1
|
Angiotensin II upregulates CYP4A isoform expression in the rat kidney through angiotensin II type 1 receptor. Prostaglandins Other Lipid Mediat 2018; 139:80-86. [DOI: 10.1016/j.prostaglandins.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/02/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022]
|
2
|
El-Sherbeni AA, El-Kadi AOS. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Mol Pharm 2016; 13:1278-88. [PMID: 26918316 DOI: 10.1021/acs.molpharmaceut.5b00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
3
|
Althurwi HN, Tse MMY, Abdelhamid G, Zordoky BNM, Hammock BD, El-Kadi AOS. Soluble epoxide hydrolase inhibitor, TUPS, protects against isoprenaline-induced cardiac hypertrophy. Br J Pharmacol 2015; 168:1794-807. [PMID: 23176298 DOI: 10.1111/bph.12066] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/12/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE We have previously shown that isoprenaline-induced cardiac hypertrophy causes significant changes in the expression of cytochromes P450 (CYP) and soluble epoxide hydrolase (sEH) genes. Therefore, it is important to examine whether the inhibition of sEH by 1-(1-methanesulfonyl-piperidin-4-yl)-3-(4-trifluoromethoxy-phenyl)-urea (TUPS) will protect against isoprenaline-induced cardiac hypertrophy. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were treated with TUPS (0.65 mg kg(-1) day(-1), p.o.), isoprenaline (5 mg kg(-1) day(-1), i.p.) or the combination of both. In vitro H9c2 cells were treated with isoprenaline (100 μM) in the presence and absence of either TUPS (1 μM) or 11,12 EET (1 μM). The expression of hypertrophic, fibrotic markers and different CYP genes were determined by real-time PCR. KEY RESULTS Isoprenaline significantly induced the hypertrophic, fibrotic markers as well as the heart to body weight ratio, which was significantly reversed by TUPS. Isoprenaline also caused an induction of CYP1A1, CYP1B1, CYP2B1, CYP2B2, CYP4A3 and CYP4F4 gene expression and TUPS significantly inhibited this isoprenaline-mediated effect. Moreover, isoprenaline significantly reduced 5,6-, 8,9-, 11,12- and 14,15-EET and increased their corresponding 8,9-, 11,12- and 14,15-dihydroxyeicosatrienoic acid (DHET) and the 20-HETE metabolites. TUPS abolished these isoprenaline-mediated changes in arachidonic acid (AA) metabolites. In H9c2 cells, isoprenaline caused a significant induction of ANP, BNP and EPHX2 mRNA levels. Both TUPS and 11,12-EET significantly decreased this isoprenaline-mediated induction of ANP, BNP and EPHX2. CONCLUSIONS AND IMPLICATIONS TUPS partially protects against isoprenaline-induced cardiac hypertrophy, which confirms the role of sEH and CYP enzymes in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Hassan N Althurwi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Fan F, Geurts AM, Murphy SR, Pabbidi MR, Jacob HJ, Roman RJ. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat. Am J Physiol Regul Integr Comp Physiol 2014; 308:R379-90. [PMID: 25540098 DOI: 10.1152/ajpregu.00256.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reported that a reduction in renal production of 20-HETE contributes to development of hypertension in Dahl salt-sensitive (SS) rats. The present study examined whether 20-HETE production is also reduced in the cerebral vasculature of SS rats and whether this impairs the myogenic response and autoregulation of cerebral blood flow (CBF). The production of 20-HETE, the myogenic response of middle cerebral arteries (MCA), and autoregulation of CBF were compared in SS, SS-5(BN) rats and a newly generated CYP4A1 transgenic rat. 20-HETE production was 6-fold higher in cerebral arteries of CYP4A1 and SS-5(BN) than in SS rats. The diameter of the MCA decreased to 70 ± 3% to 65 ± 6% in CYP4A1 and SS-5(BN) rats when pressure was increased from 40 to 140 mmHg. In contrast, the myogenic response of MCA isolated from SS rats did not constrict. Administration of a 20-HETE synthesis inhibitor, HET0016, abolished the myogenic response of MCA in CYP4A1 and SS-5(BN) rats but had no effect in SS rats. Autoregulation of CBF was impaired in SS rats compared with CYP4A1 and SS-5(BN) rats. Blood-brain barrier leakage was 5-fold higher in the brain of SS rats than in SS-5(BN) and SS.CYP4A1 rats. These findings indicate that a genetic deficiency in the formation of 20-HETE contributes to an impaired myogenic response in MCA and autoregulation of CBF in SS rats and this may contribute to vascular remodeling and cerebral injury following the onset of hypertension.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Aron M Geurts
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sydney R Murphy
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Howard J Jacob
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
5
|
Liu Y, Xie L, Gong G, Zhang W, Zhu B, Hu Y. De novo comparative transcriptome analysis of Acremonium chrysogenum: high-yield and wild-type strains of cephalosporin C producer. PLoS One 2014; 9:e104542. [PMID: 25118715 PMCID: PMC4131913 DOI: 10.1371/journal.pone.0104542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/09/2014] [Indexed: 11/19/2022] Open
Abstract
β-lactam antibiotics are widely used in clinic. Filamentous fungus Acremonium chrysogenum is an important industrial fungus for the production of CPC, one of the major precursors of β-lactam antibiotics. Although its fermentation yield has been bred significantly over the past decades, little is known regarding molecular changes between the industrial strain and the wild type strain. This limits the possibility to improve CPC production further by molecular breeding. Comparative transcriptome is a powerful tool to understand the molecular mechanisms of CPC industrial high yield producer compared to wild type. A total of 57 million clean sequencing reads with an average length of 100 bp were generated from Illumina sequencing platform. 22,878 sequences were assembled. Among the assembled unigenes, 9502 were annotated and 1989 annotated sequences were assigned to 121 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we compared the transcriptome differences between a high-yield and a wild-type strain during fermentation. A total of 4329 unigenes with significantly different transcription level were identified, among which 1737 were up-regulated and 2592 were down-regulated. 24 pathways were subsequently determined which involve glycerolipid metabolism, galactose metabolism, and pyrimidine metabolism. We also examined the transcription levels of 18 identified genes, including 11 up-regulated genes and 7 down-regulated genes using reverse transcription quantitative -PCR (RT-qPCR). The results of RT-qPCR were consistent with the Illumina sequencing. In this study, the Illumina sequencing provides the most comprehensive sequences for gene expression profile of Acremonium chrysogenum and allows de novo transcriptome assembly while lacking genome information. Comparative analysis of RNA-seq data reveals the complexity of the transcriptome in the fermentation of different yield strains. This is an important public information platform which could be used to accelerate the research to improve CPC production in Acremonium chrysogenum.
Collapse
Affiliation(s)
- Yan Liu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Guihua Gong
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Baoquan Zhu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, China
- * E-mail: (YH); (BZ)
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China
- * E-mail: (YH); (BZ)
| |
Collapse
|
6
|
Zordoky BNM, Aboutabl ME, El-Kadi AOS. Modulation of Cytochrome P450 Gene Expression and Arachidonic Acid Metabolism during Isoproterenol-Induced Cardiac Hypertrophy in Rats. Drug Metab Dispos 2008; 36:2277-86. [PMID: 18725507 DOI: 10.1124/dmd.108.023077] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Beshay N M Zordoky
- Faculty of Pharmacy and Pharmaceutical Sciences, 3126 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, AB, Canada T6G 2N8
| | | | | |
Collapse
|
7
|
Abstract
Small lipids such as eicosanoids exert diverse and complex functions. In addition to their role in regulating normal kidney function, these lipids also play important roles in the pathogenesis of kidney diseases. Increased glomerular cyclooxygenase (COX)1 or COX2 expression has been reported in patients with nephritis and in animal models of nephritis. COX inhibitors have shown beneficial effects on lupus nephritis and passive Heymann nephritis, but not anti-Thy1.1-induced nephritis. 5-Lipoxygenase-derived leukotrienes are involved in inflammatory glomerular injury. Lipoxygenase product 12-hydroxyeicosatetraenoic acid may mediate angiotensin II and transforming growth factor beta-induced mesangial cell abnormality in diabetic nephropathy. P450 arachidonic acid mono-oxygenase-derived 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids are involved in several forms of kidney injury, including renal injury in metabolic syndrome. Ceramide also has been shown to be an important signaling molecule that is involved in the pathogenesis of acute kidney injury caused by ischemia/reperfusion and toxic insults. Those pathways should provide fruitful targets for intervention in the pharmacologic treatment of renal disease.
Collapse
Affiliation(s)
- Chuan-Ming Hao
- Division of Nephrology, Department of Medicine, Vanderbilt University, and Veterans Affairs Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
8
|
Medhora M, Dhanasekaran A, Gruenloh SK, Dunn LK, Gabrilovich M, Falck JR, Harder DR, Jacobs ER, Pratt PF. Emerging mechanisms for growth and protection of the vasculature by cytochrome P450-derived products of arachidonic acid and other eicosanoids. Prostaglandins Other Lipid Mediat 2007; 82:19-29. [PMID: 17164129 DOI: 10.1016/j.prostaglandins.2006.05.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
Arachidonic acid (AA) is an essential fatty acid that is metabolized by cyclooxygenase (COX), lipoxygenase (LOX) or cytochrome P450 (CYP) enzymes to generate eicosanoids which in turn mediate a number of biological activities including regulation of angiogenesis. While much information on the effects of COX and LOX products is known, the physiological relevance of the CYP-derived products of AA are less well understood. CYP enzymes are highly expressed in the liver and kidney, but have also been detected at lower levels in the brain, heart and vasculature. A number of these enzymes, including members of the CYP 4 family, predominantly catalyze conversion of AA to 20-hydroxyeicosatetraenoic acid (20-HETE) while the CYP epoxygenases generate mainly epoxyeicosatrienoic acids (EETs). This review will focus on the emerging roles of inhibitors of eicosanoid production with emphasis on the CYP pathways, in the regulation of angiogenesis and tumor growth. We also discuss current observations describing the protective effects of EETs for survival of the endothelium.
Collapse
Affiliation(s)
- Meetha Medhora
- Division of Pulmonary and Critical Care, Department of Medicine, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Elbekai RH, El-Kadi AOS. Cytochrome P450 enzymes: Central players in cardiovascular health and disease. Pharmacol Ther 2006; 112:564-87. [PMID: 16824612 DOI: 10.1016/j.pharmthera.2005.05.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/17/2005] [Indexed: 02/02/2023]
Abstract
Cardiovascular disease (CVD) is a human health crisis that remains the leading cause of death worldwide. The cytochrome P450 (CYP) class of enzymes are key metabolizers of both xenobiotics and endobiotics. Many CYP enzyme families have been identified in the heart, endothelium and smooth muscle of blood vessels. Furthermore, mounting evidence points to the role of endogenous CYP metabolites, such as epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acids (HETEs), prostacyclin (PGI(2)), aldosterone, and sex hormones, in the maintenance of cardiovascular health. Emerging science and the development of genetic screening have provided us with information on the differences in CYP expression among populations and groups of individuals. With this information, a link between CYP expression and activity and CVD, such as hypertension, coronary artery disease (CAD), myocardial infarction, heart failure, stroke, and cardiomyopathy and arrhythmias, has been established. In fact many currently used therapeutic modalities in CVD owe their therapeutic efficacy to their effect on CYP metabolites. Thus, the evidence for the involvement of CYP in CVD is numerous. Concentrating on treatment modalities that target the CYP pathway makes ethical sense for the affected individuals and decreases the socioeconomic burden of this disease. However, more research is needed to allow the integration of this information into a clinical setting.
Collapse
Affiliation(s)
- Reem H Elbekai
- Faculty of Pharmacy and Pharmaceutical Sciences, 3126 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
| | | |
Collapse
|
10
|
Baer BR, Rettie AE. CYP4B1: an enigmatic P450 at the interface between xenobiotic and endobiotic metabolism. Drug Metab Rev 2006; 38:451-76. [PMID: 16877261 DOI: 10.1080/03602530600688503] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CYP4B1 belongs to the mammalian CYP4 enzyme family that also includes CYP4A, 4F, 4V, 4X, and 4Z subfamilies. CYP4B1 shares with other CYP4 proteins a capacity to omega-hydroxylate medium-chain fatty acids, which may be related to an endogenous role for the enzyme. CYP4B1 also participates in the metabolism of certain xenobiotics that are protoxic, including valproic acid, 3-methylindole, 4-ipomeanol, 3-methoxy-4-aminoazobenzene, and numerous aromatic amines. Although these compounds have little in common structurally or chemically, their metabolism by CYP4B1 leads to tissue-specific toxicities in several experimental animals. The bioactivation capabilities of rabbit CYP4B1 have also attracted attention in the cancer community and form the basis of a potential therapeutic strategy involving prodrug activation by the CYP4B1 transgene. The metabolic capabilities of human CYP4B1 are less clear due to difficulties in heterologous expression and existence of alternatively spliced products. Also, many CYP4B1 enzymes covalently bind their heme, a posttranslational modification unique to the CYP4 family of P450s, but common to the mammalian peroxidases. These varied characteristics render CYP4B1 an interesting and enigmatic investigational target.
Collapse
Affiliation(s)
- Brian R Baer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
11
|
Graham RA, Goodwin B, Merrihew RV, Krol WL, Lecluyse EL. Cloning, Tissue Expression, and Regulation of Beagle Dog CYP4A Genes. Toxicol Sci 2006; 92:356-67. [PMID: 16675513 DOI: 10.1093/toxsci/kfl009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to its function as a fatty acid hydroxylase, the peroxisome proliferator-activated receptor alpha (PPARalpha) target gene, CYP4A, has been shown to be important in the conversion of arachidonic acid to the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid, suggesting a role for this enzyme in mediating vascular tone. In the present study, the cDNA sequence of beagle dog CYP4A37, CYP4A38, and CYP4A39 from the liver was determined. Open reading frame analysis predicted that CYP4A37, CYP4A38, and CYP4A39 each comprised 510 amino acids with approximately 90% sequence identity to one another, and approximately 71 and 78% sequence identity to rat CYP4A1 and human CYP4A11, respectively. PCR analysis revealed that the three dog CYP4A isoforms are expressed in kidney > liver >> lung >> intestine > skeletal muscle > heart. Treatment of primary dog hepatocytes with the PPARalpha agonists GW7647X and clofibric acid resulted in an increase in CYP4A37, CYP4A38, and CYP4A39 mRNA expression (up to fourfold), whereas HMG-CoA synthase mRNA expression was increased to a greater extent (up to 10-fold). These results suggest that dog CYP4A37, CYP4A38, and CYP4A39 are expressed in a tissue-dependent manner and that beagle dog CYP4A is not highly inducible by PPARalpha agonists, similar to the human CYP4A11 gene.
Collapse
Affiliation(s)
- Richard A Graham
- Division of Molecular Pharmaceutics, School of Pharmacy, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | |
Collapse
|
12
|
Wang JS, Singh H, Zhang F, Ishizuka T, Deng H, Kemp R, Wolin MS, Hintze TH, Abraham NG, Nasjletti A, Laniado-Schwartzman M. Endothelial Dysfunction and Hypertension in Rats Transduced With CYP4A2 Adenovirus. Circ Res 2006; 98:962-9. [PMID: 16543501 DOI: 10.1161/01.res.0000217283.98806.a6] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular cytochrome P450 (CYP) 4A enzymes catalyze the synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE), an eicosanoid which participates in the regulation of vascular tone by sensitizing the smooth muscle cells to constrictor and myogenic stimuli. This study was undertaken to investigate the consequences of CYP4A overexpression on blood pressure and endothelial function in rats treated with adenoviral vectors carrying the CYP4A2 construct. Intravenous injection of Adv-CYP4A2 increased blood pressure (from 114+/-1 to 133+/-1 mm Hg, P<0.001), and interlobar renal arteries from these rats displayed decreased relaxing responsiveness to acetylcholine, which was offset by treatment with an inhibitor of CYP4A. Relative to data in control rats, arteries from Adv-CYP4A2-transduced rats produced more 20-HETE (129+/-10 versus 97+/-7 pmol/mg protein, P<0.01) and less nitric oxide (NO; 4.2+/-1.6 versus 8.4+/-1 nmol nitrite+nitrate/mg; P<0.05). They also displayed higher levels of oxidative stress as measured by increased generation of superoxide anion and increased expression of nitrotyrosine and gp91phox. Collectively, these findings demonstrate that augmentation in vascular 20-HETE promotes the development of hypertension and causes endothelial dysfunction, a condition characterized by decreased NO synthesis and/or bioavailability, imbalance in the relative contribution of endothelium-derived relaxing and contracting factors, and enhanced endothelial activation.
Collapse
Affiliation(s)
- Ji-Shi Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhao X, Quigley JE, Yuan J, Wang MH, Zhou Y, Imig JD. PPAR-alpha activator fenofibrate increases renal CYP-derived eicosanoid synthesis and improves endothelial dilator function in obese Zucker rats. Am J Physiol Heart Circ Physiol 2006; 290:H2187-95. [PMID: 16501022 DOI: 10.1152/ajpheart.00937.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that the synthesis of renal cytochrome P-450 (CYP)-derived eicosanoids is downregulated in genetic or high-fat diet-induced obese rats. Experiments were designed to determine whether fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha agonist, would induce renal eicosanoid synthesis and improve endothelial function in obese Zucker rats. Administration of fenofibrate (150 mg.kg(-1).day(-1) for 4 wk) significantly reduced plasma insulin, triglyceride, and total cholesterol levels in obese Zucker rats. CYP2C11 and CYP2C23 proteins were downregulated in renal vessels of obese Zucker rats. Consequently, renal vascular epoxygenase activity decreased by 15% in obese Zucker rats compared with lean controls. Chronic fenofibrate treatment significantly increased renal cortical and vascular CYP2C11 and CYP2C23 protein levels in obese Zucker rats, whereas it had no effect on epoxygenase protein and activity in lean Zucker rats. Renal cortical and vascular epoxygenase activities were consequently increased by 54% and 18%, respectively, in fenofibrate-treated obese rats. In addition, acetylcholine (1 microM)-induced vasodilation was significantly reduced in obese Zucker kidneys (37% +/- 11%) compared with lean controls (67% +/- 9%). Chronic fenofibrate administration increased afferent arteriolar responses to 1 microM of acetylcholine in obese Zucker rats (69% +/- 4%). Inhibition of the epoxygenase pathway with 6-(2-propargyloxyphenyl)hexanoic acid attenuated afferent arteriolar diameter responses to acetylcholine to a greater extent in lean compared with obese Zucker rats. These results demonstrate that the PPAR-alpha agonist fenofibrate increased renal CYP-derived eicosanoids and restored endothelial dilator function in obese Zucker rats.
Collapse
Affiliation(s)
- Xueying Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500.
| | | | | | | | | | | |
Collapse
|
14
|
Zhou Y, Huang H, Chang HH, Du J, Wu JF, Wang CY, Wang MH. Induction of renal 20-hydroxyeicosatetraenoic acid by clofibrate attenuates high-fat diet-induced hypertension in rats. J Pharmacol Exp Ther 2005; 317:11-8. [PMID: 16339392 DOI: 10.1124/jpet.105.095356] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study compared renal hemodynamics, the expression of CYP4A isoforms [the enzymes for 20-hydroxyeicosatetraenoic acid (20-HETE) production], and tubular sodium transporters in male rats fed a high-fat (HF) or control diet for 10 weeks. We also studied the effect of treatment with clofibrate, a CYP4A inducer, on sodium retention and renal function and on CYP4A expression in HF rats. HF rats had higher blood pressure (BP), renal plasma flow, and glomerular filtration rate (GFR), but no significant change in renal vascular resistance. Reverse transcription-polymerase chain reaction analysis showed that CYP4A1 and CYP4A8 expression was significantly decreased in the renal cortex of HF rats. Western blot analysis showed up-regulation of expression of the alpha-subunit of the epithelial sodium channel (alpha-ENaC), the beta-subunit of the epithelial sodium channel (beta-ENaC), sodium/hydrogen exchanger (NHE)-3, and the renal outer medulla K(+) channel (ROMK) in HF rats, whereas expression of the gamma-subunit of the epithelial sodium channel and the alpha1-subunit of Na(+)-K(+)-ATPase remained unchanged. Thus, HF treatment caused the reduction of renal CYP4A1 and CYP4A8 expression, whereas the increases in alpha-ENaC, beta-ENaC, NHE-3, and ROMK expression in renal tubules may have contributed sodium retention and hypertension in HF rats. Furthermore, clofibrate treatment (240 mg/kg/day) caused the decrease of BP and GFR and the attenuation of cumulative sodium balance in HF rats. The attenuation of sodium retention by clofibrate treatment is linked to decreased expression of NHE-3 in renal cortex. Clofibrate induction of CYP4A expression occurred in proximal tubules and in the thick ascending limb of the loop of Henle but not in renal microvessels. This induction correlated with the expression of peroxisome proliferator-activated receptor (PPARalpha) in renal tubules. Therefore, these results suggest that the effects of clofibrate on sodium retention and blood pressure regulation in HF rats may be due to the induction of renal tubular 20-HETE production through the PPARalpha pathway.
Collapse
Affiliation(s)
- Yiqiang Zhou
- Department of Physiology, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol 2005; 45:413-38. [PMID: 15822183 DOI: 10.1146/annurev.pharmtox.45.120403.100045] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450-catalyzed metabolism of arachidonic acid is an important pathway for the formation of paracrine and autocrine mediators of numerous biological effects. The omega-hydroxylation of arachidonic acid generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in numerous tissues, particularly the vasculature and kidney tubules. Members of the cytochrome P450 4A and 4F families are the major omega-hydroxylases, and the substrate selectivity and regulation of these enzymes has been the subject of numerous studies. Altered expression and function of arachidonic acid omega-hydroxylases in models of hypertension, diabetes, inflammation, and pregnancy suggest that 20-HETE may be involved in the pathogenesis of these diseases. Our understanding of the biological significance of 20-HETE has been greatly aided by the development and characterization of selective and potent inhibitors of the arachidonic acid omega-hydroxylases. This review discusses the substrate selectivity and expression of arachidonic acid omega-hydroxylases, regulation of these enzymes during disease, and the application of enzyme inhibitors to study 20-HETE function.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-2911, USA.
| | | |
Collapse
|
16
|
Seki T, Wang MH, Miyata N, Laniado-Schwartzman M. Cytochrome P450 4A Isoform Inhibitory Profile of N-Hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine (HET0016), a Selective Inhibitor of 20-HETE Synthesis. Biol Pharm Bull 2005; 28:1651-4. [PMID: 16141533 DOI: 10.1248/bpb.28.1651] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine) (HET0016), an inhibitor of 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) synthesis on the omega-hydroxylation and epoxidation of arachidonic acid (AA) catalyzed by recombinant cytochrome P450 4A1 (CYP4A1), CYP4A2 and CYP4A3, and characterized the enzyme inhibitory profile of HET0016. The IC50 values of HET0016 for recombinant CYP4A1-, CYP4A2- and CYP4A3-catalyzed 20-HETE synthesis averaged 17.7 nM, 12.1 nM and 20.6 nM, respectively. The IC50 value for production of 11,12-epoxy-5,8,14-eicosatrienoic acid (11,12-EET) by CYP4A2 and 4A3 averaged 12.7 nM and 22.0 nM, respectively. The IC50 value for CYP2C11 activity was 611 nM which was much greater than that for CYP4As. The initial velocity study showed the Ki value of HET0016 for CYP4A1 was 19.5 nM and a plot of Vmax versus amount of recombinant CYP4A1 added shows HET0016 is an irreversible non-competitive inhibitor. These results indicate that HET0016 is a selective, non-competitive and irreversible inhibitor of CYP4A.
Collapse
Affiliation(s)
- Takayuki Seki
- Medicinal Pharmacology Laboratory, Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan.
| | | | | | | |
Collapse
|
17
|
Nithipatikom K, Gross ER, Endsley MP, Moore JM, Isbell MA, Falck JR, Campbell WB, Gross GJ. Inhibition of cytochrome P450omega-hydroxylase: a novel endogenous cardioprotective pathway. Circ Res 2004; 95:e65-71. [PMID: 15388642 DOI: 10.1161/01.res.0000146277.62128.6f] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P450s (CYP) and their arachidonic acid (AA) metabolites have important roles in regulating vascular tone, but their function and specific pathways involved in modulating myocardial ischemia-reperfusion injury have not been clearly established. Thus, we characterized the effects of several selective CYPomega-hydroxylase inhibitors and a CYPomega-hydroxylase metabolite of AA, 20-hydroxyeicosatetraenoic acid (20-HETE), on the extent of ischemia-reperfusion injury in canine hearts. During 60 minutes of ischemia and particularly after 3 hours of reperfusion, 20-HETE was produced at high concentrations. A nonspecific CYP inhibitor, miconazole, and 2 specific CYPomega-hydroxylase inhibitors, 17-octadecanoic acid (17-ODYA) and N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly inhibited 20-HETE production during ischemia-reperfusion and produced a profound reduction in myocardial infarct size (expressed as a percent of the area at risk) (19.6+/-1.7% [control], 8.4+/-2.5% [0.96 mg/kg miconazole], 5.9+/-2.2% [0.28 mg/kg 17-ODYA], and 10.8+/-1.8% [0.40 mg/kg DDMS], P<0.05, respectively). Conversely, exogenous 20-HETE administration significantly increased infarct size (26.9+/-1.9%, P<0.05). Several CYPomega-hydroxylase isoforms, which are known to produce 20-HETE such as CYP4A1, CYP4A2, and CYP4F, were demonstrated to be present in canine heart tissue and their activity was markedly inhibited by incubation with 17-ODYA. These results indicate an important endogenous role for CYPomega-hydroxylases and in particular their product, 20-HETE, in exacerbating myocardial injury in canine myocardium. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang JS, Zhang F, Jiang M, Wang MH, Zand BA, Abraham NG, Nasjletti A, Laniado-Schwartzman M. Transfection and Functional Expression of CYP4A1 and CYP4A2 Using Bicistronic Vectors in Vascular Cells and Tissues. J Pharmacol Exp Ther 2004; 311:913-20. [PMID: 15269250 DOI: 10.1124/jpet.104.070979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A-derived arachidonic acid metabolite, is a potent vasoconstrictor and a modulator of vascular reactivity. We have shown that CYP4A1 and CYP4A2 are the major CYP4A isoforms expressed in the rat renal microcirculation. In the present study, we constructed two bicistronic vectors, pIRES2-EGFP-4A1 and pIRES2-EGFP-4A2, and examined their functional efficacy in COS-1 and vascular smooth muscle (A7r5) cells and in microdissected rat interlobar arteries. Immunocytochemistry coupled with fluorescence microscopy of pIRES2-EGFP-4A1- or pIRES2-EGFP-4A2-transfected COS-1 and A7r5 cells indicated that both enhanced green fluorescence protein (EGFP) and CYP4A1/4A2 were expressed in 80 to 90% of the cells. Western blot analysis showed a 3- to 5-fold increase of CYP4A1 and CYP4A2 proteins in pIRES2-EGFP-4A1- and pIRES2-EGFP-4A2-transfected cells as compared with control pIRES2-transfected cells. Cells transfected with pIRES2-EGFP-4A1 and pIRES2-EGFP-4A2 catalyzed arachidonic acid omega-hydroxylation to 20-HETE at rates of 0.85 +/- 0.29 and 0.27 +/- 0.04 nmol/10(7) cells/h, respectively. Transfection of interlobar arteries with either plasmid yielded EGFP immunofluorescence that was localized to the intima, media, and adventitia. Arteries transfected with pIRES2-EGFP-4A1 and pIRES2-EGFP-4A2 showed increased vasoreactivity displaying EC50 to phenylephrine of 0.24 +/- 0.07 and 0.11 +/- 0.03 microM, respectively, as compared with arteries transfected with pIRES2-EGFP (1.11 +/- 0.21 microM; n=6, p <0.05). The increased vasoreactivity to phenylephrine was inhibited by N-methylsulfonyl-12,12-dibromododec-11-enamide, an inhibitor of CYP4A-catalyzed reactions, suggesting that a product of CYP4A1 and CYP4A2 catalytic activity contributed to the increased constrictor responsiveness. Removal of the endothelium did not prevent the sensitization to phenylephrine in vessels transfected with the plasmid containing the CYP4A1 cDNA, suggesting that the CYP4A product responsible for the sensitizing effect, presumably 20-HETE, is not of endothelial cell origin.
Collapse
Affiliation(s)
- Ji-Shi Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sacerdoti D, Gatta A, McGiff JC. Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat 2004; 72:51-71. [PMID: 14626496 DOI: 10.1016/s1098-8823(03)00077-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arachidonic acid (AA) can undergo monooxygenation or epoxidation by enzymes in the cytochrome P450 (CYP) family in the brain, kidney, lung, vasculature, and the liver. CYP-AA metabolites, 19- and 20-hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs) and diHETEs have different biological properties based on sites of production and can be stored in tissue lipids and released in response to hormonal stimuli. 20-HETE is a vasoconstrictor, causing blockade of Ca(++)-activated K(+) (KCa) channels. Inhibition of the formation of nitric oxide (NO) by 20-HETE mediates most of the cGMP-independent component of the vasodilator response to NO. 20-HETE elicits a potent dilator response in human and rabbit pulmonary vascular and bronchiole rings that is dependent on an intact endothelium and COX. 20-HETE is also a vascular oxygen sensor, inhibits Na(+)/K(+)-ATPase activity, is an endogenous inhibitor of the Na(+)-K(+)-2Cl(-)cotransporter, mediates the mitogenic actions of vasoactive agents and growth factors in many tissues and plays a significant role in angiogenesis. EETs, produced by the vascular endothelium, are potent dilators. EETs hyperpolarize VSM cells by activating KCa channels. Several investigators have proposed that one or more EETs may serve as endothelial-derived hyperpolarizing factors (EDHF). EETs constrict human and rabbit bronchioles, are potent mediators of insulin and glucagon release in isolated rat pancreatic islets, and have anti-inflammatory activity. Compared with other organs, the liver has the highest total CYP content and contains the highest levels of individual CYP enzymes involved in the metabolism of fatty acids. In humans, 50-75% of CYP-dependent AA metabolites formed by liver microsomes are omega/omega-OH-AA, mainly w-OH-AA, i.e. 20HETE, and 13-28% are EETs. Very little information is available on the role of 19- and 20-HETE and EETs in liver function. EETs are involved in vasopressin-induced glycogenolysis, probably via the activation of phosphorylase. In the portal vein, inhibition of EETs exerts profound effects on a variety of K-channel activities in smooth muscles of this vessel. 20-HETE is a weak, COX-dependent, vasoconstrictor of the portal circulation. EETs, particularly 11,12-EET, cause vasoconstriction of the porto-sinusoidal circulation. Increased synthesis of EETs in portal vessels and/or sinusoids or increased levels in blood from the meseneric circulation may participate in the pathophysiology of portal hypertension of cirrhosis. CYP-dependent AA metabolites are involved in the pathophysiology of portal hypertension, not only by increasing resistance in the porto-sinusoidal circulation, but also by increasing portal inflow through mesenteric vasodilatation. In patients with cirrhosis, urinary 20-HETE is several-fold higher than PGs and TxB2, whereas in normal subjects, 20-HETE and PGs are excreted at similar rates. Thus, 20-HETE is probably produced in increased amounts in the preglomerular microcirculation accounting for the functional decrease of flow and increase in sodium reabsorption. In conclusion, CYP-AA metabolites represent a group of compounds that participate in the regulation of liver metabolic activity and hemodynamics. They appear to be deeply involved in abnormalities related to liver diseases, particularly cirrhosis, and play a key role in the pathophysiology of portal hypertension and renal failure.
Collapse
Affiliation(s)
- David Sacerdoti
- Department of Clinical and Experimental Medicine, Azienda Ospedaliera and University of Padova, Clinica Medica 5, Via Giustiniani 2, 35100 Padova, Italy.
| | | | | |
Collapse
|
20
|
Lee AY, Kim MJ, Chey WY, Choi J, Kim BG. Genetic polymorphism of cytochrome P450 2C9 in diphenylhydantoin-induced cutaneous adverse drug reactions. Eur J Clin Pharmacol 2004; 60:155-9. [PMID: 15024534 DOI: 10.1007/s00228-004-0753-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 02/12/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Apart from allergic mechanisms, a lack or mutation of metabolic enzymes may cause adverse drug reactions. Patch testing has rarely been useful in cutaneous adverse drug reactions (CADRs) induced by diphenylhydantoin (DPH). Genetic polymorphisms leading to altered metabolic processes of cytochrome P(450) (CYP) 2C9, a main metabolic enzyme for DPH, may be the pathological mechanism for certain cases of DPH-induced CADRs. OBJECTIVE To examine the effects of an altered CYP2C9 variant, CYP2C9*3, on DPH-induced CADRs. METHODS Ten patients with DPH-induced CADRs were examined for CYP2C9 genetic polymorphisms. The results were compared with non-exposed controls and 39 neurological patients without DPH-induced CADRs despite exposure to DPH. The patients with DPH-induced CADRs were also patch tested with anti-epileptic drugs and the results were compared with 40 DPH-exposed and 58 non-exposed controls. RESULTS A heterozygous CYP2C9*3 variant was found in three of the 10 DPH-induced CADR patients. The crude odds ratios (OR) of the patients compared with those of exposed and non-exposed controls were 167 and 71, respectively. Only one neurological patient, who had never taken DPH, showed the variant in both exposed (P=0.007) and non-exposed (P=0.001) controls. Positive patch-test results were displayed in three of the ten DPH-induced patients, but the patients with positive patch-test reactions to DPH differed from those with the CYP2C9*3 polymorphism. No patients and controls displayed a CYP2C9*2 variant. CONCLUSION A CYP2C9*3 variant could play a role in the proportion of patients with DPH-induced CADRs that differ from patients with DPH-induced CADRs showing positive patch-test results.
Collapse
Affiliation(s)
- Ai-Young Lee
- Department of Dermatology, Eulji Hospital, Eulji University School of Medicine, 280-1 Hagye-1-dong, Nowon-gu, 139-711 Seoul, South Korea.
| | | | | | | | | |
Collapse
|
21
|
Capdevila JH, Nakagawa K, Holla V. The CYP P450 arachidonate monooxygenases: enzymatic relays for the control of kidney function and blood pressure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 525:39-46. [PMID: 12751734 DOI: 10.1007/978-1-4419-9194-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | |
Collapse
|
22
|
Wang MH, Wang J, Chang HH, Zand BA, Jiang M, Nasjletti A, Laniado-Schwartzman M. Regulation of renal CYP4A expression and 20-HETE synthesis by nitric oxide in pregnant rats. Am J Physiol Renal Physiol 2003; 285:F295-302. [PMID: 12684227 DOI: 10.1152/ajprenal.00065.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), which promotes renal vasoconstriction, is formed in the rat kidney primarily by cytochrome P-450 (CYP) 4A isoforms (4A1, 4A2, 4A3, 4A8). Nitric oxide (NO) has been shown to bind to the heme moiety of the CYP4A2 protein and to inhibit 20-HETE synthesis in renal arterioles of male rats. However, it is not known whether NO interacts with and affects the activity of CYP4A1 and CYP4A3, the major renal CYP4A isoforms in female rats. Incubation of recombinant CYP4A1 and 4A3 proteins with sodium nitroprusside (SNP) shifted the absorbance at 440 nm, indicating the formation of a ferric-nitrosyl-CYP4A complex. The absorbance for CYP4A3 was about twofold higher than that of CYP4A1. Incubation of SNP or peroxynitrite (PN; 0.01-1 mM) with CYP4A recombinant membranes caused a concentration-dependent inhibition of 20-HETE synthesis, with both chemicals having a greater inhibitory effect on CYP4A3-catalyzed activity. Moreover, incubation of CYP4A1 and 4A3 proteins with PN (1 mM) resulted in nitration of tyrosine residues in both proteins. In addition, PN and SNP inhibited 20-HETE synthesis in renal microvessels from female rats by 65 and 59%, respectively. We previously showed that microvessel CYP4A1/CYP4A3 expression and 20-HETE synthesis are decreased in late pregnancy. Therefore, we investigated whether such a decrease is dependent on NO, the synthesis of which has been shown to increase in late pregnancy. Administration of NG-nitro-l-arginine methyl ester (l-NAME) to pregnant rats for 6 days (days 15-20 of pregnancy) caused a significant increase in systolic blood pressure, which was prevented by concurrent treatment with the CYP4A inhibitor 1-aminobenzotriazole (ABT). Urinary NO2/NO3 excretion decreased by 40 and 52% in l-NAME- and l-NAME + ABT-treated groups, respectively. Interestingly, renal microvessel 20-HETE synthesis showed a marked increase following l-NAME treatment, and this increase was diminished with coadministration of ABT. These results demonstrate that NO interacts with CYP4A proteins in a distinct manner and it interferes with renal microvessel 20-HETE synthesis, which may play an important role in the regulation of blood pressure and renal function during pregnancy.
Collapse
Affiliation(s)
- Mong-Heng Wang
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Bishop-Bailey D, Wray J. Peroxisome proliferator-activated receptors: a critical review on endogenous pathways for ligand generation. Prostaglandins Other Lipid Mediat 2003; 71:1-22. [PMID: 12749590 DOI: 10.1016/s0090-6980(03)00003-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipid mediators can exert their effects by interactions with well-characterised cell surface G-protein-linked receptors. Recently, a group of intracellular receptors have been identified that are activated by a large variety of lipid-derived mediators. Amongst these novel targets, the peroxisome proliferator-activated receptors (PPARs), a family of three (PPARalpha, beta/delta and gamma) nuclear receptor/transcription factors have become a major area for investigation. PPARs are found throughout the body, where they have diverse roles regulating lipid homeostasis, cellular differentiation, proliferation and the immune response. There is a great interest, therefore, in the roles of PPARs in a variety of pathological conditions, including diabetes, atherosclerosis, cancer and chronic inflammation. Although, a number of naturally occurring compounds can activate PPARs, it has been difficult, as yet, to characterise any of these mediators as truly endogenous ligands. These findings have lead to the suggestion that PPARs may act just as general lipid sensors. Acting as lipid sensors, PPARs may take changes in lipid/fatty acid balance in the diet or local metabolism and translate them to tissue-specific ligands, exerting tissue-specific effects. Using classical pharmacological criteria for endogenous mediator classification we will critically discuss the variety of pathways for putative ligand generation.
Collapse
Affiliation(s)
- David Bishop-Bailey
- Cardiac, Vascular and Inflammation Research, William Harvey Research Institute, Barts, UK.
| | | |
Collapse
|
24
|
Fornage M, Hinojos CA, Nurowska BW, Boerwinkle E, Hammock BD, Morisseau CHP, Doris PA. Polymorphism in soluble epoxide hydrolase and blood pressure in spontaneously hypertensive rats. Hypertension 2002; 40:485-90. [PMID: 12364351 DOI: 10.1161/01.hyp.0000032278.75806.68] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We measured soluble epoxide hydrolase (sEH) renal gene expression in prehypertensive (4 to 5 weeks old) spontaneously hypertensive rats of the Heidelberg SP substrain (SHR [Heid]) and when blood pressure levels entered the hypertensive plateau (17 to 18 weeks old) and compared expression with matched Wistar-Kyoto (WKY [Heid]) rats. Less expression of the gene encoding sEH (EPHX2) was observed in SHR (Heid) than in WKY (Heid). Analysis of sEH protein abundance showed a similar difference. However, no correlation between sEH abundance and blood pressure was observed in the F(2) progeny of a parental strain cross. Measurement of protein abundance in SHR and WKY obtained from Charles River confirmed a recent report that abundance of sEH was greater in SHR (CRiv) than WKY (CRiv) strains. Polymorphisms were detected in EPHX2. Resequencing revealed that 2 alleles of EPHX2 exist in these 4 rat strains, differing by 4 single nucleotide polymorphisms, of which 3 produce nonsynonymous amino acid substitutions. The ancestral allele was shared by SHR (Heid) and WKY (CRiv), and the variant allele was shared by WKY (Heid) and SHR (CRiv). Activity of sEH was greater in animals carrying the variant allele. However, inheritance of this allele was not correlated with blood pressure in the F(2) progeny of a cross between SHR (Heid) and WKY (Heid). These data indicate that sequence variation determining functional alterations in EPHX2 is not likely to contribute to blood pressure levels in SHR.
Collapse
Affiliation(s)
- Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, Tex 77030, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Cowart LA, Wei S, Hsu MH, Johnson EF, Krishna MU, Falck JR, Capdevila JH. The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J Biol Chem 2002; 277:35105-12. [PMID: 12124379 DOI: 10.1074/jbc.m201575200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytochromes P450 of the CYP2C and CYP4A gene subfamilies metabolize arachidonic acid to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) and to 19- and 20-hydroxyeicosatetraenoic acids (HETEs), respectively. Abundant functional studies indicate that EETs and HETEs display powerful and often opposing biological activities as mediators of ion channel activity and regulators of vascular tone and systemic blood pressures. Incubation of 8,9-, 11,12-, and 14,15-EETs with microsomal and purified forms of rat CYP4A isoforms led to rapid NADPH-dependent metabolism to the corresponding 19- and 20-hydroxylated EETs. Comparisons of reaction rates and catalytic efficiency with those of arachidonic and lauric acids showed that EETs are one of the best endogenous substrates so far described for rat CYP4A isoforms. CYP4A1 exhibited a preference for 8,9-EET, whereas CYP4A2, CYP4A3, and CYP4A8 preferred 11,12-EET. In general, the closer the oxido ring is to the carboxylic acid functionality, the higher the rate of EET metabolism and the lower the regiospecificity for the EET omega-carbon. Analysis of cis-parinaric acid displacement from the ligand-binding domain of the human peroxisome proliferator-activated receptor-alpha showed that omega-hydroxylated 14,15-EET bound to this receptor with high affinity (K(i) = 3 +/- 1 nm). Moreover, at 1 microm, the omega-alcohol of 14,15-EET or a 1:4 mixture of the omega-alcohols of 8,9- and 11,12-EETs activated human and mouse peroxisome proliferator-activated receptor-alpha in transient transfection assays, suggesting a role for them as endogenous ligands for these orphan nuclear receptors.
Collapse
Affiliation(s)
- L Ashley Cowart
- Department of Biochemistry, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Capdevila JH, Falck JR. Biochemical and molecular properties of the cytochrome P450 arachidonic acid monooxygenases. Prostaglandins Other Lipid Mediat 2002; 68-69:325-44. [PMID: 12432927 DOI: 10.1016/s0090-6980(02)00038-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytochrome P450 (P450) arachidonic acid (AA) monooxygenase metabolizes the fatty acid to a series of epoxy- and hydroxy-acid derivatives. Catalytic turnover requires NADPH, and requires the redox-coupled activation and cleavage of diatomic oxygen, and the delivery of an active form of atomic oxygen to ground state carbon atoms. Past and present advances in P450 biochemistry and molecular biology are beginning to provide a description of the P450 isoform specificity of AA bioactivation, and the mechanisms of action and physiological relevance of the P450 metabolites. The demonstration of the endogenous biosynthesis of many of these metabolites has established the P450 pathway as an important route for AA bioactivation, and has begun to uncovered new and important functional roles for this enzyme system in cell and organ physiology.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | | |
Collapse
|
27
|
Zhu D, Zhang C, Medhora M, Jacobs ER. CYP4A mRNA, protein, and product in rat lungs: novel localization in vascular endothelium. J Appl Physiol (1985) 2002; 93:330-7. [PMID: 12070222 DOI: 10.1152/japplphysiol.01159.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vasodilatory effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on lung arteries is opposite to the constrictor effect seen in cerebral and renal vessels. These observations raise questions about the cellular localization of 20-HETE-forming isoforms in pulmonary arteries and other tissues. Using in situ hybridization, we demonstrate for the first time CYP4A (a family of cytochrome P-450 enzymes catalyzing formation of 20-HETE from the substrate arachidonic acid) mRNA in pulmonary arterial endothelial and smooth muscle cells, bronchial smooth muscle and bronchial epithelial cells, type I epithelial cells, and macrophages in adult male rat lungs. Moreover, we detect CYP4A protein in rat pulmonary arteries and bronchi as well as cultured endothelial cells. Finally, we identify endogenously formed 20-HETE by using fluorescent HPLC techniques, as well as the capacity to convert arachidonic acid into 20-HETE in pulmonary arteries, bronchi, and endothelium. These data show that 20-HETE is an endogenous product of several pulmonary cell types and is localized to tissues that optimally position it to modulate physiological functions such as smooth muscle tone or electrolyte flux.
Collapse
Affiliation(s)
- Daling Zhu
- Department of Medicine, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
28
|
Marji JS, Wang MH, Laniado-Schwartzman M. Cytochrome P-450 4A isoform expression and 20-HETE synthesis in renal preglomerular arteries. Am J Physiol Renal Physiol 2002; 283:F60-7. [PMID: 12060587 DOI: 10.1152/ajprenal.00265.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictor and mediator of the myogenic response, is a major arachidonic acid metabolite in the microvasculature of the rat kidney formed primarily by the cytochrome P-450 (CYP) 4A isoforms, CYP4A1, CYP4A2, and CYP4A3. We examined CYP4A isoform expression and 20-HETE synthesis in microdissected interlobar, arcuate, and interlobular arteries; mRNA for all CYP4A isoforms was identified by RT-PCR. Western blot analysis indicated that the levels of CYP4A2/4A3-immunoreactive protein increased with decreased arterial diameter, whereas those of CYP4A1-immunoreactive protein remained unchanged. 20-HETE synthesis was the highest in the interlobular arteries (17 +/- 1.62 nmol. mg(-1). h(-1)) and, like CYP4A2/4A3-immunoreactive protein, decreased with increasing vessel diameter (4.5 +/- 1.21, 2.65 +/- 0.58, and 0.81 +/- 0.14 nmol. mg(-1). h(-1) in the arcuate, interlobar, and segmental arteries, respectively). 20-HETE synthesis in the renal artery and the abdominal aorta was undetectable. The observed decreased immunoreactivity of NADPH-cytochrome P-450 (c) oxidoreductase with increased arterial diameter provided a possible explanation for the decreased capacity to generate 20-HETE in the large arteries. The increase in CYP4A isoform expression and 20-HETE synthesis with decreasing diameter along the preglomerular arteries and the potent biological activity of 20-HETE underscore the significance of 20-HETE as a modulator of renal hemodynamics.
Collapse
Affiliation(s)
- Jackleen S Marji
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | |
Collapse
|
29
|
Yamaguchi Y, Kirita S, Hasegawa H, Aoyama J, Imaoka S, Minamiyama S, Funae Y, Baba T, Matsubara T. Contribution of CYP4A8 to the Formation of 20-Hydroxyeicosatetraenoic Acid from Arachidonic Acid in Rat Kidney. Drug Metab Pharmacokinet 2002; 17:109-16. [PMID: 15618658 DOI: 10.2133/dmpk.17.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) has been shown to be an arachidonic acid metabolite of the cytochrome P450 (CYP) enzymes belonging to the CYP4A subfamily and is a predominant regulator of renal vascular tone and tubular ion reabsorption in rat kidney. CYP4A8 is one of the CYP4A enzymes expressed in rat kidney, but its contribution to 20-HETE formation has not been assessed. In order to clarify that the role of CYP4A8, we have developed bacterial expression systems for the expression of recombinant CYP4A8 (rCYP4A8). We also produced an antibody against rCYP4A8 which was used for immunoinhibition and immunohistochemical studies. In a reconstituted system, rCYP4A8 sufficiently catalyzed 20-HETE formation as well as prostaglandin A(1) omega-hydroxylation, a marker activity for CYP4A8. In addition, anti-rCYP4A8 sera significantly inhibited prostaglandin A(1) omega-hydroxylation and strongly inhibited arachidonic acid omega-hydroxylation in rat kidney microsomes. These observations suggested for the first time that CYP4A8 also contributed to 20-HETE formation in rat kidney. Furthermore, immunohistochemstry suggested that CYP4A8 is present in preglomerular arteries, where 20-HETE has been established to be a vasoconstrictor.
Collapse
Affiliation(s)
- Yoshitaka Yamaguchi
- Department of ADME and Toxicology for Screening, Developmental Research Laboratories, Shionogi & Co., Ltd., Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Recent studies have indicated that arachidonic acid is primarily metabolized by cytochrome P-450 (CYP) enzymes in the brain, lung, kidney, and peripheral vasculature to 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) and that these compounds play critical roles in the regulation of renal, pulmonary, and cardiac function and vascular tone. EETs are endothelium-derived vasodilators that hyperpolarize vascular smooth muscle (VSM) cells by activating K(+) channels. 20-HETE is a vasoconstrictor produced in VSM cells that reduces the open-state probability of Ca(2+)-activated K(+) channels. Inhibitors of the formation of 20-HETE block the myogenic response of renal, cerebral, and skeletal muscle arterioles in vitro and autoregulation of renal and cerebral blood flow in vivo. They also block tubuloglomerular feedback responses in vivo and the vasoconstrictor response to elevations in tissue PO(2) both in vivo and in vitro. The formation of 20-HETE in VSM is stimulated by angiotensin II and endothelin and is inhibited by nitric oxide (NO) and carbon monoxide (CO). Blockade of the formation of 20-HETE attenuates the vascular responses to angiotensin II, endothelin, norepinephrine, NO, and CO. In the kidney, EETs and 20-HETE are produced in the proximal tubule and the thick ascending loop of Henle. They regulate Na(+) transport in these nephron segments. 20-HETE also contributes to the mitogenic effects of a variety of growth factors in VSM, renal epithelial, and mesangial cells. The production of EETs and 20-HETE is altered in experimental and genetic models of hypertension, diabetes, uremia, toxemia of pregnancy, and hepatorenal syndrome. Given the importance of this pathway in the control of cardiovascular function, it is likely that CYP metabolites of arachidonic acid contribute to the changes in renal function and vascular tone associated with some of these conditions and that drugs that modify the formation and/or actions of EETs and 20-HETE may have therapeutic benefits.
Collapse
Affiliation(s)
- Richard J Roman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
31
|
Capdevila JH, Falck JR. The CYP P450 arachidonic acid monooxygenases: from cell signaling to blood pressure regulation. Biochem Biophys Res Commun 2001; 285:571-6. [PMID: 11453630 DOI: 10.1006/bbrc.2001.5167] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The studies of the cytochrome P450 (P450) arachidonic acid (AA) monooxygenase, now established as a major pathway for the bioactivation of AA, have uncovered new and important functional roles for this enzyme system in cell and organ physiology, and in the metabolism of endogenous substrate. Past and present advances in P450 biochemistry and molecular biology are beginning to provide a description of the P450 isoform specificity of AA bioactivation, and the mechanisms of action and physiological relevance of the P450 metabolites. Associations between genetically controlled alterations in P450 function, expression, or regulation and functionally meaningful phenotypes point to the critical roles played by the AA monooxygenase in the control of systemic blood pressure and the pathophysiology of hypertension.
Collapse
Affiliation(s)
- J H Capdevila
- Departments of Medicine and Biochemistry, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | | |
Collapse
|
32
|
McGuire JJ, Ding H, Triggle CR. Endothelium-derived relaxing factors: A focus on endothelium-derived hyperpolarizing factor(s). Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-025] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-derived hyperpolarizing factor (EDHF) is defined as the non-nitric oxide (NO) and non-prostacyclin (PGI2) substance that mediates endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells (VSMC). Although both NO and PGI2 have been demonstrated to hyperpolarize VSMC by cGMP- and cAMP-dependent mechanisms, respectively, and in the case of NO by cGMP-independent mechanisms, a considerable body of evidence suggests that an additional cellular mechanism must exist that mediates EDH. Despite intensive investigation, there is no agreement as to the nature of the cellular processes that mediates the non-NO/PGI2 mediated hyperpolarization. Epoxyeicosatrienoic acids (EET), an endogenous anandamide, a small increase in the extracellular concentration of K+, and electronic coupling via myoendothelial cell gap junctions have all been hypothesized as contributors to EDH. An attractive hypothesis is that EDH is mediated via both chemical and electrical transmissions, however, the contribution from chemical mediators versus electrical transmission varies in a tissue- and species-dependent manner, suggesting vessel-specific specialization. If this hypothesis proves to be correct then the potential exists for the development of vessel and organ-selective vasodilators. Because endothelium-dependent vasodilatation is dysfunctional in disease states (i.e., atherosclerosis), selective vasodilators may prove to be important therapeutic agents.Key words: endothelium, nitric oxide, potassium channels, hyperpolarization, gap junctions.
Collapse
|
33
|
Imig JD, Zhao X, Falck JR, Wei S, Capdevila JH. Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonimide analog of 11,12-epoxyeicosatrienoic acid. J Hypertens 2001; 19:983-92. [PMID: 11393683 DOI: 10.1097/00004872-200105000-00020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Epoxygenase metabolites produced by the kidney affect renal blood flow and tubular transport function and 11,12-epoxyeicosatrienoic acid (11,12-EET) has been putatively identified as an endothelium-derived hyperpolarizing factor. The current studies were performed to determine the influence of 11,12-EET on the regulation of afferent arteriolar diameter in angiotensin II-infused hypertensive rats. MATERIALS AND METHODS Male Sprague-Dawley rats received angiotensin II (60 ng/min) or vehicle via an osmotic minipump. Angiotensin II-infused hypertensive and vehicle-infused normotensive rats were studied for 2 weeks following implantation of the minipump. Renal microvascular responses to the sulfonimide analog of 11,12-EET (11,12-EET-SI) and angiotensin II were observed utilizing the in-vitro juxtamedullary nephron preparation. Renal cortical epoxygenase enzyme protein levels were quantified by Western blot analysis. Renal microvessels were also isolated and epoxygenase metabolite levels measured by negative ion chemical ionization (NICI)/gas chromatography-mass spectroscopy. RESULTS Systolic blood pressure averaged 118 +/- 2 mmHg prior to pump implantation and increased to 185 +/- 7 mmHg in rats infused with angiotensin II for 2 weeks. Afferent arteriolar diameters of 2-week normotensive animals averaged 22 +/- 1 microm. Diameters of the afferent arterioles were 17% smaller in hypertensive rats (P< 0.05); however, arterioles from both groups responded to 11,12-EET-SI (100 nmol) with similar 15-17% increases in diameter. As we previously demonstrated, the afferent arteriolar reactivity to angiotensin II was enhanced in angiotensin II-infused animals. Interestingly, elevation of 11,12-EET-SI levels to 100 nmol reversed the enhanced vascular reactivity to angiotensin II associated with angiotensin II hypertension. Renal microvascular EET levels were not different between groups and averaged 81 +/- 9 and 87 +/- 13 pg/mg per 30 min in normotensive and hypertensive animals, respectively. Renal cortical microsomal levels of the epoxygenase CYP2C23 and CYP2C11 proteins were also similar in normotensive and angiotensin II hypertensive rats. CONCLUSIONS Taken together, these data support the concept that renal microvascular 11,12-EET activity and levels may not properly offset the enhanced angiotensin II renal vasoconstriction during angiotensin II hypertension.
Collapse
Affiliation(s)
- J D Imig
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|
34
|
Ito O, Omata K, Ito S, Hoagland KM, Roman RJ. Effects of converting enzyme inhibitors on renal P-450 metabolism of arachidonic acid. Am J Physiol Regul Integr Comp Physiol 2001; 280:R822-30. [PMID: 11171663 DOI: 10.1152/ajpregu.2001.280.3.r822] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of blockade of the renin-angiotensin system on the renal metabolism of arachidonic acid (AA) were examined. Male Sprague-Dawley rats were treated with vehicle, captopril (25 mg x kg(-1) x day(-1)), enalapril (10 mg x kg(-1) x day(-1)), or candesartan (1 mg x kg(-1) x day(-1)) for 1 wk. The production of 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) by renal cortical microsomes increased in rats treated with captopril by 59 and 24% and by 90 and 58% in rats treated with enalapril. Captopril and enalapril increased 20-HETE production in the outer medulla by 100 and 143%, respectively. In contrast, blockade of ANG II type 1 receptors with candesartan had no effect on the renal metabolism of AA. Captopril and enalapril increased cytochrome P-450 (CYP450) reductase protein levels in the renal cortex and outer medulla and the expression of CYP450 4A protein in the outer medulla. The effects of captopril on the renal metabolism of AA were prevented by the bradykinin-receptor antagonist, HOE-140, or the nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester. These results suggest that angiotensin-converting enzyme inhibitors may increase the formation of 20-HETE and EETs secondary to increases in the intrarenal levels of kinins and NO.
Collapse
Affiliation(s)
- O Ito
- Department of Nephrology, Endocrinology, and Hypertension, Tohoku University Graduate School of Medicine, Sendai 980 - 8574, Japan
| | | | | | | | | |
Collapse
|
35
|
Maier KG, Roman RJ. Cytochrome P450 metabolites of arachidonic acid in the control of renal function. Curr Opin Nephrol Hypertens 2001; 10:81-7. [PMID: 11195057 DOI: 10.1097/00041552-200101000-00013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies indicate that arachidonic acid is primarily metabolized by cytochrome P450 enzymes of the 4A and 2C families in the kidney to 20-hydroxyeicosatetraenoic acid (HETE), epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids. These compounds play central roles in the regulation of renal tubular and vascular function. 20-HETE is produced by renal vascular smooth muscle (VSM) cells and is a potent constrictor that depolarizes VSM cells by blocking the calcium-activated potassium channel. Inhibition of the formation of 20-HETE blocks the myogenic response of isolated renal arterioles in vitro, and autoregulation of renal blood flow and tubuloglomerular feedback responses in vivo. EETs are products formed in the endothelium and are potent dilators that activate the calcium-activated potassium channel in renal VSM. Endothelial-dependent vasodilators stimulate the release of EETs, and these compounds appear to serve as an endothelial-derived hyperpolarizing factor. EETs and 20-HETE are produced in the proximal tubule. There, they regulate sodium/potassium-ATPase activity and serve as second messengers for the natriuretic effects of dopamine, parathyroid hormone and angiotensin II. 20-HETE is also produced in the thick ascending loop of Henle. It regulates sodium-potassium-chloride transport in this nephron segment. The renal production of cytochrome P450 metabolites of arachidonic acid is altered in hypertension, diabetes, toxemia of pregnancy, and hepatorenal syndrome. Given the importance of cytochrome P450 metabolites of arachidonic acid in the control of renal function, it is likely that changes in this system contribute to the abnormalities in renal function that are associated with many of these conditions.
Collapse
Affiliation(s)
- K G Maier
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
36
|
Abstract
Even though it has been recognized that arachidonic acid metabolites, eicosanoids, play an important role in the control of renal blood flow and glomerular filtration, several key observations have been made in the past decade. One major finding was that two distinct cyclooxygenase (COX-1 and COX-2) enzymes exist in the kidney. A renewed interest in the contribution of cyclooxygenase metabolites in tubuloglomerular feedback responses has been sparked by the observation that COX-2 is constitutively expressed in the macula densa area. Arachidonic acid metabolites of the lipoxygenase pathway appear to be significant factors in renal hemodynamic changes that occur during disease states. In particular, 12(S)- hydroxyeicosatetraenoic acid may be important for the full expression of the renal hemodynamic actions in response to angiotensin II. Cytochrome P-450 metabolites have been demonstrated to possess vasoactive properties, act as paracrine modulators, and be a critical component in renal blood flow autoregulatory responses. Last, peroxidation of arachidonic acid metabolites to isoprostanes appears to be involved in renal oxidative stress responses. The recent developments of specific enzymatic inhibitors, stable analogs, and gene-disrupted mice and in antisense technology are enabling investigators to understand the complex interplay by which eicosanoids control renal blood flow.
Collapse
Affiliation(s)
- J D Imig
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
37
|
Roman RJ, Maier KG, Sun CW, Harder DR, Alonso-Galicia M. Renal and cardiovascular actions of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids. Clin Exp Pharmacol Physiol 2000; 27:855-65. [PMID: 11071299 DOI: 10.1046/j.1440-1681.2000.03349.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Arachidonic acid (AA) is metabolized by cytochrome P450 (CYP)-dependent pathways to epoxyeicosatrienoic acids (EET) and 20-hydroxyeicosatetraenoic acid (20-HETE) in the kidney and the peripheral vasculature. 2. The present short review summarizes the renal and cardiovascular actions of these important mediators. 3. Epoxyeicosatrienoic acids are vasodilators produced by the endothelium that hyperpolarize vascular smooth muscle (VSM) cells by opening Ca2+-activated K+ (KCa) channels. 20-Hydroxyeicosatetraenoic acid is a vasoconstrictor that inhibits the opening of KCa channels in VSM cells. Cytochrome P450 4A inhibitors block the myogenic response of small arterioles to elevations in transmural pressure and autoregulation of renal and cerebral blood flow in vivo. Cytochrome P450 4A blockers also attenuate the vasoconstrictor response to elevations in tissue PO2, suggesting that this system may serve as a vascular oxygen sensor. Nitric oxide and carbon monoxide inhibit the formation of 20-HETE and a fall in 20-HETE levels contributes to the activation of KCa channels in VSM cells and the vasodilator response to these gaseous mediators. 20-Hydroxyeicosatetraenoic acid also mediates the inhibitory actions of peptide hormones on sodium transport in the kidney and the mitogenic effects of growth factors in VSM and mesangial cells. A deficiency in the renal production of 20-HETE is associated with the development of hypertension in Dahl salt-sensitive rats. 4. In summary, the available evidence indicates that CYP metabolites of AA play a central role in the regulation of renal, pulmonary and vascular function and that abnormalities in this system may contribute to the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- R J Roman
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | |
Collapse
|
38
|
Capdevila JH, Falck JR. Biochemical and molecular characteristics of the cytochrome P450 arachidonic acid monooxygenase. Prostaglandins Other Lipid Mediat 2000; 62:271-92. [PMID: 10963794 DOI: 10.1016/s0090-6980(00)00085-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J H Capdevila
- Departments of Medicine and Biochemistry, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | | |
Collapse
|
39
|
Bednar MM, Gross CE, Balazy MK, Belosludtsev Y, Colella DT, Falck JR, Balazy M. 16(R)-hydroxy-5,8,11,14-eicosatetraenoic acid, a new arachidonate metabolite in human polymorphonuclear leukocytes. Biochem Pharmacol 2000; 60:447-55. [PMID: 10856441 DOI: 10.1016/s0006-2952(00)00345-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intact human polymorphonuclear leukocytes (PMNL) incubated with substimulatory amounts of arachidonic acid in the absence of a calcium ionophore formed four metabolites that were isolated by reverse-phase HPLC and characterized structurally by GC/MS. A major metabolite eluting as the most abundant peak of radioactivity lacked UV chromophores above 215 nm, and its formation was sensitive to 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF525A) but not 3-amino-1-[m(trifluoromethyl)phenyl]-2-pyrazoline (BW755C), suggesting that it was likely to be a product of cytochrome P450. The GC/MS analysis revealed the presence of two components: 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE) and 16-hydroxy-5,8,11,14-eicosatetraenoic acid (16-HETE) in an approximate ratio of 4:1. The minor metabolites were identified as 15-HETE and 5-HETE. Although 20-HETE has been observed previously as a product of arachidonic acid metabolism in PMNL, the occurrence of 16-HETE was a novel finding. The stereochemistry of the hydroxyl group in PMNL-derived 16-HETE was established by analysis of 1-pentafluorobenzyl-16-naphthoyl derivatives on a chiral-phase chromatographic column and comparison with authentic synthetic stereoisomers. The PMNL-derived radioactive metabolite co-eluted with the synthetic 16(R)-HETE stereoisomer. Analysis of the total lipid extracts from intact PMNL followed by mild alkaline hydrolysis resulted in detectable amounts of 16-HETE (108+/-26 pg/10(8) cells) and 20-HETE (341+/-69 pg/10(8) cells), which suggested that these HETEs were formed from endogenous arachidonic acid and esterified within PMNL lipids. Thus, in contrast to calcium ionophore-stimulated neutrophils that generate large amounts of 5-lipoxygenase products, the intact PMNL generate 20-HETE and 16(R)-HETE via a cytochrome P450 omega- and omega-4 oxygenase(s).
Collapse
Affiliation(s)
- M M Bednar
- Division of Neurosurgery, Vermont Center for Vascular Research, The University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gebremedhin D, Lange AR, Lowry TF, Taheri MR, Birks EK, Hudetz AG, Narayanan J, Falck JR, Okamoto H, Roman RJ, Nithipatikom K, Campbell WB, Harder DR. Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res 2000; 87:60-5. [PMID: 10884373 DOI: 10.1161/01.res.87.1.60] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the brain, pressure-induced myogenic constriction of cerebral arteriolar muscle contributes to autoregulation of cerebral blood flow (CBF). This study examined the role of 20-HETE in autoregulation of CBF in anesthetized rats. The expression of P-450 4A protein and mRNA was localized in isolated cerebral arteriolar muscle of rat by immunocytochemistry and in situ hybridization. The results of reverse transcriptase-polymerase chain reaction studies revealed that rat cerebral microvessels express cytochrome P-450 4A1, 4A2, 4A3, and 4A8 isoforms, some of which catalyze the formation of 20-HETE from arachidonic acid. Cerebral arterial microsomes incubated with [(14)C]arachidonic acid produced 20-HETE. An elevation in transmural pressure from 20 to 140 mm Hg increased 20-HETE concentration by 6-fold in cerebral arteries as measured by gas chromatography/mass spectrometry. In vivo, inhibition of vascular 20-HETE formation with N-methylsulfonyl-12, 12-dibromododec-11-enamide (DDMS), or its vasoconstrictor actions using 15-HETE or 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE), attenuated autoregulation of CBF to elevations of arterial pressure. In vitro application of DDMS, 15-HETE, or 20-HEDE eliminated pressure-induced constriction of rat middle cerebral arteries, and 20-HEDE and 15-HETE blocked the vasoconstriction action of 20-HETE. Taken together, these data suggest an important role for 20-HETE in the autoregulation of CBF.
Collapse
Affiliation(s)
- D Gebremedhin
- Cardiovascular Research Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Lasker JM, Chen WB, Wolf I, Bloswick BP, Wilson PD, Powell PK. Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11. J Biol Chem 2000; 275:4118-26. [PMID: 10660572 DOI: 10.1074/jbc.275.6.4118] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
20-hydroxyeicosatetraenoic acid (20-HETE), an omega-hydroxylated arachidonic acid (AA) metabolite, elicits specific effects on kidney vascular and tubular function that, in turn, influence blood pressure control. The human kidney's capacity to convert AA to 20-HETE is unclear, however, as is the underlying P450 catalyst. Microsomes from human kidney cortex were found to convert AA to a single major product, namely 20-HETE, but failed to catalyze AA epoxygenation and midchain hydroxylation. Despite the monophasic nature of renal AA omega-hydroxylation kinetics, immunochemical studies revealed participation of two P450s, CYP4F2 and CYP4A11, since antibodies to these enzymes inhibited 20-HETE formation by 65. 9 +/- 17 and 32.5 +/- 14%, respectively. Western blotting confirmed abundant expression of these CYP4 proteins in human kidney and revealed that other AA-oxidizing P450s, including CYP2C8, CYP2C9, and CYP2E1, were not expressed. Immunocytochemistry showed CYP4F2 and CYP4A11 expression in only the S2 and S3 segments of proximal tubules in cortex and outer medulla. Our results demonstrate that CYP4F2 and CYP4A11 underlie conversion of AA to 20-HETE, a natriuretic and vasoactive eicosanoid, in human kidney. Considering their proximal tubular localization, these P450 enzymes may partake in pivotal renal functions, including the regulation of salt and water balance, and arterial blood pressure itself.
Collapse
Affiliation(s)
- J M Lasker
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Cytochrome P450 and arachidonic acid bioactivation: molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32049-6] [Citation(s) in RCA: 415] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
44
|
Hoch U, Zhang Z, Kroetz DL, Ortiz de Montellano PR. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid omega-hydroxylases. Arch Biochem Biophys 2000; 373:63-71. [PMID: 10620324 DOI: 10.1006/abbi.1999.1504] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The substrate and regiospecificities of the known CYP4A enzymes from rat (CYP4A1, -4A2, -4A3, and -4A8) and human (CYP4A11) have been determined using lauric (C12), myristic (C14), palmitic (C16), oleic (C18:1), and arachidonic (C20:4) acids. The CYP4A2 and CYP4A8 cDNAs required to complete the enzyme set were cloned from a rat kidney library. All five proteins were expressed in Escherichia coli and were purified with the help of a six-histidine tag at the carboxyl terminus. Two complementary CYP4A2-CYP4A3 chimeras fused at residue 119 (CYP4A2) and 122 (CYP4A3) were constructed to explore the roles of the 18 amino acid differences between the parent proteins in determining their catalytic profiles. The chimera in which the first 119 amino acids are from CYP4A2 indicates that the first 120 amino acids control the substrate specificity. The chimera in which the first 122 amino acids are from CYP4A3 is inactive due to a defect in electron transfer to the heme group. The highest activity for lauric acid was obtained with CYP4A1 and CYP4A8, but for all the proteins the activity decreased with increasing fatty acid chain length. The fact that none of the rat and human CYP4A enzymes exhibits a high activity with arachidonic acid appears to limit their role as catalysts for the physiologically important conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE).
Collapse
Affiliation(s)
- U Hoch
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94143-0446, USA
| | | | | | | |
Collapse
|
45
|
McGiff JC, Quilley J. 20-HETE and the kidney: resolution of old problems and new beginnings. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R607-23. [PMID: 10484476 DOI: 10.1152/ajpregu.1999.277.3.r607] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protean properties of 20-hydroxyeicosatetraenoic acid (HETE), vasoactivity, mitogenicity, and modulation of transport in key nephron segments, serve as the basis for the essential roles of 20-HETE in the regulation of the renal circulation and electrolyte excretion and as a second messenger for endothelin-1 and mediator of selective renal effects of ANG II. Renal autoregulation and tubular glomerular feedback are mediated by 20-HETE through constriction of preglomerular arterioles, responses that are maintained by 20-HETE inhibition of calcium-activated potassium channels. 20-HETE modulates ion transport in the proximal tubules and the thick ascending limb by affecting the activities of Na+-K+-ATPase and the Na+-K+-2Cl- cotransporter, respectively. The range and diversity of activity of 20-HETE derives in large measure from COX-dependent transformation of 20-HETE to products affecting vasomotion and salt and water excretion. Nitric oxide (NO) exerts a negative modulatory effect on 20-HETE formation; inhibition of NO synthesis produces marked perturbation of renal function resulting from increased 20-HETE production. 20-HETE is an essential component of interactions involving several hormonal systems that have central roles in blood pressure homeostasis, including angiotensins, endothelins, NO, and cytokines. 20-HETE is the preeminent renal eicosanoid, overshadowing PGE2 and PGI2. This review is intended to provide evidence for the physiological roles for cytochrome P-450-derived eicosanoids, particularly 20-HETE, and seeks to extend this knowledge to a conceptual framework for overall cardiovascular function.
Collapse
Affiliation(s)
- J C McGiff
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
46
|
Ma J, Qu W, Scarborough PE, Tomer KB, Moomaw CR, Maronpot R, Davis LS, Breyer MD, Zeldin DC. Molecular cloning, enzymatic characterization, developmental expression, and cellular localization of a mouse cytochrome P450 highly expressed in kidney. J Biol Chem 1999; 274:17777-88. [PMID: 10364221 DOI: 10.1074/jbc.274.25.17777] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA encoding a new cytochrome P450 was isolated from a mouse liver library. Sequence analysis reveals that this 1,886-base pair cDNA encodes a 501-amino acid polypeptide that is 69-74% identical to CYP2J subfamily P450s and is designated CYP2J5. Recombinant CYP2J5 was co-expressed with NADPH-cytochrome P450 oxidoreductase in Sf9 cells using a baculovirus system. Microsomal fractions of CYP2J5/NADPH-cytochrome P450 oxidoreductase-transfected cells metabolize arachidonic acid to 14,15-, 11,12-, and 8, 9-epoxyeicosatrienoic acids and 11- and 15-hydroxyeicosatetraenoic acids (catalytic turnover, 4.5 nmol of product/nmol of cytochrome P450/min at 37 degrees C); thus CYP2J5 is enzymologically distinct. Northern analysis reveals that CYP2J5 transcripts are most abundant in mouse kidney and present at lower levels in liver. Immunoblotting using a polyclonal antibody against a CYP2J5-specific peptide detects a protein with the same electrophoretic mobility as recombinant CYP2J5 most abundantly in mouse kidney microsomes. CYP2J5 is regulated during development in a tissue-specific fashion. In the kidney, CYP2J5 is present before birth and reaches maximal levels at 2-4 weeks of age. In the liver, CYP2J5 is absent prenatally and during the early postnatal period, first appears at 1 week, and then remains relatively constant. Immunohistochemical staining of kidney sections with anti-human CYP2J2 IgG reveals that CYP2J protein(s) are present primarily in the proximal tubules and collecting ducts, sites where the epoxyeicosatrienoic acids are known to modulate fluid/electrolyte transport and mediate hormonal action. In situ hybridization confirms abundant CYP2J5 mRNA within tubules of the renal cortex and outer medulla. Epoxyeicosatrienoic acids are endogenous constituents of mouse kidney thus providing direct evidence for the in vivo metabolism of arachidonic acid by the mouse renal epoxygenase(s). Based on these data, we conclude that CYP2J5 is an enzymologically distinct, developmentally regulated, protein that is localized to specific nephron segments and contributes to the oxidation of endogenous renal arachidonic acid pools. In light of the well documented effects of epoxyeicosatrienoic acids in modulating renal tubular transport processes, we postulate that CYP2J5 products play important functional roles in the kidney.
Collapse
Affiliation(s)
- J Ma
- Laboratories of Pulmonary Pathobiology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ito O, Roman RJ. Regulation of P-450 4A activity in the glomerulus of the rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1749-57. [PMID: 10362756 DOI: 10.1152/ajpregu.1999.276.6.r1749] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently reported that an enzyme of the cytochrome P-450 4A family is expressed in the glomerulus, but there is no evidence that 20-hydroxyeicosatetraenoic acid (20-HETE) can be produced by this tissue. The purpose of present study was to determine whether glomeruli isolated from the kidney of rats can produce 20-HETE and whether the production of this metabolite is regulated by nitric oxide (NO) and dietary salt intake. Isolated glomeruli produced 20-HETE, dihydroxyeicosatrienoic acids, and 12-hydroxyeicosatetraenoic acid (4.13 +/- 0.38, 4.20 +/- 0.38, and 2. 10 +/- 0.20 pmol. min-1. mg protein-1, respectively) when incubated with arachidonic acid (10 microM). The formation of 20-HETE was dependent on the availability of NADPH and the PO2 of the incubation medium. The formation of 20-HETE was inhibited by NO donors in a concentration-dependent manner. The production of 20-HETE was greater in glomeruli isolated from the kidneys of rats fed a low-salt diet than in kidneys of rats fed a high-salt diet (5.67 +/- 0.32 vs. 2.83 +/- 0.32 pmol. min-1. mg protein-1). Immunoblot experiments indicated that the expression of P-450 4A protein in glomeruli from the kidneys of rats fed a low-salt diet was sixfold higher than in kidneys of rats fed a high-salt diet. These results indicate that arachidonic acid is primarily metabolized to 20-HETE and dihydroxyeicosatrienoic acids in glomeruli and that glomerular P-450 activity is modulated by NO and dietary salt intake.
Collapse
Affiliation(s)
- O Ito
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
48
|
Nguyen X, Wang MH, Reddy KM, Falck JR, Schwartzman ML. Kinetic profile of the rat CYP4A isoforms: arachidonic acid metabolism and isoform-specific inhibitors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1691-700. [PMID: 10362749 DOI: 10.1152/ajpregu.1999.276.6.r1691] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (HETE), the cytochrome P-450 (CYP) 4A omega-hydroxylation product of arachidonic acid, has potent biological effects on renal tubular and vascular functions and on the control of arterial pressure. We have expressed high levels of the rat CYP4A1, -4A2, -4A3, and -4A8 cDNAs, using baculovirus and Sf 9 insect cells. Arachidonic acid omega- and omega-1-hydroxylations were catalyzed by three of the CYP4A isoforms; the highest catalytic efficiency of 947 nM-1. min-1 for CYP4A1 was followed by 72 and 22 nM-1. min-1 for CYP4A2 and CYP4A3, respectively. CYP4A2 and CYP4A3 exhibited an additional arachidonate 11,12-epoxidation activity, whereas CYP4A1 operated solely as an omega-hydroxylase. CYP4A8 did not catalyze arachidonic or linoleic acid but did have a detectable lauric acid omega-hydroxylation activity. The inhibitory activity of various acetylenic and olefinic fatty acid analogs revealed differences and indicated isoform-specific inhibition. These studies suggest that CYP4A1, despite its low expression in extrahepatic tissues, may constitute the major source of 20-HETE synthesis. Moreover, the ability of CYP4A2 and -4A3 to catalyze the formation of two opposing biologically active metabolites, 20-HETE and 11, 12-epoxyeicosatrienoic acid, may be of great significance to the regulation of vascular tone.
Collapse
Affiliation(s)
- X Nguyen
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
49
|
Wang MH, Guan H, Nguyen X, Zand BA, Nasjletti A, Laniado-Schwartzman M. Contribution of cytochrome P-450 4A1 and 4A2 to vascular 20-hydroxyeicosatetraenoic acid synthesis in rat kidneys. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F246-53. [PMID: 9950955 DOI: 10.1152/ajprenal.1999.276.2.f246] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
20-Hydroxyeicosatetraenoic acids (20-HETE), a biologically active cytochrome P-450 (CYP) metabolite of arachidonic acid in the rat kidney, can be catalyzed by CYP4A isoforms including CYP4A1, CYP4A2, and CYP4A3. To determine the contribution of CYP4A isoforms to renal 20-HETE synthesis, specific antisense oligonucleotides (ODNs) were developed, and their specificity was examined in vitro in Sf9 cells expressing CYP4A isoforms and in vivo in Sprague-Dawley rats. Administration of CYP4A2 antisense ODNs (167 nmol. kg body wt-1. day-1 iv for 5 days) decreased vascular 20-HETE synthesis by 48% with no effect on tubular synthesis, whereas administration of CYP4A1 antisense ODNs inhibited vascular and tubular 20-HETE synthesis by 52 and 40%, respectively. RT-PCR of microdissected renal microvessel RNA indicated the presence of CYP4A1, CYP4A2, and CYP4A3 mRNAs, and a CYP4A1-immunoreactive protein was detected by Western analysis of microvessel homogenates. Blood pressure measurements revealed a reduction of 17 +/- 6 and 16 +/- 4 mmHg in groups receiving CYP4A1 and CYP4A2 antisense ODNs, respectively. These studies implicate CYP4A1 as a major 20-HETE synthesizing activity in the rat kidney and further document the feasibility of using antisense ODNs to specifically inhibit 20-HETE synthesis and thereby investigate its role in the regulation of renal function and blood pressure.
Collapse
Affiliation(s)
- M H Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
50
|
Jacobs ER, Effros RM, Falck JR, Reddy KM, Campbell WB, Zhu D. Airway synthesis of 20-hydroxyeicosatetraenoic acid: metabolism by cyclooxygenase to a bronchodilator. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L280-8. [PMID: 9950890 DOI: 10.1152/ajplung.1999.276.2.l280] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rabbit airway tissue is a particularly rich source of cytochrome P-4504A protein, but very little information regarding the effect(s) of 20-hydroxyeicosatetraenoic acid (20-HETE) on bronchial tone is available. Our studies examined the response of rabbit bronchial rings to 20-HETE and the metabolism of arachidonic acid and 20-HETE from airway microsomes. 20-HETE (10(-8) to 10(-6) M) produced a concentration-dependent relaxation of bronchial rings precontracted with KCl or histamine but not with carbachol. Relaxation to 20-HETE was blocked by indomethacin or epithelium removal, consistent with the conversion of 20-HETE to a bronchial relaxant by epithelial cyclooxygenase. A cyclooxygenase product of 20-HETE also elicited relaxation of bronchial rings. [14C]arachidonic acid was converted by airway microsomes to products that comigrated with authentic 20-HETE (confirmed by gas chromatography-mass spectrometry as 19- and 20-HETE) and to unidentified polar metabolites. [3H]20-HETE was metabolized to indomethacin-inhibitable products. These data suggest that 20-HETE is an endogenous product of rabbit airway tissue and may modulate airway resistance in a cyclooxygenase-dependent manner.
Collapse
Affiliation(s)
- E R Jacobs
- Department of Physiology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|