1
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Savkovic SD, Dlamini Z, Mkhize-Kwitshana ZL. Unraveling the Complex Interconnection between Specific Inflammatory Signaling Pathways and Mechanisms Involved in HIV-Associated Colorectal Oncogenesis. Cancers (Basel) 2023; 15:748. [PMID: 36765706 PMCID: PMC9913377 DOI: 10.3390/cancers15030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The advancement of HIV treatment has led to increased life expectancy. However, people living with HIV (PLWH) are at a higher risk of developing colorectal cancers. Chronic inflammation has a key role in oncogenesis, affecting the initiation, promotion, transformation, and advancement of the disease. PLWH are prone to opportunistic infections that trigger inflammation. It has been documented that 15-20% of cancers are triggered by infections, and this percentage is expected to be increased in HIV co-infections. The incidence of parasitic infections such as helminths, with Ascariasis being the most common, is higher in HIV-infected individuals. Cancer cells and opportunistic infections drive a cascade of inflammatory responses which assist in evading immune surveillance, making them survive longer in the affected individuals. Their survival leads to a chronic inflammatory state which further increases the probability of oncogenesis. This review discusses the key inflammatory signaling pathways involved in disease pathogenesis in HIV-positive patients with colorectal cancers. The possibility of the involvement of co-infections in the advancement of the disease, along with highlights on signaling mechanisms that can potentially be utilized as therapeutic strategies to prevent oncogenesis or halt cancer progression, are addressed.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Congella, Durban 4013, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| | - Suzana D. Savkovic
- School of Medicine, Department of Pathology & Laboratory Medicine, 1430 Tulane Ave., SL-79, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| |
Collapse
|
2
|
Cellular Vimentin Interacts with Foot-and-Mouth Disease Virus Nonstructural Protein 3A and Negatively Modulates Viral Replication. J Virol 2020; 94:JVI.00273-20. [PMID: 32493819 DOI: 10.1128/jvi.00273-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023] Open
Abstract
Nonstructural protein 3A of foot-and-mouth disease virus (FMDV) is a partially conserved protein of 153 amino acids that is in most FMDVs examined to date, and it plays important roles in virus replication, virulence, and host range. To better understand the role of 3A during FMDV infection, we used coimmunoprecipitation followed by mass spectrometry to identify host proteins that interact with 3A in FMDV-infected cells. Here, we report that cellular vimentin is a host binding partner for 3A. The 3A-vimentin interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pull down, and immunofluorescence assays. Alanine-scanning mutagenesis indicated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin. Using reverse genetics, we demonstrate that mutations in 3A that disrupt the interaction between 3A and vimentin are also critical for virus growth. Overexpression of vimentin significantly suppressed the replication of FMDV, whereas knockdown of vimentin significantly enhanced FMDV replication. However, chemical disruption of the vimentin network by acrylamide resulted in a significant decrease in viral yield, suggesting that an intact vimentin network is needed for FMDV replication. These results indicate that vimentin interacts with FMDV 3A and negatively regulates FMDV replication and that the vimentin-3A interaction is essential for FMDV replication. This study provides information that should be helpful for understanding the molecular mechanism of FMDV replication.IMPORTANCE Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, host range, and virulence. To further understand the role of 3A during FMDV infection, identification of host cell factors that interact with FMDV 3A is needed. Here, we found that vimentin is a direct binding partner of FMDV 3A, and manipulation of vimentin has a negative effect on virus replication. We also demonstrated that amino acid residues 15 to 21 at the N-terminal region of the FMDV 3A are responsible for the interaction between 3A and vimentin and that the 3A-vimentin interaction is critical for viral replication since the full-length cDNA clone harboring mutations in 3A, which were disrupt 3A-vimentin reactivity, could not produce viable virus progeny. This study provides information that not only provides us a better understanding of the mechanism of FMDV replication but also helps in the development of novel antiviral strategies in the future.
Collapse
|
3
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
4
|
Rigogliuso G, Biniossek ML, Goodier JL, Mayer B, Pereira GC, Schilling O, Meese E, Mayer J. A human endogenous retrovirus encoded protease potentially cleaves numerous cellular proteins. Mob DNA 2019; 10:36. [PMID: 31462935 PMCID: PMC6707001 DOI: 10.1186/s13100-019-0178-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 11/21/2022] Open
Abstract
Background A considerable portion of the human genome derives from retroviruses inherited over millions of years. Human endogenous retroviruses (HERVs) are usually severely mutated, yet some coding-competent HERVs exist. The HERV-K(HML-2) group includes evolutionarily young proviruses that encode typical retroviral proteins. HERV-K(HML-2) has been implicated in various human diseases because transcription is often upregulated and some of its encoded proteins are known to affect cell biology. HERV-K(HML-2) Protease (Pro) has received little attention so far, although it is expressed in some disease contexts and other retroviral proteases are known to process cellular proteins. Results We set out to identify human cellular proteins that are substrates of HERV-K(HML-2) Pro employing a modified Terminal Amine Isotopic Labeling of Substrates (TAILS) procedure. Thousands of human proteins were identified by this assay as significantly processed by HERV-K(HML-2) Pro at both acidic and neutral pH. We confirmed cleavage of a majority of selected human proteins in vitro and in co-expression experiments in vivo. Sizes of processing products observed for some of the tested proteins coincided with product sizes predicted by TAILS. Processed proteins locate to various cellular compartments and participate in diverse, often disease-relevant cellular processes. A limited number of HERV-K(HML-2) reference and non-reference loci appears capable of encoding active Pro. Conclusions Our findings from an approach combining TAILS with experimental verification of candidate proteins in vitro and in cultured cells suggest that hundreds of cellular proteins are potential substrates of HERV-K(HML-2) Pro. It is therefore conceivable that even low-level expression of HERV-K(HML-2) Pro affects levels of a diverse array of proteins and thus has a functional impact on cell biology and possible relevance for human diseases. Further studies are indicated to elucidate effects of HERV-K(HML-2) Pro expression regarding human substrate proteins, cell biology, and disease. The latter also calls for studies on expression of specific HERV-K(HML-2) loci capable of encoding active Pro. Endogenous retrovirus-encoded Pro activity may also be relevant for disease development in species other than human. Electronic supplementary material The online version of this article (10.1186/s13100-019-0178-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Rigogliuso
- 1Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Martin L Biniossek
- 2Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - John L Goodier
- 3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Bettina Mayer
- 2Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Gavin C Pereira
- 3McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Oliver Schilling
- 4Institute of Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany.,5German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eckart Meese
- 1Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| | - Jens Mayer
- 1Department of Human Genetics, Medical Faculty, University of Saarland, Homburg, Germany
| |
Collapse
|
5
|
Sajadi E, Dadras S, Bayat M, Abdi S, Nazarian H, Ziaeipour S, Mazini F, Kazemi M, Bagheri M, Valizadeh A, Abdollahifar M. Impaired spermatogenesis associated with changes in spatial arrangement of Sertoli and spermatogonial cells following induced diabetes. J Cell Biochem 2019; 120:17312-17325. [DOI: 10.1002/jcb.28995] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Ensieh Sajadi
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sara Dadras
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Shabnam Abdi
- Department of Anatomical Sciences, School of Medicine Azad University of Medical Sciences Tehran Iran
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sanaz Ziaeipour
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fatemeh Mazini
- Department of Anatomical Sciences, School of Medicine Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahsa Kazemi
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Bagheri
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Aida Valizadeh
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad‐Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Infertility and Reproductive Health Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
6
|
Turnbull MG, Douville RN. Related Endogenous Retrovirus-K Elements Harbor Distinct Protease Active Site Motifs. Front Microbiol 2018; 9:1577. [PMID: 30072963 PMCID: PMC6058741 DOI: 10.3389/fmicb.2018.01577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Endogenous retrovirus-K is a group of related genomic elements descending from retroviral infections in human ancestors. HML2 is the clade of these viruses which contains the most intact provirus copies. These elements can be transcribed and translated in healthy and diseased tissues, and some of them produce active retroviral enzymes, such as protease. Retroviral gene products, including protease, contribute to illness in exogenous retroviral infections. There are ongoing efforts to test anti-retroviral regimens against endogenous retroviruses. Herein, we examine the potential activity and diversity of human endogenous retrovirus-K proteases, and their potential for impact on immunity and human disease. Results: Sequences similar to the endogenous retrovirus-K HML2 protease and reverse transcriptase were identified in the human genome, classified by phylogenetic inference and compared to Repbase reference sequences. The topologies of trees inferred from protease and reverse transcriptase sequences were similar and agreed with the classification using reference sequences. Surprisingly, only 62/480 protease sequences identified by BLAST were classified as HML2; the remainder were classified as other HML groups, with the majority (216) classified as HML3. Variation in functionally significant protease motifs was explored, and two major active site variants were identified – the DTGAD variant is common in all groups, but the DTGVD motif appears limited to HML3, HML5, and HML6. Furthermore, distinct RNA expression patterns of protease variants are seen in disease states, such as amyotrophic lateral sclerosis, breast cancer, and prostate cancer. Conclusion: Transcribed ERVK proteases exhibit a diversity which could impact immunity and inhibitor-based treatments, and these facets should be considered when designing therapeutic regimens.
Collapse
Affiliation(s)
| | - Renée N Douville
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Huang C, Liu H, Gong XL, Wu L, Wen B. Expression of DNA methyltransferases and target microRNAs in human tissue samples related to sporadic colorectal cancer. Oncol Rep 2016; 36:2705-2714. [PMID: 27666771 DOI: 10.3892/or.2016.5104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/19/2016] [Indexed: 11/06/2022] Open
Abstract
Tissue microenvironment functions as a pivotal mediator in colorectal carcinogenesis, and its alteration can cause some important cellular responses including epigenetic events. The present study examined histologically altered tissue structure, DNA methyltransferases (DNMTs) and their corresponding expression of target microRNAs (miRNA). Tissues resected by surgery were from primary colorectal carcinoma. These samples were from three locations: and were ≥10, 5 and ≤2 cm away from the proximal lesion of colon cancer, and marked as no. 1, no. 2 and no. 3, respectively. Histological alteration was assessed by H&E staining, expression of DNMT1, DNMT3A, and DNMT3B was detected by immunohistochemistry and western blotting, microarray chip was used to screen distinguishable miRNAs and miRNAs targeting DNMTs whose validation assay was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Our results revealed that normal crypt structure was shown in no. 1, while many aberrant crypt foci appeared in no. 3. Significant upregulation of DNMT1, DNMT3A, and DNMT3B expression was found in para-carcinoma tissues, compared with the histopathologically unchanged tissues (P<0.05), furthermore, distinguishable expression profiling was observed of target miRNAs in tissues with different distance. Our results provide additional insights for future research of colorectal carcinogenesis by introducing the tissue microenvironment.
Collapse
Affiliation(s)
- Chao Huang
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Hong Liu
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Xiu-Li Gong
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Liyun Wu
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Bin Wen
- PI‑WEI Institute of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
8
|
Hu F, Zhao Y, Qi X, Cui H, Gao Y, Gao H, Liu C, Wang Y, Zhang Y, Li K, Wang X, Wang Y. Soluble expression and enzymatic activity evaluation of protease from reticuloendotheliosis virus. Protein Expr Purif 2015; 114:64-70. [PMID: 26102339 DOI: 10.1016/j.pep.2015.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/11/2015] [Accepted: 06/17/2015] [Indexed: 11/26/2022]
Abstract
The protease (PR) encoded by most retroviruses is deeply involved in the lifecycle and infection process of retroviruses by possessing the specificity necessary to correctly cleave the viral polyproteins and host cell proteins. However, as an important representative of avian retroviruses, the enzymatic properties of PR from reticuloendotheliosis virus (REV) have not been clearly documented. The recombinant PR, its mutant fused with a His-tag, and its substrate p18-p30 fused with a GST-tag were expressed in the Escherichia coli system as soluble enzymes. The soluble PR and p18-p30 were purified using Ni-NTA His Bind Resin and Glutathione Sepharose 4B, respectively. The enzymatic activity of PR was analyzed using the substrate of p18-p30. The expressed prokaryotic protease has enzyme activity that is dependent on such conditions as temperature, pH, and ions, and its activity can be inhibited by caspase inhibitor and the divalent metal ions Ca(2+) and Ni(2+). In addition, the key role of the residue Thr (amino acids 28) for the enzymatic activity of PR was identified. Furthermore, the caspase inhibitor Z-VAD-FMK was confirmed to inhibit the PR enzymatic activity of REV. For the first time, the PR of REV was expressed in the soluble form, and the optimal enzymatic reaction system in vitro was developed and preliminarily used. This study provides essential tools and information for further understanding the infection mechanism of REV and for the development of antiviral drugs treating retroviruses.
Collapse
Affiliation(s)
- Feng Hu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yan Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, China.
| | - Yunfeng Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150001, China; National Engineering Research Center of Veterinary Biologics, Harbin, China.
| |
Collapse
|
9
|
Rumlová M, Křížová I, Keprová A, Hadravová R, Doležal M, Strohalmová K, Pichová I, Hájek M, Ruml T. HIV-1 protease-induced apoptosis. Retrovirology 2014; 11:37. [PMID: 24886575 PMCID: PMC4229777 DOI: 10.1186/1742-4690-11-37] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/30/2014] [Indexed: 01/12/2023] Open
Abstract
Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3.
Collapse
Affiliation(s)
- Michaela Rumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v,v,i,, IOCB & Gilead Research Center, Flemingovo nám, 2, 166 10 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Butler GS, Overall CM. Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontol 2000 2013; 63:123-48. [DOI: 10.1111/prd.12035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
|
11
|
Stornaiuolo A, Piovani BM, Bossi S, Zucchelli E, Corna S, Salvatori F, Mavilio F, Bordignon C, Rizzardi GP, Bovolenta C. RD2-MolPack-Chim3, a packaging cell line for stable production of lentiviral vectors for anti-HIV gene therapy. Hum Gene Ther Methods 2013; 24:228-40. [PMID: 23767932 DOI: 10.1089/hgtb.2012.190] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Over the last two decades, several attempts to generate packaging cells for lentiviral vectors (LV) have been made. Despite different technologies, no packaging clone is currently employed in clinical trials. We developed a new strategy for LV stable production based on the HEK-293T progenitor cells; the sequential insertion of the viral genes by integrating vectors; the constitutive expression of the viral components; and the RD114-TR envelope pseudotyping. We generated the intermediate clone PK-7 expressing constitutively gag/pol and rev genes and, by adding tat and rd114-tr genes, the stable packaging cell line RD2-MolPack, which can produce LV carrying any transfer vector (TV). Finally, we obtained the RD2-MolPack-Chim3 producer clone by transducing RD2-MolPack cells with the TV expressing the anti-HIV transgene Chim3. Remarkably, RD114-TR pseudovirions have much higher potency when produced by stable compared with transient technology. Most importantly, comparable transduction efficiency in hematopoietic stem cells (HSC) is obtained with 2-logs less physical particles respect to VSV-G pseudovirions produced by transient transfection. Altogether, RD2-MolPack technology should be considered a valid option for large-scale production of LV to be used in gene therapy protocols employing HSC, resulting in the possibility of downsizing the manufacturing scale by about 10-fold in respect to transient technology.
Collapse
|
12
|
Cell susceptibility to baculovirus transduction and echovirus infection is modified by protein kinase C phosphorylation and vimentin organization. J Virol 2013; 87:9822-35. [PMID: 23824807 DOI: 10.1128/jvi.01004-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Some cell types are more susceptible to viral gene transfer or virus infection than others, irrespective of the number of viral receptors or virus binding efficacy on their surfaces. In order to characterize the cell-line-specific features contributing to efficient virus entry, we studied two cell lines (Ea.hy926 and MG-63) that are nearly nonpermissive to insect-specific baculovirus (BV) and the human enterovirus echovirus 1 (EV1) and compared their characteristics with those of a highly permissive (HepG2) cell line. All the cell lines contained high levels of viral receptors on their surfaces, and virus binding was shown to be efficient. However, in nonpermissive cells, BV and its receptor, syndecan 1, were unable to internalize in the cells and formed large aggregates near the cell surface. Accordingly, EV1 had a low infection rate in nonpermissive cells but was still able to internalize the cells, suggesting that the postinternalization step of the virus was impaired. The nonpermissive and permissive cell lines showed differential expression of syntenin, filamentous actin, vimentin, and phosphorylated protein kinase C subtype α (pPKCα). The nonpermissive nature of the cells could be modulated by the choice of culture medium. RPMI medium could partially rescue infection/transduction and concomitantly showed lower syntenin expression, a modified vimentin network, and altered activities of PKC subtypes PKCα and PKCε. The observed changes in PKCα and PKCε activation caused alterations in the vimentin organization, leading to efficient BV transduction and EV1 infection. This study identifies PKCα, PKCε, and vimentin as key factors affecting efficient infection and transduction by EV1 and BV, respectively.
Collapse
|
13
|
Abstract
Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Aphthovirus within the Picornaviridae family. During infection with FMDV, several host cell membrane rearrangements occur to form sites of viral replication. FMDV protein 2C is part of the replication complex and thought to have multiple roles during virus replication. To better understand the role of 2C in the process of virus replication, we have been using a yeast two-hybrid approach to identify host proteins that interact with 2C. We recently reported that cellular Beclin1 is a natural ligand of 2C and that it is involved in the autophagy pathway, which was shown to be important for FMDV replication. Here, we report that cellular vimentin is also a specific host binding partner for 2C. The 2C-vimentin interaction was further confirmed by coimmunoprecipitation and immunofluorescence staining to occur in FMDV-infected cells. It was shown that upon infection a vimentin structure forms around 2C and that this structure is later resolved or disappears. Interestingly, overexpression of vimentin had no effect on virus replication; however, overexpression of a truncated dominant-negative form of vimentin resulted in a significant decrease in viral yield. Acrylamide, which causes disruption of vimentin filaments, also inhibited viral yield. Alanine scanning mutagenesis was used to map the specific amino acid residues in 2C critical for vimentin binding. Using reverse genetics, we identified 2C residues that are necessary for virus growth, suggesting that the interaction between FMDV 2C and cellular vimentin is essential for virus replication.
Collapse
|
14
|
Schweitzer CJ, Jagadish T, Haverland N, Ciborowski P, Belshan M. Proteomic analysis of early HIV-1 nucleoprotein complexes. J Proteome Res 2013; 12:559-72. [PMID: 23282062 PMCID: PMC3564510 DOI: 10.1021/pr300869h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
After entry into the cell, the early steps of the human immunodeficiency virus type 1 (HIV-1) replication cycle are mediated by two functionally distinct nucleoprotein complexes, the reverse transcription complex (RTC) and preintegration complex (PIC). These two unique viral complexes are responsible for the conversion of the single-stranded RNA genome into double-stranded DNA, transport of the DNA into the nucleus, and integration of the viral DNA into the host cell chromosome. Prior biochemical analyses suggest that these complexes are large and contain multiple undiscovered host cell factors. In this study, functional HIV-1 RTCs and PICs were partially purified by velocity gradient centrifugation and fractionation, concentrated, trypsin digested, and analyzed by LC-MS/MS. A total of seven parallel infected and control biological replicates were completed. Database searches were performed with Proteome Discoverer and a comparison of the HIV-1 samples to parallel uninfected control samples was used to identify unique cellular factors. The analysis produced a total data set of 11055 proteins. Several previously characterized HIV-1 factors were identified, including XRCC6, TFRC, and HSP70. The presence of XRCC6 was confirmed in infected fractions and shown to be associated with HIV-1 DNA by immunoprecipitation-PCR experiments. Overall, the analysis identified 94 proteins unique in the infected fractions and 121 proteins unique to the control fractions with ≥ 2 protein assignments. An additional 54 and 52 were classified as enriched in the infected and control samples, respectively, based on a 3-fold difference in total Proteome Discoverer probability score. The differential expression of several candidate proteins was validated by Western blot analysis. This study contributes additional novel candidate proteins to the growing published bioinformatic data sets of proteins that contribute to HIV-1 replication.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Centrifugation, Density Gradient
- Chromatography, Liquid
- DNA, Viral/genetics
- DNA, Viral/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Profiling
- HIV-1/genetics
- HIV-1/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Host-Pathogen Interactions
- Humans
- Ku Autoantigen
- Lymphocytes/metabolism
- Lymphocytes/virology
- Nucleoproteins/genetics
- Nucleoproteins/metabolism
- Protein Binding
- Proteome/genetics
- Proteome/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Reverse Transcription
- Tandem Mass Spectrometry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Integration
Collapse
Affiliation(s)
| | - Teena Jagadish
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE
- The Nebraska Center for Virology, University of Nebraska, Lincoln, NE
| |
Collapse
|
15
|
Wang XW, Ding GR, Shi CH, Zeng LH, Liu JY, Li J, Zhao T, Chen YB, Guo GZ. Mechanisms involved in the blood-testis barrier increased permeability induced by EMP. Toxicology 2010; 276:58-63. [PMID: 20633596 DOI: 10.1016/j.tox.2010.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 11/29/2022]
Abstract
The blood-testis barrier (BTB) plays an important role in male reproductive system. Lots of environmental stimulations can increase the permeability of BTB and then result in antisperm antibody (AsAb) generation, which is a key step in male immune infertility. Here we reported the results of male mice exposed to electromagnetic pulse (EMP) by measuring the expression of tight-junction-associated proteins (ZO-1 and Occludin), vimentin microfilaments, and transforming growth factor-beta (TGF-beta3) as well as AsAb level in serum. Male BALB/c mice were sham exposed or exposed to EMP at two different intensities (200kV/m and 400kV/m) for 200 pulses. The testes were collected at different time points after EMP exposure. Immunofluorescence histocytochemistry, western blotting, laser confocal microscopy and RT-PCR were used in this study. Compared with sham group, the expression of ZO-1 and TGF-beta3 significantly decreased accompanied with unevenly stained vimentin microfilaments and increased serum AsAb levels in EMP-exposed mice. These results suggest a potential BTB injury and immune infertility in male mice exposed to a certain intensity of EMP.
Collapse
Affiliation(s)
- Xiao-Wu Wang
- Department of Radiation Medicine, Faculty of Preventive Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Comparative studies on retroviral proteases: substrate specificity. Viruses 2010; 2:147-165. [PMID: 21994605 PMCID: PMC3185560 DOI: 10.3390/v2010147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 12/18/2022] Open
Abstract
Exogenous retroviruses are subclassified into seven genera and include viruses that cause diseases in humans. The viral Gag and Gag-Pro-Pol polyproteins are processed by the retroviral protease in the last stage of replication and inhibitors of the HIV-1 protease are widely used in AIDS therapy. Resistant mutations occur in response to the drug therapy introducing residues that are frequently found in the equivalent position of other retroviral proteases. Therefore, besides helping to understand the general and specific features of these enzymes, comparative studies of retroviral proteases may help to understand the mutational capacity of the HIV-1 protease.
Collapse
|
17
|
Mähönen AJ, Makkonen KE, Laakkonen JP, Ihalainen TO, Kukkonen SP, Kaikkonen MU, Vihinen-Ranta M, Ylä-Herttuala S, Airenne KJ. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J Biotechnol 2009; 145:111-9. [PMID: 19903502 DOI: 10.1016/j.jbiotec.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/16/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023]
Abstract
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Reynolds JL, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, Agosto-Mujica A, Hsiao CB, Schwartz SA. Modulation of the proteome of peripheral blood mononuclear cells from HIV-1-infected patients by drugs of abuse. J Clin Immunol 2009; 29:646-56. [PMID: 19543960 DOI: 10.1007/s10875-009-9309-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/28/2009] [Indexed: 01/13/2023]
Abstract
INTRODUCTION We used proteomic analyses to assess how drug abuse modulates immunologic responses to infections with the human immunodeficiency virus type 1 (HIV-1). METHODS Two-dimensional difference gel electrophoresis was utilized to determine changes in the proteome of peripheral blood mononuclear cells (PBMC) isolated from HIV-1-positive donors that occurred after treatment with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins. We further isolated specific subpopulations of PBMC to determine which subpopulations were selectively affected by treatment with drugs of abuse. Monocytes, B cells, and T cells were positively or negatively selected from PBMC isolated from HIV-1-positive donors. RESULTS Our results demonstrate that cocaine and methamphetamine modulate gene expression primarily in monocytes and T cells, the primary targets of HIV-1 infection. Proteomic data were validated with quantitative, real-time polymerase chain reaction. These studies elucidate the molecular mechanisms underlying the effects of drugs of abuse on HIV-1 infections. Several functionally relevant classes of proteins were identified as potential mediators of HIV-1 pathogenesis and disease progression associated with drug abuse.
Collapse
Affiliation(s)
- Jessica L Reynolds
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Buffalo General Hospital, University at Buffalo, State University of New York at Buffalo, 311 MultiLab Research Building, Buffalo, NY,14203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lavastre V, Chiasson S, Cavalli H, Girard D. Viscum album agglutinin-I (VAA-I) induces apoptosis and degradation of cytoskeletal proteins in human leukemia PLB-985 and X-CGD cells via caspases: Lamin B1 is a novel target of VAA-I. Leuk Res 2005; 29:1443-53. [PMID: 16242777 DOI: 10.1016/j.leukres.2005.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 05/12/2005] [Indexed: 01/12/2023]
Abstract
Viscum album agglutinin-I (VAA-I) is a potent inducer of cell apoptosis and possesses anti-tumoral activity. Using PLB-985 and chronic granulomatous disease (X-CGD) cells, which lack expression of gp91(phox), VAA-I was found to induce apoptosis in both cell lines as assessed by cytology, DNA laddering and degradation of the cytoskeletal protein gelsolin. Both cell lines expressed caspase-3 and -8 and VAA-I activated these caspases. We demonstrated that lamin B(1) is a novel target to VAA-I and its degradation was reversed by a pan-caspase inhibitor and by a caspase-6, but not a caspase-8, inhibitor.
Collapse
Affiliation(s)
- Valérie Lavastre
- Institut National de Recherche Scientifique, INRS-Institut Armand-Frappier, Pointe-Claire, Canada
| | | | | | | |
Collapse
|
20
|
Pocernich CB, Boyd-Kimball D, Poon HF, Thongboonkerd V, Lynn BC, Klein JB, Calebrese V, Nath A, Butterfield DA. Proteomics analysis of human astrocytes expressing the HIV protein Tat. ACTA ACUST UNITED AC 2005; 133:307-16. [PMID: 15710248 DOI: 10.1016/j.molbrainres.2004.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Astrocyte infection in HIV has been associated with rapid progression of dementia in a subset of HIV/AIDS patients. Astrogliosis and microglial activation are observed in areas of axonal and dendritic damage in HIVD. In HIV-infected astrocytes, the regulatory gene tat is over expressed and mRNA levels for Tat are elevated in brain extracts from individuals with HIV-1 dementia. Tat can be detected in HIV-infected astrocytes in vivo. The HIV-1 protein Tat transactivates viral and cellular gene expression, is actively secreted mainly from astrocytes, microglia and macrophages, into the extracellular environment, and is taken up by neighboring uninfected cells such as neurons. The HIV-1 protein Tat released from astrocytes reportedly produces trimming of neurites, mitochondrial dysfunction and cell death in neurons, while protecting its host, the astrocyte. We utilized proteomics to investigate protein expression changes in human astrocytes intracellularly expressing Tat (SVGA-Tat). By coupling 2D fingerprinting and identification of proteins by mass spectrometry, we identified phosphatase 2A, isocitrate dehydrogenase, nuclear ribonucleoprotein A1, Rho GDP dissociation inhibitor alpha, beta-tubulin, crocalbin like protein/calumenin, and vimentin/alpha-tubulin to have decreased protein expression levels in SVGA-Tat cells compared to the SVGA-pcDNA cells. Heat shock protein 70, heme oxygenase-1, and inducible nitric oxide synthase were found to have increased protein expression in SVGA-Tat cells compared to controls by slotblot technique. These findings are discussed with reference to astrocytes serving as a reservoir for the HIV virus and how Tat promotes survival of the astrocytic host.
Collapse
Affiliation(s)
- Chava B Pocernich
- Department of Chemistry and Center of Membrane Sciences, 125 Chemistry-Physics Building, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Chlamydiae have to replicate within a cytoplasmic vacuole in eukaryotic cells. Expansion of the chlamydia-laden vacuole is essential for chlamydial intravacuolar replication, which inevitably causes host cell cytoskeleton rearrangements. A cleavage fragment of keratin 8 corresponding to the central rod region was detected in the soluble fraction of chlamydia-infected cells. Since keratin 8 is a major component of the intermediate filaments in simple epithelial cells, cleavage of keratin 8 may increase the solubility of the host cell cytoskeleton and thus permit vacuole expansion in chlamydia-infected cells. A chlamydia-secreted protease designated CPAF (chlamydial protease/proteasome-like activity factor) was both necessary and sufficient for keratin 8 cleavage in chlamydia-infected cells, suggesting that chlamydiae have evolved specific mechanisms for modifying the host cell cytoskeleton.
Collapse
Affiliation(s)
- Feng Dong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
22
|
Davis DA, Brown CA, Newcomb FM, Boja ES, Fales HM, Kaufman J, Stahl SJ, Wingfield P, Yarchoan R. Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation. J Virol 2003; 77:3319-25. [PMID: 12584357 PMCID: PMC149757 DOI: 10.1128/jvi.77.5.3319-3325.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human immunodeficiency virus protease activity can be regulated by reversible oxidation of a sulfur-containing amino acid at the dimer interface. We show here that oxidation of this amino acid in human immunodeficiency virus type 1 protease prevents dimer formation. Moreover, we show that human T-cell leukemia virus type 1 protease can be similarly regulated through reversible glutathionylation of its two conserved cysteine residues. Based on the known three-dimensional structures and multiple sequence alignments of retroviral proteases, it is predicted that the majority of retroviral proteases have sulfur-containing amino acids at the dimer interface. The regulation of protease activity by the modification of a sulfur-containing amino acid at the dimer interface may be a conserved mechanism among the majority of retroviruses.
Collapse
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lindsten K, Uhlíková T, Konvalinka J, Masucci MG, Dantuma NP. Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity. Antimicrob Agents Chemother 2001; 45:2616-22. [PMID: 11502538 PMCID: PMC90701 DOI: 10.1128/aac.45.9.2616-2622.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) protease is essential for production of infectious virus and is therefore a major target for the development of drugs against AIDS. Cellular proteins are also cleaved by the protease, which explains its cytotoxic activity and the consequent failure to establish convenient cell-based protease assays. We have exploited this toxicity to develop a new protease assay that relies on transient expression of an artificial protease precursor harboring the green fluorescent protein (GFP-PR). The precursor is activated in vivo by autocatalytic cleavage, resulting in rapid elimination of protease-expressing cells. Treatment with therapeutic doses of HIV-1 protease inhibitors results in a dose-dependent accumulation of the fluorescent precursor that can be easily detected and quantified by flow cytometric and fluorimetric assays. The precursor provides a convenient and noninfectious model for high-throughput screenings of substances that can interfere with the activity of the protease in living cells.
Collapse
Affiliation(s)
- K Lindsten
- Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
24
|
Sparacio S, Pfeiffer T, Schaal H, Bosch V. Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol Ther 2001; 3:602-12. [PMID: 11319923 DOI: 10.1006/mthe.2001.0296] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HIV-derived vectors are of potential clinical relevance due to their ability to transduce nondividing cells in vitro and in vivo. However, the generation of cell lines stably and reproducibly expressing high amounts of defined subviral particles, capable of packaging and transducing HIV-derived vectors, has been hampered by the cytotoxicity of some of the required gene products, in particular of the HIV-1 protease. The successful use of regulatable gene expression systems to overcome this problem requires that the remaining basally expressed gene product activity is below the threshold for cytotoxicity. To try to achieve this, we have consecutively introduced appropriate plasmids, encoding HIV rev and HIV gag/pol gene products, each under the control of separate ecdysone-inducible promoters, into human 293 cells. Using a protocol in which a specific HIV protease inhibitor, Saquinavir, was continuously present in the culture medium during selection, we could generate stable cell lines inducibly expressing high amounts of subviral particles. A cell line, termed 293-Rev/Gag/Pol(i), which has been characterized in more detail, inducibly releases, within 48 h postinduction, high amounts of HIV Gag/Pol particles (about 10 microg CA/ml). These HIV Gag/Pol particles can package and transduce third-generation HIV vectors to high titers. Thus, in addition to other applications, the 293-Rev/Gag/Pol(i) cell line represents a "founder" packaging cell line which, depending on the requirement, can be further modified to include specific transgene-encoding vector and targeting glycoprotein genes.
Collapse
Affiliation(s)
- S Sparacio
- Forschungsschwerpunkt Angewandte Tumorvirologie, F0200, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg, 69120, Germany
| | | | | | | |
Collapse
|