1
|
Garcia KLP, Lê AD, Tyndale RF. Brain CYP2B induction can decrease nicotine levels in the brain. Addict Biol 2017; 22:1257-1266. [PMID: 27230546 DOI: 10.1111/adb.12411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/20/2016] [Accepted: 04/21/2016] [Indexed: 01/07/2023]
Abstract
Nicotine can be metabolized by the enzyme CYP2B; brain CYP2B is higher in rats and monkeys treated with nicotine, and in human smokers. A 7-day nicotine treatment increased CYP2B expression in rat brain but not liver, and decreased the behavioral response and brain levels (ex vivo) to the CYP2B substrate propofol. However, the effect of CYP2B induction on the time course and levels of circulating brain nicotine in vivo has not been demonstrated. Using brain microdialysis, nicotine levels following a subcutaneous nicotine injection were measured on day one and after a 7-day nicotine treatment. There was a significant time x treatment interaction (p = 0.01); peak nicotine levels (15-45 minutes post-injection) were lower after treatment (p = 0.04) consistent with CYP2B induction. Following a two-week washout period, brain nicotine levels increased to day one levels (p = 0.02), consistent with brain CYP2B levels returning to baseline. Brain pretreatment of the CYP2B inhibitor, C8-xanthate, increased brain nicotine levels acutely and after 7-day nicotine treatment, indicating the alterations in brain nicotine levels were due to changes in brain CYP2B activity. Plasma nicotine levels were not altered for any time or treatment sampled, confirming no effect on peripheral nicotine metabolism. These results demonstrate that chronic nicotine, by increasing brain CYP2B activity, reduces brain nicotine levels, which could alter nicotine's reinforcing effects. Higher brain CYP2B levels in smokers could lower brain nicotine levels; as this induction would occur following continued nicotine exposure it could increase withdrawal symptoms and contribute to sustaining smoking behavior.
Collapse
Affiliation(s)
- Kristine L. P. Garcia
- Departments of Pharmacology and Toxicology and Psychiatry; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Anh Dzung Lê
- Departments of Pharmacology and Toxicology and Psychiatry; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Rachel F. Tyndale
- Departments of Pharmacology and Toxicology and Psychiatry; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
| |
Collapse
|
2
|
Bararunyeretse P, Ji H, Yao J. Toxicity of nickel to soil microbial community with and without the presence of its mineral collectors-a calorimetric approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15134-15147. [PMID: 28497332 DOI: 10.1007/s11356-017-9127-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of nickel and three of its main collectors, sodium isopropyl xanthate (SIPX), sodium ethyl xanthate (SEX), and potassium ethyl xanthate (PEX) to soil microbial activity, was analyzed, individually and as a binary combination of nickel and each of the collectors. The investigation was performed through the microcalorimetric analysis method. For the single chemicals, all power-time curves exhibited lag, exponential, stationary, and death phases of microbial growth. Different parameters exhibited a significant adverse effect of the analyzed chemicals on soil microbial activity, with a positive relationship between the inhibitory ratio and the chemical dose (p < 0.05 or p < 0.01). A peak power reduction level of 24.23% was noted for 50 μg g-1 soil in the case of Ni while for the mineral collectors, only 5 μg g-1 soil and 50 μg g-1 soil induced a peak power reduction level of over 35 and 50%, respectively, in general. The inhibitory ratio ranged in the following order: PEX > SEX > SIPX > Ni. Similar behavior was observed with the mixture toxicity whose inhibitory ratio substantially decreased (maximum decrease of 38.35%) and slightly increased (maximum increase of 15.34%), in comparison with the single toxicity of mineral collectors and nickel, respectively. The inhibitory ratio of the mixture toxicity was positively correlated (p < 0.05 or p < 0.01) with the total dose of the mixture. In general, the lesser and higher toxic effects are those of mixtures containing SIPX and PEX, respectively.
Collapse
Affiliation(s)
- Prudence Bararunyeretse
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China.
| | - Hongbing Ji
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Jun Yao
- School of water resource and Environment Engineering, Sino-Hungarian Joint laboratory of Environmental Science and Health, China University of Geosciences, Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Bararunyeretse P, Yao J, Dai Y, Bigawa S, Guo Z, Zhu M. Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: analysis by microcalorimetry, microbial count, and enzyme activity assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1565-1577. [PMID: 27785723 DOI: 10.1007/s11356-016-7905-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Flotation reagents are hugely and increasingly used in mining and other industrial and economic activities from which an important part is discharged into the environment. China could be the most affected country by the resulting pollution. However, their ecotoxicological dimension is still less addressed and understood. This study aimed to analyze the toxic effect of sodium isobutyl xanthate (SIBX) and sodium isopropyl xanthate (SIPX) to soil microbial richness and activity and to make a comparison between the two compounds in regard to their effects on soil microbial and enzymes activities. Different methods, including microcalorimetry, viable cell counts, cell density, and catalase and fluorescein diacetate (FDA) hydrololase activities measurement, were applied. The two chemicals exhibited a significant inhibitory effect (P < 0.05 or P < 0.01) to all parameters, SIPX being more adverse than SIBX. As the doses of SIBX and SIPX increased from 5 to 300 μg g-1 soil, their inhibitory ratio ranged from 4.84 to 45.16 % and from 16.13 to 69.68 %, respectively. All parameters fluctuated with the incubation time (10-day period). FDA hydrolysis was more directly affected but was relatively more resilient than catalase activity. Potential changes of those chemicals in the experimental media and complementarity between experimental techniques were justified.
Collapse
Affiliation(s)
- Prudence Bararunyeretse
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Jun Yao
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China.
- School of water resource and Environment Engineering, Sino-Hungarian Joint laboratory of Environmental Science and Health, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yunrong Dai
- School of water resource and Environment Engineering, Sino-Hungarian Joint laboratory of Environmental Science and Health, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Samuel Bigawa
- Faculty of Sciences, Biology Department, University of Burundi, Bujumbura, Burundi
| | - Zunwei Guo
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| | - Mijia Zhu
- School of Energy and Environmental Engineering and National International Cooperation Base on Environmental and Energy, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, People's Republic of China
| |
Collapse
|
4
|
Highly Sensitive Determination of Butyl Xanthate in Surface and Drinking Water by Headspace Gas Chromatography with Electron Capture Detector. Chromatographia 2015. [DOI: 10.1007/s10337-015-2940-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Garcia KLP, Coen K, Miksys S, Lê AD, Tyndale RF. Effect of Brain CYP2B Inhibition on Brain Nicotine Levels and Nicotine Self-Administration. Neuropsychopharmacology 2015; 40:1910-8. [PMID: 25652250 PMCID: PMC4839514 DOI: 10.1038/npp.2015.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/13/2015] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Abstract
The CYP2B enzyme is expressed in human and rat brain, and metabolizes many CNS-acting drugs. The gene that encodes human CYP2B6 is highly polymorphic, where the variation in brain enzyme levels could result in altered brain drug levels. CYP2B can metabolize nicotine, the main psychoactive ingredient in cigarettes; if altered brain CYP2B activity can influence nicotine brain levels, it could influence nicotine-mediated behaviors. To investigate this, a mechanism-based inhibitor selective for CYP2B, C8-xanthate (20 μg), was administered intracerebroventricularly (ICV) into the brain of rats, and 22 h later, nicotine levels were measured by in vivo microdialysis following nicotine (150 μg/kg intravenous). Brain nicotine levels from 15 to 30 min and the AUC0-45 min were both twofold higher (p<0.05) with C8-xanthate vs vehicle pretreatment; there was no difference in peripheral nicotine levels. Rats were then given ICV pretreatment with C8-xanthate/ASCF and underwent intravenous nicotine self-administration with 3.75-30 μg/kg per infusion dose. C8-xanthate pretreatment increased responding in progressive ratio (15 μg/kg per infusion dose, p<0.05). In a separate cohort, C8-xanthate increased the percentage of rats that acquired self-administration (7.5 μg/kg per infusion dose, p<0.05) from 40% after vehicle pretreatment to 100%, with no difference in peripheral nicotine levels measured at the end of behavior. In a third cohort, C8-xanthate increased the number of sessions required to meet extinction criteria (p<0.05). Together these data demonstrate that the brain CYP2B activity can influence nicotine brain levels and subsequent behaviors independent of hepatic metabolism. This suggests that human smokers with variable CYP2B brain levels could have different nicotine levels and reinforcement, which might have a role in smoking behaviors and dependence.
Collapse
Affiliation(s)
- Kristine L P Garcia
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kathy Coen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sharon Miksys
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anh Dzung Lê
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada, Tel: +1 416 978 6374, Fax: +1 416 978-6395, E-mail:
| |
Collapse
|
6
|
Abstract
Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
| | - Rachel F. Tyndale
- Correspondence to: R.F. Tyndale, Department of Pharmacology and Toxicology, 1 King’s College Circle, Toronto ON M5S 1A8;
| |
Collapse
|
7
|
Khokhar JY, Tyndale RF. Rat Brain CYP2B-Enzymatic Activation of Chlorpyrifos to the Oxon Mediates Cholinergic Neurotoxicity. Toxicol Sci 2012; 126:325-35. [DOI: 10.1093/toxsci/kfs029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Khokhar JY, Tyndale RF. Drug metabolism within the brain changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology 2011; 36:692-700. [PMID: 21107310 PMCID: PMC3055692 DOI: 10.1038/npp.2010.202] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (r=0.76, P=0.0009), but not plasma (r=0.24, P=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.
Collapse
Affiliation(s)
- Jibran Y Khokhar
- Centre for Addiction and Mental Health (CAMH) and Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Centre for Addiction and Mental Health (CAMH) and Departments of Pharmacology and Toxicology and Psychiatry, University of Toronto, Toronto, Ontario, Canada,Department of Pharmacology and Toxicology, 1 King's College Circle, University of Toronto, Medical Sciences Building, Room 4326, Toronto, Ontario M5S 1A8, Canada, Tel: +1 416 978 6374, Fax: +1 416 978 6395, E-mail:
| |
Collapse
|
9
|
Miksys S, Tyndale RF. Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology 2009; 34:634-40. [PMID: 18668033 PMCID: PMC5258186 DOI: 10.1038/npp.2008.110] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individuals vary in their response to centrally acting drugs, and this is not always predicted by drug plasma levels. Central metabolism by brain cytochromes P450 (CYPs) may contribute to interindividual variation in response to drugs. Brain CYPs have unique regional and cell-type expression and induction patterns, and they are regulated independently of their hepatic isoforms. In vitro, these enzymes can metabolize endogenous and xenobiotic substrates including centrally acting drugs, but there is no evidence to date of their in vivo function. This has been difficult to demonstrate in the presence of hepatically derived metabolites that may cross the blood-brain barrier. In addition, because of the membrane location of brain CYPs and the rate limiting effect of endogenous heme levels on the activity and appropriate membrane insertion of some induced CYPs, it has been unclear whether sufficient cofactors and coenzymes are present for constitutive and induced CYP forms to be enzymatically active. We have developed a method using a radiolabeled mechanism-based inhibitor of CYP2B1, (3)H-8-methoxypsoralen, to demonstrate for the first time that both the constitutive and induced forms of this enzyme are active in situ in the living rat brain. This methodology provides a novel approach to assess the function of enzymes in extrahepatic tissues, where expression levels are often low. Selective induction of metabolically active drug metabolizing enzymes in the brain may also provide ways to control prodrug activation in specific brain regions as a novel therapeutic avenue.
Collapse
Affiliation(s)
- Sharon Miksys
- Centre for Addiction and Mental Health, Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
| | - Rachel F Tyndale
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada,Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Shebley M, Kent UM, Ballou DP, Hollenberg PF. Mechanistic analysis of the inactivation of cytochrome P450 2B6 by phencyclidine: effects on substrate binding, electron transfer, and uncoupling. Drug Metab Dispos 2009; 37:745-52. [PMID: 19144770 DOI: 10.1124/dmd.108.024661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phencyclidine (PCP) is a mechanism-based inactivator of cytochrome P450 (P450) 2B6. We have analyzed several steps in the P450 catalytic cycle to determine the mechanism of inactivation of P450 2B6 by PCP. Spectral binding studies show that binding of benzphetamine, a type I ligand, to P450 2B6 was significantly affected as a result of the inactivation, whereas binding of the inhibitor n-octylamine, a type II ligand, was not compromised. Binding of these ligands to P450 2B6 occurs in two phases. Stopped-flow spectral analysis of the binding kinetics of benzphetamine to PCP-inactivated 2B6 revealed a 15-fold decrease in the rate of binding during the second phase of the kinetics (k(1) = 5.0 s(-1), A(1) = 30%; k(2) = 0.02 s(-1), A(2) = 70%, where A(2) indicates the fractional magnitude of the second phase) compared with the native enzyme (k(1) = 8.0 s(-1), A(1) = 58%; k(2) = 0.3 s(-1), A(2) = 42%). Analysis of benzphetamine metabolism by the inactivated protein using liquid chromatography/electrospray ionization/mass spectrometry showed that the rates of formation of nor-benzphetamine and hydroxylated nor-benzphetamine were decreased by 75 and 69%, respectively, whereas the rates of formation for amphetamine, hydroxybenzphetamine, and methamphetamine showed slight but statistically insignificant decreases after the inactivation. The rate of reduction of P450 2B6 by NADPH and reductase was decreased by 6-fold as a result of the modification by PCP. In addition, the extent of uncoupling of NADPH oxidation from product formation, a process leading to futile production of H(2)O(2), increased significantly during the metabolism of ethylbenzene as a result of the inactivation.
Collapse
Affiliation(s)
- Mohamad Shebley
- Department of Pharmacology, The University of Michigan, Medical Science Research Building III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
11
|
Kim KH, Kim DH, Jang HH, Kim M, Kim DH, Kim JS, Kim JI, Chae HZ, Ahn T, Yun CH. Lateral segregation of anionic phospholipids in model membranes induced by cytochrome P450 2B1: bi-directional coupling between CYP2B1 and anionic phospholipid. Arch Biochem Biophys 2007; 468:226-33. [PMID: 17980858 DOI: 10.1016/j.abb.2007.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/02/2007] [Accepted: 10/07/2007] [Indexed: 11/28/2022]
Abstract
The lateral segregation of anionic phospholipids phosphatidic acid (PA), phosphatidylinositol (PI), and phosphatidylserine (PS) was detected after addition of cytochrome P450 2B1 (CYP2B1). The tendency of lipid clustering was highly dependent on the type of anionic phospholipids examined. PA was the most highly clustered while PI and PS clustered to a lesser degree. Moreover, liposomes containing anionic phospholipids form anionic phospholipid-rich microdomains in the presence of CYP2B1. Anionic phospholipids (mostly notably PA) also increased the ability of CYP2B1 to bind to lipid monolayers. In addition to the ability of CYP2B1 to modulate the physical properties of the membrane, the membrane itself can have reciprocal effects on the activity and conformation of CYP2B1. The catalytic activity of CYP2B1 increased as a function of anionic phospholipid concentration and in the presence of 10 mol% PA, the activity increased by 85%. These results suggest a bi-directional coupling between the CYP2B1 and anionic phospholipids.
Collapse
Affiliation(s)
- Keon-Hee Kim
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kent UM, Pascual L, Roof RA, Ballou DP, Hollenberg PF. Mechanistic studies with N-benzyl-1-aminobenzotriazole-inactivated CYP2B1: differential effects on the metabolism of 7-ethoxy-4-(trifluoromethyl)coumarin, testosterone, and benzphetamine. Arch Biochem Biophys 2004; 423:277-87. [PMID: 15001392 DOI: 10.1016/j.abb.2004.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/11/2003] [Indexed: 10/26/2022]
Abstract
Mechanistic studies with N-benzyl-1-aminobenzotriazole (BBT)-inactivated cytochrome P450 2B1 were conducted to determine which step(s) in the reaction cycle had been compromised. Stopped-flow studies, formation of the oxy-ferro intermediate, and analysis of products suggested that the reductive process was slower with the BBT-modified enzyme. The reduced rate of reduction alone could not account for the loss in 7-ethoxy-4-(trifluoromethyl)coumarin (EFC) O-deethylation or testosterone hydroxylation activity. Surprisingly, the ability of the BBT-modified enzyme to generate formaldehyde from benzphetamine was much less affected. Benzphetamine metabolite analysis by electrospray ionization-mass spectrometry showed that the BBT-modified enzyme had a slightly greater propensity towards aromatic hydroxylation together with reduced levels of N-demethylation and little change in the N-debenzylation of benzphetamine. Orientation of substrates within the active site of the BBT-inactivated enzyme may be affected such that the more flexible benzphetamine can be metabolized, whereas metabolism of rigid, planar molecules such as EFC and testosterone is hindered.
Collapse
Affiliation(s)
- Ute M Kent
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
13
|
Lesigiarska I, Pajeva I, Yanev S. Quantitative structure-activity relationship (QSAR) and three-dimensional QSAR analysis of a series of xanthates as inhibitors and inactivators of cytochrome P450 2B1. Xenobiotica 2002; 32:1063-77. [PMID: 12593756 DOI: 10.1080/0049825021000012574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Various xanthates (R-OCS2) were found to be mechanism-based inactivators of cytochrome P450 2B1 (CYP2B1) and CYP2B6 via formation of reactive metabolites. 2. In the present study, quantitative structure-activity relationships (QSARs) were derived with inhibitory and inactivation potencies of 15 xanthates (R = two to 20 methylene groups, allyl, cyclohexyl or O-tricyclo[5.2.1.0(2,6)]dec-9-yl (D609)) against purified, reconstituted rat liver CYP2B1. Factor, regression and comparative molecular field analyses (CoMFA) were used. 3. The compounds formed two groups whose activities depended on different structural features: the first group consisted of compounds with ethyl, propyl, allyl, cyclohexyl and D609 substituents; the second involved compounds with eight to 20 methylene groups. 4. High correlation between the molecular volume and inhibitory potency of the xanthates of the second group was found. The inactivation potency in the first group correlated with the charge of the first carbon atom of R, identifying this atom as a potential target for metabolic attack. A decrease in the inactivation potency with an increase in the size of R was observed in the second group. This finding could be explained by a decreased rate of metabolism of the long alkyl chain compounds and/or by difficulty in binding of the resulting metabolite(s) to the enzyme molecule.
Collapse
Affiliation(s)
- I Lesigiarska
- Centre of Biomedical Engineering, Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.23, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
14
|
González-Roura A, Casas J, Llebaria A. Synthesis and phospholipase C inhibitory activity of D609 diastereomers. Lipids 2002; 37:401-6. [PMID: 12030321 DOI: 10.1007/s1145-002-0908-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potassium xanthate D609 is widely accepted as a selective inhibitor of PC-specific phospholipase C (PC-PLC). The tricyclo[5.2.1.(02,6)]decane skeleton present in D609 can lead to four diastereomeric pairs, but the diastereoselectivity of PC-PLC inhibition has never been reported. In this article, the synthesis of racemic D609 diastereomers and that of other xanthates, as well as their inhibitory effect on PC-PLC is reported. All xanthates obtained were competitive inhibitors of PC-PLC from Bacillus cereus (PLCBc). No significant differences were found in the activity of D609 diastereomers (Ki 13-17 microM), suggesting the absence of a diastereochemical control of the enzyme by xanthate inhibitors. This result was confirmed after obtaining other potassium xanthates differing from D609 in the aliphatic chain. Among them, the potassium O-n-decenylxanthate was the most active inhibitor of PLCBc (Ki 10 microM). These data indicate that the essential structural requirements for PLCBc in vitro inhibition by xanthates are the presence of a Zn-chelating dithiocarbonate head and a sufficiently hydrophobic aliphatic moiety.
Collapse
|