1
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
2
|
Tarannum A, Arif Z, Mustafa M, Abul Qais F, Habib S, Uddin M, Alam K. Studies on the synergistic action of methylglyoxal and peroxynitrite on structure and function of human serum albumin. J Biomol Struct Dyn 2023; 41:67-80. [PMID: 34842044 DOI: 10.1080/07391102.2021.2003865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
Albumin, an important serum protein, is continuously exposed to various oxidizing/nitrating and glycating agents. Depending upon the nature/concentration of reactive species present, the protein may be glycated, oxidized/nitroxidized or glyco-nitro-oxidized. Peroxynitrite is a powerful nitroxidant and has been reported to damage a wide array of macromolecules. On the other hand, methylglyoxal is a very strong reactive dicarbonyl and a potent precursor for the formation of advanced glycation end products under pathological conditions. In certain pathological conditions albumin may be modified by peroxynitrite and methylglyoxal simultaneously. There is dearth of literature suggests that structural/conformational and functional alteration in albumin upon glycation and oxidation/nitroxidation, however the alterations produced by glyco-nitro-oxidation has not yet been explored. Therefore, in this study, simultaneous effect of glycation and nitroxidation on the structure and conformation, vis-a-vis function of albumin was explored. Glyco-nitro-oxidized albumin showed decreased free amino acid content together with decreased affinity of albumin towards cobalt. Molecular docking model and molecular dynamic simulations showed close interaction and formation of stable complexes between methylglyoxal, peroxynitrite and albumin. Formation of carboxymethyl lysine and 3-nitrotyrosine in glyco-nitro-oxidized albumin were confirmed by MALDI-TOF MS and UP-LC MS. Aggregate formation in glyco-nitro-oxidized albumin was visualized by transmission electron microscopy. On the basis of these results, it may be speculated that, albumin modified with endogenously generated methylglyoxal and peroxynitrite might be a driving factor in the progression of heightened inflammatory autoimmune responses. The work presents a ground to study the role of glyco-nitro-oxidized albumin in the pathogenesis and progression of various autoimmune diseases including rheumatoid arthritis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhlas Tarannum
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Zarina Arif
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Faizan Abul Qais
- Dept of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Moin Uddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Khursheed Alam
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
3
|
Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J Biol Chem 2022; 298:102358. [PMID: 35961463 PMCID: PMC9485056 DOI: 10.1016/j.jbc.2022.102358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
Abstract
The carbon dioxide/bicarbonate (CO2/HCO3-) molecular pair is ubiquitous in mammalian cells and tissues, mainly as a result of oxidative decarboxylation reactions that occur during intermediary metabolism. CO2 is in rapid equilibrium with HCO3-via the hydration reaction catalyzed by carbonic anhydrases. Far from being an inert compound in redox biology, CO2 enhances or redirects the reactivity of peroxides, modulating the velocity, extent, and type of one- and two-electron oxidation reactions mediated by hydrogen peroxide (H2O2) and peroxynitrite (ONOO-/ONOOH). Herein, we review the biochemical mechanisms by which CO2 engages in peroxide-dependent reactions, free radical production, redox signaling, and oxidative damage. First, we cover the metabolic formation of CO2 and its connection to peroxide formation and decomposition. Next, the reaction mechanisms, kinetics, and processes by which the CO2/peroxide interplay modulates mammalian cell redox biology are scrutinized in-depth. Importantly, CO2 also regulates gene expression related to redox and nitric oxide metabolism and as such influences oxidative and inflammatory processes. Accumulated biochemical evidence in vitro, in cellula, and in vivo unambiguously show that the CO2 and peroxide metabolic pathways are intertwined and together participate in key redox events in mammalian cells.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Li J, Peng S, Li Z, Zhao F, Han X, Liu J, Cao W, Ye Y. Visualization of peroxynitrite in cyclophosphamide-induced oxidative stress by an activatable probe. Talanta 2022; 238:123007. [PMID: 34857340 DOI: 10.1016/j.talanta.2021.123007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Oxidative stress is considered to be one of the main contributors of cyclophosphamide (CP)-induced toxicity, and the generation of free radicals will cause the interruption of multiple signal transduction pathways. Peroxynitrite (ONOO-) has strong oxidation and nitrification ability and is considered as an indirect indicator of oxidative stress. Therefore, it is necessary to design a fluorescent probe that can detect ONOO- and monitor CP-induced oxidative stress during chemotherapy. Herein, we synthesized a lipid droplet targeting fluorescent probe SX-1 based on triphenylamine-benzoindocyanine. When ONOO- is added to the probe SX-1, the CC bond in the probe is broken, thereby releasing fluorescence. The good spectral response characteristics enable SX-1 to successfully track the fluctuations of ONOO- in living cells. Most importantly, we provided the first visual evidence that the level of ONOO- in HeLa cells was up-regulated under CP induction. All results indicated that SX-1 has great potential in detecting drug-induced ONOO-, and provided a new detection tool for a deeper understanding of drug-induced organism injury.
Collapse
Affiliation(s)
- Jinsa Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuxin Peng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zipeng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangfang Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaojing Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenbo Cao
- School of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Incoming new IUPAB councilor 2021: Ana Denicola. Biophys Rev 2021; 13:827-830. [DOI: 10.1007/s12551-021-00901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
|
6
|
Tarannum A, Arif Z, Alam K, Moinuddin. Glycation, nitro-oxidation and glyco-nitro-oxidation of human serum albumin: A physico-chemical study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Molecular imaging of oxidative stress using an LED-based photoacoustic imaging system. Sci Rep 2019; 9:11378. [PMID: 31388020 PMCID: PMC6684596 DOI: 10.1038/s41598-019-47599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/19/2019] [Indexed: 12/22/2022] Open
Abstract
LED-based photoacoustic imaging has practical value in that it is affordable and rugged; however, this technology has largely been confined to anatomic imaging with limited applications into functional or molecular imaging. Here, we report molecular imaging reactive oxygen and nitrogen species (RONS) with a near-infrared (NIR) absorbing small molecule (CyBA) and LED-based photoacoustic imaging equipment. CyBA produces increasing photoacoustic signal in response to peroxynitrite (ONOO−) and hydrogen peroxide (H2O2) with photoacoustic signal increases of 3.54 and 4.23-fold at 50 µM of RONS at 700 nm, respectively. CyBA is insensitive to OCl−, ˙NO, NO2−, NO3−, tBuOOH, O2−, C4H9O˙, HNO, and ˙OH, but can detect ONOO− in whole blood and plasma. CyBA was then used to detect endogenous RONS in macrophage RAW 246.7 cells as well as a rodent model; these results were confirmed with fluorescence microscopy. Importantly, CyB suffers photobleaching under a Nd:YAG laser but the signal decrease is <2% with the low-power LED-based photoacoustic system and the same radiant exposure time. To the best of our knowledge, this is the first report to describe molecular imaging with an LED-based photoacoustic scanner. This study not only reveals the sensitive photoacoustic detection of RONS but also highlights the utility of LED-based photoacoustic imaging.
Collapse
|
8
|
Radi R. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences. Nitric Oxide 2019; 87:83-89. [DOI: 10.1016/j.niox.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
|
9
|
Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc Natl Acad Sci U S A 2019; 116:8879-8888. [PMID: 30979807 DOI: 10.1073/pnas.1821487116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), contains exclusively Fe-dependent superoxide dismutases (Fe-SODs). During T. cruzi invasion to macrophages, superoxide radical (O2 •-) is produced at the phagosomal compartment toward the internalized parasite via NOX-2 (gp91-phox) activation. In this work, T. cruzi cytosolic Fe-SODB overexpressers (pRIBOTEX-Fe-SODB) exhibited higher resistance to macrophage-dependent killing and enhanced intracellular proliferation compared with wild-type (WT) parasites. The higher infectivity of Fe-SODB overexpressers compared with WT parasites was lost in gp91-phox -/- macrophages, underscoring the role of O2 •- in parasite killing. Herein, we studied the entrance of O2 •- and its protonated form, perhydroxyl radical [(HO2 •); pKa = 4.8], to T. cruzi at the phagosome compartment. At the acidic pH values of the phagosome lumen (pH 5.3 ± 0.1), high steady-state concentrations of O2 •- and HO2 • were estimated (∼28 and 8 µM, respectively). Phagosomal acidification was crucial for O2 •- permeation, because inhibition of the macrophage H+-ATPase proton pump significantly decreased O2 •- detection in the internalized parasite. Importantly, O2 •- detection, aconitase inactivation, and peroxynitrite generation were lower in Fe-SODB than in WT parasites exposed to external fluxes of O2 •- or during macrophage infections. Other mechanisms of O2 •- entrance participate at neutral pH values, because the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid decreased O2 •- detection. Finally, parasitemia and tissue parasite burden in mice were higher in Fe-SODB-overexpressing parasites, supporting the role of the cytosolic O2 •--catabolizing enzyme as a virulence factor for CD.
Collapse
|
10
|
The role of redox-dependent mechanisms in heme release from hemoglobin and erythrocyte hemolysates. Arch Biochem Biophys 2019; 662:111-120. [DOI: 10.1016/j.abb.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
|
11
|
De Armas MI, Esteves R, Viera N, Reyes AM, Mastrogiovanni M, Alegria TGP, Netto LES, Tórtora V, Radi R, Trujillo M. Rapid peroxynitrite reduction by human peroxiredoxin 3: Implications for the fate of oxidants in mitochondria. Free Radic Biol Med 2019; 130:369-378. [PMID: 30391677 DOI: 10.1016/j.freeradbiomed.2018.10.451] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1 × 107 M-1 s-1 at pH 7.8 and 25 °C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.
Collapse
Affiliation(s)
- María Inés De Armas
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Romina Esteves
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Nicolás Viera
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Aníbal M Reyes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Thiago G P Alegria
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biología Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Verónica Tórtora
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Uruguay; Center For Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Uruguay.
| |
Collapse
|
12
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
13
|
Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol 2016; 594:5149-60. [PMID: 26857536 DOI: 10.1113/jp270650] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
The production of reactive oxygen/nitrogen species (ROS/RNS) is generally considered to increase during physical exercise. Nevertheless, direct measurements of ROS/RNS often show modest increases in ROS/RNS in muscle fibres even during intensive fatiguing stimulation, and the major source(s) of ROS/RNS during exercise is still being debated. In rested muscle fibres, mild and acute exposure to exogenous ROS/RNS generally increases myofibrillar submaximal force, whereas stronger or prolonged exposure has the opposite effect. Endogenous production of ROS/RNS seems to preferentially decrease submaximal force and positive effects of antioxidants are mainly observed during fatigue induced by submaximal contractions. Fatigued muscle fibres frequently enter a prolonged state of reduced submaximal force, which is caused by a ROS/RNS-dependent decrease in sarcoplasmic reticulum Ca(2+) release and/or myofibrillar Ca(2+) sensitivity. Increased ROS/RNS production during exercise can also be beneficial and recent human and animal studies show that antioxidant supplementation can hamper the beneficial effects of endurance training. In conclusion, increased ROS/RNS production have both beneficial and detrimental effects on skeletal muscle function and the outcome depends on a combination of factors: the type of ROS/RNS; the magnitude, duration and location of ROS/RNS production; and the defence systems, including both endogenous and exogenous antioxidants.
Collapse
Affiliation(s)
| | | | - Dilson E Rassier
- McGill University, 475 Pine Avenue West, Montreal, QC, Canada, H2W1S4
| | | | | | | |
Collapse
|
14
|
Prolo C, Álvarez MN, Ríos N, Peluffo G, Radi R, Romero N. Nitric oxide diffusion to red blood cells limits extracellular, but not intraphagosomal, peroxynitrite formation by macrophages. Free Radic Biol Med 2015; 87:346-55. [PMID: 26119787 DOI: 10.1016/j.freeradbiomed.2015.06.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/19/2015] [Accepted: 06/09/2015] [Indexed: 02/02/2023]
Abstract
Macrophage-derived nitric oxide ((•)NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by (•)NO itself or (•)NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O(2)(•-)). In vivo, the facile extracellular diffusion of (•)NO as well as different competing consumption routes limit its bioavailability for the reaction with O(2)(•-) and, hence, peroxynitrite formation. In this work, we evaluated the extent by which (•)NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O(2)(•-) and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of (•)NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of (•)NO and O(2)(•-)-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of (•)NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O(2)(•-) reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of (•)NO and O(2)(•-)-forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, (•)NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Noel Álvarez
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ríos
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Peluffo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Natalia Romero
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
15
|
Giacovazzi R, Ciofini I, Rao L, Amatore C, Adamo C. Copper–amyloid-β complex may catalyze peroxynitrite production in brain: evidence from molecular modeling. Phys Chem Chem Phys 2014; 16:10169-74. [DOI: 10.1039/c3cp54839b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The facile occurrence of an Aβ-catalyzed generation of peroxynitrite in the brain, alternative to H2O2-route, is proposed on the basis of QM/MM calculations.
Collapse
Affiliation(s)
- Roberto Giacovazzi
- Laboratoire d'Electrochimie
- Chimie des Interfaces et Modélisation pour l'Energie
- CNRS UMR-7575
- Ecole Nationale Supérieure de Chimie de Paris - Chimie-ParisTech
- F-75231 Paris Cedex 05, France
| | - Ilaria Ciofini
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
| | - Li Rao
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
| | - Christian Amatore
- Laboratoire d'Electrochimie
- Chimie des Interfaces et Modélisation pour l'Energie
- CNRS UMR-7575
- Ecole Nationale Supérieure de Chimie de Paris - Chimie-ParisTech
- F-75231 Paris Cedex 05, France
| | - Carlo Adamo
- Laboratoire PASTEUR
- Ecole Normale Supérieure CNRS UMR-8640
- F-75231 Paris Cedex 05, France
- Institut Universitaire de France
- 103 Boulevard Saint Michel
| |
Collapse
|
16
|
Carballal S, Bartesaghi S, Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta Gen Subj 2013; 1840:768-80. [PMID: 23872352 DOI: 10.1016/j.bbagen.2013.07.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Peroxynitrite, the product of the reaction between superoxide radicals and nitric oxide, is an elusive oxidant with a short half-life and a low steady-state concentration in biological systems; it promotes nitroxidative damage. SCOPE OF REVIEW We will consider kinetic and mechanistic aspects that allow rationalizing the biological fate of peroxynitrite from data obtained by a combination of methods that include fast kinetic techniques, electron paramagnetic resonance and kinetic simulations. In addition, we provide a quantitative analysis of peroxynitrite production rates and conceivable steady-state levels in living systems. MAJOR CONCLUSIONS The preferential reactions of peroxynitrite in vivo include those with carbon dioxide, thiols and metalloproteins; its homolysis represents only <1% of its fate. To note, carbon dioxide accounts for a significant fraction of peroxynitrite consumption leading to the formation of strong one-electron oxidants, carbonate radicals and nitrogen dioxide. On the other hand, peroxynitrite is rapidly reduced by peroxiredoxins, which represent efficient thiol-based peroxynitrite detoxification systems. Glutathione, present at mM concentration in cells and frequently considered a direct scavenger of peroxynitrite, does not react sufficiently fast with it in vivo; glutathione mainly inhibits peroxynitrite-dependent processes by reactions with secondary radicals. The detection of protein 3-nitrotyrosine, a molecular footprint, can demonstrate peroxynitrite formation in vivo. Basal peroxynitrite formation rates in cells can be estimated in the order of 0.1 to 0.5μMs(-1) and its steady-state concentration at ~1nM. GENERAL SIGNIFICANCE The analysis provides a handle to predict the preferential fate and steady-state levels of peroxynitrite in living systems. This is useful to understand pathophysiological aspects and pharmacological prospects connected to peroxynitrite. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
Collapse
Affiliation(s)
- Sebastián Carballal
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
17
|
Kolodziejczyk-Czepas J, Wachowicz B, Moniuszko-Szajwaj B, Kowalska I, Oleszek W, Stochmal A. Antioxidative effects of extracts from Trifolium species on blood platelets exposed to oxidative stress. J Physiol Biochem 2013; 69:879-87. [PMID: 23749379 DOI: 10.1007/s13105-013-0264-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 05/22/2013] [Indexed: 11/25/2022]
Abstract
Clovers (Trifolium) may possess a significant therapeutic potential, but the effects of compounds from these plants on blood platelets and haemostasis have been poorly recognized. The present study was designed to evaluate the antioxidative action of extracts from three species of clovers: Trifolium pratense, Trifolium pallidum and Trifolium scabrum in the protection of human blood platelets in vitro. Platelet suspensions were pre-incubated with crude extract and phenolic fraction of T. pratense or phenolic fractions of T. scabrum and T. pallidum, at the final concentrations of 0.5-50 μg/ml. Then, for the induction of oxidative stress, 100 μM peroxynitrite was added. The antioxidative activity of plant extracts was assessed by measurements of the level of 3-nitrotyrosine, thiol groups and lipid peroxidation products (hydroperoxides and thiobarbituric acid-reactive substances). Despite the significant differences in the composition of the investigated extracts, we observed antioxidative effects of all used mixtures. The presence of Trifolium extracts considerably reduced the peroxynitrite-mediated modifications of proteins and diminished peroxidation of lipids in platelets. Our results indicate on a strong antioxidative activity of the tested extracts-statistically significant effects were found even for the lowest concentrations (0.5 μg/ml) of all extracts. This action may be useful in the protection of blood components, very susceptible to oxidative modifications. The obtained results suggest that the examined clovers are a promising source of compounds, valuable for the protection against oxidative stress-induced damage to blood platelets.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236, Lodz, Poland,
| | | | | | | | | | | |
Collapse
|
18
|
St John S, Blower R, Popova TG, Narayanan A, Chung MC, Bailey CL, Popov SG. Bacillus anthracis co-opts nitric oxide and host serum albumin for pathogenicity in hypoxic conditions. Front Cell Infect Microbiol 2013; 3:16. [PMID: 23730627 PMCID: PMC3656356 DOI: 10.3389/fcimb.2013.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/23/2013] [Indexed: 11/17/2022] Open
Abstract
Bacillus anthracis is a dangerous pathogen of humans and many animal species. Its virulence has been mainly attributed to the production of Lethal and Edema toxins as well as the antiphagocytic capsule. Recent data indicate that the nitric oxide (NO) synthase (baNOS) plays an important pathogenic role at the early stage of disease by protecting bacteria from the host reactive species and S-nytrosylating the mitochondrial proteins in macrophages. In this study we for the first time present evidence that bacteria-derived NO participates in the generation of highly reactive oxidizing species which could be abolished by the NOS inhibitor L - NAME, free thiols, and superoxide dismutase but not catalase. The formation of toxicants is likely a result of the simultaneous formation of NO and superoxide leading to a labile peroxynitrite and its stable decomposition product, nitrogen dioxide. The toxicity of bacteria could be potentiated in the presence of bovine serum albumin. This effect is consistent with the property of serum albumin to serves as a trap of a volatile NO accelerating its reactions. Our data suggest that during infection in the hypoxic environment of pre-mortal host the accumulated NO is expected to have a broad toxic impact on host cell functions.
Collapse
Affiliation(s)
- Stephen St John
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Ficarra S, Misiti F, Russo A, Carelli-Alinovi C, Bellocco E, Barreca D, Laganà G, Leuzzi U, Toscano G, Giardina B, Galtieri A, Tellone E. Antiepileptic carbamazepine drug treatment induces alteration of membrane in red blood cells: possible positive effects on metabolism and oxidative stress. Biochimie 2012; 95:833-41. [PMID: 23246915 DOI: 10.1016/j.biochi.2012.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
Abstract
Carbamazepine (CBZ) is an iminostilbene derivative commonly used for treatment of neuralgic pain and bipolar affective disorders. CBZ blood levels of treated patients are within the range of micromolar concentrations and therefore, significant interactions of this drug with erythrocytes are very likely. Moreover, the lipid domains of the cell membrane are believed to be one of the sites where iminostilbene derivatives exert their effects. The present study aimed to deeply characterize CBZ effects on erythrocytes, in order to identify extra and/or cytosolic cell targets. Our results indicate that erythrocyte morphological changes promoted by the drug, may be triggered by an alteration in band 3 functionality i.e. at the level of anionic flux. In addition, from a metabolic point of view this perturbation could be considered, at least in part, as a beneficial event because it could favour the CO2 elimination. Since lipid peroxidation, superoxide and free radical scavenging activities, caspase 3 activity and hemoglobin (Hb) functionality were not modified within the CBZ treated red blood cell (RBC), band 3 protein (B3) may well be a specific membrane target for CBZ and responsible for CBZ-induced toxic effects in erythrocytes. However some beneficial effects of this drug have been evidenced; among them an increased release of ATP and nitric oxide (NO) derived metabolites from erythrocytes to lumen, leading to an increased NO pool in the vasculature. In conclusion, these results indicate that CBZ, though considered responsible for toxic effects on erythrocytes, can also exhibit effects that at least in some conditions may be seen as beneficial.
Collapse
Affiliation(s)
- Silvana Ficarra
- Department of Chemical Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Stadler K. Peroxynitrite-driven mechanisms in diabetes and insulin resistance - the latest advances. Curr Med Chem 2011; 18:280-90. [PMID: 21110800 DOI: 10.2174/092986711794088317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/20/2010] [Indexed: 02/07/2023]
Abstract
Since its discovery, peroxynitrite has been known as a potent oxidant in biological systems, and a rapidly growing body of literature has characterized its biochemistry and role in the pathophysiology of various conditions. Either directly or by inducing free radical pathways, peroxynitrite damages vital biomolecules such as DNA, proteins including enzymes with important functions, and lipids. It also initiates diverse reactions leading eventually to disrupted cell signaling, cell death, and apoptosis. The potential role and contribution of this deleterious species has been the subject of investigation in several important diseases, including but not limited to, cancer, neurodegeneration, stroke, inflammatory conditions, cardiovascular problems, and diabetes mellitus. Diabetes, obesity, insulin resistance, and diabetes-related complications represent a major health problem at epidemic levels. Therefore, tremendous efforts have been put into investigation of the molecular basics of peroxynitrite-related mechanisms in diabetes. Studies constantly seek new therapeutical approaches in order to eliminate or decrease the level of peroxynitrite, or to interfere with its downstream mechanisms. This review is intended to emphasize the latest findings about peroxynitrite and diabetes, and, in addition, to discuss recent and novel advances that are likely to contribute to a better understanding of peroxynitrite-mediated damage in this disease.
Collapse
Affiliation(s)
- K Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, LSU System, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| |
Collapse
|
21
|
Zhang J, Boghossian AA, Barone PW, Rwei A, Kim JH, Lin D, Heller DA, Hilmer AJ, Nair N, Reuel NF, Strano MS. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J Am Chem Soc 2010; 133:567-81. [PMID: 21142158 DOI: 10.1021/ja1084942] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.
Collapse
Affiliation(s)
- Jingqing Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dean JB. Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2 chemoreceptor function and dysfunction. J Appl Physiol (1985) 2010; 108:1786-95. [PMID: 20150563 PMCID: PMC2886689 DOI: 10.1152/japplphysiol.01337.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/08/2010] [Indexed: 12/22/2022] Open
Abstract
Cellular mechanisms of CO2 chemoreception are discussed and debated in terms of the stimuli produced during hypercapnic acidosis and their molecular targets: protons generated by the hydration of CO2 and dissociation of carbonic acid, which target membrane-bound proteins and lipids in brain stem neurons. The CO2 hydration reaction, however, is not the only reaction that CO2 undergoes that generates molecules capable of modifying proteins and lipids. Molecular CO2 also reacts with peroxynitrite (ONOO-), a reactive nitrogen species (RNS), which is produced from nitric oxide (*NO) and superoxide (*O2-). The CO2/ONOO- reaction, in turn, produces additional nitrosative and oxidative reactive intermediates. Furthermore, protons facilitate additional redox reactions that generate other reactive oxygen species (ROS). ROS/RNS generated by these redox reactions may act as additional stimuli of CO2 chemoreceptors since neurons in chemosensitive areas produce both *NO and *O2- and, therefore, ONOO-. Perturbing *NO, *O2-, and ONOO- activities in chemosensitive areas modulates cardiorespiration. Moreover, neurons in at least one chemosensitive area, the solitary complex, are stimulated by cellular oxidation. Together, these data raise the following two questions: 1) do pH and ROS/RNS work in tandem to stimulate CO2 chemoreceptors during hypercapnic acidosis; and 2) does nitrosative stress and oxidative stress contribute to CO2 chemoreceptor dysfunction? To begin considering these two issues and their implications for central chemoreception, this minireview has the following three goals: 1) summarize the nitrosative and oxidative reactions that occur during hypercapnic acidosis and isocapnic acidosis; 2) review the evidence that redox signaling occurs in chemosensitive areas; and 3) review the evidence that neurons in the solitary complex are stimulated by cellular oxidation.
Collapse
Affiliation(s)
- Jay B Dean
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, University of South Florida, College of Medicine, MDC 8, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, USA.
| |
Collapse
|
23
|
Corsaro MM, Pietraforte D, Di Lorenzo AS, Minetti M, Marino G. Reaction of Peroxynitrite with Hyaluronan and Related Saccharides. Free Radic Res 2009; 38:343-53. [PMID: 15190931 DOI: 10.1080/10715760310001653833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of peroxynitrite on hyaluronan has been studied by using an integrated spectroscopical approach, namely electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and mass spectrometry (MS). The reaction has been performed with the polymer, the tetrasaccharide oligomer as well as with the monosaccharides N-acetylglucosamine and glucuronic acid. The outcome of the presence of molecular oxygen and carbon dioxide has been also evaluated. Although 1H-NMR and ESI-MS experiments did not revealed peroxynitrite-mediated modification of hyaluronan as well as of related saccharides, from spin-trapping EPR experiments it was concluded that peroxynitrite induce the formation of C-centered carbon radicals, most probably by the way of its hydroxyl radical-like reactivity. These EPR data support the oxidative pathway involved in the degradation of hyaluronan, a probable event in the development and progression of rheumatoid arthritis.
Collapse
Affiliation(s)
- Maria Michela Corsaro
- Dipartimento di Chimica Organica e Biochimica, Università Federico II di Napoli, Complesso Universitario Monte S. Angelo Via Cynthia 4 80126, Napoli, Italy.
| | | | | | | | | |
Collapse
|
24
|
Turell L, Botti H, Carballal S, Radi R, Alvarez B. Sulfenic acid--a key intermediate in albumin thiol oxidation. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3384-92. [PMID: 19386559 DOI: 10.1016/j.jchromb.2009.03.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/18/2009] [Accepted: 03/23/2009] [Indexed: 12/16/2022]
Abstract
The single thiol of human serum albumin (HSA-SH) is the predominant plasma thiol. Both circulating albumin and pharmaceutical preparations are heterogeneous regarding the thiol redox status, as revealed by anion-exchange-hydrophobic interaction chromatography. Sulfenic acid (HSA-SOH) is an intermediate in HSA-SH oxidation processes that was detected through different techniques including mass spectrometry. Recently, quantitative data led to the determination of rate constants. The preferred fate of HSA-SOH is the formation of mixed disulfides. Alternatively, HSA-SOH can be further oxidized to sulfinic and sulfonic acids. Oxidized forms increase under disease conditions, underscoring the importance of HSA-SH as a plasma scavenger of intravascular oxidants. We here provide a critical review of the oxidation of HSA-SH in the context of the intravascular compartment, with emphasis in the methodological approaches of mass spectrometry and chromatography for the analysis of albumin thiol redox states.
Collapse
Affiliation(s)
- Lucía Turell
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
25
|
Ferrer-Sueta G, Radi R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 2009; 4:161-77. [PMID: 19267456 DOI: 10.1021/cb800279q] [Citation(s) in RCA: 559] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peroxynitrite is formed by the very fast reaction of nitric oxide and superoxide radicals, a reaction that kinetically competes with other routes that chemically consume or physically sequester the reagents. It can behave either as an endogenous cytotoxin toward host tissues or a cytotoxic effector molecule against invading pathogens, depending on the cellular source and pathophysiological setting. Peroxynitrite is in itself very reactive against a few specific targets that range from efficient detoxification systems, such as peroxiredoxins, to reactions eventually leading to enhanced radical formation (e.g., nitrogen dioxide and carbonate radicals), such as the reaction with carbon dioxide. Thus, the chemical biology of peroxynitrite is dictated by the chemical kinetics of its formation and decay and by the diffusion across membranes of the species involved, including peroxynitrite itself. On the other hand, most durable traces of peroxynitrite passing (such as 3-nitrotyrosine) are derived from radicals formed from peroxynitrite by routes that represent extremely low-yield processes but that have potentially critical biological consequences. Here we have reviewed the chemical kinetics of peroxynitrite as a biochemical transient species in order to estimate its rates of formation and decay and then its steady-state concentration in different intra- or extracellular compartments, trying to provide a quantitative basis for its reactivity; additionally, we have considered diffusion across membranes to locate its possible effects. Finally, we have assessed the most successful attempts to intercept peroxynitrite by pharmacological intervention in their potential to increment the existing biological defenses that routinely deal with this cytotoxin.
Collapse
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio de Físicoquímica Biológica, Facultad de Ciencias
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
26
|
Dyachenko V, Rueckschloss U, Isenberg G. Modulation of cardiac mechanosensitive ion channels involves superoxide, nitric oxide and peroxynitrite. Cell Calcium 2009; 45:55-64. [DOI: 10.1016/j.ceca.2008.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/30/2008] [Accepted: 06/03/2008] [Indexed: 12/22/2022]
|
27
|
Manta B, Hugo M, Ortiz C, Ferrer-Sueta G, Trujillo M, Denicola A. The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch Biochem Biophys 2008; 484:146-54. [PMID: 19061854 DOI: 10.1016/j.abb.2008.11.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/14/2008] [Accepted: 11/15/2008] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 2 (Prx2) is a 2-Cys peroxiredoxin extremely abundant in the erythrocyte. The peroxidase activity was studied in a steady-state approach yielding an apparent K(M) of 2.4 microM for human thioredoxin and a very low K(M) for H2O2 (0.7 microM). Rate constants for the reaction of peroxidatic cysteine with the peroxide substrate, H2O2 or peroxynitrite, were determined by competition kinetics, k(2) = 1.0 x 10(8) and 1.4 x 10(7) M(-1) s(-1) at 25 degrees C and pH 7.4, respectively. Excess of both oxidants inactivated the enzyme by overoxidation and also tyrosine nitration and dityrosine were observed with peroxynitrite treatment. Prx2 associates into decamers (5 homodimers) and we estimated a dissociation constant K(d) < 10(-23) M(4) which confirms the enzyme exists as a decamer in vivo. Our kinetic results indicate Prx2 is a key antioxidant enzyme for the erythrocyte and reveal red blood cells as active oxidant scrubbers in the bloodstream.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
28
|
Dimitri A, Jia L, Shafirovich V, Geacintov NE, Broyde S, Scicchitano DA. Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair (Amst) 2008; 7:1276-88. [PMID: 18555749 DOI: 10.1016/j.dnarep.2008.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 04/03/2008] [Accepted: 04/09/2008] [Indexed: 12/24/2022]
Abstract
Damage in transcribed DNA presents a challenge to the cell because it can partially or completely block the progression of an RNA polymerase, interfering with transcription and compromising gene expression. While blockage of RNA polymerase progression is thought to trigger the recruitment of transcription-coupled DNA repair (TCR), bypass of the lesion can also occur, either error-prone or error-free. Error-prone transcription is often referred to as transcriptional mutagenesis (TM). Elucidating why some lesions pose blocks to transcription elongation while others do not remains a challenging problem. As part of an effort to understand this, we studied transcription past a 5-guanidino-4-nitroimidazole (NI) lesion, using two structurally different RNA polymerases, human RNA polymerase II (hRNAPII) and bacteriophage T7 RNA polymerase (T7RNAP). The NI damage results from the oxidation of guanine in DNA by peroxynitrite, a well known, biologically important oxidant. It is of structural interest because it is a ring-opened and conformationally flexible guanine lesion. Our results show that NI acts as a partial block to T7RNAP while posing a major block to hRNAPII, which has a more constrained active site than T7RNAP. Lesion bypass by T7RNAP induces base misincorporations and deletions opposite the lesion (C>A>-1 deletion >G >>> U), but hRNAPII exhibits error-free transcription although lesion bypass is a rare event. We employed molecular modeling methods to explain the observed blockage or bypass accompanied by nucleotide incorporation opposite the lesion. The results of the modeling studies indicate that NI's multiple hydrogen-bonding capabilities and torsional flexibility are important determinants of its effect on transcription in both enzymes. These influence the kinetics of lesion bypass and may well play a role in TM and TCR in cells.
Collapse
Affiliation(s)
- Alexandra Dimitri
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | | | | | | | | | | |
Collapse
|
29
|
Lambeth JD, Krause KH, Clark RA. NOX enzymes as novel targets for drug development. Semin Immunopathol 2008; 30:339-63. [PMID: 18509646 DOI: 10.1007/s00281-008-0123-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/25/2008] [Indexed: 02/07/2023]
Abstract
The members of the NOX/DUOX family of NADPH oxidases mediate such physiologic functions as host defense, cell signaling, and thyroid hormone biosynthesis through the generation of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide. Moreover, ROS are involved in a broad range of fundamental biochemical and cellular processes, and data accumulated in recent years indicate that the NOX enzymes comprise one of the most important biological sources of ROS. Given the high biochemical reactivity of ROS, it is not surprising that they have been implicated in a wide variety of pathologies and diseases. Prominent among the settings that feature ROS-mediated tissue injury are disorders associated with inflammation, aging, and progressive degenerative changes in cells and organ systems, and it appears that essentially no organ system is exempt. Among the disorders currently believed to be mediated at least in part by NOX-derived ROS are hypertension, aortic aneurysm, myocardial infarction (and other ischemia-reperfusion disorders), pulmonary fibrosis and hypertension, amyotropic lateral sclerosis, Alzheimer's disease, Parkinson's disease, ischemic stroke, diabetic nephropathy, and renal cell carcinoma. Several small-molecule and peptide inhibitors of the NOX enzymes have been useful in experimental studies, but issues of specificity, potency, and toxicity militate against any of the existing published compounds as candidates for drug development. Given the broad array of disease targets documented in recent work, the time is here for vigorous efforts to develop clinically useful inhibitors of the NOX enzymes. As most (though not all) NOX-related diseases appear to be mediated by a single member of the NOX family, agents with isoform specificity will be preferred, although broadly active NOX inhibitors may prove to be useful in some settings.
Collapse
|
30
|
Rabbani N, Thornalley PJ. Assay of 3-nitrotyrosine in tissues and body fluids by liquid chromatography with tandem mass spectrometric detection. Methods Enzymol 2008; 440:337-59. [PMID: 18423229 DOI: 10.1016/s0076-6879(07)00822-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
3-Nitrotyrosine (3-NT) is a marker of protein nitration in physiological systems. It is present as 3-nitrotyrosine residues in proteins of tissue, extracellular matrix, plasma, and other body fluids and food. It is also present in body fluids and some beverages as free nitrotyrosine and is excreted in urine with the major urinary metabolite 3-nitro-4-hydroxyphenylacetic acid. Quantitation of 3-nitrotyrosine requires tandem mass spectrometry for specific detection. The method developed to determine 3-nitrotyrosine (along with protein glycation and oxidation adducts in a quantitative screening assay) by liquid chromatography with tandem mass spectrometric detection is described. The 3-NT residue contents of plasma protein, hemoglobin, lipoproteins, and cerebrospinal fluid protein and the concentrations of free 3-nitrotyrosine in plasma, urine, and cerebrospinal fluid are given. Changes of 3-nitrotyrosine residue and free 3-nitrotyrosine in diabetes, cirrhosis, acute and chronic renal failure, and neurological disorders, including Alzheimer's disease, are presented and compared with independent estimates.
Collapse
Affiliation(s)
- Naila Rabbani
- Protein Damage and Systems Biology Research Group, Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | | |
Collapse
|
31
|
Minetti M, Pietraforte D, Straface E, Metere A, Matarrese P, Malorni W. Red blood cells as a model to differentiate between direct and indirect oxidation pathways of peroxynitrite. Methods Enzymol 2008; 440:253-72. [PMID: 18423223 DOI: 10.1016/s0076-6879(07)00816-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Red blood cells are the major physiological scavengers of reactive nitrogen species and have been proposed as real-time biomarkers of some vascular-related diseases. This chapter proposes that the erythrocyte is a suitable cell model for studying the modifications induced by peroxynitrite. Peroxynitrite decays both extra- and intracellularly as a function of cell density and CO(2) concentration, inducing the appearance of distinct cellular biomarkers, as well as the modulation of signaling and metabolism. Intracellular oxidations are due mostly to direct reactions of peroxynitrite with hemoglobin but also lead to the appearance of apoptotic biomarkers. Surface/membrane oxidations are due principally to indirect radical reactions generated by CO(2)-catalyzed peroxynitrite homolysis.
Collapse
Affiliation(s)
- Maurizio Minetti
- Departments of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Chapter 2 The Interaction of Reactive Oxygen and Nitrogen Species with Membranes. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00202-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Singh IN, Sullivan PG, Hall ED. Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. J Neurosci Res 2007; 85:2216-23. [PMID: 17510982 DOI: 10.1002/jnr.21360] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxynitrite-mediated oxidative damage has been implicated in brain mitochondrial respiratory dysfunction after traumatic brain injury (TBI), which precedes the onset of neuronal loss. The aim of this study was to investigate the detrimental effects of the peroxynitrite donor SIN-1 (3-morpholinosydnonimine) on isolated brain mitochondria and to screen penicillamine, a stoichiometric (1:1) peroxynitrite-scavenging agent, and tempol, a catalytic scavenger of peroxynitrite-derived radicals, as antioxidant mitochondrial protectants. Exposure of the isolated mitochondria to SIN-1 caused a significant dose-dependent decrease in the respiratory control ratio and was accompanied by a significant increase in state II respiration, followed by significant decreases (P < 0.05) in states III and V. These functional alterations occurred together with significant increases in mitochondrial protein carbonyl (PC), lipid peroxidation-related 4-hydroxynonenal (4-HNE), and 3-nitrotyrosine (3-NT) content. Penicillamine hydrochloride (10 microM) partially but significantly (P < 0.05) protected against SIN-1-induced decreases in states III and V. However, a 2.5 microM concentration of tempol was able to significantly antagonize a 4-fold molar excess (10 microM) concentration of SIN-1 as effectively as were higher tempol concentrations, consistent with the likelihood that tempol works by a catalytic mechanism. The protection of mitochondrial respiration by penicillamine and tempol occurred in parallel with attenuation of PC, 4-HNE, and 3-NT. These results indicate that SIN-1 causes mitochondrial oxidative damage and complex I dysfunction and that antioxidant compounds that target either peroxynitrite or its radicals may be effective mitochondrial protectants in the treatment of neural injury.
Collapse
Affiliation(s)
- Indrapal N Singh
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536-0509, USA
| | | | | |
Collapse
|
34
|
Romero N, Peluffo G, Bartesaghi S, Zhang H, Joseph J, Kalyanaraman B, Radi R. Incorporation of the Hydrophobic Probe N-t-BOC-l-tyrosine tert-Butyl Ester to Red Blood Cell Membranes To Study Peroxynitrite-Dependent Reactions. Chem Res Toxicol 2007; 20:1638-48. [DOI: 10.1021/tx700142a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Natalia Romero
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research and Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, and Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Gonzalo Peluffo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research and Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, and Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Silvina Bartesaghi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research and Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, and Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Hao Zhang
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research and Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, and Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joy Joseph
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research and Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, and Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Balaraman Kalyanaraman
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research and Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, and Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research and Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay, and Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
35
|
Taylor EL, Li JT, Tupper JC, Rossi AG, Winn RK, Harlan JM. GEA 3162, a peroxynitrite donor, induces Bcl-2-sensitive, p53-independent apoptosis in murine bone marrow cells. Biochem Pharmacol 2007; 74:1039-49. [PMID: 17681284 PMCID: PMC1991334 DOI: 10.1016/j.bcp.2007.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/05/2007] [Accepted: 06/07/2007] [Indexed: 01/24/2023]
Abstract
Apoptosis may be regulated by oxidants such as peroxynitrite (ONOO(-)). The tumour suppressor, p53, has been reported to play a crucial role in apoptosis induced by oxidants, therefore we assessed the ability of a ONOO(-) donor, GEA 3162, to activate caspases and induce mitochondrial permeability in a p53-deficient murine bone marrow cell line, Jaws II. Furthermore, these cells were stably transfected with Bcl-2, in order to investigate the impact of this survival protein on ONOO(-)-induced apoptosis. GEA 3162 activated caspases and induced loss of mitochondrial membrane potential in Jaws II cells. In particular, caspases 3 and 2 were activated, alongside minor activation of caspases 8 and 9, and apoptosis was partially dependent upon p38 MAP kinase activation, with little or no role for JNK. Overexpression of Bcl-2 abolished activation of all caspases and reduced the change in mitochondrial membrane potential. Thus, we have demonstrated that the ONOO(-) donor, GEA 3162, induces apoptosis in Jaws II murine myeloid cells despite lacking functional p53, via a pathway that principally involves caspases 2 and 3 and mitochondrial changes. This is blocked by overexpression of Bcl-2 via a mechanism that does not appear to merely reflect stabilisation of the mitochondrial membrane.
Collapse
Affiliation(s)
- Emma L Taylor
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Universities of Exeter and Plymouth, St Luke's Campus, Heavitree Rd, Exeter, Devon EX1 2LU, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Parodi O, De Maria R, Roubina E. Redox state, oxidative stress and endothelial dysfunction in heart failure: the puzzle of nitrate–thiol interaction. J Cardiovasc Med (Hagerstown) 2007; 8:765-74. [PMID: 17885513 DOI: 10.2459/jcm.0b013e32801194d4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Endothelial dysfunction, a critical component in the progression of heart failure, may result from increased oxidative stress, secondary to activation of the adrenergic and the renin-angiotensin systems and to the production of inflammatory cytokines, which in turn contribute to reduced bioavailability of nitric oxide (NO). Oxidative stress, determined by excess production of reactive oxygen species and impairment in the antioxidant defence, is responsible for both the decline of diffusible NO and the decrease in the concentration of essential co-factors of NO synthases. Reactive oxygen species are formed from NO in the presence of oxidants and are involved in the nitration of protein tyrosine residue that can alter protein function. Recent studies re-addressed the impact of nitrate treatment in heart failure in view of the beneficial vascular and cellular effects of NO, and of the discovery of abnormalities in NO pathways in this disease. Concerns exist, however, on the safety of nitrates in this setting. Nitrates stimulate vascular superoxide anion production via activation of NADPH oxidase, and induction of uncoupling of NO synthase. Furthermore, by using donors of sulfhydryl groups, such as cysteine and glutathione, for NO production, nitrates may favour depletion of the intracellular thiol pool, thus impairing the antioxidant defence mechanisms.
Collapse
Affiliation(s)
- Oberdan Parodi
- CNR Clinical Physiology Institute of Milan, Cardiology Department, Niguarda Ca' Granda Hospital, Milan, Italy.
| | | | | |
Collapse
|
37
|
Jung T, Engels M, Klotz LO, Kröncke KD, Grune T. Nitrotyrosine and protein carbonyls are equally distributed in HT22 cells after nitrosative stress. Free Radic Biol Med 2007; 42:773-86. [PMID: 17320760 DOI: 10.1016/j.freeradbiomed.2006.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 11/22/2006] [Accepted: 11/28/2006] [Indexed: 11/24/2022]
Abstract
The generation of reactive oxygen and nitrogen species is an inevitable result of cellular metabolism and environmental influence. Such oxidation processes are always combined with the formation of various protein oxidation products. Environmental oxidants might either be activated inside the cell or act by themselves. Therefore, differences in the localization of oxidant formation might change the major compartment of oxidant action. Therefore, we employed NO donors (SNOC, DETA/NO, and Spe/NO) alone or in combination with the redox-cycling bipyridinium compound paraquat, the superoxide- and NO-releasing compound SIN-1, the relatively more lipophilic oxidants tert-butyl and cumene hydroperoxide, and peroxynitrite itself to test the ability of these compounds to generate oxidized and nitrated proteins in various cellular compartments. Combined treatment with oxidants and nitrating compounds led to the formation of protein carbonyls and nitrotyrosine with a severalfold higher concentration in the cytosol, compared to the nucleus. In fluorescence microscopy studies, the resulting protein modifications show a similar distribution of oxidized proteins and nitrotyrosine with highest concentrations in the perinuclear area. Studying the time- and concentration-dependent formation and degradation of protein carbonyls and nitrated proteins large similarities could be measured. Therefore, it can be concluded that formation, localization, and kinetics of protein carbonyl and nitrotyrosine formation parallel each other depending on the stress-inducing agent.
Collapse
Affiliation(s)
- Tobias Jung
- Research Institute of Environmental Medicine, Heinrich Heine University, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Pietraforte D, Matarrese P, Straface E, Gambardella L, Metere A, Scorza G, Leto TL, Malorni W, Minetti M. Two different pathways are involved in peroxynitrite-induced senescence and apoptosis of human erythrocytes. Free Radic Biol Med 2007; 42:202-14. [PMID: 17189826 DOI: 10.1016/j.freeradbiomed.2006.10.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/13/2006] [Accepted: 10/08/2006] [Indexed: 01/15/2023]
Abstract
CO(2) changes the biochemistry of peroxynitrite basically in two ways: (i) nitrating species is the CO(3)(-) / ()NO(2) radical pair, and (ii) peroxynitrite diffusion distance is significantly reduced. For peroxynitrite generated extracellularly this last effect is particularly dramatic at low cell density because CO(3)(-) and ()NO(2) are short-lived and decay mostly in the extracellular space or at the cell surface/membrane. This study was aimed to distinguish between peroxynitrite-induced extra- and intracellular modifications of red blood cells (RBC). Our results show that at low cell density and in the presence of CO(2) peroxynitrite induced the oxidation of surface thiols, the formation of 3-nitrotyrosine and DMPO-RBC adducts, and the down-regulation of glycophorins A and C (biomarkers of senescence). Reactivation of glycolysis reversed only the oxidation of surface thiols. Without CO(2) peroxynitrite also induced the oxidation of hemoglobin and glutathione, the accumulation of lactate, a decrease in ATP, the clustering of band 3, the externalization of phosphatidylserine, and the activation of caspases 8 and 3 (biomarkers of apoptosis). The latter biomarkers were all reversed by reactivation of glycolysis. We hypothesize that cell senescence could (generally) be derived by irreversible radical-mediated oxidation of membrane targets, while the appearance of apoptotic biomarkers could be bolstered by oxidation of intracellular targets. These results suggest that, depending on extracellular homolysis or diffusion to the intracellular space, peroxynitrite prompts RBCs toward either senescence or apoptosis through different oxidation mechanisms.
Collapse
Affiliation(s)
- Donatella Pietraforte
- Departments of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cortés J, Granados S, Ordaz A, Jiménez J, Griveau S, Bedioui F. Electropolymerized Manganese Tetraaminophthalocyanine Thin Films onto Platinum Ultramicroelectrode for the Electrochemical Detection of Peroxynitrite in Solution. ELECTROANAL 2007. [DOI: 10.1002/elan.200603703] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Konzen M, De Marco D, Cordova CAS, Vieira TO, Antônio RV, Creczynski-Pasa TB. Antioxidant properties of violacein: Possible relation on its biological function. Bioorg Med Chem 2006; 14:8307-13. [PMID: 17011197 DOI: 10.1016/j.bmc.2006.09.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/25/2022]
Abstract
Violacein, a violet pigment produced by Chromobacterium violaceum, has attracted much attention in recent literature due to its pharmacological properties. In this work, the antioxidant properties of violacein were investigated. The reactivity with oxygen and nitrogen reactive species and 1,1-diphenyl-2-picryl-hydrazyl (DPPH), a stable free radical, was evaluated. EPR studies were carried out to evaluate the reactivity with the hydroxyl radical. The action of violacein against lipid peroxidation in three models of lipid membranes, including rat liver microsomes, Egg and Soy bean phosphathidylcholine liposomes were also evaluated. The compound reacted with DPPH (IC(50)=30microM), nitric oxide (IC(50)=21microM), superoxide radicals (IC(50)=125microM) and decreased the hydroxyl radical EPR signal. The compound protected the studied membranes against peroxidation induced by reactive species in the micromolar range. The reconstitution of violacein into the membranes increased its antioxidant effect. These results indicate that the compound has strong antioxidant potential. Based on these results we suggest violacein plays an important role with the microorganism membrane in defense against oxidative stress.
Collapse
Affiliation(s)
- Marlon Konzen
- Departamento de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, CEP 88040-900, Florianópolis/SC, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Katori T, Donzelli S, Tocchetti CG, Miranda KM, Cormaci G, Thomas DD, Ketner EA, Lee MJ, Mancardi D, Wink DA, Kass DA, Paolocci N. Peroxynitrite and myocardial contractility: in vivo versus in vitro effects. Free Radic Biol Med 2006; 41:1606-18. [PMID: 17045928 DOI: 10.1016/j.freeradbiomed.2006.08.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/30/2022]
Abstract
Generation of peroxynitrite (ONOO-) as a result of altered redox balance has been shown to affect cardiac function; however, inconsistencies in the data exist, particularly for myocardial contractility. The hypothesis that the cardiac impact of ONOO- formation depends on its site of generation, intravascular or intramyocardial, was examined. Cardiac contractility was assessed by pressure-volume analysis to delineate vascular versus cardiac changes on direct infusion of ONOO- into the right atria of conscious dogs both with normal cardiac function and in heart failure. Additionally, ONOO- was administered to isolated murine cardiomyocytes to mimic in situ cardiac generation. When infused in vivo, ONOO- had little impact on inotropy but led to systemic arterial dilation, likely as a result of rapid decomposition to NO2- and NO3-. In contrast, infused ONOO- was long lived enough to abolish beta-adrenergic (dobutamine)-stimulated contractility/relaxation, most likely through catecholamine oxidation to aminochrome. When administered to isolated murine cardiomyocytes, ONOO- induced a rapid reduction in sarcomere shortening and whole cell calcium transients, although neither decomposed ONOO- or NaNO2 had any effect. Thus, systemic generation of ONOO- is unlikely to have primary cardiac effects, but may modulate cardiac contractile reserve, via blunted beta-adrenergic stimulation, and vascular tone, as a result of generation of NO2- and NO3-. However, myocyte generation of ONOO- may impair contractile function by directly altering Ca2+ handling. These data demonstrate that the site of generation within the cardiovascular system largely dictates the ability of ONOO- to directly or indirectly modulate cardiac pump function.
Collapse
Affiliation(s)
- Tatsuo Katori
- 935 Ross, Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Romero N, Denicola A, Radi R. Red blood cells in the metabolism of nitric oxide-derived peroxynitrite. IUBMB Life 2006; 58:572-80. [PMID: 17050374 DOI: 10.1080/15216540600936549] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this review we have analyzed the reactions of nitric oxide (.NO) with superoxide radical (O(2).-) at the vascular compartment which results in limitation of the bioavailability of .NO and the formation of peroxynitrite (ONOO-), a strong oxidant species. The intravascular formation of peroxynitrite can result in oxidative modifications of plasma and vessel wall proteins including the formation of protein-3-nitrotyrosine. The role of red blood cells (RBC) and oxyhemoglobin in the metabolism of intravascular peroxynitrite will be discussed. While RBC constitute an important 'sink' of both .NO and peroxynitrite, redox reactions of these species with oxyhemoglobin may in part contribute to erythrocyte aging. The intravascular formation, reactions and detoxification of peroxynitrite are revealed as important factors controlling vascular dysfunction and degeneration in a variety of pathophysiologically-relevant conditions.
Collapse
Affiliation(s)
- Natalia Romero
- Departamento de Bioquímica, Facultad de Medicina, , Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
43
|
Bartesaghi S, Valez V, Trujillo M, Peluffo G, Romero N, Zhang H, Kalyanaraman B, Radi R. Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. Biochemistry 2006; 45:6813-25. [PMID: 16734418 DOI: 10.1021/bi060363x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most of the mechanistic studies of tyrosine nitration have been performed in aqueous solution. However, many protein tyrosine residues shown to be nitrated in vitro and in vivo are associated to nonpolar compartments. In this work, we have used the stable hydrophobic tyrosine analogue N-t-BOC-L-tyrosine tert-butyl ester (BTBE) incorporated into phosphatidylcholine (PC) liposomes to study physicochemical and biochemical factors that control peroxynitrite-dependent tyrosine nitration in phospholipid bilayers. Peroxynitrite leads to maximum 3-nitro-BTBE yields (3%) at pH 7.4. In addition, small amounts of 3,3'-di-BTBE were formed at pH 7.4 (0.02%) which increased over alkaline pH; at pH 6, a hydroxylated derivative of BTBE was identified by HPLC-MS analysis. BTBE nitration yields were similar in dilauroyl- and dimyristoyl-PC and were also significant in the polyunsaturated fatty acid-containing egg PC. *OH and *NO2 scavengers inhibited BTBE nitration. In contrast to tyrosine in the aqueous phase, the presence of CO2 decreased BTBE nitration, indicating that CO3*- cannot permeate to the compartment where BTBE is located. On the other hand, micromolar concentrations of hemin and Mn-tccp strongly enhanced BTBE nitration. Electron spin resonance (ESR) detection of the BTBE phenoxyl radical and kinetic modeling of the pH profiles of BTBE nitration and dimerization were in full agreement with a free radical mechanism of oxidation initiated by ONOOH homolysis in the immediacy of or even inside the bilayer and with a diffusion coefficient of BTBE phenoxyl radical 100 times less than for the aqueous phase tyrosyl radical. BTBE was successfully applied as a hydrophobic probe to study nitration mechanisms and will serve to study factors controlling protein and lipid nitration in biomembranes and lipoproteins.
Collapse
Affiliation(s)
- Silvina Bartesaghi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lucantoni G, Pietraforte D, Matarrese P, Gambardella L, Metere A, Paone G, Bianchi EL, Straface E. The red blood cell as a biosensor for monitoring oxidative imbalance in chronic obstructive pulmonary disease: an ex vivo and in vitro study. Antioxid Redox Signal 2006; 8:1171-82. [PMID: 16910765 DOI: 10.1089/ars.2006.8.1171] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity in Western countries. The increased oxidative stress, caused by the release of reactive oxygen and nitrogen species (ROS/RNS) from inflammatory airways cells, contributes to the pathogenesis of the disease. The aim of the present study was to evaluate (a) whether the oxidative imbalance can lead to specific alterations of red blood cells (RBCs) from stable COPD patients; (b) whether treatment with N-acetyl-cysteine (NAC), in widespread use as mucolytic agent in clinical practice, can counteract these effects; and (c) whether an in vitro model represented by the exposure of RBC to ROS/RNS could mimic the in vivo situation. The results obtained clearly indicated that the RBC integrity and function are similarly altered in COPD patients and in ROS/RNS in vitro-treated samples and that NAC administration was capable of counteracting RBC oxidative modifications both in vivo, as detected by clinical and laboratory evaluations, and in vitro. Altogether these results point to RBC oxidative modifications as valuable bioindicators in the clinical management of COPD and indicate that in vitro RBC exposure to ROS/RNS as a useful tool in experimental studies aimed at the comprehension of the pathogenic mechanisms of the redox-associated diseases.
Collapse
Affiliation(s)
- Gabriele Lucantoni
- CUBE Department of Cardiovascular and Respiratory Sciences, University of Rome La Sapienza, Forlanini Hospital, Istituto Superiore di Sanità, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Herold S, Fago A. Reactions of peroxynitrite with globin proteins and their possible physiological role. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:124-9. [PMID: 16055362 DOI: 10.1016/j.cbpb.2005.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 06/16/2005] [Accepted: 06/18/2005] [Indexed: 10/25/2022]
Abstract
It is now widely accepted that, besides their well-established function in O(2) transport, hemoglobin and myoglobin also undergo several redox reactions aimed to scavenge toxic free radicals and reactive oxygen and nitrogen species. At least some of these reactions are believed to play an important physiological role in the defense against oxidative stress. This aspect is exemplified by the recently discovered neuroglobin, a globin expressed in the brain. Rather than being considerably involved in reversible O(2) binding, neuroglobin is likely to undergo redox reactions to protect neurons against oxidative and potentially pathogenic pathways, as those operating after episodes of tissue hypoxia or ischemia. A major part of the cellular damage occurring under such conditions has been ascribed to formation of peroxynitrite, that originates from the reaction between two biologically important free radicals, nitric oxide (NO ) and superoxide. Here we review the current knowledge of the reactions of different forms of hemoglobin, myoglobin, and neuroglobin with peroxynitrite and discuss their physiological role on the basis of measured rate constants and on the probability of occurrence of these reactions in vivo.
Collapse
Affiliation(s)
- Susanna Herold
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
46
|
Palazzolo AM, Suquet C, Konkel ME, Hurst JK. Green fluorescent protein-expressing Escherichia coli as a selective probe for HOCl generation within neutrophils. Biochemistry 2005; 44:6910-9. [PMID: 15865436 DOI: 10.1021/bi047342s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Escherichia coli were transformed by electroporation to introduce a plasmid harboring a GFP gene-containing vector. The fluorescence of the purified GFP isolated from the transformant was quenched by myeloperoxidase (MPO)-generated HOCl, by peroxynitrous acid (ONOOH) and by enzymatically or radiolytically generated NO(2)(.) but not by other putative neutrophil-generated oxidants. Fluorescence from the bacterium was effectively quenched by HOCl but not peroxynitrite, oxidizing radicals derived from its O-O bond homolysis, or the other oxidants under study. Exposure of serum-opsonized bacteria to human neutrophils resulted in extensive loss of GFP fluorescence; fluorescence microscopy revealed that phagocytosed bacteria were completely quenched but that bacteria remaining in the external media were unquenched. Addition of sodium azide to the medium to inhibit MPO prevented neutrophil-mediated fluorescence quenching. Because the amount of HOCl required to inhibit bacterial fluorescence was an order of magnitude greater than required to inhibit colonial growth, these results imply that sufficient HOCl was formed within the neutrophil phagosome to kill the microbe.
Collapse
Affiliation(s)
- Amy M Palazzolo
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | | | | | | |
Collapse
|
47
|
Mallozzi C, De Franceschi L, Brugnara C, Di Stasi AMM. Protein phosphatase 1alpha is tyrosine-phosphorylated and inactivated by peroxynitrite in erythrocytes through the src family kinase fgr. Free Radic Biol Med 2005; 38:1625-36. [PMID: 15917191 DOI: 10.1016/j.freeradbiomed.2005.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 01/17/2005] [Accepted: 02/22/2005] [Indexed: 11/30/2022]
Abstract
Protein serine/threonine phosphorylation is a significant component of the intracellular signal that together with tyrosine phosphorylation regulates several processes, including cell-cycle progression, muscle contraction, transcription, and neuronal signaling. Cross-talk between phosphoserine/threonine- and phosphotyrosine-mediated pathways is not yet well understood. In this study we found that peroxynitrite, a physiological oxidant formed by the fast radical-radical reaction between the nitric oxide and the superoxide anion, induced tyrosine phosphorylation of the serine/threonine protein phosphatase 1alpha (PP1alpha) in human erythrocytes through activation of src family kinases. We have previously shown in mouse red cells that upregulation of the src kinase fgr phosphorylates PP1alpha, acting as an upstream negative regulator of PP1alpha, and downregulates K-Cl cotransport. Here we found that PP1alpha is a selective substrate of peroxynitrite-activated fgr and that tyrosine phosphorylation of PP1alpha corresponds to an inhibition of its enzymatic activity. Despite fgr activation and PP1alpha downregulation, peroxynitrite stimulated in a dose-dependent fashion the function of the K-Cl cotransporter. In an attempt to understand the mechanism of K-Cl cotransport activation, we found that the effect of peroxynitrite is completely reversed by dithriothreitol, suggesting that peroxynitrite acts as an oxidizing agent by an SH-dependent and PP1alpha-independent mechanism. These findings highlight a novel function of peroxynitrite in regulating the intracellular signal transduction pathways involving serine/threonine phosphorylation and the functional role of proteins that are targets of these phosphatases.
Collapse
Affiliation(s)
- Cinzia Mallozzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena, 299-00161 Rome, Italy.
| | | | | | | |
Collapse
|
48
|
Kucherenko Y, Browning J, Tattersall A, Ellory JC, Gibson JS. Effect of Peroxynitrite on Passive K + Transport in Human Red Blood Cells. Cell Physiol Biochem 2005; 15:271-80. [PMID: 16037692 DOI: 10.1159/000087237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2005] [Indexed: 11/19/2022] Open
Abstract
Peroxynitrite is generated in vivo by the reaction between nitric oxide, from endothelial and other cells, and the superoxide anion. It is therefore pertinent to examine its effects on the membrane permeability of red blood cells. Treatment of human red blood cells with peroxynitrite (nominally 1 mM) markedly stimulated passive K+ permeability. The main effect was on a Cl(-)-independent K+ pathway, which remains unidentified. Although K+-Cl- cotransport (KCC) was stimulated, this was dependent on saline composition, being inhibited by physiological levels of glucose (IC50 4 mM), and also by sucrose and MOPS. Effects on the Cl(-)-independent K+ pathway were less dependent on saline composition, and were not inhibited by amiloride, ethylisopropylamiloride, dimethylamiloride or gadolinium. Na+-K+-2Cl- cotransporter was inhibited whilst there was little effect on the Gardos channel (Ca2+-activated K+ channel). Peroxynitrite was markedly more effective in oxygenated cells than deoxygenated ones. Treatment with peroxynitrite per se did not affect initial cell volume. Anisotonic swelling modestly increased the Cl(-)-independent K+ influx, but did not affect peroxynitrite-stimulated KCC. Decreasing extracellular pH from 7.4 to 7.2 or 7.0 increased KCC stimulation, whilst the Cl(-)-independent component of K+ transport was lowest at pH 7.2. Finally, protein phosphatase inhibition with calyculin A (100 nM) inhibited KCC, implying that, as with other KCC stimuli, peroxynitrite acts via decreased protein phosphorylation; pre-treatment with calyculin A also inhibited the Cl(-)-independent component of K+ transport. These findings are relevant to the actions of peroxynitrite in vivo.
Collapse
|
49
|
Boccini F, Herold S. Mechanistic studies of the oxidation of oxyhemoglobin by peroxynitrite. Biochemistry 2005; 43:16393-404. [PMID: 15610034 DOI: 10.1021/bi0482250] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The strong oxidizing and nitrating agent peroxynitrite has been shown to diffuse into erythrocytes and oxidize oxyhemoglobin (oxyHb) to metHb. Because the value of the second-order rate constant for this reaction is on the order of 10(4) M(-)(1) s(-)(1) and the oxyHb concentration is about 20 mM (expressed per heme), this process is rather fast and oxyHb is considered a sink for peroxynitrite. In this work, we showed that the reaction of oxyHb with peroxynitrite, both in the presence and absence of CO(2), proceeds via the formation of oxoiron(iv)hemoglobin (ferrylHb), which in a second step is reduced to metHb and nitrate by its reaction with NO(2)(*). In the presence of physiological relevant amounts of CO(2), ferrylHb is generated by the reaction of NO(2)(*) with the coordinated superoxide of oxyHb (HbFe(III)O(2)(*)(-)). This reaction proceeds via formation of a peroxynitrato-metHb complex (HbFe(III)OONO(2)), which decomposes to generate the one-electron oxidized form of ferrylHb, the oxoiron(iv) form of hemoglobin with a radical localized on the globin. CO(3)(*)(-), the second radical formed from the reaction of peroxynitrite with CO(2), is also scavenged efficiently by oxyHb, in a reaction that finally leads to metHb production. Taken together, our results indicate that oxyHb not only scavenges peroxynitrite but also the radicals produced by its decomposition.
Collapse
Affiliation(s)
- Francesca Boccini
- Laboratorium für Anorganische Chemie, Eidgenössische Technische Hochschule, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
50
|
Matarrese P, Straface E, Pietraforte D, Gambardella L, Vona R, Maccaglia A, Minetti M, Malorni W. Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J 2005; 19:416-8. [PMID: 15650007 DOI: 10.1096/fj.04-2450fje] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Changes in the oxidative status of erythrocytes can reduce cell lifetime, oxygen transport, and delivery capacity to peripheral tissues and have been associated with a plethora of human diseases. Among reactive oxygen and nitrogen species of importance in red blood cell (RBC) homeostasis, superoxide and nitric oxide radicals play a key role. In the present work, we evaluated subcellular effects induced by peroxynitrite, the product of the fast reaction between superoxide and nitric oxide. Peroxynitrite induced 1) oxidation of oxyhemoglobin to methemoglobin, 2) cytoskeleton rearrangement, 3) ultrastructural alterations, and 4) altered expression of band-3 and decreased expression of glycophorin A. With respect to control cells, this occurred in a significantly higher percentage of human RBC (approximately 40%). The presence of antioxidants inhibited these modifications. Furthermore, besides these senescence-associated changes, other important modifications, absent in control RBC and usually associated with apoptotic cell death, were detected in a small but significant subset of peroxynitrite-exposed RBC (approximately 7%). Active protease cathepsin E and mu-calpain increased; activation of caspase 2 and caspase 3 was detected; and phosphatidylserine externalization, an early marker of apoptosis, was observed. Conversely, inhibition of cathepsin E, mu-calpain, as well as caspase 2 and 3 by specific inhibitors resulted in a significant impairment of erythrocyte "apoptosis" Altogether, these results indicate that peroxynitrite, a milestone of redox-mediated damage in human pathology, can hijack human RBC toward senescence and apoptosis by a mechanism involving both cysteinyl and aspartyl proteases.
Collapse
Affiliation(s)
- Paola Matarrese
- Department of Drug Research and Evaluation, Istituto Superiore di Sanita, Rome 00161, Italy
| | | | | | | | | | | | | | | |
Collapse
|