1
|
Schluga PHDC, Larangote D, de Melo AM, Lobermayer GK, Torrejón D, de Oliveira LS, Alvarenga VG, Vivas-Ruiz DE, Veiga SS, Sanchez EF, Gremski LH. A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine-Glycine-Aspartic Acid (RGD)-Containing Molecules. Toxins (Basel) 2024; 16:486. [PMID: 39591241 PMCID: PMC11597958 DOI: 10.3390/toxins16110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics.
Collapse
Affiliation(s)
- Pedro Henrique de Caires Schluga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Debora Larangote
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Ana Maria de Melo
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Guilherme Kamienski Lobermayer
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Luciana Souza de Oliveira
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Valeria Gonçalves Alvarenga
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Dan Erick Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Silvio Sanches Veiga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Eladio Flores Sanchez
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Luiza Helena Gremski
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| |
Collapse
|
2
|
Clissa PB, Della-Casa MS, Zychar BC, Sanabani SS. The Role of Snake Venom Disintegrins in Angiogenesis. Toxins (Basel) 2024; 16:127. [PMID: 38535794 PMCID: PMC10974740 DOI: 10.3390/toxins16030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 01/03/2025] Open
Abstract
Angiogenesis, the formation of new blood vessels, plays a critical role in various physiological and pathological conditions. Snake venom disintegrins (SVDs) have been identified as significant regulators of this process. In this review, we explore the dual roles of SVD in angiogenesis, both as antiangiogenic agents by inhibiting integrin binding and interfering with vascular endothelial growth factors and as proangiogenic agents by enhancing integrin binding, stimulating cell migration and proliferation, and inducing neoangiogenesis. Studies in vitro and in animal models have demonstrated these effects and offer significant therapeutic opportunities. The potential applications of SVD in diseases related to angiogenesis, such as cancer, ocular diseases, tissue regeneration, wound healing, and cardiovascular diseases, are also discussed. Overall, SVDs are promising potential therapeutics, and further advances in this field could lead to innovative treatments for diseases related to angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, Sao Paulo 05508-220, Brazil
| |
Collapse
|
3
|
Almeida GDO, de Oliveira IS, Arantes EC, Sampaio SV. Snake venom disintegrins update: insights about new findings. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230039. [PMID: 37818211 PMCID: PMC10561651 DOI: 10.1590/1678-9199-jvatitd-2023-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023] Open
Abstract
Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in venom through the proteolytic processing of metalloproteinases (SVMPs), which, in turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) molecule. Disintegrins have a recognition motif for integrins in their structure, allowing interaction with these transmembrane adhesion receptors and preventing their binding to proteins in the extracellular matrix and other cells. This interaction gives disintegrins their wide range of biological functions, including inhibition of platelet aggregation and antitumor activity. As a result, many studies have been conducted in an attempt to use these natural compounds as a basis for developing therapies for the treatment of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as antiplatelet compounds, and they are synthesized from the structure of echistatin and barbourin, respectively. In this review, we discuss some of the main functional and structural characteristics of this class of proteins and their potential for therapeutic use.
Collapse
Affiliation(s)
- Gabriela de Oliveira Almeida
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Cavalcante JS, de Almeida DEG, Santos-Filho NA, Sartim MA, de Almeida Baldo A, Brasileiro L, Albuquerque PL, Oliveira SS, Sachett JAG, Monteiro WM, Ferreira RS. Crosstalk of Inflammation and Coagulation in Bothrops Snakebite Envenoming: Endogenous Signaling Pathways and Pathophysiology. Int J Mol Sci 2023; 24:11508. [PMID: 37511277 PMCID: PMC10380640 DOI: 10.3390/ijms241411508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 07/30/2023] Open
Abstract
Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.
Collapse
Affiliation(s)
- Joeliton S Cavalcante
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Denis Emanuel Garcia de Almeida
- Department of Bioprocess and Biotechnology, School of Agriculture, Agronomic Sciences School, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Norival A Santos-Filho
- Institute of Chemistry, São Paulo State University (UNESP-Univ Estadual Paulista), Araraquara 14800-900, São Paulo, Brazil
| | - Marco Aurélio Sartim
- Laboratory of Bioprospection, University Nilton Lins, Manaus 69058-030, Amazonas, Brazil
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Amanda de Almeida Baldo
- Institute of Biosciences, São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
| | - Lisele Brasileiro
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Polianna L Albuquerque
- Toxicological Information and Assistance Center, Instituto Doutor Jose Frota Hospital, Fortaleza 60025-061, Ceará, Brazil
- Faculty of Medicine, University of Fortaleza, Fortaleza 60430-140, Ceará, Brazil
| | - Sâmella S Oliveira
- Research Management, Hospital Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-001, Amazonas, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Research & Development Department, Nilton Lins Foundation, Manaus 69058-030, Amazonas, Brazil
- Graduate Program in Tropical Medicine, Department of Research at Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Amazonas State University, Manaus 69850-000, Amazonas, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18618-687, São Paulo, Brazil
- Center for Translational Science and Development of Biopharmaceuticals FAPESP/CEVAP-UNESP, Botucatu 18610-307, São Paulo, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP-Univ Estadual Paulista), Botucatu 18610-307, São Paulo, Brazil
| |
Collapse
|
5
|
Echeverría SM, Van de Velde AC, Luque DE, Cardozo CM, Kraemer S, Gauna Pereira MDC, Gay CC. Platelet aggregation inhibitors from Bothrops alternatus snake venom. Toxicon 2023; 223:107014. [PMID: 36610603 DOI: 10.1016/j.toxicon.2022.107014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Snake venoms are a complex mixture of proteins and peptides that can activate/inhibit platelet aggregation. Bothrops alternatus venom include three main families: metalloproteinases (SVMPs), serinoproteinases (SVSPs) and phospholipases A2 (PLA2s), among other minor components. In this work, we used inhibitor cocktails (containing Na2-EDTA, PMSF and/or pBPB) to investigate the effect of these three families and of baltergin (a PIII SVMP) on platelet aggregation by a turbidmetric method using a microplate reader. Cocktails 1 (active SVMPs) and 2 (active PLA2s) significantly reduced aggregation induced by ristocetin and collagen and by collagen and thrombin, respectively. Cocktail 3 (active SVSPs) showed a mild activation of aggregation, indicating the content of thrombin-like enzymes (TLEs) in this venom is low. Cocktail 4 (active minor components) displayed inhibitory effect with all agonists assayed (ristocetin, ADP, collagen and thrombin) but at higher IC50 values. Baltergin exhibited inhibitory effect when the catalytic domain was active for ristocetin-stimulated platelet aggregation and showed a non-enzymatic mechanism of inhibition when collagen was used as agonist. It was not able to disaggregate platelet thrombus. We conclude that B. alternatus venom is a source of natural inhibitors of platelet aggregation due to the action of SVMPs and PLA2s. Other minor components such as C-type lectins likely contribute to the antiplatelet effect. The interest in knowing the action of venom components on platelet function lies both in the understanding of the pathophysiology of snake bite envenomation and in their biotechnological application.
Collapse
Affiliation(s)
- Silvina M Echeverría
- Institute of Basic and Applied Chemistry of Northeast Argentina (IQUIBA-NEA), National Council for Scientific and Technical Research, National University of the Northeast (CONICET-UNNE), Corrientes, Argentina; Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (FaCENA, UNNE), Corrientes, Argentina
| | - Andrea C Van de Velde
- Institute of Basic and Applied Chemistry of Northeast Argentina (IQUIBA-NEA), National Council for Scientific and Technical Research, National University of the Northeast (CONICET-UNNE), Corrientes, Argentina; Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (FaCENA, UNNE), Corrientes, Argentina
| | - Daiana E Luque
- Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (FaCENA, UNNE), Corrientes, Argentina
| | - Cristhian M Cardozo
- Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (FaCENA, UNNE), Corrientes, Argentina
| | - Simón Kraemer
- Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (FaCENA, UNNE), Corrientes, Argentina
| | - María Del Carmen Gauna Pereira
- Institute of Basic and Applied Chemistry of Northeast Argentina (IQUIBA-NEA), National Council for Scientific and Technical Research, National University of the Northeast (CONICET-UNNE), Corrientes, Argentina; Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (FaCENA, UNNE), Corrientes, Argentina
| | - Claudia C Gay
- Institute of Basic and Applied Chemistry of Northeast Argentina (IQUIBA-NEA), National Council for Scientific and Technical Research, National University of the Northeast (CONICET-UNNE), Corrientes, Argentina; Faculty of Exact and Natural Sciences and Surveying, National University of the Northeast (FaCENA, UNNE), Corrientes, Argentina.
| |
Collapse
|
6
|
Genomic Confirmation of the P-IIIe Subclass of Snake Venom Metalloproteinases and Characterisation of Its First Member, a Disintegrin-Like/Cysteine-Rich Protein. Toxins (Basel) 2022; 14:toxins14040232. [PMID: 35448841 PMCID: PMC9028321 DOI: 10.3390/toxins14040232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Disintegrin-like/cysteine-rich (DC) proteins have long been regarded just as products of proteolysis of P-III snake venom metalloproteinases (SVMPs). However, here we demonstrate that a DC protein from the venom of Vipera ammodytes (Vaa; nose-horned viper), VaaMPIII-3, is encoded per se by a P-III SVMP-like gene that has a deletion in the region of the catalytic metalloproteinase domain and in part of the non-catalytic disintegrin-like domain. In this way, we justify the proposal of the introduction of a new subclass P-IIIe of SVMP-derived DC proteins. We purified VaaMPIII-3 from the venom of Vaa in a series of chromatographic steps. A covalent chromatography step based on thiol-disulphide exchange revealed that VaaMPIII-3 contains an unpaired Cys residue. This was demonstrated to be Cys6 in about 90% and Cys19 in about 10% of the VaaMPIII-3 molecules. We further constructed a three-dimensional homology model of VaaMPIII-3. From this model, it is evident that both Cys6 and Cys19 can pair with Cys26, which suggests that the intramolecular thiol-disulphide exchange has a regulatory function. VaaMPIII-3 is an acidic 21-kDa monomeric glycoprotein that exists in at least six N-glycoforms, with isoelectric points ranging from pH 4.5 to 5.1. Consistent with the presence of an integrin-binding motif in its sequence, SECD, VaaMPIII-3 inhibited collagen-induced platelet aggregation. It also inhibited ADP- and arachidonic-acid-induced platelet aggregation, but not ristocetin-induced platelet agglutination and the blood coagulation cascade.
Collapse
|
7
|
Moritz MNDO, Casali BC, Stotzer US, Karina dos Santos P, Selistre-de-Araujo HS. Alternagin-C, an alpha2beta1 integrin ligand, attenuates collagen-based adhesion, stimulating the metastasis suppressor 1 expression in triple-negative breast tumor cells. Toxicon 2022; 210:1-10. [DOI: 10.1016/j.toxicon.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
|
8
|
Hormetic-like dose-response induced by alternagin-C, a protein isolated from urutu snake (Rhinocerophis alternatus) venom, in fish (Hoplias malabaricus) cardiac contractility. Toxicon 2022; 205:67-70. [PMID: 34838810 DOI: 10.1016/j.toxicon.2021.11.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
The aim of this study was to evaluate the effects of different doses of alternagin-C, a disintegrin-like protein from Rhinocerophis alternatus venom, on myocardial contractility of the freshwater fish Hoplias malabaricus, an alternative model to contractile function studies. Alternagin-C treatment exhibited a hormetic-like dose-response curve with a strong positive inotropism and enhanced cardiac pumping capacity at low dose, whereas a modest inotropism and a left shift in the force-frequency relationship was registered at high dose.
Collapse
|
9
|
Averin AS, Utkin YN. Cardiovascular Effects of Snake Toxins: Cardiotoxicity and Cardioprotection. Acta Naturae 2021; 13:4-14. [PMID: 34707893 PMCID: PMC8526186 DOI: 10.32607/actanaturae.11375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Snake venoms, as complex mixtures of peptides and proteins, affect various vital systems of the organism. One of the main targets of the toxic components from snake venoms is the cardiovascular system. Venom proteins and peptides can act in different ways, exhibiting either cardiotoxic or cardioprotective effects. The principal classes of these compounds are cobra cardiotoxins, phospholipases A2, and natriuretic, as well as bradykinin-potentiating peptides. There is another group of proteins capable of enhancing angiogenesis, which include, e.g., vascular endothelial growth factors possessing hypotensive and cardioprotective activities. Venom proteins and peptides exhibiting cardiotropic and vasoactive effects are promising candidates for the design of new drugs capable of preventing or constricting the development of pathological processes in cardiovascular diseases, which are currently the leading cause of death worldwide. For example, a bradykinin-potentiating peptide from Bothrops jararaca snake venom was the first snake venom compound used to create the widely used antihypertensive drugs captopril and enalapril. In this paper, we review the current state of research on snake venom components affecting the cardiovascular system and analyse the mechanisms of physiological action of these toxins and the prospects for their medical application.
Collapse
Affiliation(s)
- A. S. Averin
- Institute of Cell Biophysics of the Russian Academy of Sciences PSCBR RAS, Pushchino, Moscow region, 142290 Russia
| | - Yu. N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
10
|
Olaoba OT, Karina dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH. Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020; 7:100052. [PMID: 32776002 PMCID: PMC7399193 DOI: 10.1016/j.toxcx.2020.100052] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) represent a diverse group of multi-domain proteins with several biological activities such as the ability to induce hemorrhage, proteolytic degradation of fibrinogen and fibrin, induction of apoptosis and inhibition of platelet aggregation. Due to these activities, SVMPs are responsible for many of the well-known pathological phenotypes in snake envenomations caused particularly by species from the Viperidae family and the Crotalinae subfamily. These proteins have been classified based on their size and domain structure into P–I, P-II and P-III classes. Comparatively, members of the P–I SVMPs possess the simplest structures, formed by the catalytic metalloproteinase domain only; the P-II SVMPs are moderately more complex, having the canonical disintegrin domain in addition to the metalloproteinase domain; members of the P-III class are more structurally varied, comprising the metalloproteinase, disintegrin-like, and cysteine-rich domains. Proteolytic cleavage, repeated domain loss and presence of other ancillary domains are responsible for structural diversities in the P-III class. However, studies continue to unveil the relationship between the structure and function of these proteins. In this review, we recovered evidences from literature on the structural peculiarities and functional classification of Snake Venom Metalloproteinases. In addition, we reflect on diversities that exist among each class while taking into account specific and up-to-date class-based activities.
Collapse
Affiliation(s)
- Olamide Tosin Olaoba
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | - Patty Karina dos Santos
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | | | - Dulce Helena Ferreira de Souza
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
11
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
12
|
Dos Santos PK, Altei WF, Danilucci TM, Lino RLB, Pachane BC, Nunes ACC, Selistre-de-Araujo HS. Alternagin-C (ALT-C), a disintegrin-like protein, attenuates alpha2beta1 integrin and VEGF receptor 2 signaling resulting in angiogenesis inhibition. Biochimie 2020; 174:144-158. [PMID: 32360415 DOI: 10.1016/j.biochi.2020.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 01/01/2023]
Abstract
Angiogenesis, a crucial process in tumor progression, is mainly regulated by vascular endothelial growth factor (VEGF) and its receptor, VEGFR2. Studies have shown the interaction between α2β1 integrin, a collagen receptor, and VEGFR2 in VEGF-driven angiogenesis in vitro and in vivo. Alternagin-C (ALT-C), an ECD-disintegrin-like protein from Bothrops alternatus snake venom, has high affinity for α2β1 integrin and shows antiangiogenic activity in concentrations higher than 100 nM. Despite previous results, its mechanism of action on angiogenic signaling pathways has not been addressed. Here we evaluate the antiangiogenic activity of ALT-C in human umbilical vein endothelial cells (HUVECs) associated or not with VEGF, as well as its interference in the α2β1/VEGFR2 crosstalk. ALT-C (1000 nM) affected actin cytoskeleton, decreased the number of cell filopodia, and strongly inhibited HUVEC tube formation, adhesion to type I collagen and cell migration. Down-regulation of α2β1/VEGFR2 crosstalk by ALT-C decreased the protein content and phosphorylation of VEGFR2 and β1 integrin subunit, inhibited ERK 1/2 and PI3K signaling and regulated FAK/Src and paxillin pathways. Furthermore, ALT-C increased the content of the autophagic markers LC3B and Beclin-1 in the presence of VEGF, which is associated with decreased angiogenesis. In conclusion, we suggest that ALT-C, after binding to α2β1 integrin, inhibits VEGF/VEGFR2 signaling, which results in impaired angiogenesis. These results demonstrate that ALT-C may be a potential candidate for the development of antiangiogenic therapies for tumor and metastasis treatment and help to understand the complexity and fundamental role of integrin inhibition in the tumor microenvironment.
Collapse
Affiliation(s)
- Patty K Dos Santos
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil.
| | - Wanessa F Altei
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Taís M Danilucci
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Rafael L B Lino
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Bianca C Pachane
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Ana C C Nunes
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Heloisa S Selistre-de-Araujo
- Biochemistry and Molecular Biology Laboratory, Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| |
Collapse
|
13
|
Lazarovici P, Marcinkiewicz C, Lelkes PI. Cell-Based Adhesion Assays for Isolation of Snake Venom's Integrin Antagonists. Methods Mol Biol 2020; 2068:205-223. [PMID: 31576530 DOI: 10.1007/978-1-4939-9845-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Snake venoms could lead to the development of new drugs to treat a range of life-threatening conditions like cardiovascular diseases. Most snake venoms contain a large variety of lethal toxins as well as anti-adhesive proteins such as disintegrins, which have evolved from the harmless compounds ADAMs (proteins with a disintegrin and a metalloprotease domain) and C-type lectin proteins which disturb connective tissue and cell-matrix interaction. These anti-adhesive proteins target and block integrin receptors and disrupt normal biological processes in snakes' prey such as connective tissue physiology and blood clotting. This chapter provides the experimental details of a practical, cell-based adhesion protocol to help identify and isolate disintegrins and C-type lectin proteins from snake venoms, important tools in integrin research and lead compounds for drug discovery.
Collapse
Affiliation(s)
- Philip Lazarovici
- Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Rabelo LFG, Ferreira BA, Deconte SR, Tomiosso TC, Dos Santos PK, Andrade SP, Selistre de Araújo HS, Araújo FDA. Alternagin-C, a disintegrin-like protein from Bothrops alternatus venom, attenuates inflammation and angiogenesis and stimulates collagen deposition of sponge-induced fibrovascular tissue in mice. Int J Biol Macromol 2019; 140:653-660. [PMID: 31442506 DOI: 10.1016/j.ijbiomac.2019.08.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023]
Abstract
Alternagin-C (ALT-C), a disintegrin-like protein obtained from the venom of Bothrops alternatus, is able to modulate cellular behaviors such as adhesion, migration and proliferation, as well as the production of various growth factors via α2β1 integrin, important processes during inflammation, angiogenesis and fibrogenesis, which although appear as distinct events, act concomitantly in several chronic inflammatory diseases. Our objective was to investigate the effects of ALT-C on components of the sponge-induced inflammatory response in balb/c mice. The polyester-polyurethane sponges were implanted in mice's subcutaneous layer of the dorsal region and daily injected with saline (control group) or ALT-C (10, 100 or 1000 ng). Nine days after implantation the implants were removed and processed. ALT-C inhibited the inflammatory response, observed through mast cell reduction, NAG-activity and also by the inhibition of TNF-α, CXCL-1 and CCL2/JE/MCP-1 cytokines. ALT-C was also able to reduce hemoglobin content, number of vessels and the concentrations of VEGF and FGF cytokines. Finally, at its highest dose (1000 ng), ALT-C increased all evaluated markers associated with fibrogenesis (collagen production and TGF-β1 levels). All these factors reveal that ALT-C is a strong candidate to be exploited in the development of anti-inflammatory and anti-angiogenic therapies in chronic inflammatory processes.
Collapse
Affiliation(s)
- Luis Fernando Gonçalves Rabelo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Bruno Antonio Ferreira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| | - Simone Ramos Deconte
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Silvia Passos Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| |
Collapse
|
15
|
Montealegre-Sánchez L, Gimenes SN, Lopes DS, Teixeira SC, Solano-Redondo L, de Melo Rodrigues V, Jiménez-Charris E. Antitumoral Potential of Lansbermin-I, a Novel Disintegrin from Porthidium lansbergii lansbergii Venom on Breast Cancer Cells. Curr Top Med Chem 2019; 19:2069-2078. [DOI: 10.2174/1568026619666190806151401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
Background:
Disintegrins from snake venoms bind with high specificity cell surface integrins,
which are important pharmacological targets associated with cancer development and progression.
Objective:
In this study, we isolated a disintegrin from the Porthidium lansbergii lansbergii venom and
evaluated its antitumoral effects on breast cancer cells.
Methods:
The isolation of the disintegrin was performed on RP-HPLC and the inhibition of platelet aggregation
was evaluated on human platelet-rich plasma. The inhibition of cell adhesion was also evaluated
in vitro on cultures of cell lines by the MTT method as well as the inhibition of breast cancer cell
migration by the wound healing assay. The binding of the disintegrin to integrin subunits was verified by
flow cytometry and confocal microscopy. Finally, inhibition of angiogenesis was assessed in vitro on
HUVEC cells and the concentration of VEGF was measured in the cellular supernatants.
Results:
The disintegrin, named Lansbermin-I, is a low molecular weight protein (< 10 kDa) that includes
an RGD on its sequence identified previously. Lansbermin-I showed potent inhibition of ADP and
collagen-induced platelet aggregation on human plasma and also displayed inhibitory effects on the adhesion
and migration of breast cancer MCF7 and MDA-MB 231cell lines, without affecting nontumorigenic
breast MCF-10A and lung BEAS cells. Additionally, Lansbermin-I prevented MCF7 cells to
adhere to fibronectin and collagen, and also inhibited in vitro angiogenesis on human endothelial HUVEC
cells.
Conclusion:
Our results display the first report on the antitumor and anti-metastatic effects of an RGDdisintegrin
isolated from a Porthidium snake venom by possibly interfering with α2 and/or β1-containing
integrins. Thus, Lansbermin-I could be an attractive model to elucidate the role of disintegrins against
breast cancer development.
Collapse
Affiliation(s)
| | - Sarah N.C. Gimenes
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | - Daiana S. Lopes
- Instituto Multidisciplinar em Saude, Campus Anisio Teixeira, Universidade Federal da Bahia, BA, Brazil
| | - Samuel C. Teixeira
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | - Luis Solano-Redondo
- Grupo Laboratorio de Herpetologia, Facultad de Ciencias, Universidad del Valle, Cali, Colombia
| | - Veridiana de Melo Rodrigues
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | | |
Collapse
|
16
|
Abstract
Leucurogin is an ECD disintegrin-like protein, cloned from Bothrops leucurus venom gland. This new protein, encompassing the disintegrin region of a PIII metalloproteinase, is produced by recombinant technology and its biological and functional activity was partially characterized in this study. Biological activity was characterized in vitro using human fibroblasts. Functional activity of leucurogin was analysed in vitro and in vivo with murine B16F10 Nex-2 and human melanoma BLM cells. The results show that leucurogin inhibits cellular processes dependent on collagen type I. In a competition assay with collagen, leucurogin inhibits, in a dose-dependent manner, the adhesion of fibroblast to collagen. At 10 μM leucurogin reduces adhesion (40%) and migration (70%) of hFb and inhibits migration (32%) and proliferation (65%) of BLM cells. At 2.5 μM leucurogin inhibits 80% cell proliferation of B16F10 Nex-2 melanoma cells. At 4.8 μM leucurogin inhibits, in vitro, the vascular structures formation by endothelial cells by 66%. Leucurogin, injected intraperitoneally, i.p. (5 μg/animal, two-month old C57/Bl6 male mice) on alternate days for 15 days, inhibits lung metastasis of B16F10 Nex-2 cells by 70-75%. In the treatment of human melanoma, grafted intradermally in the nude mice flank, leucurogin (7.5 μg/kg in alternate days during 17 days) inhibits tumor growth by more than 40%. Leucurogin can be considered a promising agent for melanoma treatment.
Collapse
|
17
|
Monteiro DA, Kalinin AL, Selistre-de-Araújo HS, Nogueira LAN, Beletti ME, Fernandes MN, Rantin FT. Cardioprotective effects of alternagin-C (ALT-C), a disintegrin-like protein from Rhinocerophis alternatus snake venom, on hypoxia-reoxygenation-induced injury in fish. Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:67-75. [PMID: 30352307 DOI: 10.1016/j.cbpc.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
Alternagin-C (ALT-C) is a disintegrin-like peptide purified from Rhinocerophis alternatus snake venom with the property of inducing vascular endothelial growth factor (VEGF) expression, endothelial cell proliferation and migration, and angiogenesis. Therefore, this protein could be interesting as a new approach for ischemic heart diseases, an imbalance between myocardial oxygen supply and demand, leading to cardiac dysfunction. We investigated the effects of a single dose of alternagin-C (0.5 mg kg-1, via intra-arterial), after 7 days, on hypoxia/reoxygenation challenge in isolated ventricle strips and on morphological changes and density of blood vessels of the heart, using fish as an alternative experimental model. ALT-C treatment provided protection of cardiomyocytes against hypoxia/reoxygenation-induced negative inotropism. ALT-C also stimulated angiogenesis and improved excitation-contraction coupling during hypoxic conditions. Our results provide a new insight into a functional role of ALT-C against hypoxia/reoxygenation-induced cardiomyocyte injury pointing out to a potential therapeutic strategy for ischemia-related diseases.
Collapse
Affiliation(s)
- D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| | - A L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - H S Selistre-de-Araújo
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - L A N Nogueira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - M E Beletti
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - M N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
18
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
19
|
Van de Velde AC, Gay CC, Moritz MNDO, Dos Santos PK, Bustillo S, Rodríguez JP, Acosta OC, Biscoglio MJ, Selistre-de-Araujo HS, Leiva LC. Purification of a fragment obtained by autolysis of a PIIIb-SVMP from Bothrops alternatus venom. Int J Biol Macromol 2018; 113:205-211. [PMID: 29471097 DOI: 10.1016/j.ijbiomac.2018.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/07/2017] [Accepted: 02/11/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea Carolina Van de Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina.
| | | | | | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Ofelia Cristina Acosta
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | - Laura Cristina Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
20
|
Amazonas DR, Portes-Junior JA, Nishiyama-Jr MY, Nicolau CA, Chalkidis HM, Mourão RH, Grazziotin FG, Rokyta DR, Gibbs HL, Valente RH, Junqueira-de-Azevedo IL, Moura-da-Silva AM. Molecular mechanisms underlying intraspecific variation in snake venom. J Proteomics 2018; 181:60-72. [DOI: 10.1016/j.jprot.2018.03.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/08/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
|
21
|
Moritz MNDO, Eustáquio LMS, Micocci KC, Nunes ACC, Dos Santos PK, de Castro Vieira T, Selistre-de-Araujo HS. Alternagin-C binding to α 2β 1 integrin controls matrix metalloprotease-9 and matrix metalloprotease-2 in breast tumor cells and endothelial cells. J Venom Anim Toxins Incl Trop Dis 2018; 24:13. [PMID: 29713337 PMCID: PMC5917863 DOI: 10.1186/s40409-018-0150-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are key players in tumor progression, helping tumor cells to modify their microenvironment, which allows cell migration to secondary sites. The role of integrins, adhesion receptors that connect cells to the extracellular matrix, in MMP expression and activity has been previously suggested. However, the mechanisms by which integrins control MMP expression are not completely understood. Particularly, the role of α2β1 integrin, one of the major collagen I receptors, in MMP activity and expression has not been studied. Alternagin-C (ALT-C), a glutamate-cysteine-aspartate-disintegrin from Bothrops alternatus venom, has high affinity for an α2β1 integrin. Herein, we used ALT-C as a α2β1 integrin ligand to study the effect of ALT-C on MMP-9 and MMP-2 expression as well as on tumor cells, fibroblats and endothelial cell migration. Methods ALT-C was purified by two steps of gel filtration followed by anion exchange chromatography. The α2β1 integrin binding properties of ALT-C, its dissociation constant (Kd) relative to this integrin and to collagen I (Col I) were determined by surface plasmon resonance. The effects of ALT-C (10, 40, 100 and 1000 nM) in migration assays were studied using three human cell lines: human fibroblasts, breast tumor cell line MDA-MB-231, and microvascular endothelial cells HMEC-1, considering cells found in the tumor microenvironment. ALT-C effects on MMP-9 and MMP-2 expression and activity were analyzed by quantitative PCR and gelatin zymography, respectively. Focal adhesion kinase activation was determined by western blotting. Results Our data demonstrate that ALT-C, after binding to α2β1 integrin, acts by two distinct mechanisms against tumor progression, depending on the cell type: in tumor cells, ALT-C decreases MMP-9 and MMP-2 contents and activity, but increases focal adhesion kinase phosphorylation and transmigration; and in endothelial cells, ALT-C inhibits MMP-2, which is necessary for tumor angiogenesis. ALT-C also upregulates c-Myc mRNA level, which is related to tumor suppression. Conclusion These results demonstrate that α2β1 integrin controls MMP expression and reveal this integrin as a target for the development of antiangiogenic and antimetastatic therapies. Electronic supplementary material The online version of this article (10.1186/s40409-018-0150-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Lívia Mara Santos Eustáquio
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Kelli Cristina Micocci
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Ana Carolina Caetano Nunes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Patty Karina Dos Santos
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | - Tamires de Castro Vieira
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905 Brazil
| | | |
Collapse
|
22
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
23
|
Monteiro DA, Selistre-de-Araújo HS, Tavares D, Fernandes MN, Kalinin AL, Rantin FT. Alternagin-C (ALT-C), a Disintegrin-Like Cys-Rich Protein Isolated from the Venom of the Snake Rhinocerophis alternatus, Stimulates Angiogenesis and Antioxidant Defenses in the Liver of Freshwater Fish, Hoplias malabaricus. Toxins (Basel) 2017; 9:toxins9100307. [PMID: 28956818 PMCID: PMC5666354 DOI: 10.3390/toxins9100307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022] Open
Abstract
Alternagin-C (ALT-C) is a disintegrin-like protein isolated from Rhinocerophis alternatus snake venom, which induces endothelial cell proliferation and angiogenesis. The aim of this study was to evaluate the systemic effects of a single dose of alternagin-C (0.5 mg·kg−1, via intra-arterial) on oxidative stress biomarkers, histological alterations, vascular endothelial growth factor (VEGF) production, and the degree of vascularization in the liver of the freshwater fish traíra, Hoplias malabaricus, seven days after the initiation of therapy. ALT-C treatment increased VEGF levels and hepatic angiogenesis. ALT-C also enhanced hepatic antioxidant enzymes activities such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase, decreasing the basal oxidative damage to lipids and proteins in the fish liver. These results indicate that ALT-C improved hepatic tissue and may play a crucial role in tissue regeneration mechanisms.
Collapse
Affiliation(s)
- Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil.
| | | | - Driele Tavares
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil.
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil.
| | - Ana Lúcia Kalinin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil.
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
24
|
Bustillo S, Van de Velde AC, Matzner Perfumo V, Gay CC, Leiva LC. Apoptosis induced by a snake venom metalloproteinase from Bothrops alternatus venom in C2C12 muscle cells. Apoptosis 2017; 22:491-501. [DOI: 10.1007/s10495-017-1350-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Suntravat M, Helmke TJ, Atphaisit C, Cuevas E, Lucena SE, Uzcátegui NL, Sánchez EE, Rodriguez-Acosta A. Expression, purification, and analysis of three recombinant ECD disintegrins (r-colombistatins) from P-III class snake venom metalloproteinases affecting platelet aggregation and SK-MEL-28 cell adhesion. Toxicon 2016; 122:43-49. [PMID: 27641750 PMCID: PMC5175399 DOI: 10.1016/j.toxicon.2016.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
Crotalid venoms are rich sources of components that affect the hemostatic system. Snake venom metalloproteinases are zinc-dependent enzymes responsible for hemorrhage that also interfere with hemostasis. The disintegrin domain is a part of snake venom metalloproteinases, which involves the binding of integrin receptors. Integrins play an essential role in cancer survival and invasion, and they have been major targets for drug development and design. Both native and recombinant disintegrins have been widely investigated for their anti-cancer activities in biological systems as well as in vitro and in vivo systems. Here, three new cDNAs encoding ECD disintegrin-like domains of metalloproteinase precursor sequences obtained from a Venezuelan mapanare (Bothrops colombiensis) venom gland cDNA library have been cloned. Three different N- and C-terminal truncated ECD disintegrin-like domains of metalloproteinases named colombistatins 2, 3, and 4 were amplified by PCR, cloned into a pGEX-4T-1 vector, expressed in Escherichia coli BL21, and tested for inhibition of platelet aggregation and inhibition of adhesion of human skin melanoma (SK-Mel-28) cancer cell lines on collagen I. Purified recombinant colombistatins 2, 3, and 4 were able to inhibit ristocetin- and collagen-induced platelet aggregation. r-Colombistatins 2 showed the most potent inhibiting SK-Mel-28 cancer cells adhesion to collagen. These results suggest that colombistatins may have utility in the development of therapeutic tools in the treatment of melanoma cancers and also thrombotic diseases.
Collapse
Affiliation(s)
- Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Thomas J Helmke
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Chairat Atphaisit
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Esteban Cuevas
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Sara E Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Nestor L Uzcátegui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas 1041, Venezuela
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA.
| | - Alexis Rodriguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas 1041, Venezuela
| |
Collapse
|
26
|
Metalloproteases Affecting Blood Coagulation, Fibrinolysis and Platelet Aggregation from Snake Venoms: Definition and Nomenclature of Interaction Sites. Toxins (Basel) 2016; 8:toxins8100284. [PMID: 27690102 PMCID: PMC5086644 DOI: 10.3390/toxins8100284] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Snake venom metalloproteases, in addition to their contribution to the digestion of the prey, affect various physiological functions by cleaving specific proteins. They exhibit their activities through activation of zymogens of coagulation factors, and precursors of integrins or receptors. Based on their structure–function relationships and mechanism of action, we have defined classification and nomenclature of functional sites of proteases. These metalloproteases are useful as research tools and in diagnosis and treatment of various thrombotic and hemostatic conditions. They also contribute to our understanding of molecular details in the activation of specific factors involved in coagulation, platelet aggregation and matrix biology. This review provides a ready reference for metalloproteases that interfere in blood coagulation, fibrinolysis and platelet aggregation.
Collapse
|
27
|
Kvist S, Oceguera-Figueroa A, Tessler M, Jiménez-Armenta J, Freeman RM, Giribet G, Siddall ME. When predator becomes prey: investigating the salivary transcriptome of the shark-feeding leechPontobdella macrothela(Hirudinea: Piscicolidae). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Kvist
- Department of Natural History; Royal Ontario Museum; 100 Queen's Park Toronto ON M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto ON M5S 3B2 Canada
| | - Alejandro Oceguera-Figueroa
- Laboratorio de Helmintología; Departamento de Zoología; Instituto de Biología; Universidad Nacional Autónoma de México; Coyoacán Mexico City 04510 Mexico
| | - Michael Tessler
- Richard Gilder Graduate School; American Museum of Natural History; Central Park West at 79th Street New York NY 10024 USA
- Sackler Institute for Comparative Genomics; American Museum of Natural History; Central Park West at 79th Street New York NY 10024 USA
| | - Jossué Jiménez-Armenta
- Laboratorio de Helmintología; Departamento de Zoología; Instituto de Biología; Universidad Nacional Autónoma de México; Coyoacán Mexico City 04510 Mexico
| | | | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - Mark E. Siddall
- Sackler Institute for Comparative Genomics; American Museum of Natural History; Central Park West at 79th Street New York NY 10024 USA
| |
Collapse
|
28
|
Moura-da-Silva AM, Almeida MT, Portes-Junior JA, Nicolau CA, Gomes-Neto F, Valente RH. Processing of Snake Venom Metalloproteinases: Generation of Toxin Diversity and Enzyme Inactivation. Toxins (Basel) 2016; 8:toxins8060183. [PMID: 27294958 PMCID: PMC4926149 DOI: 10.3390/toxins8060183] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/28/2022] Open
Abstract
Snake venom metalloproteinases (SVMPs) are abundant in the venoms of vipers and rattlesnakes, playing important roles for the snake adaptation to different environments, and are related to most of the pathological effects of these venoms in human victims. The effectiveness of SVMPs is greatly due to their functional diversity, targeting important physiological proteins or receptors in different tissues and in the coagulation system. Functional diversity is often related to the genetic diversification of the snake venom. In this review, we discuss some published evidence that posit that processing and post-translational modifications are great contributors for the generation of functional diversity and for maintaining latency or inactivation of enzymes belonging to this relevant family of venom toxins.
Collapse
Affiliation(s)
- Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo CEP 05503-900, Brazil.
| | - Michelle T Almeida
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo CEP 05503-900, Brazil.
| | - José A Portes-Junior
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo CEP 05503-900, Brazil.
| | - Carolina A Nicolau
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Rio de Janeiro CEP 21040-360, Brazil.
| | - Francisco Gomes-Neto
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Rio de Janeiro CEP 21040-360, Brazil.
| | - Richard H Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Rio de Janeiro CEP 21040-360, Brazil.
| |
Collapse
|
29
|
A brief update on potential molecular mechanisms underlying antimicrobial and wound-healing potency of snake venom molecules. Biochem Pharmacol 2016; 115:1-9. [PMID: 26975619 DOI: 10.1016/j.bcp.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
Infectious diseases remain a significant cause of morbidity and mortality worldwide. A wide range of diverse, novel classes of natural antibiotics have been isolated from different snake species in the recent past. Snake venoms contain diverse groups of proteins with potent antibacterial activity against a wide range of human pathogens. Some snake venom molecules are pharmacologically attractive, as they possess promising broad-spectrum antibacterial activities. Furthermore, snake venom proteins (SVPs)/peptides also bind to integrins with high affinity, thereby inhibiting cell adhesion and accelerating wound healing in animal models. Thus, SVPs are a potential alternative to chemical antibiotics. The mode of action for many antibacterial peptides involves pore formation and disruption of the plasma membrane. This activity often includes modulation of nuclear factor kappa B (NF-κB) activation during skin wound healing. The NF-κB pathway negatively regulates the transforming growth factor (TGF)-β1/Smad pathway by inducing the expression of Smad7 and eventually reducing in vivo collagen production at the wound sites. In this context, SVPs that regulate the NF-κB signaling pathway may serve as potential targets for drug development.
Collapse
|
30
|
Baraldi PT, Magro AJ, Matioli FF, Marcussi S, Lemke N, Calderon LA, Stábeli RG, Soares AM, Correa AG, Fontes MRM. A novel synthetic quinolinone inhibitor presents proteolytic and hemorrhagic inhibitory activities against snake venom metalloproteases. Biochimie 2015; 121:179-88. [PMID: 26700145 DOI: 10.1016/j.biochi.2015.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 11/17/2022]
Abstract
Metalloproteases play a fundamental role in snake venom envenomation inducing hemorrhagic, fibrigen(ogen)olytic and myotoxic effects in their victims. Several snake venoms, such as those from the Bothrops genus, present important local effects which are not efficiently neutralized by conventional serum therapy. Consequently, these accidents may result in permanent sequelae and disability, creating economic and social problems, especially in developing countries, leading the attention of the World Health Organization that considered ophidic envenomations a neglected tropical disease. Aiming to produce an efficient inhibitor against bothropic venoms, we synthesized different molecules classified as quinolinones - a group of low-toxic chemical compounds widely used as antibacterial and antimycobacterial drugs - and tested their inhibitory properties against hemorrhage caused by bothropic venoms. The results from this initial screening indicated the molecule 2-hydroxymethyl-6-methoxy-1,4-dihydro-4-quinolinone (Q8) was the most effective antihemorrhagic compound among all of the assayed synthetic quinolinones. Other in vitro and in vivo experiments showed this novel compound was able to inhibit significantly the hemorrhagic and/or proteolytic activities of bothropic crude venoms and isolated snake venom metalloproteases (SVMPs) even at lower concentrations. Docking and molecular dynamic simulations were also performed to get insights into the structural basis of Q8 inhibitory mechanism against proteolytic and hemorrhagic SVMPs. These structural studies demonstrated that Q8 may form a stable complex with SVMPs, impairing the access of substrates to the active sites of these toxins. Therefore, both experimental and structural data indicate that Q8 compound is an interesting candidate for antiophidic therapy, particularly for the treatment of the hemorrhagic and necrotic effects induced by bothropic venoms.
Collapse
Affiliation(s)
- Patrícia T Baraldi
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Angelo J Magro
- Departamento de Bioprocessos e Biotecnologia, Faculdade de Ciências Agrárias, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| | - Fábio F Matioli
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras (UFLA), Lavras, MG, Brazil
| | - Ney Lemke
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil
| | - Leonardo A Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz (FIOCRUZ), unidade Fiocruz Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Rodrigo G Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz (FIOCRUZ), unidade Fiocruz Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz (FIOCRUZ), unidade Fiocruz Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Arlene G Correa
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Marcos R M Fontes
- Instituto de Biotecnologia, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil; Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
31
|
Monteiro DA, Kalinin AL, Selistre-de-Araujo HS, Vasconcelos ES, Rantin FT. Alternagin-C (ALT-C), a disintegrin-like protein from Rhinocerophis alternatus snake venom promotes positive inotropism and chronotropism in fish heart. Toxicon 2015; 110:1-11. [PMID: 26615089 DOI: 10.1016/j.toxicon.2015.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022]
Abstract
Alternagin-C (ALT-C) is a disintegrin-like protein purified from the venom of the snake, Rhinocerophis alternatus. Recent studies showed that ALT-C is able to induce vascular endothelial growth factor (VEGF) expression, endothelial cell proliferation and migration, angiogenesis and to increase myoblast viability. This peptide, therefore, can play a crucial role in tissue regeneration mechanisms. The aim of this study was to evaluate the effects of a single dose of alternagin-C (0.5 mg kg(-1), via intra-arterial) on in vitro cardiac function of the freshwater fish traíra, Hoplias malabaricus, after 7 days. ALT-C treatment increased the cardiac performance promoting: 1) significant increases in the contraction force and in the rates of contraction and relaxation with concomitant decreases in the values of time to the peak tension and time to half- and 90% relaxation; 2) improvement in the cardiac pumping capacity and maximal electrical stimulation frequency, shifting the optimum frequency curve upward and to the right; 3) increases in myocardial VEGF levels and expression of key Ca(2+)-cycling proteins such as SERCA (sarcoplasmic reticulum Ca(2+)-ATPase), PLB (phospholamban), and NCX (Na(+)/Ca(2+) exchanger); 4) abolishment of the typical negative force-frequency relationship of fish myocardium. In conclusion, this study indicates that ALT-C improves cardiac function, by increasing Ca(2+) handling efficiency leading to a positive inotropism and chronotropism. The results suggest that ALT-C may lead to better cardiac output regulation indicating its potential application in therapies for cardiac contractile dysfunction.
Collapse
Affiliation(s)
- D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil.
| | - A L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - H S Selistre-de-Araujo
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - E S Vasconcelos
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
32
|
Bustillo S, García-Denegri ME, Gay C, Van de Velde AC, Acosta O, Angulo Y, Lomonte B, Gutiérrez JM, Leiva L. Phospholipase A(2) enhances the endothelial cell detachment effect of a snake venom metalloproteinase in the absence of catalysis. Chem Biol Interact 2015; 240:30-6. [PMID: 26279213 DOI: 10.1016/j.cbi.2015.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/01/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022]
Abstract
Microvessel disruption leading to hemorrhage stands among the most dangerous consequences of envenomings by snakes of the family Viperidae. A PIII metalloproteinase (SVMP), balteragin, purified from the venom of the snake Bothrops alternatus, displays a potent hemorrhagic effect, and a moderate myotoxicity in vivo. Previous studies described the ability of this SVMP to induce the detachment of C2C12 myoblasts in culture, without causing cytolysis. Surprisingly, a purified acidic phospholipase A2 (PLA2) from the same venom was found to increase this detaching activity of the SVMP on myoblasts. Since endothelial cells are a natural target of SVMPs in vivo, the possibility that this synergistic effect is also observed on this cell type was explored in the present work. In addition, a first approach of the mechanism of action of this effect was studied. Results clearly confirm that the acidic PLA2, despite lacking toxicity towards endothelial cells, significantly enhances the detaching effect of the SVMP even at a concentration as low as 1 μg/mL. Inhibition of enzymatic activity of the PLA2 by chemical modification with p-bromophenacyl bromide did not affect the synergistic activity, suggesting that this effect is not dependent on phospholipase enzymatic activity and may instead be the consequence of an interaction of the PLA2 with endothelial cell plasma membrane. To our knowledge, this is the first report of a synergistic action of a non toxic PLA2 in enhancing the detachment of endothelial cells induced by a metalloproteinase.
Collapse
Affiliation(s)
- Soledad Bustillo
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina.
| | | | - Carolina Gay
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | | | - Ofelia Acosta
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| | - Yamileth Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Leiva
- Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina
| |
Collapse
|
33
|
Boukhalfa-Abib H, Laraba-Djebari F. CcMP-II, a new hemorrhagic metalloproteinase from Cerastes cerastes snake venom: purification, biochemical characterization and amino acid sequence analysis. Comp Biochem Physiol C Toxicol Pharmacol 2015; 167:65-73. [PMID: 25251459 DOI: 10.1016/j.cbpc.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Snake venom metalloproteinases (SVMPs) are the most abundant components in snake venoms. They are important in the induction of systemic alterations and local tissue damage after envenomation. CcMP-II, which is a metalloproteinase purified from Cerastes cerastes snake venom, was obtained by a combination of gel filtration, ion-exchange and affinity chromatographies. It was homogeneous on SDS-PAGE, with a molecular mass estimated to 35kDa and presents a pI of 5.6. CcMP-II has an N-terminal sequence of EDRHINLVSVADHRMXTKY, with high levels of homology with those of the members of class P-II of SVMPs, which comprises metalloproteinase and disintegrin-like domains together. This proteinase displayed a fibrinogenolytic and hemorrhagic activities. The proteolytic and hemorrhagic activities of CcMP-II were inhibited by EDTA and 1,10-phenanthroline. However, these activities were not affected by aprotinine and PMSF, suggesting that CcMP-II is a zinc-dependent hemorrhagic metalloproteinase with an α-fibrinogenase activity. The hemorrhagic metalloproteinase CcMP-II was also able to hydrolyze extracellular matrix components, such as type IV collagen and laminin. These results indicate that CcMP-II is implicated in the local and systemic bleeding, contributing thus in the toxicity of C. cerastes venom.
Collapse
Affiliation(s)
- Hinda Boukhalfa-Abib
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| |
Collapse
|
34
|
Achê DC, Gomes MSR, de Souza DLN, Silva MA, Brandeburgo MIH, Yoneyama KAG, Rodrigues RS, Borges MH, Lopes DS, Rodrigues VDM. Biochemical properties of a new PI SVMP from Bothrops pauloensis: Inhibition of cell adhesion and angiogenesis. Int J Biol Macromol 2015; 72:445-53. [DOI: 10.1016/j.ijbiomac.2014.08.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
35
|
Arruda Macêdo JK, Fox JW, de Souza Castro M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr Protein Pept Sci 2015; 16:532-48. [PMID: 26031306 PMCID: PMC4997955 DOI: 10.2174/1389203716666150515125002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023]
Abstract
Integrins regulate diverse functions in cancer pathology and in tumor cell development and contribute to important processes such as cell shape, survival, proliferation, transcription, angiogenesis, migration, and invasion. A number of snake venom proteins have the ability to interact with integrins. Among these are the disintegrins, a family of small, non-enzymatic, and cysteine-rich proteins found in the venom of numerous snake families. The venom proteins may have a potential role in terms of novel therapeutic leads for cancer treatment. Disintegrin can target specific integrins and as such it is conceivable that they could interfere in important processes involved in carcinogenesis, tumor growth, invasion and migration. Herein we present a survey of studies involving the use of snake venom disintegrins for cancer detection and treatment. The aim of this review is to highlight the relationship of integrins with cancer and to present examples as to how certain disintegrins can detect and affect biological processes related to cancer. This in turn will illustrate the great potential of these molecules for cancer research. Furthermore, we also outline several new approaches being created to address problems commonly associated with the clinical application of peptide-based drugs such as instability, immunogenicity, and availability.
Collapse
Affiliation(s)
| | - Jay W Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, USA.
| | | |
Collapse
|
36
|
de Paula FFP, Ribeiro JU, Santos LM, de Souza DHF, Leonardecz E, Henrique-Silva F, Selistre-de-Araújo HS. Molecular characterization of metalloproteases from Bothrops alternatus snake venom. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 12:74-83. [DOI: 10.1016/j.cbd.2014.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 11/15/2022]
|
37
|
Gomes MSR, Naves de Souza DL, Guimarães DO, Lopes DS, Mamede CCN, Gimenes SNC, Achê DC, Rodrigues RS, Yoneyama KAG, Borges MH, de Oliveira F, Rodrigues VM. Biochemical and functional characterization of Bothropoidin: the first haemorrhagic metalloproteinase from Bothrops pauloensis snake venom. J Biochem 2014; 157:137-49. [PMID: 25261583 DOI: 10.1093/jb/mvu058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present the biochemical and functional characterization of Bothropoidin, the first haemorrhagic metalloproteinase isolated from Bothrops pauloensis snake venom. This protein was purified after three chromatographic steps on cation exchange CM-Sepharose fast flow, size-exclusion column Sephacryl S-300 and anion exchange Capto Q. Bothropoidin was homogeneous by SDS-PAGE under reducing and non-reducing conditions, and comprised a single chain of 49,558 Da according to MALDI TOF analysis. The protein presented an isoelectric point of 3.76, and the sequence of six fragments obtained by MS (MALDI TOF\TOF) showed a significant score when compared with other PIII Snake venom metalloproteinases (SVMPs). Bothropoidin showed proteolytic activity on azocasein, Aα-chain of fibrinogen, fibrin, collagen and fibronectin. The enzyme was stable at pH 6-9 and at lower temperatures when assayed on azocasein. Moreover, its activity was inhibited by EDTA, 1.10-phenanthroline and β-mercaptoethanol. Bothropoidin induced haemorrhage [minimum haemorrhagic dose (MHD) = 0.75 µg], inhibited platelet aggregation induced by collagen and ADP, and interfered with viability and cell adhesion when incubated with endothelial cells in a dose and time-dependent manner. Our results showed that Bothropoidin is a haemorrhagic metalloproteinase that can play an important role in the toxicity of B. pauloensis envenomation and might be used as a tool for studying the effects of SVMPs on haemostatic disorders and tumour metastasis.
Collapse
Affiliation(s)
- Mário Sérgio R Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Dayane L Naves de Souza
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Denise O Guimarães
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Daiana S Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Carla C N Mamede
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Sarah Natalie C Gimenes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - David C Achê
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Renata S Rodrigues
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Kelly A G Yoneyama
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Márcia H Borges
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Fábio de Oliveira
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Veridiana M Rodrigues
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| |
Collapse
|
38
|
In vitro comparison of enzymatic effects among Brazilian Bothrops spp. venoms. Toxicon 2013; 76:1-10. [PMID: 23998940 DOI: 10.1016/j.toxicon.2013.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/01/2013] [Accepted: 08/13/2013] [Indexed: 12/29/2022]
Abstract
In various types of snake venom, the major toxic components are proteinases and members of the phospholipase A2 family, although other enzymes also contribute to the toxicity. In this study, we evaluated the proteolytic, phospholipase, and L-Amino acid oxidase activities in the venom of five Bothrops species-Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni, Bothrops neuwiedi, and Bothrops alternatus-all of which are used in the production of commercial antivenom, prepared in horses. The enzymatic activities of each species' venom were classified as high, moderate, or low. B. moojeni venom demonstrated the highest enzymatic activity profile, followed by the venom of B. neuwiedi, B. jararacussu, B. jararaca, and B. alternatus. To our knowledge, this is the first study to compare all of these enzymes from multiple species, which is significant in view of the activity of L-amino acid oxidase across Bothrops species.
Collapse
|
39
|
Applications of snake venom components to modulate integrin activities in cell-matrix interactions. Int J Biochem Cell Biol 2013; 45:1974-86. [PMID: 23811033 DOI: 10.1016/j.biocel.2013.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023]
Abstract
Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology.
Collapse
|
40
|
Antitumoral potential of Tunisian snake venoms secreted phospholipases A2. BIOMED RESEARCH INTERNATIONAL 2013; 2013:391389. [PMID: 23509718 PMCID: PMC3581298 DOI: 10.1155/2013/391389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022]
Abstract
Phospholipases type A2 (PLA2s) are the most abundant proteins found in Viperidae snake venom. They are quite fascinating from both a biological and structural point of view. Despite similarity in their structures and common catalytic properties, they exhibit a wide spectrum of pharmacological activities. Besides being hydrolases, secreted phospholipases A2 (sPLA2) are an important group of toxins, whose action at the molecular level is still a matter of debate. These proteins can display toxic effects by different mechanisms. In addition to neurotoxicity, myotoxicity, hemolytic activity, antibacterial, anticoagulant, and antiplatelet effects, some venom PLA2s show antitumor and antiangiogenic activities by mechanisms independent of their enzymatic activity. This paper aims to discuss original finding against anti-tumor and anti-angiogenic activities of sPLA2 isolated from Tunisian vipers: Cerastes cerastes and Macrovipera lebetina, representing new tools to target specific integrins, mainly, α5β1 and αv integrins.
Collapse
|
41
|
de Morais NCG, Neves Mamede CC, Fonseca KC, de Queiroz MR, Gomes-Filho SA, Santos-Filho NA, Bordon KDCF, Beletti ME, Sampaio SV, Arantes EC, de Oliveira F. Isolation and characterization of moojenin, an acid-active, anticoagulant metalloproteinase from Bothrops moojeni venom. Toxicon 2012; 60:1251-8. [PMID: 22975266 DOI: 10.1016/j.toxicon.2012.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/28/2022]
Abstract
A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEVGEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the Aα-chain of fibrinogen first, followed by the Bβ-chain, and shows no effects on the γ-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and β-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 °C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 °C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity.
Collapse
Affiliation(s)
- Nadia C G de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sousa MGD, Tokarnia CH, Brito MDF, Reis AB, Oliveira CM, Freitas NF, Oliveira CH, Barbosa JD. Aspectos clínico-patológicos do envenenamento botrópico experimental em equinos. PESQUISA VETERINARIA BRASILEIRA 2011. [DOI: 10.1590/s0100-736x2011000900009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estudou-se as alterações clínico-patológicas e laboratoriais em equinos, inoculados experimentalmente com a peçonha de Bothropoides jararaca, Bothrops jararacussu, Bothrops moojeni e Bothropoides neuwiedi, com a finalidade de fornecer subsídios para o diagnóstico do envenenamento pela picada dessas. Os venenos liofilizados foram diluídos em 1ml de solução fisiológica e administrados a seis equinos, por via subcutânea, nas doses de 0,5 e 1mg/kg (B. jararaca), 0,8 e 1,6mg/kg (B. jararacussu), 0,205mg/kg (B. moojeni) e 1mg/kg (B. neuwiedi). Todos os equinos, menos os que receberam o veneno de B. jararacussu, morreram Os sinais clínicos iniciaram-se entre 8min e 2h10min após a inoculação. O período de evolução variou, nos quatro casos de êxito letal, de 24h41min a 70h41min, e nos dois equinos que se recuperaram foi de 16 dias. O quadro clínico, independente do tipo de veneno e das doses, caracterizou-se por aumento de volume no local da inoculação, arrastar da pinça do membro inoculado no solo, inquietação, apatia, diminuição da resposta aos estímulos externos, mucosas pálidas e hemorragias. Os exames laboratoriais revelaram anemia normocítica normocrômica com progressiva diminuição no número de hemácias, da hemoglobina e do hematócrito, e leucocitose por neutrofilia. Houve aumento de alamina aminotransferase, creatinaquinase, dehidrogenase láctica, ureia e glicose, bem como aumento do tempo de ativação da protrombina e do tempo de tromboplastina parcial ativada. Os achados de necropsia foram extensas hemorragias no tecido subcutâneo, com presença de sangue não coagulado e em boa parte associadas a edema (edema hemorrágico), que se estendia desde o local da inoculação até as regiões cervical, torácica, escapular e membro. Na periferia das áreas hemorrágicas havia predominantemente edema gelatinoso. Havia ainda presença de grande quantidade de líquido sanguinolento nas cavidades torácica, pericárdica e abdominal. Não foram encontradas alterações histológicas significativas.
Collapse
|
43
|
Takeda S, Takeya H, Iwanaga S. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:164-76. [PMID: 21530690 DOI: 10.1016/j.bbapap.2011.04.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Metalloproteinases are among the most abundant toxins in many Viperidae venoms. Snake venom metalloproteinases (SVMPs) are the primary factors responsible for hemorrhage and may also interfere with the hemostatic system, thus facilitating loss of blood from the vasculature of the prey. SVMPs are phylogenetically most closely related to mammalian ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin type-1 motif) family of proteins and, together with them, constitute the M12B clan of metalloendopeptidases. Large SVMPs, referred to as the P-III class of SVMPs, have a modular architecture with multiple non-catalytic domains. The P-III SVMPs are characterized by higher hemorrhagic and more diverse biological activities than the P-I class of SVMPs, which only have a catalytic domain. Recent crystallographic studies of P-III SVMPs and their mammalian counterparts shed new light on structure-function properties of this class of enzymes. The present review will highlight these structures, particularly the non-catalytic ancillary domains of P-III SVMPs and ADAMs that may target the enzymes to specific substrates. This article is part of a Special Issue entitled: Proteolysis 50years after the discovery of lysosome.
Collapse
Affiliation(s)
- Soichi Takeda
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Fujishiro-dai, Suita, Osaka, Japan.
| | | | | |
Collapse
|
44
|
Sant'Ana EMC, Gouvêa CMCP, Durigan JLQ, Cominetti MR, Pimentel ER, Selistre-de-Araújo HS. Rat skin wound healing induced by alternagin-C, a disintegrin-like, Cys-rich protein from Bothrops alternatus venom. Int Wound J 2011; 8:245-52. [PMID: 21392259 DOI: 10.1111/j.1742-481x.2011.00776.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Alternagin-C (ALT-C) is a disintegrin-like, Cys-rich protein isolated from Bothrops alternatus snake venom, which has been shown to induce in vivo angiogenesis. Therefore, this protein could be interesting as a new approach for tissue regeneration studies. Here the effects of ALT-C on fibroblasts and inflammatory cells, collagen type III and type I and TGF-α expression in a rat wounded skin model were studied. Thirty-five male Wistar rats (weight 270 ± 20 g) were divided into seven groups with five animals in each of the following groups: a control group which wounded animals received treatment with natrozol(®) gel only; ALT-C10, ALT-C60 and ALT-C100 groups of wounded animals that were treated with the same amount of gel containing 10, 60 and 100 ng of ALT-C, respectively. Animals were treated once a day with 20 µl of gel associated or not with ALT-C for 1, 3, 5 or 7 days. ALT-C treatment increased the fibroblast density, collagen deposition and accelerated the inflammatory process, mostly in the ALT-C60 group. These results indicate that ALT-C improves wound repair process in rat skin. Thus, ALT-C could be a candidate to the development of a novel therapeutic strategy for wounded skin repair.
Collapse
|
45
|
Selistre-de-Araujo HS, Pontes CLS, Montenegro CF, Martin ACBM. Snake venom disintegrins and cell migration. Toxins (Basel) 2010; 2:2606-21. [PMID: 22069567 PMCID: PMC3153172 DOI: 10.3390/toxins2112606] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 12/26/2022] Open
Abstract
Cell migration is a key process for the defense of pluricellular organisms against pathogens, and it involves a set of surface receptors acting in an ordered fashion to contribute directionality to the movement. Among these receptors are the integrins, which connect the cell cytoskeleton to the extracellular matrix components, thus playing a central role in cell migration. Integrin clustering at focal adhesions drives actin polymerization along the cell leading edge, resulting in polarity of cell movement. Therefore, small integrin-binding proteins such as the snake venom disintegrins that inhibit integrin-mediated cell adhesion are expected to inhibit cell migration. Here we review the current knowledge on disintegrin and disintegrin-like protein effects on cell migration and their potential use as pharmacological tools in anti-inflammatory therapy as well as in inhibition of metastatic invasion.
Collapse
|
46
|
Cardoso KC, Da Silva MJ, Costa GGL, Torres TT, Del Bem LEV, Vidal RO, Menossi M, Hyslop S. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu). BMC Genomics 2010; 11:605. [PMID: 20977763 PMCID: PMC3017861 DOI: 10.1186/1471-2164-11-605] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 10/26/2010] [Indexed: 01/13/2023] Open
Abstract
Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A2 (5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland contains the major toxin classes described for other Bothrops venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA2 agrees with the lower myotoxicity of this venom compared to other Bothrops species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.
Collapse
Affiliation(s)
- Kiara C Cardoso
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, CP 6111, 13083-970, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Aragão AP, Tokarnia CH, Graça FA, França TN, Coelho CD, Caldas SA, Peixoto PV. Envenenamento experimental por Bothropoides jararaca e Bothrops jararacussu em ovinos: aspectos clínico-patológicos e laboratoriais. PESQUISA VETERINARIA BRASILEIRA 2010. [DOI: 10.1590/s0100-736x2010000900003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Esse estudo teve como objetivo determinar as alterações clínico-patológicas e laboratoriais em ovinos inoculados com a peçonha de Bothropoides jararaca e Bothrops jararacussu, no intuito de fornecer subsídios que possam facilitar o estabelecimento do diagnóstico e do diagnóstico diferencial dessa condição. Os venenos liofilizados foram diluídos em 1 ml de solução fisiológica e administrados a quatro ovinos por via subcutânea. Três ovinos foram a óbito e um que recebeu a dose de 0,5mg/kg (B. jararaca), recuperou-se. Os sinais clínicos tiveram início entre 7 minutos e 1 hora. O período de evolução variou de 7 horas 9 minutos a 21 horas 59 minutos. O quadro clínico, independentemente das doses, caracterizou-se por aumento de volume no local da inoculação, tempo de sangramento e de preenchimento capilar aumentados, taquicardia, dispnéia, mucosas hipocoradas e apatia. Os exames laboratoriais revelaram acentuada anemia normocítica normocrômica, trombocitopenia, acentuada redução de fibrinogênio e proteínas plasmáticas totais, hematócrito diminuído em dois animais, além de acentuado aumento de creatinaquinase e desidrogenase lática em todos os animais. À necropsia, os principais achados no local da inoculação e tecidos adjacentes eram extensas hemorragias no animal que recebeu o veneno de B. jararaca e edema e acentuado edema pulmonar agudo para os dois animais envenenados por B. jararacussu. Além de hemorragia e edema a principal alteração histopatológica verificada foi necrose das fibras musculares e de vasos, no local de inoculação e adjacências. A necrose tubular renal foi atribuída ao quadro de choque. Nos ovinos deste estudo, o aumento de volume observado no local de inoculação e adjacências era constituído predominantemente por sangue (B. jararaca) e por edema (B. jararacussu).
Collapse
|
48
|
Nobre TM, Pavinatto FJ, Cominetti MR, Selistre de-Araújo HS, Zaniquelli ME, Beltramini LM. The specificity of frutalin lectin using biomembrane models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1547-55. [DOI: 10.1016/j.bbamem.2010.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/09/2010] [Accepted: 03/23/2010] [Indexed: 11/25/2022]
|
49
|
Leberagin-C, A disintegrin-like/cysteine-rich protein from Macrovipera lebetina transmediterranea venom, inhibits alphavbeta3 integrin-mediated cell adhesion. Matrix Biol 2009; 29:117-26. [PMID: 19808093 DOI: 10.1016/j.matbio.2009.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 09/25/2009] [Accepted: 09/28/2009] [Indexed: 11/23/2022]
Abstract
Leberagin-C, a new member of the disintegrin-like/cysteine-rich (D/C) family, was purified to homogeneity from the venom of Tunisian snake Macrovipera lebetina transmediterranea. It is a monomeric protein with a molecular mass of 25,787 Da. Its complete sequence of 205 amino acid residues was established by cDNA cloning. The leberagin-C shows many conserved sequences with other known D/C proteins, like the SECD binding sites and a pattern of 28 cysteines. It is the first purified protein from M. lebetina transmediterranea with only two disintegrin-like/cysteine-rich domains. Leberagin-C is able to inhibit platelet aggregation induced by thrombin and arachidonic acid with IC(50) of 40 and 50 nM respectively. It was also able to inhibit the adhesion of melanoma tumour cells on fibrinogen and fibronectin, by interfering with the function of alphavbeta3 and, to a lesser extent, with alphavbeta6 and alpha5beta1 integrins. To our knowledge, leberagin-C is the sole described D/C protein that does not specifically interact with the alpha2beta1 integrin. Structure-activity relationship study of leberagin-C suggested that there are some important amino acid differences with jararhagin, the most studied PIII metalloprotease from Bothrops jararaca, notably around the SECD motif in its disintegrin-like domain. Other regions implicated in leberagin-C specificities could not be excluded.
Collapse
|
50
|
Durigan JLQ, Peviani SM, Russo TL, Delfino GB, Ribeiro JU, Cominetti MR, Selistre-de-Araujo HS, Salvini TF. Effects of alternagin-C from Bothrops alternatus on gene expression and activity of metalloproteinases in regenerating skeletal muscle. Toxicon 2008; 52:687-94. [DOI: 10.1016/j.toxicon.2008.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/09/2008] [Accepted: 07/31/2008] [Indexed: 11/16/2022]
|