1
|
Lee TY, Lam L, Patel-Tupper D, Roy PP, Ma SA, Lam HE, Lucas-DeMott A, Karavolias NG, Iwai M, Niyogi KK, Fleming GR. Chlorophyll to zeaxanthin energy transfer in nonphotochemical quenching: An exciton annihilation-free transient absorption study. Proc Natl Acad Sci U S A 2024; 121:e2411620121. [PMID: 39378097 PMCID: PMC11494355 DOI: 10.1073/pnas.2411620121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Zeaxanthin (Zea) is a key component in the energy-dependent, rapidly reversible, nonphotochemical quenching process (qE) that regulates photosynthetic light harvesting. Previous transient absorption (TA) studies suggested that Zea can participate in direct quenching via chlorophyll (Chl) to Zea energy transfer. However, the contamination of intrinsic exciton-exciton annihilation (EEA) makes the assignment of TA signal ambiguous. In this study, we present EEA-free TA data using Nicotiana benthamiana thylakoid membranes, including the wild type and three NPQ mutants (npq1, npq4, and lut2) generated by CRISPR/Cas9 mutagenesis. The results show a strong correlation between excitation energy transfer from excited Chl Qy to Zea S1 and the xanthophyll cycle during qE activation. Notably, a Lut S1 signal is absent in the npq1 thylakoids which lack zeaxanthin. Additionally, the fifth-order response analysis shows a reduction in the exciton diffusion length (LD) from 62 ± 6 nm to 43 ± 3 nm under high light illumination, consistent with the reduced range of exciton motion being a key aspect of plants' response to excess light.
Collapse
Affiliation(s)
- Tsung-Yen Lee
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Lam Lam
- Department of Chemistry, University of California, Berkeley, CA94720
- Graduate Group in Biophysics, University of California, Berkeley, CA94720
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| | - Partha Pratim Roy
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Sophia A. Ma
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Henry E. Lam
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Aviva Lucas-DeMott
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Nicholas G. Karavolias
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Kavli Energy Nanoscience Institute, Berkeley, CA94720
| |
Collapse
|
2
|
Ultrafast laser spectroscopic studies on carotenoids in solution and on those bound to photosynthetic pigment-protein complexes. Methods Enzymol 2022; 674:1-51. [DOI: 10.1016/bs.mie.2022.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Marcolin G, Collini E. Solvent-Dependent Characterization of Fucoxanthin through 2D Electronic Spectroscopy Reveals New Details on the Intramolecular Charge-Transfer State Dynamics. J Phys Chem Lett 2021; 12:4833-4840. [PMID: 33999637 PMCID: PMC8279730 DOI: 10.1021/acs.jpclett.1c00851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 05/27/2023]
Abstract
The electronic state manifolds of carotenoids and their relaxation dynamics are the object of intense investigation because most of the subtle details regulating their photophysics are still unknown. In order to contribute to this quest, here, we present a solvent-dependent 2D Electronic Spectroscopy (2DES) characterization of fucoxanthin, a carbonyl carotenoid involved in the light-harvesting process of brown algae. The 2DES technique allows probing its ultrafast relaxation dynamics in the first 1000 fs after photoexcitation with a 10 fs time resolution. The obtained results help shed light on the dynamics of the first electronic state manifold and, in particular, on an intramolecular charge-transfer state (ICT), whose photophysical properties are particularly elusive given its (almost) dark nature.
Collapse
|
4
|
Streckaite S, Macernis M, Li F, Kuthanová Trsková E, Litvin R, Yang C, Pascal AA, Valkunas L, Robert B, Llansola-Portoles MJ. Modeling Dynamic Conformations of Organic Molecules: Alkyne Carotenoids in Solution. J Phys Chem A 2020; 124:2792-2801. [PMID: 32163283 PMCID: PMC7313542 DOI: 10.1021/acs.jpca.9b11536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Calculating
the spectroscopic properties of complex conjugated
organic molecules in their relaxed state is far from simple. An additional complexity arises for
flexible molecules in solution, where the rotational energy barriers
are low enough so that nonminimum conformations may become dynamically
populated. These metastable conformations quickly relax during the
minimization procedures preliminary to density functional theory calculations,
and so accounting for their contribution to the experimentally observed
properties is problematic. We describe a strategy for stabilizing
these nonminimum conformations in silico, allowing
their properties to be calculated. Diadinoxanthin and alloxanthin
present atypical vibrational properties in solution, indicating the
presence of several conformations. Performing energy calculations in vacuo and polarizable continuum model calculations in
different solvents, we found three different conformations with values
for the δ dihedral angle of the end ring ca. 0, 180, and 90°
with respect to the plane of the conjugated chain. The latter conformation,
a nonglobal minimum, is not stable during the minimization necessary
for modeling its spectroscopic properties. To circumvent this classical
problem, we used a Car–Parinello MD supermolecular approach,
in which diadinoxanthin was solvated by water molecules so that metastable
conformations were stabilized by hydrogen-bonding interactions. We
progressively removed the number of solvating waters to find the minimum
required for this stabilization. This strategy represents the first
modeling of a carotenoid in a distorted conformation and provides
an accurate interpretation of the experimental data.
Collapse
Affiliation(s)
- Simona Streckaite
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mindaugas Macernis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10222 Vilnius, Lithuania
| | - Fei Li
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - Eliška Kuthanová Trsková
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.,Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81 Třeboň, Czech Republic
| | - Radek Litvin
- Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - Chunhong Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, People's Republic of China
| | - Andrew A Pascal
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, LT-10222 Vilnius, Lithuania.,Molecular Compounds Physics Department, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Taffet EJ, Lee BG, Toa ZSD, Pace N, Rumbles G, Southall J, Cogdell RJ, Scholes GD. Carotenoid Nuclear Reorganization and Interplay of Bright and Dark Excited States. J Phys Chem B 2019; 123:8628-8643. [PMID: 31553605 DOI: 10.1021/acs.jpcb.9b04027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report quantum chemical calculations using multireference perturbation theory (MRPT) with the density matrix renormalization group (DMRG) plus photothermal deflection spectroscopy measurements to investigate the manifold of carotenoid excited states and establish their energies relative to the bright state (S2) as a function of nuclear reorganization. We conclude that the primary photophysics and function of carotenoids are determined by interplay of only the bright (S2) and lowest-energy dark (S1) states. The lowest-lying dark state, far from being energetically distinguishable from the lowest-lying bright state along the entire excited-state nuclear reorganization pathway, is instead computed to be either the second or first excited state depending on what equilibrium geometry is considered. This result suggests that, rather than there being a dark intermediate excited state bridging a non-negligible energy gap from the lowest-lying dark state to the lowest-lying bright state, there is in fact no appreciable energy gap to bridge following photoexcitation. Instead, excited-state nuclear reorganization constitutes the bridge from S2 to S1, in the sense that these two states attain energetic degeneracy along this pathway.
Collapse
Affiliation(s)
- Elliot J Taffet
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Benjamin G Lee
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Zi S D Toa
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Natalie Pace
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Garry Rumbles
- Chemical and Materials Science Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences , University of Glasgow , University Avenue, Glasgow G12 8QQ , U.K
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
6
|
Taffet EJ, Scholes GD. Peridinin Torsional Distortion and Bond-Length Alternation Introduce Intramolecular Charge-Transfer and Correlated Triplet Pair Intermediate Excited States. J Phys Chem B 2018; 122:5835-5844. [DOI: 10.1021/acs.jpcb.8b02504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elliot J. Taffet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Hashimoto H, Uragami C, Yukihira N, Gardiner AT, Cogdell RJ. Understanding/unravelling carotenoid excited singlet states. J R Soc Interface 2018; 15:20180026. [PMID: 29643225 PMCID: PMC5938589 DOI: 10.1098/rsif.2018.0026] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Chiasa Uragami
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Nao Yukihira
- Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Alastair T Gardiner
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
8
|
Duval R, Duplais C. Fluorescent natural products as probes and tracers in biology. Nat Prod Rep 2017; 34:161-193. [DOI: 10.1039/c6np00111d] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescence is a remarkable property of many natural products in addition to their medicinal and biological value. Herein, we provide a review of these peculiar secondary metabolites to stimulate prospecting of them as original fluorescent tracers, endowed with unique photophysical properties and with applications in most fields of biology.
Collapse
Affiliation(s)
- Romain Duval
- IRD
- UMR 216 IRD MERIT (Mère et Enfant face aux Infections Tropicales)
- Université Paris-Descartes
- 75006 Paris
- France
| | - Christophe Duplais
- CNRS
- UMR 8172 EcoFoG (Ecologie des Forêts de Guyane)
- AgroParisTech
- Cirad
- INRA
| |
Collapse
|
9
|
Abstract
Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| | - Chiasa Uragami
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| |
Collapse
|
10
|
Natural and artificial light-harvesting systems utilizing the functions of carotenoids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Hashimoto H, Sugisaki M, Yoshizawa M. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:69-78. [PMID: 25223589 DOI: 10.1016/j.bbabio.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/16/2022]
Abstract
This review discusses the application of time-resolved vibrational spectroscopies to the studies of carotenoids in photosynthesis. The focus is on the ultrafast time regime and the study of photophysics and photochemistry of carotenoids by femtosecond time-resolved stimulated Raman and four-wave mixing spectroscopies. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Mitsuru Sugisaki
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masayuki Yoshizawa
- Department of Physics, Graduate School of Science, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
12
|
Enriquez MM, LaFountain AM, Budarz J, Fuciman M, Gibson GN, Frank HA. Direct determination of the excited state energies of the xanthophylls diadinoxanthin and diatoxanthin from Phaeodactylum tricornutum. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Christensson N, Milota F, Nemeth A, Sperling J, Kauffmann HF, Pullerits T, Hauer J. Two-Dimensional Electronic Spectroscopy of β-Carotene. J Phys Chem B 2009; 113:16409-19. [DOI: 10.1021/jp906604j] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niklas Christensson
- Department of Chemical Physics, Lund University, Box 124, SE-21000, Lund, Sweden, Department of Physical Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria, and Ultrafast Dynamics Group, Faculty of Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
| | - Franz Milota
- Department of Chemical Physics, Lund University, Box 124, SE-21000, Lund, Sweden, Department of Physical Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria, and Ultrafast Dynamics Group, Faculty of Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
| | - Alexandra Nemeth
- Department of Chemical Physics, Lund University, Box 124, SE-21000, Lund, Sweden, Department of Physical Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria, and Ultrafast Dynamics Group, Faculty of Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
| | - Jaroslaw Sperling
- Department of Chemical Physics, Lund University, Box 124, SE-21000, Lund, Sweden, Department of Physical Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria, and Ultrafast Dynamics Group, Faculty of Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
| | - Harald F. Kauffmann
- Department of Chemical Physics, Lund University, Box 124, SE-21000, Lund, Sweden, Department of Physical Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria, and Ultrafast Dynamics Group, Faculty of Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
| | - Tönu Pullerits
- Department of Chemical Physics, Lund University, Box 124, SE-21000, Lund, Sweden, Department of Physical Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria, and Ultrafast Dynamics Group, Faculty of Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
| | - Jürgen Hauer
- Department of Chemical Physics, Lund University, Box 124, SE-21000, Lund, Sweden, Department of Physical Chemistry, University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria, and Ultrafast Dynamics Group, Faculty of Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
| |
Collapse
|
14
|
Scriban C, Amagai BS, Stemmler EA, Christensen RL, Schrock RR. Synthesis and Optical Spectroscopy of Oligo(1,6-heptadiynes) with a Single Basic Structure Prepared through Adamantylimido-Based Molybdenum Wittig and Metathesis Chemistry. J Am Chem Soc 2009; 131:13441-52. [DOI: 10.1021/ja904541b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Corina Scriban
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Bowdoin College, Brunswick, Maine 04011
| | - Bryan S. Amagai
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Bowdoin College, Brunswick, Maine 04011
| | - Elizabeth A. Stemmler
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Bowdoin College, Brunswick, Maine 04011
| | - Ronald L. Christensen
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Bowdoin College, Brunswick, Maine 04011
| | - Richard R. Schrock
- Departments of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
15
|
Chatterjee N, Niedzwiedzki DM, Aoki K, Kajikawa T, Katsumura S, Hashimoto H, Frank HA. Effect of structural modifications on the spectroscopic properties and dynamics of the excited states of peridinin. Arch Biochem Biophys 2009; 483:146-55. [PMID: 19000898 PMCID: PMC3641562 DOI: 10.1016/j.abb.2008.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/07/2008] [Accepted: 10/30/2008] [Indexed: 11/22/2022]
Abstract
The spectroscopic properties and dynamics of the lowest excited singlet states of peridinin and two derivatives have been studied by steady-state absorption and fast-transient optical spectroscopic techniques. One derivative denoted PerOlEs, possesses a double bond and a methyl ester group instead of the r-ylidenebutenolide of peridinin. Another derivative denoted PerAcEs, is the biosynthetic precursor of peridinin and possesses a triple bond and a methyl ester group corresponding to the r-ylidenbutenolide function. Ultrafast time-resolved spectroscopic experiments in the visible and near-infrared regions were performed on the molecules and reveal the energies and regarding the structural features and interactions responsible for the unusual solvent-induced changes in the steady-state and transient absorption spectra and dynamics of dynamics of the excited electronic states. The data also provide information peridinin.
Collapse
Affiliation(s)
- Nirmalya Chatterjee
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Dariusz M. Niedzwiedzki
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | - Kazuyoshi Aoki
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Takayuki Kajikawa
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Shigeo Katsumura
- Department of Chemistry, Kwansei Gakuin University, 669-1337, Hyogo, Japan
| | - Hideki Hashimoto
- Department of Physics, Osaka City University, 558-8585, Osaka, Japan
| | - Harry A. Frank
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| |
Collapse
|
16
|
Christensen RL, Galinato MGI, Chu EF, Howard JN, Broene RD, Frank HA. Energies of low-lying excited states of linear polyenes. J Phys Chem A 2008; 112:12629-36. [PMID: 19007144 PMCID: PMC3629814 DOI: 10.1021/jp8060202] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Room temperature absorption and emission spectra of the all-trans isomers of decatetraene, dodecapentaene, tetradecahexaene, and hexadecaheptaene have been obtained in a series of nonpolar solvents. The resolved vibronic features in the optical spectra of these model systems allow the accurate determination of S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) and S(1) (2(1)A(g)(-)) --> S(0) (1(1)A(g)(-)) electronic origins as a function of solvent polarizability. These data can be extrapolated to predict the transition energies in the absence of solvent perturbations. The effects of the terminal methyl substituents on the transition energies also can be estimated. Franck-Condon maxima in the absorption and emission spectra were used to estimate differences between S(0) (1(1)A(g)(-)) --> S(1) (2(1)A(g)(-)) and S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) electronic origins and "vertical" transition energies. Experimental estimates of the vertical transition energies of unsubstituted, all-trans polyenes in vacuum as a function of conjugation length are compared with long-standing multireference configuration interaction (MRCI) treatments and with more recent ab initio calculations of the energies of the 2(1)A(g)(-) (S(1)) and 1(1)B(u)(+) (S(2)) states.
Collapse
Affiliation(s)
- Ronald L. Christensen
- Authors to whom correspondence should be addressed. R.L.C.: fax 207-725-3017, . H.A F.: fax 860-486-6558,
| | | | | | | | | | - Harry A. Frank
- Authors to whom correspondence should be addressed. R.L.C.: fax 207-725-3017, . H.A F.: fax 860-486-6558,
| |
Collapse
|
17
|
Ghosh D, Hachmann J, Yanai T, Chan GKL. Orbital optimization in the density matrix renormalization group, with applications to polyenes and β-carotene. J Chem Phys 2008; 128:144117. [DOI: 10.1063/1.2883976] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Femtosecond spectroscopy of native and carotenoidless purple-bacterial LH2 clarifies functions of carotenoids. Biophys J 2008; 94:4808-11. [PMID: 18339744 DOI: 10.1529/biophysj.107.121681] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EET between the two circular bacteriochlorophyll compartments B800 and B850 in native (containing the carotenoid rhodopin) and carotenoidless LH2 isolated from the photosynthetic purple sulfur bacterium Allochromatium minutissimum was investigated by femtosecond time-resolved transient absorption spectroscopy. Both samples were excited with 120-fs laser pulses at 800 nm, and spectral evolution was followed in the 720-955 nm range at different delay times. No dependence of transient absorption in the B800 band on the presence of the carotenoid rhodopin was found. Together with the likewise virtually unchanged absorption spectra in the bacteriochlorophyll Q(y) region, these observations suggest that absence of rhodopin does not significantly alter the structure of the pigment-protein complex including interactions between bacteriochlorophylls. Apparently, rhodopin does also not accelerate B800 to B850 EET in LH2, contrary to what has been suggested previously. Moreover, "carotenoid-catalyzed internal conversion" can also be excluded for the bacteriochlorophylls in LH2 of A. minutissimum. Together with previous results obtained with two-photon fluorescence excitation spectroscopy, it can also be concluded that there is neither EET from rhodopin to B800 nor (back-)EET from B800 to rhodopin.
Collapse
|
19
|
Mondal JA, Verma S, Ghosh HN, Palit DK. Relaxation dynamics in the excited states of a ketocyanine dye probed by femtosecond transient absorption spectroscopy. J CHEM SCI 2008. [DOI: 10.1007/s12039-008-0007-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Akemann W, Laage D, Plaza P, Martin MM, Blanchard-Desce M. Photoinduced intramolecular charge transfer in push-pull polyenes: effects of solvation, electron-donor group, and polyenic chain length. J Phys Chem B 2007; 112:358-68. [PMID: 17997542 DOI: 10.1021/jp075418z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subpicosecond absorption spectroscopy is used to characterize the primary photoinduced processes in a class of push-pull polyenes bearing a julolidine end group as the electron donor and a diethylthiobarbituric acid end group as the electron acceptor. The excited-state decay time and relaxation pathway have been studied for four polyenes of increasing chain length (n = 2-5 double bonds) in aprotic solvents of different solvation time, polarity, and viscosity. Intramolecular charge transfer (ICT) leading to a transient state of cyanine-like structure (fully conjugated with no bond length alternation) is observed in all polar solvents at a solvent dependent rate, but the reaction is not observed in cyclohexane, a nonpolar solvent. In polar solvents, the reaction time increases with the average solvation time but remains slightly larger, except in the viscous solvent triacetin. These facts are interpreted as an indication that both solvent reorganization and internal restructuring are involved in the ICT-state formation. The observed photodynamics resemble those we previously found for another class of polyenes bearing a dibutylaniline group as the donor, including a similar charge-transfer rate in spite of the larger electron donor character of the julolidine group. This observation brings further support to the proposal that an intramolecular coordinate is involved in the charge-transfer reaction, possibly a torsional motion of the donor end group. On the other hand, relaxation of the ICT state leads to cis-trans isomerization or crossing to the triplet state, depending on the length of the polyenic chain. In dioxane, tetrahydrofuran, and triacetin, the ICT state of the shorter chains (n = 2, 3) relaxes to the isomer with a viscosity-dependent rate, while that of the longer ones (n = 4, 5) leads to the triplet state with a viscosity-independent rate, as expected. In acetonitrile, the ICT-state lifetime is generally much shorter. A change from photoisomerization to intersystem crossing at n = 4 is also proposed in this solvent, but the formation of a photoproduct at n = 2 is not clear. In cyclohexane, where the ICT state is not formed, the relaxation pathway of the initially excited state is found to lead to an isomer for n = 2. As in polar solvents, a change to intersystem crossing at n = 4 is proposed. The direct relaxation to the ground state found at n = 3 for the series bearing a dibutylaniline group is not observed with the julolidine group. The results clearly illustrate that photoinduced reaction trajectories in push-pull polyenes are controlled by the static and dynamic properties of the solvent, the chemical nature and size of the end groups, and the conjugated-chain length and flexibility.
Collapse
Affiliation(s)
- Walther Akemann
- UMR CNRS 8640, Département de Chimie, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | | | | | | | |
Collapse
|
21
|
Wehling A, Walla PJ. Time-resolved two-photon spectroscopy of photosystem I determines hidden carotenoid dark-state dynamics. J Phys Chem B 2006; 109:24510-6. [PMID: 16375455 DOI: 10.1021/jp053890j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present time-resolved fs two-photon pump-probe data measured with photosystem I (PS I) of Thermosynechococcus elongatus. Two-photon excitation (lambda(exc)/2 = 575 nm) in the spectral region of the optically forbidden first excited singlet state of the carotenoids, Car S1, gives rise to a 800 fs and a 9 ps decay component of the Car S1 --> S(n) excited-state absorption with an amplitude of about 47 +/- 16% and 53 +/- 10%, respectively. By measuring a solution of pure beta-carotene under exactly the same conditions, only a 9 ps decay component can be observed. Exciting PS I at exactly the same spectral region via one-photon excitation (lambda(exc) = 575 nm) also does not show any sub-ps component. We ascribe the observed constant of 800 fs to a portion of about 47 +/- 16% beta-carotene states that can potentially transfer their energy efficiently to chlorophyll pigments via the optically dark Car S1 state. We compared these data with conventional one-photon pump-probe data, exciting the optically allowed second excited state, Car S2. This comparison demonstrates that the fast dynamics of the optically forbidden state can hardly be unravelled via conventional one-photon excitation only because the corresponding Car S1 populations are too small after Car S2 --> Car S1 internal conversion. A direct comparison of the amplitudes of the Car S1 --> S(n) excited-state absorption of PS I and beta-carotene observed after Car S2 excitation allows determination of a quantum yield for the Car S1 formation in PS I of 44 +/- 5%. In conclusion, an overall Car S2 --> Chl energy-transfer efficiency of approximately 69 +/- 5% is observed at room temperature with 56 +/- 5% being transferred via Car S2 and probably very hot Car S1 states and 13 +/- 5% being transferred via hot and "cold" Car S1 states.
Collapse
Affiliation(s)
- Axel Wehling
- Technical University of Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Hans-Sommerstr. 10, D-38106 Braunschweig, Germany
| | | |
Collapse
|
22
|
Pendon ZD, Sullivan JO, van der Hoef I, Lugtenburg J, Cua A, Bocian DF, Birge RR, Frank HA. Stereoisomers of carotenoids: spectroscopic properties of locked and unlocked cis-isomers of spheroidene. PHOTOSYNTHESIS RESEARCH 2005; 86:5-24. [PMID: 16172922 DOI: 10.1007/s11120-005-1205-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Accepted: 01/24/2005] [Indexed: 05/04/2023]
Abstract
A systematic optical spectroscopic and computational investigation of a series of locked-cis-isomers of spheroidene has been carried out with the goal being to better understand the relationships between stereochemistry, photochemistry, photophysics and biological function of geometric isomers of carotenoids. The spectroscopic properties of 15,15'-locked-cis-spheroidene, 13,14-locked-cis-spheroidene, 11, 12-locked-cis-spheroidene in solution are compared with those observed for unlocked spheroidene. The locked-cis bonds are incapable of undergoing cis-to-trans isomerization and therefore provide an effective means of exploring the relationship between specific stereoisomers and molecular spectroscopy. Samples of the molecules were purified using a high performance liquid chromatography (HPLC) apparatus equipped with a diode array detector, which records the absorption spectra immediately as the molecules emerge from the column and prior to any isomerization that might occur. For several stable isomers, resonance Raman (rR) spectroscopy was carried out to assign their configurations. Quantum computations of absorption spectra were performed using ZINDO/S and also MNDO-PSDCI methods employing nearly full single and double configuration interaction within the pi-electron manifold. Also, for a few test cases, ground state minimizations were done using density functional methods (B3LYP/6-31G(d)). The MNDO-PSDCI methods coupled with the density functional ground state minimization provide an accurate assignment of the positions of the 2(1)Ag - , 1(1)Bu +, and 1(1)Ag + excited states and also address the nature of the forbidden 1(1)Bu - state, whose location is uncertain for polyenes and carotenoids. We demonstrate that the configurational description of the 1(1)Bu - state is sufficiently unique to preclude assignment of its energy based on the characterization of surrounding excited singlet states. The experimental and computational data also offer important insights into the photochemical and photophysical properties of stereoisomers of carotenoids.
Collapse
Affiliation(s)
- Zeus D Pendon
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gruszecki WI, Stiel H, Niedzwiedzki D, Beck M, Milanowska J, Lokstein H, Leupold D. Towards elucidating the energy of the first excited singlet state of xanthophyll cycle pigments by X-ray absorption spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:102-7. [PMID: 15949988 DOI: 10.1016/j.bbabio.2005.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/09/2005] [Accepted: 02/22/2005] [Indexed: 11/16/2022]
Abstract
The first excited singlet state (S(1)) of carotenoids (also termed 2A(g)(-)) plays a key role in photosynthetic excitation energy transfer due to its close proximity to the S(1) (Q(y)) level of chlorophylls. The determination of carotenoid 2A(g)(-) energies by optical techniques is difficult; transitions from the ground state (S(0), 1A(g)(-)) to the 2A(g)(-) state are forbidden ("optically dark") due to parity (g <-- //--> g) as well as pseudo-parity selection rules (- <-- //--> -). Of particular interest are S(1) energies of the so-called xanthophyll-cycle pigments (violaxanthin, antheraxanthin and zeaxanthin) due to their involvement in photoprotection in plants. Previous determinations of S(1) energies of violaxanthin and zeaxanthin by different spectroscopic techniques vary considerably. Here we present an alternative approach towards elucidation of the optically dark states of xanthophylls by near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The indication of at least one pi* energy level (about 0.5 eV below the lowest 1B(u)(+) vibronic sublevel) has been found for zeaxanthin. Present limitations and future improvements of NEXAFS to study optically dark states of carotenoids are discussed. NEXAFS combined with simultaneous optical pumping will further aid the investigation of these otherwise hardly accessible states.
Collapse
Affiliation(s)
- W I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|
24
|
Hashimoto H, Yanagi K, Yoshizawa M, Polli D, Cerullo G, Lanzani G, De Silvestri S, Gardiner AT, Cogdell RJ. The very early events following photoexcitation of carotenoids. Arch Biochem Biophys 2004; 430:61-9. [PMID: 15325912 DOI: 10.1016/j.abb.2004.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 04/07/2004] [Indexed: 11/25/2022]
Abstract
The recent availability of laser pulses with 10-20 fs duration, tunable throughout the visible and near infrared wavelengths, has facilitated the investigation, with unprecedented temporal resolution, into the very early events of energy relaxation in carotenoids [Science 298 (2002) 2395; Synth. Metals 139 (2003) 893]. This has enabled us to clearly demonstrate the existence of an additional intermediate state, Sx, lying between the S2 (1(1)Bu+) and S1 (2(1)Ag-) states. In addition, by applying time-resolved stimulated Raman spectroscopy with femtosecond time resolution, it has also been shown that vibrational relaxation in electronic excited states plays an important role in these interconversions. In this mini-review, we describe briefly the current understanding of Sx and the other intermediate excited states that can be formed by relaxation from S2, mainly focusing attention on the above two topics. Emphasis is also placed on some of the major remaining unsolved issues in carotenoid photochemistry.
Collapse
Affiliation(s)
- Hideki Hashimoto
- Light and Control, PRESTO/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Christensen RL, Faksh A, Meyers JA, Samuel IDW, Wood P, Schrock RR, Hultzsch KC. Optical Spectroscopy of Long Polyenes. J Phys Chem A 2004. [DOI: 10.1021/jp048421g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Wohlleben W, Buckup T, Herek JL, Cogdell RJ, Motzkus M. Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis. Biophys J 2003; 85:442-50. [PMID: 12829499 PMCID: PMC1303100 DOI: 10.1016/s0006-3495(03)74489-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A new channel of excitation energy deactivation in bacterial light harvesting was recently discovered, which leads to carotenoid triplet population on an ultrafast timescale. Here we show that this mechanism is also active in LH2 of Rhodopseudomonas acidophila through analysis of transient absorption data with an evolutionary target analysis. The algorithm offers flexible testing of kinetic network models with low a priori knowledge requirements. It applies universally to the simultaneous fitting of target state spectra and rate constants to time-wavelength-resolved data. Our best-fit model reproduces correctly the well-known cooling and decay behavior in the S(1) band, but necessitates an additional, clearly distinct singlet state that does not exchange with S(1), promotes ultrafast triplet population and participates in photosynthetic energy transfer.
Collapse
|
27
|
Naqvi KR, Melø TB, Sliwka HR, Mohamad SBB, Partali V. Photochemical and photophysical behaviour of vitamin E: interaction of its long-lived transient photoproducts with carotenoids. Photochem Photobiol Sci 2003; 2:381-5. [PMID: 12760534 DOI: 10.1039/b210972g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-channel, flash kinetic spectroscopy with microsecond time resolution has been used for investigating the interactions between carotenoids and the following photoproducts of alpha-tocopherol (EH) in hexane, methanol, acetonitrile, and dimethyl sulfoxide: (a) the lowest triplet, (b) the tocopherol radical cation, which could be seen only in the polar aprotic solvents acetonitrile and dimethyl sulfoxide, and (c) the neutral tocopheroxyl radical. The first two species reconvert to EH by transferring triplet excitation and positive charge (respectively) to the carotenoid; the third is unreactive. The relevance of these observations to photoprotection and the photoionisation of sterically hindered phenols is pointed out.
Collapse
Affiliation(s)
- K Razi Naqvi
- Department of Physics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
28
|
Macpherson AN, Hiller RG. Light-Harvesting Systems in Chlorophyll c-Containing Algae. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Krikunova M, Kummrow A, Voigt B, Rini M, Lokstein H, Moskalenko A, Scheer H, Razjivin A, Leupold D. Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically 'dark') S(1) state of carotenoids. FEBS Lett 2002; 528:227-9. [PMID: 12297310 DOI: 10.1016/s0014-5793(02)03315-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Native and carotenoid-depleted peripheral purple bacterial light-harvesting complex (LH2) were investigated by simultaneous two-photon excited (between 1300-1500 nm) fluorescence (TPF). TPF results from direct bacteriochlorophyll excitation in both samples. The spectral position of the 2A(g)(-) state of rhodopin [corrected] is indicated by a diminuition of the bacteriochlorophyll TPF in native LH2. In conclusion, comparison to carotenoid-depleted samples is a conditio sine qua non for unambiguous interpretation of similar experiments.
Collapse
Affiliation(s)
- M Krikunova
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2a, D-12489 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Laage D, Plaza P, Blanchard-Desce M, Martin MM. Multiple relaxation pathways in push-pull polyenes. Photochem Photobiol Sci 2002; 1:526-35. [PMID: 12659165 DOI: 10.1039/b203201p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subpicosecond absorption and gain spectroscopy are used to investigate the excited-state behavior of push-pull polyenes made of a diethylthiobarbituric acid electron-acceptor group and a dibutylaniline electron-donor group linked by a pi-conjugated chain. Four polyenes of increasing length, ranging from n = 2 to 5 double bonds, are compared. The relaxation path and relaxation kinetics are studied in dioxane and in cyclohexane, a polar and a nonpolar solvent, respectively. In dioxane, the results provide evidence for the formation of an emissive transient state on an ultrashort time scale (2-3 ps) attributed to a charge transfer (CT) state. The regular shift of the gain peak of this transient state with increase in the chain length (ca. 100 nm per added double bond) indicates that its structure is similar to that of a cyanine, i.e. with a fully conjugated polyenic chain. Its lifetime ranges from a few tens to a few hundreds of picoseconds depending on the chain length. When the number of double bonds increases from n = 2 to 3, the lifetime increases, then decreases continuously for longer chains. In cyclohexane, where the transient CT state is not formed, the decay of the initial excited state follows the same trend when the chain length increases but the lifetimes are shorter than that of the CT state in dioxane. In both solvents, the characterization of long-lived photoproducts by synchronizing two low repetition-rate subpicosecond laser systems demonstrates a change in the relaxation route as the chain length increases. Isomerization occurs for n = 2, whereas intersystem crossing to the triplet state occurs for n = 4. The change in the relaxation channel is observed for n = 3 in both solvents with however a solvent-dependent behavior. In dioxane, relaxation to the triplet state is already observed for n = 3, while an intermediate regime with a relaxation directly to the ground state is observed in cyclohexane. The photophysics of the studied push-pull polyenes is tentatively compared to that of polymethine cyanines and substituted carotenoids.
Collapse
Affiliation(s)
- Damien Laage
- Département de Chimie, Ecole Normale Supérieure (UMR CNRS 8640 PASTEUR), 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
31
|
Beck M, Stiel H, Leupold D, Winter B, Pop D, Vogt U, Spitz C. Evaluation of the energetic position of the lowest excited singlet state of beta-carotene by NEXAFS and photoemission spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:260-7. [PMID: 11779559 DOI: 10.1016/s0005-2728(01)00226-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In carotenoids the lowest energetic optical transition belonging to the pi-electron system is forbidden by symmetry, therefore the energetic position of the S(1) (2(1)A(g)) level can hardly be assessed by optical spectroscopy. We introduce a novel experimental approach: For molecules with pi-electron systems the transition C1s-->2p(pi*) from inner-atomic to the lowest unoccupied molecular orbital (LUMO) appears in X-ray absorption near edge spectra (NEXAFS) as an intense, sharp peak a few eV below the carbon K-edge. Whereas the peak position reflects the energy of the first excited singlet state in relation to the ionization potential of the molecule, intensity and width of the transition depend on hybridization and bonding partners of the selected atom. Complementary information can be obtained from ultraviolet photoelectron spectroscopy (UPS): At the low binding energy site of the spectrum a peak related to the highest occupied molecular orbital (HOMO) appears. We have measured NEXAFS and UPS of beta-carotene. Based on these measurements and quantum chemical calculations the HOMO and LUMO energies can be derived.
Collapse
Affiliation(s)
- M Beck
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2A, D-12489 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Barros MP, Pinto E, Colepicolo P, Pedersén M. Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Biochem Biophys Res Commun 2001; 288:225-32. [PMID: 11594777 DOI: 10.1006/bbrc.2001.5765] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astaxanthin and peridinin, two typical carotenoids of marine microalgae, and lycopene were incorporated in phosphatidylcholine multilamellar liposomes and tested as inhibitors of lipid oxidation. Contrarily to peridinin results, astaxanthin strongly reduced lipid damage when the lipoperoxidation promoters-H(2)O(2), tert-butyl hydroperoxide (t-ButOOH) or ascorbate-and Fe(2+):EDTA were added simultaneously to the liposomes. In order to check if the antioxidant activity of carotenoids was also related to their effect on membrane permeability, the peroxidation processes were initiated by adding the promoters to Fe(2+)-loaded liposomes (encapsulated in the inner aqueous solution). Despite that the rigidifying effect of carotenoids in membranes was not directly measured here, peridinin probably has decreased membrane permeability to initiators (t-ButOOH > ascorbate > H(2)O(2)) since its incorporation limited oxidative damage on iron-liposomes. On the other hand, the antioxidant activity of astaxanthin in iron-containing vesicles might be derived from its known rigidifying effect and the inherent scavenging ability.
Collapse
Affiliation(s)
- M P Barros
- Department of Botany, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|