1
|
Huang F, Ding Z, Chen J, Guo B, Wang L, Liu C, Zhang C. Contribution of mitochondria to postmortem muscle tenderization: a review. Crit Rev Food Sci Nutr 2023:1-17. [PMID: 37819615 DOI: 10.1080/10408398.2023.2266767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Postmortem meat tenderization is a process mediated by a series of biochemical reactions related to muscle cell death. Cell death is considered a sign that muscle has started to transform into meat. Mitochondria play a significant role in regulating and executing cell death, as they are an aggregation point for many cell death signals and are also the primary target organelle damaged by tissue anoxia. Mitochondrial damage is likely to have an expanded role in postmortem meat tenderization. This review presents current findings on mitochondrial damage induced by the accumulation of reactive oxygen species during postmortem anaerobic metabolism and on the impact of mitochondrial damage on proteolysis and discusses how this leads to improved tenderness during aging. The underlying mechanisms of mitochondrial regulation of postmortem muscle tenderization likely focus on the mitochondria's role in postmortem cell death and energy metabolism. The death process of postmortem skeletal muscle cells may exhibit multiple types, possibly involving transformation from autophagy to apoptosis and, ultimately, necroptosis or necrosis. Mitochondrial characteristics, especially membrane integrity and ATP-related compound levels, are closely related to the transformation of multiple types of dead postmortem muscle cells. Finally, a possible biochemical regulatory network in postmortem muscle tenderization is proposed.
Collapse
Affiliation(s)
- Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Zhenjiang Ding
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries, Beijing, China
| | - Jinsong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Bing Guo
- Adisseo Asia Pacific Pte Ltd, Singapore, Singapore
| | - Linlin Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, Sichuan, China
| | - Chunmei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
2
|
Liu GY, Xie WL, Wang YT, Chen L, Xu ZZ, Lv Y, Wu QP. Calpain: the regulatory point of myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2023; 10:1194402. [PMID: 37456811 PMCID: PMC10346867 DOI: 10.3389/fcvm.2023.1194402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Calpain is a conserved cysteine protease readily expressed in several mammalian tissues, which is usually activated by Ca2+ and with maximum activity at neutral pH. The activity of calpain is tightly regulated because its aberrant activation will nonspecifically cleave various proteins in cells. Abnormally elevation of Ca2+ promotes the abnormal activation of calpain during myocardial ischemia-reperfusion, resulting in myocardial injury and cardiac dysfunction. In this paper, we mainly reviewed the effects of calpain in various programmed cell death (such as apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, and parthanatos) in myocardial ischemia-reperfusion. In addition, we also discussed the abnormal activation of calpain during myocardial ischemia-reperfusion, the effect of calpain on myocardial repair, and the possible future research directions of calpain.
Collapse
Affiliation(s)
- Guo-Yang Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Wan-Li Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yan-Ting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Lu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhen-Zhen Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yong Lv
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Qing-Ping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| |
Collapse
|
3
|
Knaryan VH, Sarukhanyan FP. [Ca2+-regulated enzymes calpain and calcineurin in neurodegenerative processes and prospects for neuroprotective pharmacotherapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:32-40. [PMID: 37490663 DOI: 10.17116/jnevro202312307132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Calcium (Ca2+) and Ca2+-regulated enzymes calpain and calcineurin are the key molecules of signaling mechanisms in neurons and ensure the normal course of intracellular neurochemical and neurophysiological processes. The imbalance and increase in the intracellular level of Ca2+ correlates with the activation of calpain and calcineurin. Inactivation of endogenous inhibitors and/or absence of exogenous pharmacological inhibitors of these enzymes may induce a cascade of intracellular mechanisms that are detrimental to the structural integrity and functional activity of neurons. The interrelated processes of Ca2+ imbalance, dysregulation of calpain and calcineurin are directly related to the development of intracellular pathophysiological reactions leading to the degeneration and death of selective neuronal populations in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The review briefly presents the characteristics of calpain and calcineurin, their interrelated role in the neurodegeneration processes. Data on the efficiency of the exogenous inhibitors (in vivo, in vitro) point out the potential role of pharmacological regulation of calpain and calcineurin for neuroprotection.
Collapse
Affiliation(s)
- V H Knaryan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Armenia
| | - F P Sarukhanyan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Armenia
| |
Collapse
|
4
|
Naldurtiker A, Batchu P, Kouakou B, Terrill TH, Shaik A, Kannan G. RNA-Seq exploration of the influence of stress on meat quality in Spanish goats. Sci Rep 2022; 12:20573. [PMID: 36446782 PMCID: PMC9709060 DOI: 10.1038/s41598-022-23269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022] Open
Abstract
Studies exploring the transcriptome of stress and its effects on meat quality are very limited, particularly in goats. Fifty-four male Spanish goats (8-mo old; BW = 29.7 ± 2.03 kg) were randomly subjected to one of three treatments (TRT; n = 18 goats/treatment): (1) transported for 180 min, (2) transported for 30 min, or (3) held in pens (control) to analyze the transcriptome of stress and meat quality in goats using RNA-seq technology. Blood samples were collected before and after treatment, and meat samples were collected after humane slaughter for stress hormone, meat quality (Longissimus dorsi), and transcriptomic analysis. Plasma epinephrine concentrations were higher (P < 0.01) in 180 min and 30 min groups compared to the control group; however, norepinephrine concentrations were not affected by the treatment. Muscle glycogen concentrations (15 min postmortem) were lower (P < 0.01) in both 30 min and 180 min groups compared to the control group. Calpastatin levels were higher (P < 0.01) in 180 min and 30 min groups than the control group. Warner-Bratzler shear force values of loin chops were the highest in the 180 min group (4 ± 0.15, kg), lowest in the control group (3.51 ± 0.10, kg), and intermediate in the 30 min group (3.78 ± 0.09, kg; P < 0.01) both at day 1 and day 6 aging time. Additionally, desmin levels of day 6 samples were lowest in the control group, highest in 180 min group, and intermediate in 30 min group (P < 0.05). RNA-seq results showed that a total of 10,633 genes were differentially expressed (5194 up regulated; 5439 down regulated) among all comparisons (blood and day 1 and day 6 muscle samples). Among these differentially expressed genes (DEGs), KLF9, AMPK, FOXO3, PTX3, GADD45, PTPN1, CASP7, MAPK4, HSPA12A, and JAK-STAT were probably associated with the effects of stress on skeletal muscle proteins and involved in biological process such as cellular response to corticosteroid stimulus, endoplasmic reticulum stress, insulin resistance, DNA repair, apoptosis, MAPK cascade and regulation of proteolysis. The KEGG analysis revealed that AMPK and JAK-SAT signaling pathways and autophagy were among the top 20 enriched pathways in our treatment comparisons. The results provide an understanding of the genes and pathways involved in stress responses and related changes in postmortem muscle metabolism and meat quality characteristics in goats.
Collapse
Affiliation(s)
- Aditya Naldurtiker
- Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA, 31030, USA
| | - Phaneendra Batchu
- Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA, 31030, USA
| | - Brou Kouakou
- Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA, 31030, USA
| | - Thomas H Terrill
- Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA, 31030, USA
| | - Arshad Shaik
- Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA, 31030, USA
| | - Govind Kannan
- Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA, 31030, USA.
| |
Collapse
|
5
|
Bischof G, Witte F, Terjung N, Heinz V, Juadjur A, Gibis M. Metabolic, proteomic and microbial changes postmortem and during beef aging. Crit Rev Food Sci Nutr 2022; 64:1076-1109. [PMID: 36004604 DOI: 10.1080/10408398.2022.2113362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The purpose of this review is to provide an overview of the current knowledge about proteomic and metabolic changes in beef, the microbiological alteration postmortem and during aging, and observe the influence on beef quality parameters, such as tenderness, taste and flavor. This review will also focus on the different aging types (wet- and dry-aging), the aging or postmortem time of beef and their effect on the proteome and metabolome of beef. The Ca2+ homeostasis and adenosine 5'-triphosphate breakdown are the main reactions in the pre-rigor phase. After rigor mortis, the enzymatic degradation of connective tissues and breakdown of energy metabolism dominate molecular changes in beef. Important metabolic processes leading to the formation of saccharides, nucleotides, organic acids (e.g. lactic acid), creatine and fatty acids are considered in this context as possible flavor precursors or formers of beef flavor and taste. Flavor precursors are substrates for lipid oxidation, Strecker degradation and Maillard reaction during cooking or roasting. The findings presented should serve as a basis for a better understanding of beef aging and its molecular effects and are intended to contribute to meeting the challenges of improving beef quality.
Collapse
Affiliation(s)
- Greta Bischof
- Chemical Analytics, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Franziska Witte
- Product Innovation, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nino Terjung
- Product Innovation, DIL Technology GmbH, Quakenbrück, Germany
| | - Volker Heinz
- Research Directorate, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Andreas Juadjur
- Chemical Analytics, German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Ma D, Suh DH, Zhang J, Chao Y, Duttlinger AW, Johnson JS, Lee CH, Kim YHB. Elucidating the involvement of apoptosis in postmortem proteolysis in porcine muscles from two production cycles using metabolomics approach. Sci Rep 2021; 11:3465. [PMID: 33568769 PMCID: PMC7876139 DOI: 10.1038/s41598-021-82929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Apoptosis has been suggested as the first step in the process of conversion of muscle into meat. While a potential role of apoptosis in postmortem proteolysis has been proposed, the underlying mechanisms by which metabolome changes in muscles would influence apoptotic and proteolytic process, leading to meat quality variation, has not been determined. Here, apoptotic and proteolytic attributes and metabolomics profiling of longissimus dorsi (LD) and psoas major (PM) muscles in pigs from two different production cycles (July–Jan vs. Apr–Sep) were evaluated. PM showed higher mitochondrial membrane permeability (MMP), concurrent with less extent of calpain-1 autolysis and troponin T degradation and higher abundance of HSP27 and αβ-crystallin compared to LD (P < 0.05). Apr–Sep muscles showed concurrence of extended apoptosis (indicated by higher MMP), calpain-1 autolysis and troponin T degradation, regardless of muscle effects (P < 0.05). Metabolomics profiling showed Apr–Sep muscles to increase in oxidative stress-related macronutrients, including 6-carbon sugars, some branched-chain AA, and free fatty acids. Antioxidant AA (His and Asp) and ascorbic acid were higher in July–Jan (P < 0.05). The results of the present study suggest that early postmortem apoptosis might be positively associated with pro-oxidant macronutrients and negatively associated with antioxidant metabolites, consequently affecting meat quality attributes in a muscle-specific manner.
Collapse
Affiliation(s)
- Danyi Ma
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jiaying Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yufan Chao
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Alan W Duttlinger
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.,USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, 47907, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN, 47907, USA
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea. .,Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, 05029, South Korea.
| | - Yuan H Brad Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Ma D, Yu Q, Hedrick VE, Cooper BR, Paschoal Sobreira TJ, Oh JH, Chun H, Kim YHB. Proteomic and metabolomic profiling reveals the involvement of apoptosis in meat quality characteristics of ovine M. longissimus from different callipyge genotypes. Meat Sci 2020; 166:108140. [DOI: 10.1016/j.meatsci.2020.108140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022]
|
8
|
Teng F, Yin Y, Guo J, Jiang M. Calpastatin peptide attenuates early brain injury following experimental subarachnoid hemorrhage. Exp Ther Med 2020; 19:2433-2440. [PMID: 32226486 PMCID: PMC7092924 DOI: 10.3892/etm.2020.8510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/19/2019] [Indexed: 11/23/2022] Open
Abstract
Calpain activation may have an important role in early brain injury (EBI) following subarachnoid hemorrhage (SAH). The present study investigated the effects of the calpastatin peptide, a cell-permeable peptide that functions as a potent inhibitor of calpain, on EBI in a rat SAH model. It was revealed that calpastatin peptide treatment significantly reduced SAH-induced body weight loss and neurological deficit at 72 h when compared with untreated SAH controls. Furthermore, the quantification of brain water content and the extravasation of Evans blue dye revealed a significant reduction in SAH-induced brain edema and blood-brain barrier permeability at 72 h due to treatment with the calpastatin peptide when compared with untreated SAH controls. Finally, calpastatin peptide treatment significantly attenuated the protein levels of Bax, cytochrome c, cleaved caspase-9 and cleaved caspase-3, and reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labelling-positive cells in the basal cortex at 72 h after SAH when compared with untreated SAH controls. These results indicated that the calpastatin peptide may ameliorate EBI following SAH in rat models.
Collapse
Affiliation(s)
- Fei Teng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| | - Yanxin Yin
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| | - Jia Guo
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| | - Ming Jiang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
- Biomedical Research Center of Tongji University Suzhou Institute, Suzhou, Jiangsu 215101, P.R. China
| |
Collapse
|
9
|
Understanding MAPK Signaling Pathways in Apoptosis. Int J Mol Sci 2020; 21:ijms21072346. [PMID: 32231094 PMCID: PMC7177758 DOI: 10.3390/ijms21072346] [Citation(s) in RCA: 600] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
MAPK (mitogen-activated protein kinase) signaling pathways regulate a variety of biological processes through multiple cellular mechanisms. In most of these processes, such as apoptosis, MAPKs have a dual role since they can act as activators or inhibitors, depending on the cell type and the stimulus. In this review, we present the main pro- and anti-apoptotic mechanisms regulated by MAPKs, as well as the crosstalk observed between some MAPKs. We also describe the basic signaling properties of MAPKs (ultrasensitivity, hysteresis, digital response), and the presence of different positive feedback loops in apoptosis. We provide a simple guide to predict MAPKs’ behavior, based on the intensity and duration of the stimulus. Finally, we consider the role of MAPKs in osmostress-induced apoptosis by using Xenopus oocytes as a cell model. As we will see, apoptosis is plagued with multiple positive feedback loops. We hope this review will help to understand how MAPK signaling pathways engage irreversible cellular decisions.
Collapse
|
10
|
Ramos PM, Wright SA, Delgado EF, van Santen E, Johnson DD, Scheffler JM, Elzo MA, Carr CC, Scheffler TL. Resistance to pH decline and slower calpain-1 autolysis are associated with higher energy availability early postmortem in Bos taurus indicus cattle. Meat Sci 2019; 159:107925. [PMID: 31476681 DOI: 10.1016/j.meatsci.2019.107925] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
Abstract
Beef from Bos taurus indicus is associated with toughness compared to Bos taurus taurus, suggesting there is antagonism between adaptability to heat and beef quality. Resistance to cellular stress in muscle may be protective postmortem, thereby delaying its conversion to meat. Therefore, our objective was to determine pH decline, calpain-1 and caspase 3 activation, and proteolysis in different biological cattle types. Angus, Brangus, and Brahman steers (n = 18) were harvested, and Longissimus lumborum were assessed postmortem for pH decline, ATP content, protease activation, and calpastatin content; and myofibrillar protein degradation was evaluated in beef aged to 14d. Brahman Longissimus lumborum exhibited resistance to pH decline, greater ATP content at 1 h, and delayed calpain-1 autolysis. Although content of caspase-3 zymogen was lower in Brahman, there was no evidence of caspase-3 mediated proteolysis. Greater resistance to energetic and pH changes early postmortem in Brahman Longissimus lumborum are associated with calpain-1 autolysis but not mitochondria mediated apoptosis.
Collapse
Affiliation(s)
- Patricia M Ramos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA; Department of Animal Sciences, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Av. Padua Dias, 11, CEP, 13418-900 Piracicaba, Sao Paulo, Brazil
| | - Shelby A Wright
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Eduardo F Delgado
- Department of Animal Sciences, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Av. Padua Dias, 11, CEP, 13418-900 Piracicaba, Sao Paulo, Brazil
| | - Edzard van Santen
- Agronomy Department, University of Florida, Gainesville, FL 32611-0500, USA
| | - D Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Jason M Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - C Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
11
|
Zhao H, Xu M, Chu G. Association between myocardial cell apoptosis and calpain-1/caspase-3 expression in rats with hypoxic-ischemic brain damage. Mol Med Rep 2017; 15:2727-2731. [PMID: 28447745 DOI: 10.3892/mmr.2017.6341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 12/29/2016] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the association between myocardial cell apoptosis and calpain-1/caspase-3 expression in a rat model of hypoxic-ischemic brain damage (HIBD). A total of 64 newborn rats were divided into control (n=8; sacrificed on day 7) and HIBD groups (n=56). HIBD group rats were sacrificed 2, 12 or 24 h, or 2, 3, 5 or 7 days following HIBD (n=8/group). A terminal deoxynucleotidyl transferase dUTP nick-end labeling assay was performed to detect myocardial apoptotic cells and calculate the apoptosis index (AI), reverse transcription-polymerase chain reaction was performed to detect myocardial calpain-1/caspase-3 mRNA expression levels and a western blot analysis was conducted to detect calpain‑1 protein expression levels. The correlations between calpain‑1 and caspase‑3 expression levels and AI were analyzed. The results demonstrated that apoptotic myocardial cells in the HIBD groups were markedly increased compared with the control group, with AI peaking in the day 3 group. Caspase‑3 and calpain‑1 mRNA expression levels were increased from 2 and 12 h following HIBD, respectively, with the most elevated levels in the day 2 group. Compared with the control group, calpain‑1 protein expression levels were increased from 2 h, with the greatest expression levels in the day 3 group (P<0.05). Calpain‑1 mRNA and protein (76/80 kDa) expression levels demonstrated positive linear correlations with AI (r=0.786, P=0.001; and r=0.853, P=0.001, respectively) Caspase-3 mRNA expression levels were positively correlated with AI (r=0.894; P=0.001). In conclusion, the present study demonstrated that in rats with HIBD, there is a positive correlation between increased apoptosis of myocardial cells and expression levels of calpain-1 and caspase-3.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Mei Xu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guilan Chu
- Department of Pediatrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
12
|
Yamamoto K, Sato K, Yukita M, Yasuda M, Omodaka K, Ryu M, Fujita K, Nishiguchi KM, Machida S, Nakazawa T. The neuroprotective effect of latanoprost acts via klotho-mediated suppression of calpain activation after optic nerve transection. J Neurochem 2017; 140:495-508. [PMID: 27859240 PMCID: PMC5299490 DOI: 10.1111/jnc.13902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022]
Abstract
Latanoprost was first developed for use in glaucoma therapy as an ocular hypotensive agent targeting the prostaglandin F2α (FP) receptor. Subsequently, latanoprost showed a neuroprotective effect, an additional pharmacological action. However, although it is well-known that latanoprost exerts an ocular hypotensive effect via the FP receptor, it is not known whether this is also true of its neuroprotective effect. Klotho was firstly identified as the gene linked to the suppression of aging phenotype: the defect of klotho gene in mice results aging phenotype such as hypokinesis, arteriosclerosis, and short lifespan. After that, the function of klotho was also reported to maintain calcium homeostasis and to exert a neuroprotective effect in various models of neurodegenerative disease. However, the function of klotho in eyes including retina is still poorly understood. Here, we show that klotho is a key factor underlying the neuroprotective effect of latanoprost during post-axotomy retinal ganglion cell (RGC) degeneration. Importantly, a quantitative RT-PCR gene expression analysis of klotho in sorted rat retinal cells revealed that the highest expression level of klotho in the retina was in the RGCs. Latanoprost acid, the biologically active form of latanoprost, inhibits post-traumatic calpain activation and concomitantly facilitates the expression and shedding of klotho in axotomized RGCs. This expression profile is a good match with the localization, not of the FP receptor, but of organic anion transporting polypeptide 2B1, known as a prostaglandin transporter, in the ocular tissue. Furthermore, an organic anion transporting polypeptide 2B1 inhibitor suppressed latanoprost acid-mediated klotho shedding ex vivo, whereas an FP receptor antagonist did not. The klotho fragments shed from the RGCs reduced the intracellular level of reactive oxygen species, and a specific klotho inhibitor accelerated and increased RGC death after axotomy. We conclude that the shed klotho fragments might contribute to the attenuation of axonal injury-induced calpain activation and oxidative stress, thereby protecting RGCs from post-traumatic neuronal degeneration.
Collapse
Affiliation(s)
- Kotaro Yamamoto
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Kota Sato
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
- Department of Ophthalmic Imaging and Information AnalyticsTohoku University Graduate School of MedicineMiyagiJapan
| | - Masayoshi Yukita
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Masayuki Yasuda
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Kazuko Omodaka
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
- Department of Ophthalmic Imaging and Information AnalyticsTohoku University Graduate School of MedicineMiyagiJapan
| | - Morin Ryu
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Kosuke Fujita
- Department of Retinal Disease ControlTohoku University Graduate School of MedicineMiyagiJapan
| | - Koji M. Nishiguchi
- Department of Advanced Ophthalmic MedicineTohoku University Graduate School of MedicineMiyagiJapan
| | - Shigeki Machida
- Department of OphthalmologyDokkyo Medical University Koshigaya HospitalSaitamaJapan
- Department of OphthalmologyIwate Medical University School of MedicineIwateJapan
| | - Toru Nakazawa
- Department of OphthalmologyTohoku University Graduate School of MedicineMiyagiJapan
- Department of Ophthalmic Imaging and Information AnalyticsTohoku University Graduate School of MedicineMiyagiJapan
- Department of Retinal Disease ControlTohoku University Graduate School of MedicineMiyagiJapan
- Department of Advanced Ophthalmic MedicineTohoku University Graduate School of MedicineMiyagiJapan
| |
Collapse
|
13
|
Choong CJ, Mochizuki H. Gene therapy targeting mitochondrial pathway in Parkinson's disease. J Neural Transm (Vienna) 2016; 124:193-207. [PMID: 27638713 DOI: 10.1007/s00702-016-1616-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) presents a relative selective localization of pathology to substantia nigra and well-defined motor symptoms caused by dopaminergic degeneration that makes it an ideal target for gene therapy. Parallel progress in viral vector systems enables the delivery of therapeutic genes directly into brain with reasonable safety along with sustained transgene expression. To date, gene therapy for PD that has reached clinical trial evaluation is mainly based on symptomatic approach that involves enzyme replacement strategy and restorative approach that depends on the addition of neurotrophic factors. Mitochondrial dysregulation, such as reduced complex I activity, increased mitochondria-derived reactive oxygen species (ROS) production, ROS-mediated mitochondrial DNA damage, bioenergetic failure, and perturbation of mitochondrial dynamics and mitophagy, has long been implicated in the pathogenesis of PD. Many of mutated genes linked to familial forms of PD affect these mitochondrial features. In this review, we discuss the recent progress that has been made in preclinical development of gene therapy targeting the mitochondrial pathway as disease modifying approach for PD. This review focuses on the potential therapeutic efficacy of candidate genes, including Parkin, PINK1, alpha synuclein, PGC-1 alpha, and anti-apoptotic molecules.
Collapse
Affiliation(s)
- Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
14
|
Curcio M, Salazar IL, Mele M, Canzoniero LMT, Duarte CB. Calpains and neuronal damage in the ischemic brain: The swiss knife in synaptic injury. Prog Neurobiol 2016; 143:1-35. [PMID: 27283248 DOI: 10.1016/j.pneurobio.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022]
Abstract
The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca(2+) concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca(2+)-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release, while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter receptors and downstream mechanisms. These alterations also disturb the balance between excitatory and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences. Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for stroke, specific strategies should be developed to avoid non-specific effects given the important regulatory role played by these proteases under normal physiological conditions.
Collapse
Affiliation(s)
- Michele Curcio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ivan L Salazar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Miranda Mele
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| |
Collapse
|
15
|
Rao MV, Campbell J, Palaniappan A, Kumar A, Nixon RA. Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice. J Neurochem 2016; 137:253-65. [PMID: 26756888 PMCID: PMC4828294 DOI: 10.1111/jnc.13536] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly, CAST over-expression in neurons attenuated pathological effects of TDP-43, α-synuclein and Huntingtin. These results suggest a potential value of specific small molecule inhibitors of calpains in delaying the development of ALS. Read the Editorial Highlight for this article on page 140.
Collapse
Affiliation(s)
- Mala V Rao
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY
10962
- Department of Psychiatry, Langone Medical Center, NYU School of
Medicine, New York, NY 10016
| | - Jabbar Campbell
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY
10962
| | - Arti Palaniappan
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY
10962
| | - Asok Kumar
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY
10962
- Department of Pathology, Langone Medical Center, NYU School of
Medicine, New York, NY 10016
| | - Ralph A Nixon
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY
10962
- Department of Psychiatry, Langone Medical Center, NYU School of
Medicine, New York, NY 10016
- Department of Cell Biology, Langone Medical Center, NYU School of
Medicine, New York, NY 10016
| |
Collapse
|
16
|
Jantzie LL, Winer JL, Corbett CJ, Robinson S. Erythropoietin Modulates Cerebral and Serum Degradation Products from Excess Calpain Activation following Prenatal Hypoxia-Ischemia. Dev Neurosci 2015; 38:15-26. [PMID: 26551007 DOI: 10.1159/000441024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 01/20/2023] Open
Abstract
Preterm infants suffer central nervous system (CNS) injury from hypoxia-ischemia and inflammation - termed encephalopathy of prematurity. Mature CNS injury activates caspase and calpain proteases. Erythropoietin (EPO) limits apoptosis mediated by activated caspases, but its role in modulating calpain activation has not yet been investigated extensively following injury to the developing CNS. We hypothesized that excess calpain activation degrades developmentally regulated molecules essential for CNS circuit formation, myelination and axon integrity, including neuronal potassium-chloride co-transporter (KCC2), myelin basic protein (MBP) and phosphorylated neurofilament (pNF), respectively. Further, we predicted that post-injury EPO treatment could mitigate CNS calpain-mediated degradation. Using prenatal transient systemic hypoxia-ischemia (TSHI) in rats to mimic CNS injury from extreme preterm birth, and postnatal EPO treatment with a clinically relevant dosing regimen, we found sustained postnatal excess cortical calpain activation following prenatal TSHI, as shown by the cleavage of alpha II-spectrin (αII-spectrin) into 145-kDa αII-spectrin degradation products (αII-SDPs) and p35 into p25. Postnatal expression of the endogenous calpain inhibitor calpastatin was also reduced following prenatal TSHI. Calpain substrate expression following TSHI, including cortical KCC2, MBP and NF, was modulated by postnatal EPO treatment. Calpain activation was reflected in serum levels of αII-SDPs and KCC2 fragments, and notably, EPO treatment also modulated KCC2 fragment levels. Together, these data indicate that excess calpain activity contributes to the pathogenesis of encephalopathy of prematurity. Serum biomarkers of calpain activation may detect ongoing cerebral injury and responsiveness to EPO or similar neuroprotective strategies.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, Mass., USA
| | | | | | | |
Collapse
|
17
|
Yue J, Ben Messaoud N, López JM. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid. J Biol Chem 2015; 290:30375-89. [PMID: 26511318 DOI: 10.1074/jbc.m115.660506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity.
Collapse
Affiliation(s)
- Jicheng Yue
- From the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Nabil Ben Messaoud
- From the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José M López
- From the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
18
|
Ben Messaoud N, Katzarova I, López JM. Basic Properties of the p38 Signaling Pathway in Response to Hyperosmotic Shock. PLoS One 2015; 10:e0135249. [PMID: 26335493 PMCID: PMC4559375 DOI: 10.1371/journal.pone.0135249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
Some properties of signaling systems, like ultrasensitivity, hysteresis (a form of biochemical memory), and all-or-none responses at a single cell level, are important to understand the regulation of irreversible processes. Xenopus oocytes are a suitable cell model to study these properties. The p38 MAPK (mitogen-activated protein kinase) pathway is activated by different stress stimuli, including osmostress, and regulates multiple biological processes, from immune response to cell cycle. Recently, we have reported that activation of p38 and JNK regulate osmostress-induced apoptosis in Xenopus oocytes and that sustained activation of p38 accelerates cytochrome c release and caspase-3 activation. However, the signaling properties of p38 in response to hyperosmotic shock have not been studied. Here we show, using Xenopus oocytes as a cell model, that hyperosmotic shock activates the p38 signaling pathway with an ultrasensitive and bimodal response in a time-dependent manner, and with low hysteresis. At a single cell level, p38 activation is not well correlated with cytochrome c release 2 h after hyperosmotic shock, but a good correlation is observed at 4 h after treatment. Interestingly, cytochrome c microinjection induces p38 phosphorylation through caspase-3 activation, and caspase inhibition reduces p38 activation induced by osmostress, indicating that a positive feedback loop is engaged by hyperosmotic shock. To know the properties of the stress protein kinases activated by hyperosmotic shock will facilitate the design of computational models to predict cellular responses in human diseases caused by perturbations in fluid osmolarity.
Collapse
Affiliation(s)
- Nabil Ben Messaoud
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ilina Katzarova
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José M. López
- Institut de Neurociències, Departament de Bioquímica i Biología Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- * E-mail:
| |
Collapse
|
19
|
Messaoud NB, Yue J, Valent D, Katzarova I, López JM. Osmostress-induced apoptosis in Xenopus oocytes: role of stress protein kinases, calpains and Smac/DIABLO. PLoS One 2015; 10:e0124482. [PMID: 25866890 PMCID: PMC4395108 DOI: 10.1371/journal.pone.0124482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Hyperosmotic shock induces cytochrome c release and caspase-3 activation in Xenopus oocytes, but the regulators and signaling pathways involved are not well characterized. Here we show that hyperosmotic shock induces rapid calpain activation and high levels of Smac/DIABLO release from the mitochondria before significant amounts of cytochrome c are released to promote caspase-3 activation. Calpain inhibitors or EGTA microinjection delays osmostress-induced apoptosis, and blockage of Smac/DIABLO with antibodies markedly reduces cytochrome c release and caspase-3 activation. Hyperosmotic shock also activates the p38 and JNK signaling pathways very quickly. Simultaneous inhibition of both p38 and JNK pathways reduces osmostress-induced apoptosis, while sustained activation of these kinases accelerates the release of cytochrome c and caspase-3 activation. Therefore, at least four different pathways early induced by osmostress converge on the mitochondria to trigger apoptosis. Deciphering the mechanisms of hyperosmotic shock-induced apoptosis gives insight for potential treatments of human diseases that are caused by perturbations in fluid osmolarity.
Collapse
Affiliation(s)
- Nabil Ben Messaoud
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jicheng Yue
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Valent
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ilina Katzarova
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - José M. López
- Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica, Facultad de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- * E-mail:
| |
Collapse
|
20
|
Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats. Neuroscience 2015; 291:331-40. [DOI: 10.1016/j.neuroscience.2014.09.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
|
21
|
Zhu X, Messer JS, Wang Y, Lin F, Cham CM, Chang J, Billiar TR, Lotze MT, Boone DL, Chang EB. Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J Clin Invest 2015; 125:1098-110. [PMID: 25642769 DOI: 10.1172/jci76344] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022] Open
Abstract
The intracellular protein HMGB1 is released from cells and acts as a damage-associated molecular pattern molecule during many diseases, including inflammatory bowel disease (IBD); however, the intracellular function of HMGB1 during inflammation is poorly understood. Here, we demonstrated that cytosolic HMGB1 regulates apoptosis by protecting the autophagy proteins beclin 1 and ATG5 from calpain-mediated cleavage during inflammation. Colitis in mice with an intestinal epithelial cell-specific Hmgb1 deletion and patients with IBD were both characterized by increased calpain activation, beclin 1 and ATG5 cleavage, and intestinal epithelial cell (IEC) death compared with controls. In vitro cleavage assays and studies of enteroids verified that HMGB1 protects beclin 1 and ATG5 from calpain-mediated cleavage events that generate proapoptotic protein fragments. Together, our results indicate that HMGB1 is essential for mitigating the extent and severity of inflammation-associated cellular injury by controlling the switch between the proautophagic and proapoptotic functions of beclin 1 and ATG5 during inflammation. Moreover, these studies demonstrate that HMGB1 is pivotal for reducing tissue injury in IBD and other complex inflammatory disorders.
Collapse
|
22
|
Moretti D, Del Bello B, Allavena G, Maellaro E. Calpains and cancer: Friends or enemies? Arch Biochem Biophys 2014; 564:26-36. [DOI: 10.1016/j.abb.2014.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
|
23
|
Yoon S, Park SJ, Han JH, Kang JH, Kim JH, Lee J, Park S, Shin HJ, Kim K, Yun M, Chwae YJ. Caspase-dependent cell death-associated release of nucleosome and damage-associated molecular patterns. Cell Death Dis 2014; 5:e1494. [PMID: 25356863 PMCID: PMC4649531 DOI: 10.1038/cddis.2014.450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
Apoptosis, which is anti-inflammatory, and necrosis, which is pro-inflammatory, represent the extremes of the cell death spectrum. Cell death is complex and both apoptosis and necrosis can be observed in the same cells or tissues. Here, we introduce a novel combined mode of cellular demise--caspase-dependent regulated necrosis. Most importantly, it is mainly characterized with release of marked amount of oligo- or poly-nucleosomes and their attached damage-associated molecular patterns (DAMPs) and initiated by caspase activation. Caspase-activated DNase has dual roles in nucleosomal release as it can degrade extracellularly released chromatin into poly- or oligo-nucleosomes although it prohibits release of nucleosomes. In addition, osmotically triggered water movement following Cl(-) influx and subsequent Na(+) influx appears to be the major driving force for nucleosomal and DAMPs release. Finally, Ca(2+)-activated cysteine protease, calpain, is an another essential factor in nucleosomal and DAMPs release because of complete reversion to apoptotic morphology from necrotic one and blockade of nucleosomal and DAMPs release by its inhibition.
Collapse
Affiliation(s)
- S Yoon
- 1] Department of Microbiology, Ajou University School of Medicine, Suwon, Korea [2] Department of Biomedical Sciences, Ajou University, Suwon, Korea
| | - S J Park
- 1] Department of Microbiology, Ajou University School of Medicine, Suwon, Korea [2] Department of Biomedical Sciences, Ajou University, Suwon, Korea
| | - J H Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - J H Kang
- 1] Department of Microbiology, Ajou University School of Medicine, Suwon, Korea [2] Department of Biomedical Sciences, Ajou University, Suwon, Korea
| | - J-h Kim
- Electron Microscopy Laboratory, Eulji University, Seongnam, Korea
| | - J Lee
- Bio-Medical Science Co. Ltd, Seoul, Korea
| | - S Park
- 1] Department of Microbiology, Ajou University School of Medicine, Suwon, Korea [2] Department of Biomedical Sciences, Ajou University, Suwon, Korea
| | - H-J Shin
- 1] Department of Microbiology, Ajou University School of Medicine, Suwon, Korea [2] Department of Biomedical Sciences, Ajou University, Suwon, Korea
| | - K Kim
- 1] Department of Microbiology, Ajou University School of Medicine, Suwon, Korea [2] Department of Biomedical Sciences, Ajou University, Suwon, Korea
| | - M Yun
- Department of Nuclear Medicine, College of Medicine, Yonsei University, Seoul, Korea
| | - Y-J Chwae
- 1] Department of Microbiology, Ajou University School of Medicine, Suwon, Korea [2] Department of Biomedical Sciences, Ajou University, Suwon, Korea
| |
Collapse
|
24
|
Huang F, Huang M, Zhang H, Guo B, Zhang D, Zhou G. Cleavage of the calpain inhibitor, calpastatin, during postmortem ageing of beef skeletal muscle. Food Chem 2014; 148:1-6. [DOI: 10.1016/j.foodchem.2013.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/05/2013] [Accepted: 10/02/2013] [Indexed: 11/25/2022]
|
25
|
Kumar V, Everingham S, Hall C, Greer PA, Craig AWB. Calpains promote neutrophil recruitment and bacterial clearance in an acute bacterial peritonitis model. Eur J Immunol 2013; 44:831-41. [PMID: 24375267 DOI: 10.1002/eji.201343757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/15/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022]
Abstract
Activation of the innate immune system is critical for clearance of bacterial pathogens to limit systemic infections and host tissue damage. Here, we report a key role for calpain proteases in bacterial clearance in mice with acute peritonitis. Using transgenic mice expressing Cre recombinase primarily in innate immune cells (fes-Cre), we generated conditional capns1 knockout mice. Consistent with capns1 being essential for stability and function of the ubiquitous calpains (calpain-1, calpain-2), peritoneal cells from these mice had reduced levels of calpain-2/capns1, and reduced proteolysis of their substrate selenoprotein K. Using an acute bacterial peritonitis model, we observed impaired bacterial killing within the peritoneum and development of bacteremia in calpain knockout mice. These defects correlated with significant reductions in IL-1α release, neutrophil recruitment, and generation of reactive oxygen species in calpain knockout mice with acute bacterial peritonitis. Peritoneal macrophages from calpain knockout mice infected with enterobacteria ex vivo, were competent in phagocytosis of bacteria, but showed impaired clearance of intracellular bacteria compared with control macrophages. Together, these results implicate calpains as key mediators of effective innate immune responses to acute bacterial infections, to prevent systemic dissemination of bacteria that can lead to sepsis.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
26
|
Yang J, Weimer RM, Kallop D, Olsen O, Wu Z, Renier N, Uryu K, Tessier-Lavigne M. Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 2013; 80:1175-89. [PMID: 24210906 DOI: 10.1016/j.neuron.2013.08.034] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 01/30/2023]
Abstract
Axon degeneration is widespread both in neurodegenerative disease and in normal neural development, but the molecular pathways regulating these degenerative processes and the extent to which they are distinct or overlapping remain incompletely understood. We report that calpastatin, an inhibitor of calcium-activated proteases of the calpain family, functions as a key endogenous regulator of axon degeneration. Calpastatin depletion was observed in degenerating axons after physical injury, and maintaining calpastatin inhibited degeneration of transected axons in vitro and in the optic nerve in vivo. Calpastatin depletion also occurred in a caspase-dependent manner in trophic factor-deprived sensory axons and was required for this in vitro model of developmental degeneration. In vivo, calpastatin regulated the normal pruning of retinal ganglion cell axons in their target field. These findings identify calpastatin as a key checkpoint for axonal survival after injury and during development, and demonstrate downstream convergence of these distinct pathways of axon degeneration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Armadillo Domain Proteins/genetics
- Armadillo Domain Proteins/metabolism
- Axotomy
- Brain/cytology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Calpain/metabolism
- Cell Survival/genetics
- Cells, Cultured
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/ultrastructure
- Gene Expression Regulation/physiology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- In Vitro Techniques
- Mice
- Microscopy, Electron, Transmission
- Nerve Degeneration/etiology
- Nerve Degeneration/metabolism
- Nerve Growth Factor/metabolism
- Nerve Tissue Proteins/metabolism
- Neurons/pathology
- Neurons/ultrastructure
- Nicotinamide-Nucleotide Adenylyltransferase/genetics
- Nicotinamide-Nucleotide Adenylyltransferase/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Sciatic Neuropathy/complications
- Sciatic Neuropathy/metabolism
- Time Factors
- Transduction, Genetic
- Wallerian Degeneration/pathology
- Wallerian Degeneration/physiopathology
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA; Research and Early Development, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Cruzen SM, Paulino PVR, Lonergan SM, Huff-Lonergan E. Postmortem proteolysis in three muscles from growing and mature beef cattle. Meat Sci 2013; 96:854-61. [PMID: 24211543 DOI: 10.1016/j.meatsci.2013.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/09/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The objective of this study was to determine calpain system activity and postmortem protein degradation in three muscles from growing (n=6, 7.3 ± 0.5 months) and mature (n=6, 106.7 ± 43.1 months) beef cattle. The ratio of μ-calpain:total calpastatin activity tended to be lower in mature animals (P=0.08), suggesting reduced potential for proteolysis. Additionally, muscles from the mature group had greater calpastatin activity compared to calves at 6 days postmortem and had less μ-calpain autolysis and troponin-T and titin degradation during the aging period (P<0.01). Between the longissimus, semimembranosus, and triceps brachii muscles, the triceps brachii had the least postmortem proteolysis, with greater calpastatin activity and less troponin-T and titin degradation compared to other muscles (P<0.01). These data suggest that calpastatin activity in muscle from older animals is more persistent postmortem. This difference may contribute to the decreased protein degradation and increased toughness of beef from mature cattle, even after aging.
Collapse
Affiliation(s)
- Shannon M Cruzen
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | | | | | | |
Collapse
|
28
|
Fodrin in centrosomes: implication of a role of fodrin in the transport of gamma-tubulin complex in brain. PLoS One 2013; 8:e76613. [PMID: 24098540 PMCID: PMC3788121 DOI: 10.1371/journal.pone.0076613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Gamma-tubulin is the major protein involved in the nucleation of microtubules from centrosomes in eukaryotic cells. It is present in both cytoplasm and centrosome. However, before centrosome maturation prior to mitosis, gamma-tubulin concentration increases dramatically in the centrosome, the mechanism of which is not known. Earlier it was reported that cytoplasmic gamma-tubulin complex isolated from goat brain contains non-erythroid spectrin/fodrin. The major role of erythroid spectrin is to help in the membrane organisation and integrity. However, fodrin or non-erythroid spectrin has a distinct pattern of localisation in brain cells and evidently some special functions over its erythroid counterpart. In this study, we show that fodrin and γ-tubulin are present together in both the cytoplasm and centrosomes in all brain cells except differentiated neurons and astrocytes. Immunoprecipitation studies in purified centrosomes from brain tissue and brain cell lines confirm that fodrin and γ-tubulin interact with each other in centrosomes. Fodrin dissociates from centrosome just after the onset of mitosis, when the concentration of γ-tubulin attains a maximum at centrosomes. Further it is observed that the interaction between fodrin and γ-tubulin in the centrosome is dependent on actin as depolymerisation of microfilaments stops fodrin localization. Image analysis revealed that γ-tubulin concentration also decreased drastically in the centrosome under this condition. This indicates towards a role of fodrin as a regulatory transporter of γ-tubulin to the centrosomes for normal progression of mitosis.
Collapse
|
29
|
Mohrhauser DA, Kern SA, Underwood KR, Weaver AD. Caspase-3 does not enhance in vitro bovine myofibril degradation by μ-calpain. J Anim Sci 2013; 91:5518-24. [PMID: 23989868 DOI: 10.2527/jas.2013-6572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tenderness is a key component of palatability, which influences consumers' perception of meat quality. There are a variety of factors that contribute to the tenderness of beef carcasses, including postmortem proteolysis. A more complete understanding of this biological mechanism regulating tenderness is needed to ensure consistently tender beef. Numerous reports indicate µ-calpain is primarily responsible for the degradation of proteins postmortem. Meanwhile, it has been shown that caspase-3 can cleave calpastatin, the inhibitor of µ-calpain. Therefore, the objective of this study was to determine if in vitro degradation of calpastatin by caspase-3 can enhance the postmortem breakdown of myofibrillar proteins by µ-calpain. Bovine semitendinosus muscles were excised from two carcasses 20 min postmortem. Muscle strips were dissected from the semitendinosus, restrained to maintain length, and placed in a neutral buffer containing protease inhibitors. Upon rigor completion, myofibrils were isolated from each strip, and sarcomere length was determined. Samples with similar sarcomere lengths were selected to minimize the effect of sarcomere length on proteolysis. Myofibrils were then incubated at 22°C with either µ-calpain, µ-calpain+calpastatin, µ-calpain+caspase-3+calpastatin, or caspase-3+calpastatin for 0.25, 1, 3, 24, 48, or 72 h at a pH of 6.8. Proteolysis of troponin T (TnT) and calpastatin was evaluated using SDS-PAGE and Western blotting techniques. Analysis of Western blots confirmed significant degradation of calpastatin by caspase-3 (P<0.05). Additionally, Western blots revealed intact calpastatin disappeared rapidly as a result of digestion by µ-calpain. Although caspase-3 did not significantly degrade TnT (P>0.05), all µ-calpain digestion treatments resulted in substantial TnT breakdown (P<0.05). Degradation of TnT did not differ between the µ-calpain+calpastatin and µ-calpain+caspase-3+calpastatin digestions (P>0.05). Results of this study indicate caspase-3 cleavage of calpastatin does not enhance in vitro degradation of TnT by µ-calpain.
Collapse
Affiliation(s)
- D A Mohrhauser
- Department of Animal Science, South Dakota State University, Brookings 57007
| | | | | | | |
Collapse
|
30
|
Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK. Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol (1985) 2013; 114:1482-9. [DOI: 10.1152/japplphysiol.00925.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prolonged skeletal muscle inactivity results in a rapid decrease in fiber size, primarily due to accelerated proteolysis. Although several proteases are known to contribute to disuse muscle atrophy, the ubiquitin proteasome system is often considered the most important proteolytic system during many conditions that promote muscle wasting. Emerging evidence suggests that calpain and caspase-3 may also play key roles in inactivity-induced atrophy of respiratory muscles, but it remains unknown if these proteases are essential for disuse atrophy in limb skeletal muscles. Therefore, we tested the hypothesis that activation of both calpain and caspase-3 is required for locomotor muscle atrophy induced by hindlimb immobilization. Seven days of immobilization (i.e., limb casting) promoted significant atrophy in type I muscle fibers of the rat soleus muscle. Independent pharmacological inhibition of calpain or caspase-3 prevented this casting-induced atrophy. Interestingly, inhibition of calpain activity also prevented caspase-3 activation, and, conversely, inhibition of caspase-3 prevented calpain activation. These findings indicate that a regulatory cross talk exists between these proteases and provide the first evidence that the activation of calpain and caspase-3 is required for inactivity-induced limb muscle atrophy.
Collapse
Affiliation(s)
- Erin E. Talbert
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kisuk Min
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Oh Sung Kwon
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Scott K. Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
31
|
Abstract
Calpains are a family of complex multi-domain intracellular enzymes that share a calcium-dependent cysteine protease core. These are not degradative enzymes, but instead carry out limited cleavage of target proteins in response to calcium signalling. Selective cutting of cytoskeletal proteins to facilitate cell migration is one such function. The two most abundant and extensively studied members of this family in mammals, calpains 1 and 2, are heterodimers of an isoform-specific 80 kDa large subunit and a common 28 kDa small subunit. Structures of calpain-2, both Ca2+-free and bound to calpastatin in the activated Ca2+-bound state, have provided a wealth of information about the enzyme's structure-function relationships and activation. The main association between the subunits is the pairing of their C-terminal penta-EF-hand domains through extensive intimate hydrophobic contacts. A lesser contact is made between the N-terminal anchor helix of the large subunit and the penta-EF-hand domain of the small subunit. Up to ten Ca2+ ions are co-operatively bound during activation. The anchor helix is released and individual domains change their positions relative to each other to properly align the active site. Because calpains 1 and 2 require ~30 and ~350 μM Ca2+ ions for half-maximal activation respectively, it has long been argued that autoproteolysis, subunit dissociation, post-translational modifications or auxiliary proteins are needed to activate the enzymes in the cell, where Ca2+ levels are in the nanomolar range. In the absence of robust support for these mechanisms, it is possible that under normal conditions calpains are transiently activated by high Ca2+ concentrations in the microenvironment of a Ca2+ influx, and then return to an inactive state ready for reactivation.
Collapse
|
32
|
Astiz M, de Alaniz MJ, Marra CA. The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain. Neurochem Int 2012; 61:1231-41. [DOI: 10.1016/j.neuint.2012.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/25/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022]
|
33
|
Samengo G, Avik A, Fedor B, Whittaker D, Myung KH, Wehling-Henricks M, Tidball JG. Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia. Aging Cell 2012; 11:1036-45. [PMID: 22950758 DOI: 10.1111/acel.12003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass, is a highly-debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle-specific overexpression of calpastatin, the endogenous inhibitor of calcium-dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S-nitrosylation. We find that calpain in adult, non-sarcopenic muscles is S-nitrosylated but that aging leads to loss of S-nitrosylation, suggesting that reduced S-nitrosylation during aging leads to increased calpain-mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle-specific nNOS transgene restores calpain S-nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S-nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age.
Collapse
Affiliation(s)
- Giuseppina Samengo
- Department of Integrative Biology and Physiology; University of California; Los Angeles; CA; USA
| | - Anna Avik
- Department of Integrative Biology and Physiology; University of California; Los Angeles; CA; USA
| | - Brian Fedor
- Department of Integrative Biology and Physiology; University of California; Los Angeles; CA; USA
| | - Daniel Whittaker
- Department of Integrative Biology and Physiology; University of California; Los Angeles; CA; USA
| | - Kyu H. Myung
- Animal Science Department; Chonnam National University; Gwangju; Korea
| | | | | |
Collapse
|
34
|
Chen L, Feng XC, Zhang WG, Xu XL, Zhou GH. Effects of inhibitors on the synergistic interaction between calpain and caspase-3 during post-mortem aging of chicken meat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8465-8472. [PMID: 22720745 DOI: 10.1021/jf300062n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Calpain has been considered to be the most important protease involved in tenderization during the conversion of muscle into meat. However, recent evidence suggests the possible involvement of the key apoptosis protease, caspase, on post-mortem tenderization. This study used inhibitors of calpain and caspase-3 to treat chicken muscle immediately after slaughter and followed the changes in caspase-3 and calpain activities together with their expression during 5 days of aging. Addition of calpain inhibitors to the system resulted in significantly higher caspase-3 activities (p < 0.01) during storage. Western blot analysis of pro-caspase-3 and α-spectrin cleavage of the 120 kDa peptide (SBDP 120) showed that the addition of calpain inhibitors resulted in the formation of higher amounts of the active form of caspase-3 compared with the control (p < 0.01). Inclusion of inhibitors of caspase-3 led to lower calpain activities (p < 0.01) and dramatically reduced the expression of calpain-1 and calpain-2 (p < 0.01). Concomitantly, this inhibition resulted in greater calpastatin expression compared with the control (p < 0.01). The findings of this investigation show that calpain prevented the activation of caspase-3, whereas caspase-3 appeared to enhance the calpain activity during post-mortem aging through inhibition of calpastatin. It is therefore suggested that there is a relationship between caspase-3 and calpain which contributes to the tenderizing process during the conversion of muscle tissue into meat.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Meat Processing, Quality Control, Ministry of Education, Nanjing Agricultural University , Nanjing 210095, China
| | | | | | | | | |
Collapse
|
35
|
Arnal N, de Alaniz MJT, Marra CA. Effect of copper overload on the survival of HepG2 and A-549 human-derived cells. Hum Exp Toxicol 2012; 32:299-315. [DOI: 10.1177/0960327112456313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the effect of copper (Cu) overload (20–160 µM/24 h) in two cell lines of human hepatic (HepG2) and pulmonary (A-549) origin by determining lipid and protein damage and the response of the antioxidant defence system. A-549 cells were more sensitive to Cu overload than HepG2 cells. A marked increase was observed in both the cell lines in the nitrate plus nitrite concentration, protein carbonyls and thiobarbituric acid reactive substances (TBARS). The TBARS increase was consistent with an increment in saturated fatty acids at the expense of polyunsaturated acids in a Cu concentration-dependent fashion. Antioxidant enzymes were stimulated by Cu overload. Superoxide dismutase activity increased significantly in both the cell lines, with greater increases in HepG2 than in A-549 cells. A marked increase in ceruloplasmin and metallothionein content in both the cell types was also observed. Dose-dependent decreases in α-tocopherol and ferric reducing ability were observed. Total glutathione content was lower in A-549 cells and higher in HepG2. Calpain and caspase-3 were differentially activated in a dose-dependent manner under copper-induced reactive oxygen species production. We conclude that Cu exposure of human lung- and liver-derived cells should be considered a reliable experimental system for detailed study of mechanism/mechanisms by which Cu overload exerts its deleterious effects.
Collapse
Affiliation(s)
- N Arnal
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - MJT de Alaniz
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| | - CA Marra
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
36
|
Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med 2012; 40:1857-63. [PMID: 22487998 DOI: 10.1097/ccm.0b013e318246bb5d] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Diaphragmatic weakness, due to both atrophy and contractile dysfunction, is a well-documented response following prolonged mechanical ventilation. Evidence indicates that activation of the proteases calpain and caspase-3 is essential for mechanical ventilation-induced diaphragmatic weakness to occur. We tested the hypothesis that a regulatory cross-talk exists between calpain and caspase-3 in the diaphragm during prolonged mechanical ventilation. To test this prediction, we determined whether selective pharmacological inhibition of calpain would prevent activation of caspase-3 and conversely whether selective inhibition of caspase-3 would abate calpain activation. DESIGN Animal study. SETTING University Research Laboratory. SUBJECTS Female Sprague-Dawley rats. INTERVENTIONS Animals were randomly divided into control or one of three 12-hr mechanical ventilation groups that were treated with/without a selective pharmacological protease inhibitor: 1) control, 2) mechanical ventilation, 3) mechanical ventilation with a selective caspase-3 inhibitor, and 4) mechanical ventilation with a selective calpain inhibitor. MEASUREMENTS AND MAIN RESULTS Compared to control, mechanical ventilation resulted in calpain and caspase-3 activation in the diaphragm accompanied by atrophy of type I, type IIa, and type IIx/IIb fibers. Independent inhibition of either calpain or caspase-3 prevented this mechanical ventilation-induced atrophy. Pharmacological inhibition of calpain prevented mechanical ventilation-induced activation of diaphragmatic caspase-3 and inhibition of caspase-3 prevented activation of diaphragmatic calpain. Furthermore, calpain inhibition also prevented the activation of caspase-9 and caspase-12, along with the cleavage of Bid to tBid, all upstream signals for caspase-3 activation. Lastly, caspase-3 inhibition prevented the mechanical ventilation-induced degradation of the endogenous calpain inhibitor, calpastatin. CONCLUSIONS Collectively, these results indicate that mechanical ventilation-induced diaphragmatic atrophy is dependent on the activation of both calpain and caspase-3. Importantly, these findings provide the first experimental evidence in diaphragm muscle that calpain inhibition prevents the activation of caspase-3 and vice versa and caspase-3 inhibition prevents the activation of calpain. These findings support our hypothesis that a regulatory calpain/caspase-3 cross-talk exists whereby calpain can promote caspase-3 activation and active caspase-3 can enhance calpain activity in diaphragm muscle during prolonged mechanical ventilation.
Collapse
|
37
|
Arnal N, de Alaniz MJT, Marra CA. Cytotoxic effects of copper overload on human-derived lung and liver cells in culture. Biochim Biophys Acta Gen Subj 2012; 1820:931-9. [DOI: 10.1016/j.bbagen.2012.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 01/22/2023]
|
38
|
Abstract
Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca(2+)-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca(2+) overload causes mitochondrial calpain 1 cleavage of the Na(+)/Ca(2+) exchanger leading to mitochondrial Ca(2+) accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca(2+) overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system.
Collapse
Affiliation(s)
- Matthew A Smith
- Department of Pharmaceutical and Biomedical Sciences, Center for Cell Death, Injury, and Regeneration, Medical University of South Carolina, 280 Calhoun Street, MSC140, Charleston, SC 29425, USA
| | | |
Collapse
|
39
|
Advances in apoptotic mediated proteolysis in meat tenderisation. Meat Sci 2012; 92:252-9. [PMID: 22546815 DOI: 10.1016/j.meatsci.2012.03.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/17/2012] [Accepted: 03/26/2012] [Indexed: 11/23/2022]
Abstract
Meat tenderness is considered to be one of the most important attributes of meat quality; however it is also one of the most variable. Ultimate meat tenderness is influenced by the amount of intramuscular connective tissue, the length of the sarcomere and also the proteolytic potential of the muscle. Post-mortem proteolysis by endogenous proteases causes the weakening of myofibril structures and associated proteins, which results in tenderisation. The caspase proteolytic system was first identified to be a potential contributor to post-mortem proteolysis and tenderisation in 2002. Since then research has both supported and challenged this hypothesis. The purpose of this review is to examine the experimental evidence available for caspases' involvement in post-mortem proteolysis, and to highlight cross-talk between this proteolytic system and the calpain system, a known contributor to meat tenderisation.
Collapse
|
40
|
The senescent rat diaphragm does not exhibit age-related changes in caspase activities, DNA fragmentation, or myonuclear domain. Eur J Appl Physiol 2012; 112:3983-90. [PMID: 22434253 DOI: 10.1007/s00421-012-2380-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
The diaphragm muscle is essential for normal ventilation and it is chronically active throughout the lifespan. In most skeletal muscles, aging is associated with increased oxidative stress and myofiber atrophy. Since the diaphragm maintains a unique chronic contractile activity, we hypothesized that these alterations would not occur in senescent diaphragms compared to young diaphragms. In addition, we investigated whether senescence leads to altered diaphragmatic caspase activity and myonuclear domain. We harvested diaphragm muscles from 6 and 24-26 month old male Fisher 344 rats (n = 10 per group). Measurements of protein carbonyls, caspase 2, 3, 9, and 12 activities, DNA fragmentation, myofiber cross-sectional area, and myonuclear domain of diaphragm muscles were performed. No age-related changes (p > 0.05) in diaphragmatic protein oxidation or activities of caspase 2, 3, 9, and 12 were observed between groups. In addition, DNA fragmentation, as detected by the ligation-mediated polymerase chain reaction ladder assay, was not different (p > 0.05) between young and senescent diaphragms. Importantly, the cross-sectional area and myonuclear domain of diaphragm myofibers from senescent animals were also not different (p > 0.05) from young diaphragms. In conclusion, our data show that the senescent diaphragm does not atrophy or exhibit changes in select markers of the apoptotic pathway and this may be a result of the diaphragm's unique continuous contractile activity.
Collapse
|
41
|
Morales-Corraliza J, Berger JD, Mazzella MJ, Veeranna, Neubert TA, Ghiso J, Rao MV, Staufenbiel M, Nixon RA, Mathews PM. Calpastatin modulates APP processing in the brains of β-amyloid depositing but not wild-type mice. Neurobiol Aging 2011; 33:1125.e9-18. [PMID: 22206846 DOI: 10.1016/j.neurobiolaging.2011.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/15/2011] [Accepted: 11/20/2011] [Indexed: 11/27/2022]
Abstract
We report that neuronal overexpression of the endogenous inhibitor of calpains, calpastatin (CAST), in a mouse model of human Alzheimer's disease (AD) β-amyloidosis, the APP23 mouse, reduces β-amyloid (Aβ) pathology and Aβ levels when comparing aged, double transgenic (tg) APP23/CAST with APP23 mice. Concurrent with Aβ plaque deposition, aged APP23/CAST mice show a decrease in the steady-state brain levels of the amyloid precursor protein (APP) and APP C-terminal fragments (CTFs) when compared with APP23 mice. This CAST-dependent decrease in APP metabolite levels was not observed in single tg CAST mice expressing endogenous APP or in younger, Aβ plaque predepositing APP23/CAST mice. We also determined that the CAST-mediated inhibition of calpain activity in the brain is greater in the CAST mice with Aβ pathology than in non-APP tg mice, as demonstrated by a decrease in calpain-mediated cytoskeleton protein cleavage. Moreover, aged APP23/CAST mice have reduced extracellular signal-regulated kinase 1/2 (ERK1/2) activity and tau phosphorylation when compared with APP23 mice. In summary, in vivo calpain inhibition mediated by CAST transgene expression reduces Aβ pathology in APP23 mice, with our findings further suggesting that APP metabolism is modified by CAST overexpression as the mice develop Aβ pathology. Our results indicate that the calpain system in neurons is more responsive to CAST inhibition under conditions of Aβ pathology, suggesting that in the disease state neurons may be more sensitive to the therapeutic use of calpain inhibitors.
Collapse
|
42
|
Moridi Farimani M, Namazi Sarvestani N, Ansari N, Khodagholi F. Calycopterin Promotes Survival and Outgrowth of Neuron-Like PC12 Cells by Attenuation of Oxidative- and ER-Stress-Induced Apoptosis along with Inflammatory Response. Chem Res Toxicol 2011; 24:2280-92. [DOI: 10.1021/tx200420a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mahdi Moridi Farimani
- Department of Phytochemistry,
Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | | | - Niloufar Ansari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
43
|
Abstract
The calpains are a conserved family of cysteine proteinases that catalyse the controlled proteolysis of many specific substrates. Calpain activity is implicated in several fundamental physiological processes, including cytoskeletal remodelling, cellular signalling, apoptosis and cell survival. Calpain expression is altered during tumorigenesis, and the proteolysis of numerous substrates, such as inhibitors of nuclear factor-κB (IκB), focal adhesion proteins (including, focal adhesion kinase and talin) and proto-oncogenes (for example, MYC), has been implicated in tumour pathogenesis. Recent evidence indicates that the increased expression of certain family members might influence the response to cancer therapies, providing justification for the development of novel calpain inhibitors.
Collapse
Affiliation(s)
- Sarah J Storr
- University of Nottingham, School of Molecular Medical Sciences, Nottingham NG5 1PB, UK
| | | | | | | | | |
Collapse
|
44
|
Mohrhauser DA, Underwood KR, Weaver AD. In vitro degradation of bovine myofibrils is caused by μ-calpain, not caspase-31. J Anim Sci 2011; 89:798-808. [DOI: 10.2527/jas.2010-3149] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Huff Lonergan E, Zhang W, Lonergan SM. Biochemistry of postmortem muscle — Lessons on mechanisms of meat tenderization. Meat Sci 2010; 86:184-95. [DOI: 10.1016/j.meatsci.2010.05.004] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 01/09/2023]
|
46
|
Guyton MK, Das A, Samantaray S, Wallace GC, Butler JT, Ray SK, Banik NL. Calpeptin attenuated inflammation, cell death, and axonal damage in animal model of multiple sclerosis. J Neurosci Res 2010; 88:2398-408. [PMID: 20623621 PMCID: PMC3164817 DOI: 10.1002/jnr.22408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for studying multiple sclerosis (MS). Calpain has been implicated in many inflammatory and neurodegenerative events that lead to disability in EAE and MS. Thus, treating EAE animals with calpain inhibitors may block these events and ameliorate disability. To test this hypothesis, acute EAE Lewis rats were treated dose dependently with the calpain inhibitor calpeptin (50-250 microg/kg). Calpain activity, gliosis, loss of myelin, and axonal damage were attenuated by calpeptin therapy, leading to improved clinical scores. Neuronal and oligodendrocyte death were also decreased, with down-regulation of proapoptotic proteins, suggesting that decreases in cell death were due to decreases in the expression or activity of proapoptotic proteins. These results indicate that calpain inhibition may offer a novel therapeutic avenue for treating EAE and MS.
Collapse
Affiliation(s)
- M. Kelly Guyton
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Arabinda Das
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Supriti Samantaray
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Gerald C. Wallace
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Jonathan T. Butler
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
47
|
Calpain inhibition attenuates intracellular changes in muscle cells in response to extracellular inflammatory stimulation. Exp Neurol 2010; 225:430-5. [PMID: 20673830 DOI: 10.1016/j.expneurol.2010.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 01/27/2023]
Abstract
Idiopathic inflammatory myopathies (IIMs), comprising of polymyositis, dermatomyositis, and inclusion-body myositis, are characterized by muscle weakness and various types of inflammatory changes in muscle cells. They also show non-inflammatory changes, including perifascicular atrophy, mitochondrial changes, and amyloid protein accumulation. It is possible that some molecules/mechanisms bridge the extracellular inflammatory stimulation and intracellular non-inflammatory changes. One such mechanism, Ca(2+) influx leading to calpain activation has been proposed. In this study, we demonstrated that post-treatment with calpeptin (calpain inhibitor) attenuated intracellular changes to prevent apoptosis (Wright staining) through both mitochondrial pathway (increase in Bax:Bcl-2 ratio) and endoplasmic reticulum stress pathway (activation of caspase-12), which were induced by interferon-gamma (IFN-γ) stimulation in rat L6 myoblast cells. Our results also showed that calpeptin treatment inhibited the expression of calpain, aspartyl protease cathepsin D, and amyloid precursor protein. Thus, our results indicate that calpain inhibition plays a pivotal role in attenuating muscle cell damage from inflammatory stimulation due to IFN-γ, and this may suggest calpain as a possible therapeutic target in IIMs.
Collapse
|
48
|
Hypothermic Preservation Up-Regulates Calpain Expression and Increases Ubiquitination in Cultured Vascular Endothelial Cells: Influence of Dopamine Pretreatment. J Surg Res 2010; 160:325-32. [DOI: 10.1016/j.jss.2008.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 12/01/2008] [Accepted: 12/17/2008] [Indexed: 01/10/2023]
|
49
|
Agard NJ, Maltby D, Wells JA. Inflammatory stimuli regulate caspase substrate profiles. Mol Cell Proteomics 2010; 9:880-93. [PMID: 20173201 PMCID: PMC2871421 DOI: 10.1074/mcp.m900528-mcp200] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/20/2010] [Indexed: 11/06/2022] Open
Abstract
The inflammatory caspases, human caspases-1, -4, and -5, proteolytically modulate diverse physiological outcomes in response to proinflammatory signals. Surprisingly, only a few substrates are known for these enzymes, including other caspases and the interleukin-1 family of cytokines. To more comprehensively characterize inflammatory caspase substrates, we combined an enzymatic N-terminal enrichment method with mass spectrometry-based proteomics to identify newly cleaved proteins. Analysis of THP-1 monocytic cell lysates treated with recombinant purified caspases identified 82 putative caspase-1 substrates, three putative caspase-4 substrates, and no substrates for caspase-5. By contrast, inflammatory caspases activated in THP-1 cells by mimics of gout (monosodium urate), bacterial infection (lipopolysaccharide and ATP), or viral infection (poly(dA.dT)) were found to cleave only 27, 16, and 22 substrates, respectively. Quantitative stable isotope labeling with amino acids in cell culture (SILAC) comparison of these three inflammatory stimuli showed that they induced largely overlapping substrate profiles but different extents of proteolysis. Interestingly, only half of the cleavages found in response to proinflammatory stimuli were contained within our set of 82 in vitro cleavage sites. These data provide the most comprehensive set of caspase-1-cleaved products reported to date and indicate that caspases-4 and -5 have far fewer substrates. Comparisons between the in vitro and in vivo data highlight the importance of localization in regulating inflammatory caspase activity. Finally, our data suggest that inducers of inflammation may subtly alter caspase-1 substrate profiles.
Collapse
Affiliation(s)
| | - David Maltby
- §UCSF Mass Spectrometry Facility, University of California, San Francisco, California 94158
| | - James A. Wells
- From the Departments of ‡Pharmaceutical Chemistry and
- ¶Cellular and Molecular Pharmacology and
| |
Collapse
|
50
|
El-Khoury V, Moussay E, Janji B, Palissot V, Aouali N, Brons NHC, Van Moer K, Pierson S, Van Dyck E, Berchem G. The histone deacetylase inhibitor MGCD0103 induces apoptosis in B-cell chronic lymphocytic leukemia cells through a mitochondria-mediated caspase activation cascade. Mol Cancer Ther 2010; 9:1349-60. [PMID: 20406947 DOI: 10.1158/1535-7163.mct-09-1000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical trials have shown activity of the isotype-selective histone deacetylase (HDAC) inhibitor MGCD0103 in different hematologic malignancies. There are data to support the use of HDAC inhibitors in association with other cancer therapies. To propose a rational combination therapy, it is necessary to depict the molecular basis behind the cytotoxic effect of MGCD0103. In this study, we found that MGCD0103 was substantially more toxic in neoplastic B cells relative to normal cells, and we described the death pathways activated by MGCD0103 in B-cell chronic lymphocytic leukemia (CLL) cells from 32 patients. MGCD0103 decreased the expression of Mcl-1 and induced translocation of Bax to the mitochondria, mitochondrial depolarization, and release of cytochrome c in the cytosol. Caspase processing in the presence of the caspase inhibitor Q-VD-OPh and time course experiments showed that caspase-9 was the apical caspase. Thus, MGCD0103 induced the intrinsic pathway of apoptosis in CLL cells. Moreover, MGCD0103 treatment resulted in the activation of a caspase cascade downstream of caspase-9, caspase-dependent amplification of mitochondrial depolarization, activation of calpain, and Bax cleavage. We propose a model whereby the intrinsic pathway of apoptosis triggered by MGCD0103 in CLL is associated with a mitochondrial death amplification loop.
Collapse
Affiliation(s)
- Victoria El-Khoury
- Laboratory of Experimental Hemato-Oncology, Public Research Center for Health (CRP-Santé), Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | |
Collapse
|