene, the function of which is unknown. The heterologous expressed enzyme depolymerized polygalacturonate and pectins of methyl esterification degree from 22 to 89%, and exhibited similar activity on polygalacturonate and on 89% esterified citrus pectin. Optimum temperature and pH for enzymic activity were 50 degrees C and pH 10, respectively. Ca2+ was required for activity on pectic substrates, while the enzyme was strongly inhibited by Ba2+.
Collapse
Affiliation(s)
- Margarita Soriano
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain1
| | - Ana Blanco
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain1
| | - Pilar Dı Az
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain1
| | - F I Javier Pastor
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 645, 08028 Barcelona, Spain1
| |
Collapse
|
14
|
Bekri MA, Desair J, Keijers V, Proost P, Searle-van Leeuwen M, Vanderleyden J, Vande Broek A. Azospirillum irakense produces a novel type of pectate lyase. J Bacteriol 1999; 181:2440-7. [PMID: 10198006 PMCID: PMC93668 DOI: 10.1128/jb.181.8.2440-2447.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1998] [Accepted: 02/05/1999] [Indexed: 11/20/2022] Open
Abstract
The pelA gene from the N2-fixing plant-associated bacterium Azospirillum irakense, encoding a pectate lyase, was isolated by heterologous expression in Escherichia coli. Nucleotide sequence analysis of the region containing pelA indicated an open reading frame of 1,296 bp, coding for a preprotein of 432 amino acids with a typical amino-terminal signal peptide of 24 amino acids. N-terminal amino acid sequencing confirmed the processing of the protein in E. coli at the signal peptidase cleavage site predicted by nucleotide sequence analysis. Analysis of the amino acid sequence of PelA revealed no homology to other known pectinases, indicating that PelA belongs to a new pectate lyase family. PelA macerates potato tuber tissue, has an alkaline pH optimum, and requires Ca2+ for its activity. Of several divalent cations tested, none could substitute for Ca2+. Methyl-esterified pectin (with a degree of esterification up to 93%) and polygalacturonate can be used as substrates. Characterization of the degradation products formed upon incubation with polygalacturonate indicated that PelA is an endo-pectate lyase generating unsaturated digalacturonide as the major end product. Regulation of pelA expression was studied by means of a translational pelA-gusA fusion. Transcription of this fusion is low under all growth conditions tested and is dependent on the growth phase. In addition, pelA expression was found to be induced by pectin. An A. irakense pelA::Tn5 mutant still displayed pectate lyase activity, suggesting the presence of multiple pectate lyase genes in A. irakense.
Collapse
Affiliation(s)
- M A Bekri
- F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, 3001 Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 1998; 180:5211-7. [PMID: 9748456 PMCID: PMC107559 DOI: 10.1128/jb.180.19.5211-5217.1998] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1998] [Accepted: 07/21/1998] [Indexed: 11/20/2022] Open
Abstract
The host-specific plant pathogen Pseudomonas syringae elicits the hypersensitive response (HR) in nonhost plants and secretes the HrpZ harpin in culture via the Hrp (type III) secretion system. Previous genetic evidence suggested the existence of another harpin gene in the P. syringae genome. hrpW was found in a region adjacent to the hrp cluster in P. syringae pv. tomato DC3000. hrpW encodes a 42. 9-kDa protein with domains resembling harpins and pectate lyases (Pels), respectively. HrpW has key properties of harpins. It is heat stable and glycine rich, lacks cysteine, is secreted by the Hrp system, and is able to elicit the HR when infiltrated into tobacco leaf tissue. The harpin domain (amino acids 1 to 186) has six glycine-rich repeats of a repeated sequence found in HrpZ, and a purified HrpW harpin domain fragment possessed HR elicitor activity. In contrast, the HrpW Pel domain (amino acids 187 to 425) is similar to Pels from Nectria haematococca, Erwinia carotovora, Erwinia chrysanthemi, and Bacillus subtilis, and a purified Pel domain fragment did not elicit the HR. Neither this fragment nor the full-length HrpW showed Pel activity in A230 assays under a variety of reaction conditions, but the Pel fragment bound to calcium pectate, a major constituent of the plant cell wall. The DNA sequence of the P. syringae pv. syringae B728a hrpW was also determined. The Pel domains of the two predicted HrpW proteins were 85% identical, whereas the harpin domains were only 53% identical. Sequences hybridizing at high stringency with the P. syringae pv. tomato hrpW were found in other P. syringae pathovars, Pseudomonas viridiflava, Ralstonia (Pseudomonas) solanacearum, and Xanthomonas campestris. DeltahrpZ::nptII or hrpW::OmegaSpr P. syringae pv. tomato mutants were little reduced in HR elicitation activity in tobacco, whereas this activity was significantly reduced in a hrpZ hrpW double mutant. These features of hrpW and its product suggest that P. syringae produces multiple harpins and that the target of these proteins is in the plant cell wall.
Collapse
Affiliation(s)
- A O Charkowski
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853-4203, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Erwinia amylovora strain CFBP1430 secretes a protein called HrpW in a Hrp-dependent manner. HrpW was detected in culture supernatant of the wild-type strain grown on solid inducing hrp medium. This protein shares structural similarities with elicitors of the hypersensitive response such as HrpN of Erwinia amylovora and PopA of Ralstonia solanacearum. Furthermore, the C-terminal region of HrpW is homologous to class III pectate lyases. An hrpW mutant is as aggressive as the wild-type strain on pear and apple seedlings. It elicits the hypersensitive response on tobacco at a lower concentration than the wild-type strain.
Collapse
Affiliation(s)
- S Gaudriault
- Laboratoire de Pathologie végétale INA-PG/INRA, Paris, France.
| | | | | |
Collapse
|
17
|
Shevchik VE, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N. Pectate lyase PelI of Erwinia chrysanthemi 3937 belongs to a new family. J Bacteriol 1997; 179:7321-30. [PMID: 9393696 PMCID: PMC179682 DOI: 10.1128/jb.179.23.7321-7330.1997] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Erwinia chrysanthemi 3937 secretes five major isoenzymes of pectate lyases encoded by the pel4, pelB, pelC, pelD, and pelE genes and a set of secondary pectate lyases, two of which, pelL and pelZ, have been already identified. We cloned the pelI gene, encoding a ninth pectate lyase of E. chrysanthemi 3937. The pelI reading frame is 1,035 bases long, corresponding to a protein of 344 amino acids including a typical amino-terminal signal sequence of 19 amino acids. The purified mature PelI protein has an isoelectric point of about 9 and an apparent molecular mass of 34 kDa. PelI has a preference for partially methyl esterified pectin and presents an endo-cleaving activity with an alkaline pH optimum and an absolute requirement for Ca2+ ions. PelI is an extracellular protein secreted by the Out secretory pathway of E. chrysanthemi. The PelI protein is very active in the maceration of plant tissues. A pelI mutant displayed reduced pathogenicity on chicory leaves, but its virulence did not appear to be affected on potato tubers or Saintpaulia ionantha plants. The pelI gene constitutes an independent transcriptional unit. As shown for the other pel genes, the transcription of pelI is dependent on various environmental conditions. It is induced by pectic catabolic products and affected by growth phase, oxygen limitation, temperature, nitrogen starvation, and catabolite repression. Regulation of pelI expression appeared to be dependent on the three repressors of pectinase synthesis, KdgR, PecS, and PecT, and on the global activator of sugar catabolism, cyclic AMP receptor protein. A functional KdgR binding site was identified close to the putative pelI promoter. Analysis of the amino acid sequence of PelI revealed high homology with a pectate lyase from Erwinia carotovora subsp. carotovora (65% identity) and low homology with pectate lyases of the phytopathogenic fungus Nectria haematococca (Fusarium solani). This finding indicates that PelI belongs to pectate lyase class III. Using immunoblotting experiments, we detected PelI homologs in various strains of E. chrysanthemi and E. carotovora subsp. carotovora but not in E. carotovora subsp. atroseptica.
Collapse
Affiliation(s)
- V E Shevchik
- Laboratoire de Génétique Moléculaire des Microorganismes, UMR-CNRS 5577, INSA, Villeurbanne, France
| | | | | |
Collapse
|