1
|
Brovchenko N, Berg A, Schubert S, Gräb J, Münzel T, Protzel C, Natarajan K, Berg T. Biaryl Phosphates and Phosphonates as Selective Inhibitors of the Transcription Factor STAT4. Angew Chem Int Ed Engl 2025; 64:e202504420. [PMID: 40067743 PMCID: PMC12087874 DOI: 10.1002/anie.202504420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
The transcription factor STAT4 has been implicated in the pathogenesis of autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and diabetes mellitus. Here, we report p-biaryl phosphates and phosphonates as the first small-molecule inhibitors of STAT4. The most potent p-biaryl phosphate inhibited the protein-protein interaction domain of STAT4, the SH2 domain, with submicromolar potency (Ki = 0.35 µM) and 14-fold selectivity over the closely related family member STAT3, which has the same core peptide binding motif as STAT4. Further development resulted in the phosphatase-stable inhibitor Stafori-1, which protected STAT4 but not STAT3, against thermal denaturation in cell lysates. Its cell-permeable prodrug Pomstafori-1 selectively inhibited STAT4 phosphorylation in cultured human cells at low micromolar concentrations. Our data open up the possibility of exploring STAT4 as a target protein for small molecules in the treatment of unmet medical needs.
Collapse
Affiliation(s)
- Nadiya Brovchenko
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Angela Berg
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Sabine Schubert
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Julian Gräb
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Theresa Münzel
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Christoph Protzel
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Kalaiselvi Natarajan
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Thorsten Berg
- Institute of Organic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
2
|
Solaymani-Mohammadi S. The IL-21/IL-21R signaling axis regulates CD4+ T-cell responsiveness to IL-12 to promote bacterial-induced colitis. J Leukoc Biol 2024; 116:726-737. [PMID: 38498592 PMCID: PMC11408709 DOI: 10.1093/jleuko/qiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
IL-21/IL-21R signaling dysregulation is linked to multiple chronic intestinal inflammatory disorders in humans and animal models of human diseases. In addition to its critical requirement for the generation and development of germinal center B cells, IL-21/IL-21R signaling can also regulate the effector functions of a variety of T-cell subsets. The antibody-mediated abrogation of IL-21/IL-21R signaling led to the impaired expression of IFN-γ by mucosal CD4+ T cells from human subjects with colitis, suggesting an IL-21/IL-21R-triggered positive feedback loop of the TH1 immune response in the colon. Despite recent advances in our understanding of the mechanisms underpinning the regulation of proinflammatory immune responses by the IL-21/IL-21R signaling axis, it remains unclear how this pathway or its downstream molecules contribute to inflammation during bacterial-induced colitis. This study found that IL-21 enhances the surface expression of IL-12Rβ2, but not IL-12Rβ1, in CD4+ T cells, leading to TH1 differentiation and stability. Consistently, these findings also point to an indispensable role of the IL-12Rβ2 signaling axis in promoting proinflammatory immune responses during Citrobacter rodentium-induced colitis. Genetic deletion of the IL-12Rβ2 signaling pathway led to the attenuation of C. rodentium-induced colitis in vivo. The genetic deletion of the IL-12Rβ2 signaling pathway did not alter the host's ability to respond adequately to C. rodentium infection or the ability of Il12rb2-/- mice to express antigen-specific cytokines (IFN-γ, IL-17A). IL-21 is a pleiotropic cytokine exerting a wide range of immunomodulatory functions in multiple tissues, and its direct targeting may result in undesirable off-target consequences. These findings highlight the possibility for targeted manipulations of signaling cascades downstream of main regulators of proinflammatory responses to control invading pathogens while preserving the integrity of host immune responses. A better understanding of the novel mechanisms by which IL-21/IL-21R signaling regulates bacterial-induced colitis will provide insights into the development of new therapeutic and preventive strategies to harness IL-21/IL-21R signaling or its downstream molecules to treat infectious colitis.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Road, Suite W315, Stop 9037, Grand Forks, ND, United States
| |
Collapse
|
3
|
A High-Throughput Fluorescence Polarization-Based Assay for the SH2 Domain of STAT4. Methods Protoc 2022; 5:mps5060093. [PMID: 36548135 PMCID: PMC9781101 DOI: 10.3390/mps5060093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The signal transducer and activation of transcription (STAT) proteins are a family of Src homology 2 (SH2) domain-containing transcription factors. The family member STAT4 is a mediator of IL-12 signalling and has been implicated in the pathogenesis of multiple autoimmune diseases. The activity of STAT4 requires binding of phosphotyrosine-containing motifs to its SH2 domain. Selective inhibitors of the STAT4 SH2 domain have not been published to date. Here, we present a fluorescence polarization-based assay for the identification of inhibitors of the STAT4 SH2 domain. The assay is based on the interaction between the STAT4 SH2 domain and the fluorophore-labelled peptide 5-carboxyfluorescein-GpYLPQNID (Kd = 34 ± 4 nM). The assay is stable with respect to DMSO concentrations of up to 10% and incubation times of at least 8 h. The Z'-value of 0.85 ± 0.01 indicates that the assay is suited for use in high-throughput screening campaigns aimed at identifying new therapeutic modalities for the treatment of autoimmune diseases.
Collapse
|
4
|
Khattak FA, Akbar NU, Riaz M, Hussain M, Rehman K, Khan SN, Khan TA. Novel IL-β12R1 deficiency-mediates recurrent cutaneous leishmaniasis. Int J Infect Dis 2021; 112:338-345. [PMID: 34438084 DOI: 10.1016/j.ijid.2021.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The IL-12/IFN-γ axis plays a vital role in the control of intramacrophagic pathogens including Leishmania infections. OBJECTIVE The aim of this study was to investigate genetic defects in the IL-12/IFN-γ axis in cutaneous leishmaniasis patients, using immunological and genetic evaluation. METHODS Enzyme-linked immunosorbent assay was used to quantify IFN-γ , while flow cytometry was performed to analyze surface IL-12Rβ1/IL-12Rβ2 expression and phosphorylation of signal transducers as well as the activator of transcription 4 (pSTAT4). Sequencing was carried out for genetic analysis. RESULTS The peripheral blood mononuclear cells from the two patients (P1 and P2) demonstrated impaired production of IFN-γ. Furthermore, abolishment of the surface expression of Il-12Rβ1 was observed in lymphocytes, with consequent impairment of STAT4 phosphorylation in the lymphocytes of P1 and P2. IL-12Rββ1 deficiency was identified, which was caused by a novel homozygous missense mutation (c.485>T/p.P162L) and a novel homozygous nonsense mutation (c.805G>T/P.E269*) in the IL-12Rβ2 gene of P1 and P2, respectively. In silico analyses predicted these novel mutations as being pathogenic, causing truncated proteins, with consequent inactivation. CONCLUSION Our data have expanded the phenotype and mutation spectra associated with IL-12Rβ1 deficiency, and suggest that patients with CL should be screened for mutations in genes of the IL-12/IFN-γ axis.
Collapse
Affiliation(s)
- Farhad Ali Khattak
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan; Khyber College of Dentistry, Peshawar, Pakistan.
| | - Noor Ul Akbar
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Maira Riaz
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Mubashir Hussain
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Khalid Rehman
- Institute of Public Health and Social Sciences, Khyber Medical University, Peshawar, Pakistan.
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan.
| |
Collapse
|
5
|
Glassman CR, Mathiharan YK, Jude KM, Su L, Panova O, Lupardus PJ, Spangler JB, Ely LK, Thomas C, Skiniotis G, Garcia KC. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 2021; 184:983-999.e24. [PMID: 33606986 PMCID: PMC7899134 DOI: 10.1016/j.cell.2021.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/23/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-12 (IL-12) and IL-23 are heterodimeric cytokines that are produced by antigen-presenting cells to regulate the activation and differentiation of lymphocytes, and they share IL-12Rβ1 as a receptor signaling subunit. We present a crystal structure of the quaternary IL-23 (IL-23p19/p40)/IL-23R/IL-12Rβ1 complex, together with cryoelectron microscopy (cryo-EM) maps of the complete IL-12 (IL-12p35/p40)/IL-12Rβ2/IL-12Rβ1 and IL-23 receptor (IL-23R) complexes, which reveal "non-canonical" topologies where IL-12Rβ1 directly engages the common p40 subunit. We targeted the shared IL-12Rβ1/p40 interface to design a panel of IL-12 partial agonists that preserved interferon gamma (IFNγ) induction by CD8+ T cells but impaired cytokine production from natural killer (NK) cells in vitro. These cell-biased properties were recapitulated in vivo, where IL-12 partial agonists elicited anti-tumor immunity to MC-38 murine adenocarcinoma absent the NK-cell-mediated toxicity seen with wild-type IL-12. Thus, the structural mechanism of receptor sharing used by IL-12 family cytokines provides a protein interface blueprint for tuning this cytokine axis for therapeutics.
Collapse
Affiliation(s)
- Caleb R Glassman
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yamuna Kalyani Mathiharan
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ouliana Panova
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Lupardus
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jamie B Spangler
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren K Ely
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christoph Thomas
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Georgios Skiniotis
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
IL-12 and IL-23-Close Relatives with Structural Homologies but Distinct Immunological Functions. Cells 2020; 9:cells9102184. [PMID: 32998371 PMCID: PMC7600943 DOI: 10.3390/cells9102184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cytokines of the IL-12 family show structural similarities but have distinct functions in the immune system. Prominent members of this cytokine family are the pro-inflammatory cytokines IL-12 and IL-23. These two cytokines share cytokine subunits and receptor chains but have different functions in autoimmune diseases, cancer and infections. Accordingly, structural knowledge about receptor complex formation is essential for the development of new therapeutic strategies preventing and/or inhibiting cytokine:receptor interaction. In addition, intracellular signaling cascades can be targeted to inhibit cytokine-mediated effects. Single nucleotide polymorphisms can lead to alteration in the amino acid sequence and thereby influencing protein functions or protein–protein interactions. To understand the biology of IL-12 and IL-23 and to establish efficient targeting strategies structural knowledge about cytokines and respective receptors is crucial. A highly efficient therapy might be a combination of different drugs targeting extracellular cytokine:receptor assembly and intracellular signaling pathways.
Collapse
|
7
|
Jacobsson H, Harrison H, Hughes É, Persson E, Rhost S, Fitzpatrick P, Gustafsson A, Andersson D, Gregersson P, Magnusson Y, Ståhlberg A, Landberg G. Hypoxia-induced secretion stimulates breast cancer stem cell regulatory signalling pathways. Mol Oncol 2019; 13:1693-1705. [PMID: 31066211 PMCID: PMC6670019 DOI: 10.1002/1878-0261.12500] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023] Open
Abstract
It is well known that tumour cells are dependent on communication with the tumour microenvironment. Previously, it has been shown that hypoxia (HX) induces pronounced, diverse and direct effects on cancer stem cell (CSC) qualities in different breast cancer subtypes. Here, we describe the mechanism by which HX-induced secretion influences the spreading of CSCs. Conditioned media (CM) from estrogen receptor (ER)-α-positive hypoxic breast cancer cell cultures increased the fraction of CSCs compared to normal growth conditions, as determined using sets of CSC assays and model systems. In contrast, media from ERα-negative hypoxic cell cultures instead decreased this key subpopulation of cancer cells. Further, there was a striking overrepresentation of JAK-STAT-associated cytokines in both the ERα-positive and ERα-negative linked hypoxic responses as determined by a protein screen of the CM. JAK-STAT inhibitors and knockdown experiments further supported the hypothesis that this pathway is critical for the CSC-activating and CSC-inactivating effects induced by hypoxic secretion. We also observed that the interleukin-6-JAK2-STAT3 axis was specifically central for the ERα-negative hypoxic behaviour. Our results underline the importance of considering breast cancer subtypes in treatments targeting JAK-STAT or HX-associated processes and indicate that HX is not only a confined tumour biological event, but also influences key tumour properties in widespread normoxic microenvironments.
Collapse
Affiliation(s)
- Hanna Jacobsson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Hannah Harrison
- Breakthrough Breast Cancer Unit, Centre for Molecular Pathology, Institute of Cancer Sciences, Paterson Institute for Cancer Research, University of Manchester, UK.,Manchester Cancer Research Centre, The University of Manchester, UK
| | - Éamon Hughes
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Emma Persson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Sara Rhost
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Paul Fitzpatrick
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Daniel Andersson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Ylva Magnusson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Landberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Sweden.,Breakthrough Breast Cancer Unit, Centre for Molecular Pathology, Institute of Cancer Sciences, Paterson Institute for Cancer Research, University of Manchester, UK
| |
Collapse
|
8
|
Bastian D, Wu Y, Betts BC, Yu XZ. The IL-12 Cytokine and Receptor Family in Graft-vs.-Host Disease. Front Immunol 2019; 10:988. [PMID: 31139181 PMCID: PMC6518430 DOI: 10.3389/fimmu.2019.00988] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/16/2019] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is performed with curative intent for high- risk blood cancers and bone marrow failure syndromes; yet the development of acute and chronic graft-vs.-host disease (GVHD) remain preeminent causes of death and morbidity. The IL-12 family of cytokines is comprised of IL-12, IL-23, IL-27, IL-35, and IL-39. This family of cytokines is biologically distinct in that they are composed of functional heterodimers, which bind to cognate heterodimeric receptor chains expressed on T cells. Of these, IL-12 and IL-23 share a common β cytokine subunit, p40, as well as a receptor chain: IL-12Rβ1. IL-12 and IL-23 have been documented as proinflammatory mediators of GVHD, responsible for T helper 1 (Th1) differentiation and T helper 17 (Th17) stabilization, respectively. The role of IL-27 is less defined, seemingly immune suppressive via IL-10 secretion by Type 1 regulatory (Tr1) cells yet promoting inflammation through impairing CD4+ T regulatory (Treg) development and/or enhancing Th1 differentiation. More recently, IL-35 was described as a potent anti-inflammatory agent produced by regulatory B and T cells. The role of the newest member, IL-39, has been implicated in proinflammatory B cell responses but has not been explored in the context of allo-HCT. This review is directed at discussing the current literature relevant to each IL-12-family cytokine and cognate receptor engagement, as well as the consequential downstream signaling implications, during GVHD pathogenesis. Additionally, we will provide an overview of translational strategies targeting the IL-12 family cytokines, their receptors, and subsequent signal transduction to control GVHD.
Collapse
Affiliation(s)
- David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Brian C Betts
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
9
|
Yin S, Yu J, Hu B, Lu C, Liu X, Gao X, Li W, Zhou L, Wang J, Wang D, Lu L, Wang L. Runx3 Mediates Resistance to Intracellular Bacterial Infection by Promoting IL12 Signaling in Group 1 ILC and NCR+ILC3. Front Immunol 2018; 9:2101. [PMID: 30258450 PMCID: PMC6144956 DOI: 10.3389/fimmu.2018.02101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently identified family of the innate immune system and are hypothesized to modulate immune functions prior to the generation of adaptive immune responses. Subsets of ILCs reside in the mucosa and regulate immune responses to external pathogens; however, their role and the mechanism by which they protect against intracellular bacterial infection is not completely understood. In this report, using S. typhimurium and L. monocytogenes, we found that the levels of group 1 ILCs and NCR+ ILC3s were increased upon infection and that these increases were associated with Runt-related transcription factor 3 (Runx3) expression. Runx3 fl/fl PLZF-cre mice were much more sensitive to infection with the intracellular bacterial pathogens S. typhimurium and L. monocytogenes partially due to abnormal Group 1 ILC and NCR+ILC3 function. We also found that Runx3 directly binds to the Il12Rβ2 promoter and intron 8 to accelerate the expression of Il12Rβ2 and modulates IFNγ secretion triggered by the IL12/ STAT4 axis. Therefore, we demonstrate that Runx3 influences group 1 ILC- and NCR+ILC3-mediated immune protection against intracellular bacterial infections of both the gut and liver.
Collapse
Affiliation(s)
- Shengxia Yin
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jingjing Yu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Bian Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenyu Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xia Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianzhi Gao
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Li
- Laboraty Animal Center, Zhejiang University, Hangzhou, China
| | - Lina Zhou
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Laboraty Animal Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Affiliation(s)
- Christian Bauerfeld
- Department of Pediatrics, Division of Critical Care, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, USA
| | - Lobelia Samavati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
11
|
Abstract
Interleukin (IL-)23 is a central cytokine controlling TH17 development. Overshooting IL-23 signaling contribute to autoimmune diseases. Moreover, GWAS studies have identified several SNPs within the IL-23 receptor, which are associated with autoimmune diseases. IL-23 is a member of the IL-12-type cytokine family and consists of IL-23p19 and p40. Within the IL-12 family, IL-12 and IL-23 share the p40 cytokine subunit and the IL-12Rβ1 as one chain of the receptor complex. For signaling, IL-23 triggers heterodimerization of IL-12Rβ1 and the IL-23R. Subsequently, signal transduction pathways including JAK/STAT, MAPK and PI3K are activated. Most studies have investigated the biological relevance of IL-23 in the development of TH17 cells and autoimmunity, whereas less is known about the molecular context of IL-23 biology. Therefore, we focused on IL-23 receptor complex assembly, signal transduction and functional relevance of IL-23R SNPs in the context of IL-23-inhibitory principles.
Collapse
|
12
|
Dickinson AM, Norden J. Non-HLA genomics: does it have a role in predicting haematopoietic stem cell transplantation outcome? Int J Immunogenet 2015; 42:229-38. [PMID: 26010044 DOI: 10.1111/iji.12202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
Haematopoietic stem cell transplantation (HSCT) remains the only cure for many haematological neoplasms; however, the mortality rate remains high, at around 30-80%. Complications after HSCT include relapse, graft-versus-host disease, graft rejection and infection. High-resolution HLA matching has improved survival in HSCT over recent years; however, GVHD still remains a serious complication. Single nucleotide polymorphisms (SNPS) within genes that are involved with an individual's capability to mount an immune response to infectious pathogens, residual leukaemia, alloantigens or genes involved in drug metabolism have been studied for their association with HSCT outcome. Indeed, over the last 15 years, several groups, including ourselves, have demonstrated that non-HLA gene polymorphisms can be predictive of HSCT outcome. Can genetic characteristics of the patient and donor be used in the future to tailor HSCT protocols and determine GVHD prophylaxis? This review summarizes some of the recent SNP association studies in HSCT and highlights some of the disparities therein, discussing the integral problems of performing genetic association studies on diseases with complex outcomes using heterogeneous cohorts. The review will comment on recent genomewide association studies (GWAS) and discuss their relevance in this field, and it will also comment on recent meta-analysis combining GWAS studies with other studies such as gene expression micro array data in the field of autoimmune disease and solid organ transplantation. It will mention possible novel candidate gene polymorphisms, for example SNPS in microRNAs. In addition, it will discuss some of the inherent problems associated with gene association studies including the GRIPs (genetic risk prediction studies) recommendations. In summary, this review will assess the usefulness of non-HLA genomic studies in HSCT with regard to predicting outcome and modifying therapy.
Collapse
Affiliation(s)
- A M Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Norden
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Abstract
INTRODUCTION STAT4, which acts as the major signaling transducing STATs in response to IL-12, is a central mediator in generating inflammation during protective immune responses and immune-mediated diseases. AREAS COVERED This review summarizes that STAT4 is essential for the differentiation and function of a wide variety of immune cells, including natural killer cells, mast cells, dendritic cells and T helper cells. In addition, STAT4-mediated signaling promoted the production of autoimmune-associated components, which are implicated in the pathogenesis of autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis and psoriasis. EXPERT OPINION Due to its crucial roles in inflammation and autoimmunity, STAT4 may have promise as an effective therapeutic target for autoimmune diseases. Understanding the molecular mechanisms driving STAT4, together with knowledge on the ability of current immunosuppressive treatment to target this process, may open an avenue to novel therapeutic options.
Collapse
Affiliation(s)
- Yan Liang
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics , Anhui, PR China
| | | | | |
Collapse
|
14
|
Floss DM, Mrotzek S, Klöcker T, Schröder J, Grötzinger J, Rose-John S, Scheller J. Identification of canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the intracellular domain of the interleukin 23 receptor. J Biol Chem 2013; 288:19386-400. [PMID: 23673666 DOI: 10.1074/jbc.m112.432153] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signaling of interleukin 23 (IL-23) via the IL-23 receptor (IL-23R) and the shared IL-12 receptor β1 (IL-12Rβ1) controls innate and adaptive immune responses and is involved in the differentiation and expansion of IL-17-producing CD4(+) T helper (TH17) cells. Activation of signal transducer and activator of transcription 3 (STAT3) appears to be the major signaling pathway of IL-23, and STAT binding sites were predicted in the IL-23R but not in the IL-12Rβ1 chain. Using site-directed mutagenesis and deletion variants of the murine and human IL-23R, we showed that the predicted STAT binding sites (pYXXQ; including Tyr-504 and Tyr-626 in murine IL-23R and Tyr-484 and Tyr-611 in human IL-23R) mediated STAT3 activation. Furthermore, we identified two uncommon STAT3 binding/activation sites within the murine IL-23R. First, the murine IL-23R carried the Y(542)PNFQ sequence, which acts as an unusual Src homology 2 (SH2) domain-binding protein activation site of STAT3. Second, we identified a non-canonical, phosphotyrosine-independent STAT3 activation motif within the IL-23R. A third predicted site, Tyr-416 in murine and Tyr-397 in human IL-23R, is involved in the activation of PI3K/Akt and the MAPK pathway leading to STAT3-independent proliferation of Ba/F3 cells upon stimulation with IL-23. In contrast to IL-6-induced short term STAT3 phosphorylation, cellular activation by IL-23 resulted in a slower but long term STAT3 phosphorylation, indicating that the IL-23R might not be a major target of negative feedback inhibition by suppressor of cytokine signaling (SOCS) proteins. In summary, we characterized IL-23-dependent signal transduction with a focus on STAT3 phosphorylation and identified canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the IL-23R.
Collapse
Affiliation(s)
- Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Since its discovery two decades ago, the activation of the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well-studied intracellular signalling networks. The field has progressed from the identification of the individual components to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and deregulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment.
Collapse
Affiliation(s)
- Hiu Kiu
- Walter & Eliza Hall Institute, 1G Royal Parade, Parkville 3052, Australia
| | | |
Collapse
|
16
|
Choi YG, Seok YH, Yeo S, Jeong MY, Lim S. Protective changes of inflammation-related gene expression by the leaves of Eriobotrya japonica in the LPS-stimulated human gingival fibroblast: microarray analysis. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:636-645. [PMID: 21473904 DOI: 10.1016/j.jep.2011.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/18/2011] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaf of Eriobotrya japonica (Ej) has been used for a long time as an oriental medicine to treat pulmonary inflammatory diseases. This study investigated the gene expression changes by lipopolysaccharide (LPS) stimulation in the cultured human gingival fibroblast and the anti-inflammatory changes of the genes by the leaves of Ej when challenged with LPS using a microarray chip. MATERIALS AND METHODS A whole transcript genechip (Affymetrix genechip human gene 1.0 ST array) was used. The expression patterns of the significant genes were confirmed by real-time RT-PCR analysis. RESULTS The gene array analysis showed that 60 of the 325 genes up-regulated by the LPS when compared to the control were down-regulated by the Ej treatment. Of these 60 genes, the inflammation- and immune response-related genes were especially noted, which indicates that Ej inhibits the induction of the inflammation through LPS stimulation. In addition, 78 of the 158 genes down-regulated by the LPS when compared to the control were up-regulated by the Ej treatment. The regulatory patterns of the representative genes in the real-time RT-PCR correlated with those of the genes shown in the microarray. The Ej extract also inhibited the production of IL-6, TNF-α, and nitrite in the LPS-stimulated cells. CONCLUSIONS This study showed that the extract of Ej leaves could be used to inhibit the activation of a wide variety of the inflammation-related genes and the inflammatory mediators. It is suggested that the extract of Ej leaves may be applied to alleviate the inflammation of periodontal diseases.
Collapse
Affiliation(s)
- Yeong-Gon Choi
- Research Group of Pain and Neuroscience, WHO Collaborating Center for Traditional Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Zhernakova A, Stahl EA, Trynka G, Raychaudhuri S, Festen EA, Franke L, Westra HJ, Fehrmann RSN, Kurreeman FAS, Thomson B, Gupta N, Romanos J, McManus R, Ryan AW, Turner G, Brouwer E, Posthumus MD, Remmers EF, Tucci F, Toes R, Grandone E, Mazzilli MC, Rybak A, Cukrowska B, Coenen MJH, Radstake TRDJ, van Riel PLCM, Li Y, de Bakker PIW, Gregersen PK, Worthington J, Siminovitch KA, Klareskog L, Huizinga TWJ, Wijmenga C, Plenge RM. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet 2011; 7:e1002004. [PMID: 21383967 PMCID: PMC3044685 DOI: 10.1371/journal.pgen.1002004] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/24/2010] [Indexed: 02/07/2023] Open
Abstract
Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis (RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for each disease) are shared between both diseases. We hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS) data from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two published GWAS on CD (4,533 cases and 10,750 controls) and RA (5,539 cases and 17,231 controls). After genotyping the top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs demonstrated P<5×10−8 in a combined analysis of all 50,266 samples, including four SNPs that have not been previously confirmed in either disease: rs10892279 near the DDX6 gene (Pcombined = 1.2×10−12), rs864537 near CD247 (Pcombined = 2.2×10−11), rs2298428 near UBE2L3 (Pcombined = 2.5×10−10), and rs11203203 near UBASH3A (Pcombined = 1.1×10−8). We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P<5×10−8 (SH2B3, 8q24, STAT4, and TRAF1-C5). From the 14 shared gene loci, 7 SNPs showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD) block around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with pleiotropic effects between two clinically distinct diseases. Celiac disease (CD) and rheumatoid arthritis (RA) are two autoimmune diseases characterized by distinct clinical features but increased co-occurrence in families and individuals. Genome-wide association studies (GWAS) performed in CD and RA have identified the HLA region and 26 non-HLA genetic risk loci in each disease. Of the 26 CD and 26 RA risk loci, previous studies have shown that six are shared between the two diseases. In this study we aimed to identify additional shared risk alleles and, in doing so, gain more insight into shared disease pathogenesis. We first empirically investigated the distribution of putative risk alleles from GWAS across both diseases (after removing known risk loci for both diseases). We found that CD risk alleles are non-randomly distributed in the RA GWAS (and vice versa), indicating that CD risk alleles have an increased prior probability of being associated with RA (and vice versa). Next, we performed a GWAS meta-analysis to search for shared risk alleles by combing the RA and CD GWAS, performing both directional and opposite allelic effect analyses, followed by replication testing in independent case-control datasets in both diseases. In addition to the already established six non-HLA shared risk loci, we observed statistically robust associations at eight SNPs, thereby increasing the number of shared non-HLA risk loci to fourteen. Finally, we used gene expression studies and pathway analysis tools to identify the plausible candidate genes in the fourteen associated loci. We observed remarkable overrepresentation of T-cell signaling molecules among the shared genes.
Collapse
Affiliation(s)
- Alexandra Zhernakova
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Complex Genetics Section, Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Eli A. Stahl
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Gosia Trynka
- Genetics Department, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Eleanora A. Festen
- Genetics Department, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Lude Franke
- Genetics Department, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Harm-Jan Westra
- Genetics Department, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Rudolf S. N. Fehrmann
- Genetics Department, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Fina A. S. Kurreeman
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Brian Thomson
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Namrata Gupta
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jihane Romanos
- Genetics Department, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Ross McManus
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College, St James's Hospital, Dublin, Ireland
| | - Anthony W. Ryan
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College, St James's Hospital, Dublin, Ireland
| | - Graham Turner
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College, St James's Hospital, Dublin, Ireland
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Marcel D. Posthumus
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Elaine F. Remmers
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francesca Tucci
- European Laboratory for Food Induced Disease, University of Naples Federico II, Naples, Italy
| | - Rene Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elvira Grandone
- Unita' di Aterosclerosi e Trombosi, I.R.C.C.S Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | | | - Anna Rybak
- Department of Gastroenterology, Hepatology, and Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Bozena Cukrowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Marieke J. H. Coenen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Piet L. C. M. van Riel
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Yonghong Li
- Celera, Alameda, California, United States of America
| | - Paul I. W. de Bakker
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands
| | - Peter K. Gregersen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Jane Worthington
- Arthritis Research Campaign–Epidemiology Unit, The University of Manchester, Manchester, United Kingdom
| | - Katherine A. Siminovitch
- Department of Medicine, University of Toronto, Mount Sinai Hospital and University Health Network, Toronto, Canada
| | - Lars Klareskog
- Rheumatology Unit, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tom W. J. Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cisca Wijmenga
- Genetics Department, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Robert M. Plenge
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Broad Institute, Cambridge, Massachusetts, United States of America
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Clarke AW, Poulton L, Wai HY, Walker SA, Victor SD, Domagala T, Mraovic D, Butt D, Shewmaker N, Jennings P, Doyle AG. A novel class of anti-IL-12p40 antibodies: potent neutralization via inhibition of IL-12-IL-12Rβ2 and IL-23-IL-23R. MAbs 2010; 2:539-49. [PMID: 20724822 DOI: 10.4161/mabs.2.5.13081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
While current therapeutic antibodies bind to IL-12 and IL-23 and inhibit their binding to IL-12Rβ1, we describe a novel antibody, termed 6F6, that binds to IL-12 and IL-23 and inhibits the interaction of IL-12 and IL-23 with their cognate signalling receptors IL-12Rβ2 and IL23R. This antibody does not affect the natural inhibition of the IL-12/23 pathway by the antagonists monomeric IL-12p40 and IL-12p80, which suggests that a dual antagonist system is possible. We have mapped the epitope of 6F6 to domain 3 of the p40 chain common to IL-12 and IL-23 and demonstrate that an antibody bound to this epitope is sufficient to inhibit engagement of the signalling receptors. Antibodies with this unique mechanism of inhibition are potent inhibitors of IL-12 induced IFN-γ production and IL-23 induced IL-17 production in vitro, and in an in vivo model of psoriasis, treatment with a humanized variant of this antibody, h6F6, reduced the inflammatory response, resulting in decreased epidermal hyperplasia. We believe that this new class of IL-12/23 neutralising antibodies has the potential to provide improved potency and efficacy as anti-inflammatory agents, particularly in diseases characterized by an overproduction of IL-12.
Collapse
Affiliation(s)
- Adam W Clarke
- Cephalon Australia Pty. Ltd., North Ryde, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abelson AK, Delgado-Vega AM, Kozyrev SV, Sánchez E, Velázquez-Cruz R, Eriksson N, Wojcik J, Linga Reddy MVP, Lima G, D'Alfonso S, Migliaresi S, Baca V, Orozco L, Witte T, Ortego-Centeno N, Abderrahim H, Pons-Estel BA, Gutiérrez C, Suárez A, González-Escribano MF, Martin J, Alarcón-Riquelme ME. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis 2009; 68:1746-53. [PMID: 19019891 PMCID: PMC3878433 DOI: 10.1136/ard.2008.097642] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To confirm and define the genetic association of STAT4 and systemic lupus erythematosus (SLE), investigate the possibility of correlations with differential splicing and/or expression levels, and genetic interaction with IRF5. METHODS 30 tag SNPs were genotyped in an independent set of Spanish cases and controls. SNPs surviving correction for multiple tests were genotyped in five new sets of cases and controls for replication. STAT4 cDNA was analysed by 5'-RACE PCR and sequencing. Expression levels were measured by quantitative PCR. RESULTS In the fine mapping, four SNPs were significant after correction for multiple testing, with rs3821236 and rs3024866 as the strongest signals, followed by the previously associated rs7574865, and by rs1467199. Association was replicated in all cohorts. After conditional regression analyses, two major independent signals, represented by SNPs rs3821236 and rs7574865, remained significant across the sets. These SNPs belong to separate haplotype blocks. High levels of STAT4 expression correlated with SNPs rs3821236, rs3024866 (both in the same haplotype block) and rs7574865 but not with other SNPs. Transcription of alternative tissue-specific exons 1, indicating the presence of tissue-specific promoters of potential importance in the expression of STAT4, was also detected. No interaction with associated SNPs of IRF5 was observed using regression analysis. CONCLUSIONS These data confirm STAT4 as a susceptibility gene for SLE and suggest the presence of at least two functional variants affecting levels of STAT4. The results also indicate that the genes STAT4 and IRF5 act additively to increase the risk for SLE.
Collapse
Affiliation(s)
- A-K Abelson
- Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin Y, Tang YJ, Zong HL, Gu JX, Deng WW, Wang C, Sun B. Cyclin G associated kinase interacts with interleukin 12 receptor beta2 and suppresses interleukin 12 induced IFN-gamma production. FEBS Lett 2007; 581:5151-7. [PMID: 17937931 DOI: 10.1016/j.febslet.2007.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 08/13/2007] [Accepted: 09/07/2007] [Indexed: 11/17/2022]
Abstract
Interleukin 12 receptor beta1 (IL-12Rbeta1) and beta2 (IL-12Rbeta2) constitute the functional and high-affinity receptor complex for interleukin 12 (IL-12) and mediate important functions in activated T cells. In this study, we identified cyclin G associated kinase (GAK) as a new IL-12Rbeta2-interacting protein using yeast two-hybrid system and confirmed it by coimmunoprecipitation assays. Overexpression of GAK in activated T cells suppresses IL-12 induced IFN-gamma production but has no detectable effects on its proliferation, whereas knockdown of GAK by RNA interference (RNAi) increases IFN-gamma production. These results suggest that GAK associates with IL-12Rbeta2 and may play a role in regulating IL-12 signaling.
Collapse
Affiliation(s)
- Ying Lin
- Laboratory of Molecular Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Suzuki M, Iizasa T, Nakajima T, Kubo R, Iyoda A, Hiroshima K, Nakatani Y, Fujisawa T. Aberrant methylation of IL-12Rbeta2 gene in lung adenocarcinoma cells is associated with unfavorable prognosis. Ann Surg Oncol 2007; 14:2636-42. [PMID: 17602269 DOI: 10.1245/s10434-006-9310-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/10/2006] [Indexed: 12/31/2022]
Abstract
BACKGROUND Interleukin-12 receptor beta2 (IL-12Rbeta2) knock-out mice develop lung adenocarcinoma, and epigenetic silencing by CpG methylation leads to loss of this gene in B-cell malignancies. The aim of this study was to determine whether IL-12Rbeta2 methylation is a common feature in human lung cancer. METHODS We examined mRNA expression of IL-12Rbeta2 in lung cancer cell lines, and normal bronchial, and tracheal epithelial cells using RT-PCR, and we examined the methylation status of IL-12Rbeta2 in primary lung cancers. RESULTS Loss of expression was found in 10 of 13 (77%) NSCLC cell lines, and 2 of 5 (40%) SCLC cell lines compared with normal bronchial or tracheal cells. Treatment of 11 expression-negative cell lines with a demethylating agent restored expression in all cases. Aberrant methylation status of IL-12Rbeta2 gene was reversely concordant with its mRNA expression. IL-12Rbeta2 methylation was detected in 96 of 230 primary NSCLCs (42%) and 3 of 6 primary SCLCs (50%). IL-12Rbeta2 methylation correlated with poorer prognosis in lung adenocarcinomas (hazard ratio = 2.33, P = 0.0059). CONCLUSIONS We conclude that epigenetic silencing of IL-12Rbeta2 is a frequent event in lung cancers. Aberrant methylation of this gene seems to be a useful predictor of long-term outcome for adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hölscher C. The power of combinatorial immunology: IL-12 and IL-12-related dimeric cytokines in infectious diseases. Med Microbiol Immunol 2004; 193:1-17. [PMID: 12836019 DOI: 10.1007/s00430-003-0186-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Indexed: 12/30/2022]
Abstract
Appropriate induction of a Th1 immune response is required for effective antimicrobial immunity. However, dysregulated Th1 immune responses after infection may also lead to immunopathology. Thus, cell-mediated immune responses have to be tightly regulated. Upon infection, the production of interleukin (IL)-12, a heterodimeric cytokine composed of a p35 and a p40 subunit, is the dominant factor in Th1 cell development. The recent discovery of novel dimeric cytokines closely related to IL-12 add now to our understanding of cellular immunity and the fine tuning of T cell responses. At the onset of infection, IL-27, a heterodimer composed of the IL-12p40-related protein EBI-3 (Epstein-Barr virus-induced gene 3) and the IL-12p35-related protein p28 induces the expression of a functional IL-12 receptor in naive CD4+ T cells, making these cells sensitive to IL-12-mediated Th cell development. Later during infection, IL-23, a heterodimer composed of the IL-12p40 subunit and the IL-12p35-related molecule p19, preferentially acts on Th1 effector/memory CD4+ T cells. The IL-12p40 subunit can also form a homodimer, IL-12p80, which act as an IL-12 and IL-23 antagonist by competing at their receptors. This review focuses on these IL-12-related cytokines contributing to fine tuning of T cell responses after infection with intracellular pathogens.
Collapse
Affiliation(s)
- Christoph Hölscher
- Junior Research Group Molecular Infection Biology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany.
| |
Collapse
|
23
|
Yamamoto K, Yamaguchi M, Miyasaka N, Miura O. SOCS-3 inhibits IL-12-induced STAT4 activation by binding through its SH2 domain to the STAT4 docking site in the IL-12 receptor beta2 subunit. Biochem Biophys Res Commun 2003; 310:1188-93. [PMID: 14559241 DOI: 10.1016/j.bbrc.2003.09.140] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IL-12 promotes the proliferation of T cells as well as NK cells and plays a critical role in induction of the Th1 differentiation. IL-12 mediates its biological activities through activation of the receptor-associated JAK family kinases and STAT4, which is recruited to phosphorylated Tyr-800 in the human IL-12 receptor beta2 subunit (IL-12Rbeta2). Here we demonstrate that suppressor of cytokine signaling-3 (SOCS-3) is also recruited to IL-12Rbeta2 by the interaction involving the SOCS-3 SH2 domain and phosphorylated Tyr-800 in IL-12Rbeta2. Furthermore, SOCS-3, but not its SH2 domain-defective mutant, inhibited the IL-12-induced activation of DNA-binding and transcriptional activities of STAT4. These results suggest that SOCS-3, expressed at high levels in Th2 cells, plays an inhibitory role in STAT4-mediated IL-12 signaling by binding to the STAT4 docking site in IL-12Rbeta2, thus raising a possibility that SOCS-3 may play a role in regulation of Th differentiation.
Collapse
Affiliation(s)
- Koh Yamamoto
- Department of Hematology and Oncology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
24
|
Chang HC, Zhang S, Oldham I, Naeger L, Hoey T, Kaplan MH. STAT4 requires the N-terminal domain for efficient phosphorylation. J Biol Chem 2003; 278:32471-7. [PMID: 12805384 DOI: 10.1074/jbc.m302776200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STAT4 (signal transducer and activator of transcription-4) mediates biological effects in response to interleukin-12 (IL-12). STAT4 has multiple domains that have distinct functions in signaling and gene activation. To characterize the role of the STAT4 N-terminal domain in mediating STAT4 biological function, we have generated STAT4-deficient transgenic mice that express human full-length STAT4 or an N-terminal deletion mutant (Delta N-STAT4) lacking the N-terminal 51 amino acids. Whereas full-length STAT4 rescued IL-12 responsiveness, T lymphocytes expressing the STAT4 N-terminal mutant failed to proliferate in response to IL-12 and had limited Th1 cell development as evidenced by minimal interferon-gamma production. Deletion of the N-terminal domain resulted in failure of STAT4 to be phosphorylated following IL-12 stimulation despite similar phosphorylation of JAK2 and TYK2 in full-length STAT4 and Delta N-STAT4 transgenic T cells. We demonstrate that the lack of phosphorylation in cultured cells is due to reduced efficiency of phosphorylation of Delta N-STAT4 by Janus kinases. These data support a new model wherein the N-terminal domain is required to mediate the phosphorylation of STAT4 in addition to the previously documented role in gene transactivation.
Collapse
Affiliation(s)
- Hua-Chen Chang
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine, and the Walther Cancer Institute, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
25
|
Jo D, Lin Q, Nashabi A, Mays DJ, Unutmaz D, Pietenpol JA, Ruley HE. Cell cycle-dependent transduction of cell-permeant Cre recombinase proteins. J Cell Biochem 2003; 89:674-87. [PMID: 12858334 DOI: 10.1002/jcb.10542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein transduction has been widely used to analyze biochemical processes in living cells quantitatively and under non-steady-state conditions. The present study analyzed the effects of cell cycle on the uptake and activity of cell-permeant Cre recombinase proteins. Previous studies had suggested that the efficiency of recombination and/or protein transduction varied among individual cells, even within a clonal population. We report here that cells in the G1 phase of the cell cycle undergo recombination at a lower rate than cells at other phases of the cell cycle, and that this variation results largely from differences in protein uptake, associated with differences in cell size. These results have implications regarding the mechanism of protein transduction and identify a source of heterogeneity that can influence the response of individual cells to cell-permeant proteins.
Collapse
Affiliation(s)
- Daewoong Jo
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
van de Vosse E, Lichtenauer-Kaligis EGR, van Dissel JT, Ottenhoff THM. Genetic variations in the interleukin-12/interleukin-23 receptor (beta1) chain, and implications for IL-12 and IL-23 receptor structure and function. Immunogenetics 2003; 54:817-29. [PMID: 12671732 DOI: 10.1007/s00251-002-0534-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 12/09/2002] [Indexed: 02/08/2023]
Abstract
Cell-mediated immunity (CMI) plays an essential role in human host defense against intracellular bacteria. Type-1 cytokines, particularly gamma interferon (IFN-gamma), interleukin-12 (IL-12), and IL-23, the major cytokines that regulate IFN-gamma production, are essential in CMI. This is illustrated by patients with unusual severe infections caused by poorly pathogenic mycobacteria and Salmonella species, in whom genetic deficiencies have been identified in several key genes in the type-1 cytokine pathway, including IL12RB1, the gene encoding the beta1 chain of the IL-12 and IL-23 receptors. Several mutations in IL12RB1 with deleterious effects on human IL-12R function have been identified, including nonsense and missense mutations. In addition, a number of coding IL12RB1 polymorphisms have been reported. In order to gain more insight into the effect that IL12RB1 mutations and genetic variations can have on IL-12Rbeta1 function, three approaches have been followed. First, we determined the degree of conservation at the variant amino acid positions in IL-12Rbeta1 between different species, using known deleterious mutations, known variations in IL-12Rbeta1, as well as novel coding variations that we have identified at position S74R and R156H. Second, we analyzed the potential impact of these amino acid variations on the three-dimensional structure of the IL-12Rbeta1 protein. Third, we analyzed the putative functions of different IL-12Rbeta1 domains, partly based on their homology with gp130, and analyzed the possible effects of the above amino acid variations on the function of these domains. Based on these analyses, we propose an integrated model of IL-12Rbeta1 structure and function. This significantly enhances our molecular understanding of the human IL-12 and IL-23 systems.
Collapse
Affiliation(s)
- Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | | | | |
Collapse
|
27
|
Monteleone G, Holloway J, Salvati VM, Pender SLF, Fairclough PD, Croft N, MacDonald TT. Activated STAT4 and a functional role for IL-12 in human Peyer's patches. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:300-7. [PMID: 12496413 DOI: 10.4049/jimmunol.170.1.300] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells in the Peyer's patches (PP) of the human ileum are exposed to a myriad of dietary and bacterial Ags from the gut lumen. Recall proliferative responses to common dietary Ags are readily demonstrable by PP T cells from healthy individuals, and the cytokine response is dominated by IFN-gamma. Consistent with Th1 skewing, PP cells spontaneously secrete IL-12p70, and IL-12p40 protein can be visualized underneath the PP dome epithelium. In this study, we have analyzed IL-12 signaling in PP and investigated whether IL-12 plays a functional role. CD3+ T lymphocytes isolated from PP and adjacent ileal mucosa spontaneously secrete IFN-gamma with negligible IL-4 or IL-5. RNA transcripts for IL-12Rbeta2, the signaling component of the IL-12R, are present in purified CD4+ and CD8+ T PP lymphocytes. Active STAT4, a transcription factor essential for IL-12-mediated Th1 differentiation, is readily detectable in biopsies from PP and ileal mucosa and STAT4-DNA binding activity is demonstrable by EMSA. Nuclear proteins from CD3+ T PP lymphocytes contain STAT4 and T-bet, a transcription factor selectively expressed in Th1 cells. Stimulation of freshly isolated PP cells with staphylococcal enterotoxin B dramatically enhanced the production of IFN-gamma, an effect which was largely inhibited by neutralizing anti-IL-12 Ab. These data show that IL-12 in human PP is likely to be responsible for the Th1-dominated cytokine response of the human mucosal immune system.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Division of Infection, Inflammation, and Repair, University of Southampton School of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Recent discoveries of interleukin (IL)-23, its receptor, and its signal-transduction pathway add to our understanding of cellular immunity. IL-23 is a heterodimer, comprising IL-12 p40 and the recently cloned IL-23-specific p19 subunit. IL-23 uses many of the same signal-transduction components as IL-12, including IL-12Rbeta1, Janus kinase 2, Tyk2, signal transducer and activator of transcription (Stat)1, Stat3, Stat4, and Stat5. This may explain the similar actions of IL-12 and IL-23 in promoting cellular immunity by inducing interferon-gamma production and proliferative responses in target cells. Additionally, both cytokines promote the T helper cell type 1 costimulatory function of antigen-presenting cells. IL-23 does differ from IL-12 in the T cell subsets that it targets. Whereas IL-12 acts on naïve CD4+ T cells, IL-23 preferentially acts on memory CD4+ T cells. This review summarizes recent advances regarding IL-23, providing a functional and mechanistic basis for the unique niche that IL-23 occupies in cellular immunity.
Collapse
Affiliation(s)
- Carla S R Lankford
- Laboratory of Cell Biology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Nishikomori R, Usui T, Wu CY, Morinobu A, O'Shea JJ, Strober W. Activated STAT4 has an essential role in Th1 differentiation and proliferation that is independent of its role in the maintenance of IL-12R beta 2 chain expression and signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4388-98. [PMID: 12370372 DOI: 10.4049/jimmunol.169.8.4388] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study we demonstrated that CD4(+) T cells from STAT4(-/-) mice exhibit reduced IL-12R expression and poor IL-12R signaling function. This raised the question of whether activated STAT4 participates in Th1 cell development mainly through its effects on IL-12 signaling. In a first approach to this question we determined the capacity of CD4(+) T cells from STAT4(-/-) bearing an IL-12Rbeta2 chain transgene (and thus capable of normal IL-12R expression and signaling) to undergo Th1 differentiation when stimulated by Con A and APCs. We found that such cells were still unable to exhibit IL-12-mediated IFN-gamma production. In a second approach to this question, we created Th2 cell lines (D10 cells) transfected with STAT4-expressing plasmids with various tyrosine-->phenylalanine mutations and CD4(+) T cell lines from IL-12beta2(-/-) mice infected with retroviruses expressing similarly STAT4 mutations that nevertheless express surface IL-12Rbeta2 chains. We then showed that constructs that were unable to support STAT4 tyrosine phosphorylation (in D10 cells) as a result of mutation were also incapable of supporting IL-12-induced IFN-gamma production (in IL-12Rbeta2(-/-) cells). Thus, by two complementary approaches we demonstrated that activated STAT4 has an essential downstream role in Th1 cell differentiation that is independent of its role in the support of IL-12Rbeta2 chain signaling. This implies that STAT4 is an essential element in the early events of Th1 differentiation.
Collapse
Affiliation(s)
- Ryuta Nishikomori
- Mucosal Immunity Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases/NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, Pflanz S, Zhang R, Singh KP, Vega F, To W, Wagner J, O'Farrell AM, McClanahan T, Zurawski S, Hannum C, Gorman D, Rennick DM, Kastelein RA, de Waal Malefyt R, Moore KW. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5699-708. [PMID: 12023369 DOI: 10.4049/jimmunol.168.11.5699] [Citation(s) in RCA: 1009] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-23 is a heterodimeric cytokine composed of the IL-12p40 "soluble receptor" subunit and a novel cytokine-like subunit related to IL-12p35, termed p19. Human and mouse IL-23 exhibit some activities similar to IL-12, but differ in their capacities to stimulate particular populations of memory T cells. Like IL-12, IL-23 binds to the IL-12R subunit IL-12Rbeta1. However, it does not use IL-12Rbeta2. In this study, we identify a novel member of the hemopoietin receptor family as a subunit of the receptor for IL-23, "IL-23R." IL-23R pairs with IL-12Rbeta1 to confer IL-23 responsiveness on cells expressing both subunits. Human IL-23, but not IL-12, exhibits detectable affinity for human IL-23R. Anti-IL-12Rbeta1 and anti-IL-23R Abs block IL-23 responses of an NK cell line and Ba/F3 cells expressing the two receptor chains. IL-23 activates the same Jak-stat signaling molecules as IL-12: Jak2, Tyk2, and stat1, -3, -4, and -5, but stat4 activation is substantially weaker and different DNA-binding stat complexes form in response to IL-23 compared with IL-12. IL-23R associates constitutively with Jak2 and in a ligand-dependent manner with stat3. The ability of cells to respond to IL-23 or IL-12 correlates with expression of IL-23R or IL-12Rbeta2, respectively. The human IL-23R gene is on human chromosome 1 within 150 kb of IL-12Rbeta2.
Collapse
Affiliation(s)
- Christi Parham
- Department of Immunology, DNAX Research, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Poltorak A, Merlin T, Nielsen PJ, Sandra O, Smirnova I, Schupp I, Boehm T, Galanos C, Freudenberg MA. A point mutation in the IL-12R beta 2 gene underlies the IL-12 unresponsiveness of Lps-defective C57BL/10ScCr mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2106-11. [PMID: 11489994 DOI: 10.4049/jimmunol.167.4.2106] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lps-defective C57BL/10ScCr (Cr) mice are homozygous for a deletion encompassing Toll-like receptor 4 that makes them refractory to the biological activity of LPS. In addition, these mice exhibit an inherited IL-12 unresponsiveness resulting in impaired IFN-gamma responses to different microorganisms. By positional cloning methods, we show here that this second defect of Cr mice is due to a mutation in a single gene located on mouse chromosome 6, in close proximity to the Igkappa locus. The gene is IL-12Rbeta2. Cr mice carry a point mutation creating a stop codon that is predicted to cause premature termination of the translated IL-12Rbeta2 after a lysine residue at position 777. The truncated beta2 chain can still form a heterodimeric IL-12R that allows phosphorylation of Janus kinase 2, but, unlike the wild-type IL-12R, can no longer mediate phosphorylation of STAT4. Because the phosphorylation of STAT4 is a prerequisite for the IL-12-mediated induction of IFN-gamma, its absence in Cr mice is responsible for their defective IFN-gamma response to microorganisms.
Collapse
Affiliation(s)
- A Poltorak
- The Scripps Research Institute, La Jolla, CA 92037. Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
A central theme in intracellular signaling is the regulatable interaction of proteins via the binding of specialized domains on one protein to short linear sequences on other molecules. The capability of these short sequences to mediate the required specificity and affinity for signal transduction allows for the rational design of peptide-based modulators of specific protein-protein interactions. Such inhibitors are valuable tools for elucidating the role of these interactions in cellular physiology and in targeting such interactions for potential therapeutic intervention. This approach is exemplified by the study of the role of phosphorylation of specific sites on signaling proteins. However, the difficulty of introducing large hydrophilic molecules such as phosphopeptides into cells has been a major drawback in this area. This review describes the application of recently developed cell-permeant peptide vectors in the introduction of biologically active peptides into cells, with particular emphasis on the antennapedia/penetratin, TAT, and signal-peptide based sequences. In addition, the modification of such peptides to increase uptake efficiency and affinity for their targets is discussed. Finally, the use of cell-permeant phosphopeptides to both inhibit and stimulate intracellular signaling mechanisms is described, by reference to the PLCgamma, Grb2, and PI-3 kinase pathways.
Collapse
Affiliation(s)
- D J Dunican
- Molecular Neurobiology Group, New Hunts House, 4th Floor South Wing, Guy's Campus, Kings College London, London Bridge, London SE1 9RT, UK
| | | |
Collapse
|
33
|
Spellberg B, Edwards JE. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis 2001; 32:76-102. [PMID: 11118387 DOI: 10.1086/317537] [Citation(s) in RCA: 596] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2000] [Revised: 08/02/2000] [Indexed: 12/17/2022] Open
Abstract
T helper type 1 (Th1) lymphocytes secrete secrete interleukin (IL)-2, interferon-gamma, and lymphotoxin-alpha and stimulate type 1 immunity, which is characterized by intense phagocytic activity. Conversely, Th2 cells secrete IL-4, IL-5, IL-9, IL-10, and IL-13 and stimulate type 2 immunity, which is characterized by high antibody titers. Type 1 and type 2 immunity are not strictly synonymous with cell-mediated and humoral immunity, because Th1 cells also stimulate moderate levels of antibody production, whereas Th2 cells actively suppress phagocytosis. For most infections, save those caused by large eukaryotic pathogens, type 1 immunity is protective, whereas type 2 responses assist with the resolution of cell-mediated inflammation. Severe systemic stress, immunosuppression, or overwhelming microbial inoculation causes the immune system to mount a type 2 response to an infection normally controlled by type 1 immunity. In such cases, administration of antimicrobial chemotherapy and exogenous cytokines restores systemic balance, which allows successful immune responses to clear the infection.
Collapse
Affiliation(s)
- B Spellberg
- Department of Internal Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, CA 90509, USA.
| | | |
Collapse
|
34
|
Parrello T, Monteleone G, Cucchiara S, Monteleone I, Sebkova L, Doldo P, Luzza F, Pallone F. Up-regulation of the IL-12 receptor beta 2 chain in Crohn's disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7234-9. [PMID: 11120856 DOI: 10.4049/jimmunol.165.12.7234] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crohn' s disease (CD) is a chronic intestinal inflammatory disorder characterized by aberrant mucosal Th1 cell activation and production of IL-12, the major Th1-driving factor. The T cell response to IL-12 is dependent on the expression of a specific receptor composed of two subunits, termed IL-12Rbeta1 and IL-12Rbeta2. The content of IL-12Rbeta2, as measured at the mRNA level, is crucial in regulating Th1 differentiation. In this study we therefore investigated IL-12Rbeta2 RNA transcripts in CD. IL-12Rbeta2 expression was increased in active CD as well as Helicobacter pylori (HP)-associated gastritis and Salmonella colitis compared with that in inactive CD, ulcerative colitis, noninflammatory controls, and celiac disease. In contrast, IL-12Rbeta1 transcripts were expressed at comparable levels in all samples. In CD, IL-12Rbeta2 expression strictly correlated with tyrosine phosphorylation of STAT4, a key component of the IL-12-dependent Th1 polarization. This was associated with a pronounced expression of IFN-gamma. Transcripts for IL-12/p40 were detected in CD, HP-positive, and Salmonella colitis patients, but not in celiac disease, indicating that IL-12Rbeta2 up-regulation occurs only in IL-12-associated Th1 gastrointestinal diseases. Finally, we showed that stimulation of lamina propria mononuclear cells with IL-12 enhanced IL-12Rbeta2, suggesting that IL-12 regulates IL-12Rbeta2 expression in human gastrointestinal mucosa. The data show that the signaling pathway used by IL-12 to induce Th1 differentiation is increased at the site of disease in CD, further supporting the view that IL-12/IL-12R signals contribute to the inflammatory response in this condition.
Collapse
Affiliation(s)
- T Parrello
- Dipartimento di Medicina Sperimentale, Università Magna Graecia di Catanzaro, Catanzaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lammas DA, Casanova JL, Kumararatne DS. Clinical consequences of defects in the IL-12-dependent interferon-gamma (IFN-gamma) pathway. Clin Exp Immunol 2000; 121:417-25. [PMID: 10971505 PMCID: PMC1905729 DOI: 10.1046/j.1365-2249.2000.01284.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- D A Lammas
- MRC Centre for Immune Regulation, The Medical School and Regional Department of Immunology, Heartlands Hospital, Birmingham, UK
| | | | | |
Collapse
|