1
|
Liu W, Wang Y, Zhang Y, Li W, Wang C, Xu R, Dai H, Zhang L. Characterization of the pyruvate kinase gene family in soybean and identification of a putative salt responsive gene GmPK21. BMC Genomics 2024; 25:88. [PMID: 38254018 PMCID: PMC10802038 DOI: 10.1186/s12864-023-09929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND As a key regulatory enzyme in the glycolysis pathway, pyruvate kinase (PK) plays crucial roles in multiple physiological processes during plant growth and is also involved in the abiotic stress response. However, little information is known about PKs in soybean. RESULTS In this study, we identified 27 PK family genes against the genome of soybean cultivar Zhonghuang13. They were classified into 2 subfamilies including PKc and PKp. 22 segmental duplicated gene pairs and 1 tandem duplicated gene pair were identified and all of them experienced a strong purifying selective pressure during evolution. Furthermore, the abiotic stresses (especially salt stress) and hormone responsive cis-elements were present in the promoters of GmPK genes, suggesting their potential roles in abiotic stress tolerance. By performing the qRT-PCR, 6 GmPK genes that continuously respond to both NaCl and ABA were identified. Subsequently, GmPK21, which represented the most significant change under NaCl treatment was chosen for further study. Its encoded protein GmPK21 was localized in the cytoplasm and plasma membrane. The transgenic Arabidopsis overexpressing GmPK21 exhibited weakened salinity tolerance. CONCLUSIONS This study provides genomic information of soybean PK genes and a molecular basis for mining salt tolerance function of PKs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Yubin Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Haiying Dai
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China.
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
2
|
Dong N, Chen L, Ahmad S, Cai Y, Duan Y, Li X, Liu Y, Jiao G, Xie L, Hu S, Sheng Z, Shao G, Wang L, Tang S, Wei X, Hu P. Genome-Wide Analysis and Functional Characterization of Pyruvate Kinase (PK) Gene Family Modulating Rice Yield and Quality. Int J Mol Sci 2022; 23:ijms232315357. [PMID: 36499684 PMCID: PMC9739881 DOI: 10.3390/ijms232315357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pyruvate kinase (PK) is one of the three rate-limiting enzymes of glycolysis, and it plays a pivotal role in energy metabolism. In this study, we have identified 10 PK genes from the rice genome. Initially, these genes were divided into two categories: cytoplasmic pyruvate kinase (PKc) and plastid pyruvate kinase (PKp). Then, an expression analysis revealed that OsPK1, OsPK3, OsPK4, OsPK6, and OsPK9 were highly expressed in grains. Moreover, PKs can form heteropolymers. In addition, it was found that ABA significantly regulates the expression of PK genes (OsPK1, OsPK4, OsPK9, and OsPK10) in rice. Intriguingly, all the genes were found to be substantially involved in the regulation of rice grain quality and yield. For example, the disruption of OsPK3, OsPK5, OsPK7, OsPK8, and OsPK10 and OsPK4, OsPK5, OsPK6, and OsPK10 decreased the 1000-grain weight and the seed setting rate, respectively. Further, the disruption of OsPK4, OsPK6, OsPK8, and OsPK10 through the CRISPR/Cas9 system showed an increase in the content of total starch and a decrease in protein content compared to the WT. Similarly, manipulations of the OsPK4, OsPK8, and OsPK10 genes increased the amylose content. Meanwhile, the grains of all CRISPR mutants and RNAi lines, except ospk6, showed a significant increase in the chalkiness rate compared to the wild type. Overall, this study characterizes the functions of all the genes of the PK gene family and shows their untapped potential to improve rice yield and quality traits.
Collapse
|
3
|
Koendjbiharie JG, van Kranenburg R, Kengen SWM. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 2021; 45:fuaa061. [PMID: 33289792 PMCID: PMC8100219 DOI: 10.1093/femsre/fuaa061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
At the junction between the glycolysis and the tricarboxylic acid cycle-as well as various other metabolic pathways-lies the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node (PPO-node). These three metabolites form the core of a network involving at least eleven different types of enzymes, each with numerous subtypes. Obviously, no single organism maintains each of these eleven enzymes; instead, different organisms possess different subsets in their PPO-node, which results in a remarkable degree of variation, despite connecting such deeply conserved metabolic pathways as the glycolysis and the tricarboxylic acid cycle. The PPO-node enzymes play a crucial role in cellular energetics, with most of them involved in (de)phosphorylation of nucleotide phosphates, while those responsible for malate conversion are important redox enzymes. Variations in PPO-node therefore reflect the different energetic niches that organisms can occupy. In this review, we give an overview of the biochemistry of these eleven PPO-node enzymes. We attempt to highlight the variation that exists, both in PPO-node compositions, as well as in the roles that the enzymes can have within those different settings, through various recent discoveries in both bacteria and archaea that reveal deviations from canonical functions.
Collapse
Affiliation(s)
- Jeroen G Koendjbiharie
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
4
|
Guan C, Wang M, Zhang Y, Ruan X, Zhang Q, Luo Z, Yang Y. DkWRKY interacts with pyruvate kinase gene DkPK1 and promotes natural deastringency in C-PCNA persimmon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110285. [PMID: 31779905 DOI: 10.1016/j.plantsci.2019.110285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
PAs, also known as condensed tannins, cause the astringency sensation in the persimmon fruit. The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree, but the regulatory mechanisms of deastringency remain to be elucidated. In our previous research, DkPK1 was shown to be involved in the natural loss of astringency of C-PCNA persimmon fruit. In the present study, yeast one-hybrid (Y1H) library screening using the DkPK1 promoter as baits identified two DkWRKY transcription factor genes (DkWRKY3 and -15). The transcript levels of both DkWRKY3 and -15 exhibited a positive correlation with the decrease in soluble proanthocyanidin (PA) content during the last developmental stage in C-PCNA persimmon. Multiple sequence analysis and subcellular localization confirmed that DkWRKY3 and -15 belonging to the group II and I families, respectively, were both located in the nucleus. Dual-luciferase and Y1H assays demonstrated that DkWRKY3 and -15 can transactivate the DkPK1 promoters. The combination of DkWRKY3 and -15 most likely produced an additive activation effect compared to a single activator on DkPK1, although the two transcriptional activators were not capable of interacting. Notably, DkWRKY3 and -15 showed ubiquitous expression in various organs and abundant upregulation in seeds. Furthermore, transient overexpression of both DkWRKY3 and -15 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the acetaldehyde metabolism-related DkPK, DkPDC and DkADH genes. Thus, we suggest that DkWRKY3 and -15 are the upstream regulators of DkPK1 and positively regulate the natural deastringency in C-PCNA persimmon.
Collapse
Affiliation(s)
- Changfei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangfan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Ruan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Schormann N, Hayden KL, Lee P, Banerjee S, Chattopadhyay D. An overview of structure, function, and regulation of pyruvate kinases. Protein Sci 2019; 28:1771-1784. [PMID: 31342570 DOI: 10.1002/pro.3691] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
In the last step of glycolysis Pyruvate kinase catalyzes the irreversible conversion of ADP and phosphoenolpyruvate to ATP and pyruvic acid, both crucial for cellular metabolism. Thus pyruvate kinase plays a key role in controlling the metabolic flux and ATP production. The hallmark of the activity of different pyruvate kinases is their tight modulation by a variety of mechanisms including the use of a large number of physiological allosteric effectors in addition to their homotropic regulation by phosphoenolpyruvate. Binding of effectors signals precise and orchestrated movements in selected areas of the protein structure that alter the catalytic action of these evolutionarily conserved enzymes with remarkably conserved architecture and sequences. While the diverse nature of the allosteric effectors has been discussed in the literature, the structural basis of their regulatory effects is still not well understood because of the lack of data representing conformations in various activation states. Results of recent studies on pyruvate kinases of different families suggest that members of evolutionarily related families follow somewhat conserved allosteric strategies but evolutionarily distant members adopt different strategies. Here we review the structure and allosteric properties of pyruvate kinases of different families for which structural data are available.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama
| | - Paul Lee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois
| | | |
Collapse
|
6
|
Cai Y, Zhang W, Jin J, Yang X, You X, Yan H, Wang L, Chen J, Xu J, Chen W, Chen X, Ma J, Tang X, Kong F, Zhu X, Wang G, Jiang L, Terzaghi W, Wang C, Wan J. OsPKpα1 encodes a plastidic pyruvate kinase that affects starch biosynthesis in the rice endosperm. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1097-1118. [PMID: 29944211 DOI: 10.1111/jipb.12692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Pyruvate kinase (PK) is a key enzyme in glycolysis and carbon metabolism. Here, we isolated a rice (Oryza sativa) mutant, w59, with a white-core floury endosperm. Map-based cloning of w59 identified a mutation in OsPKpα1, which encodes a plastidic isoform of PK (PKp). OsPKpα1 localizes to the amyloplast stroma in the developing endosperm, and the mutation of OsPKpα1 in w59 decreases the plastidic PK activity, resulting in dramatic changes to the lipid biosynthesis in seeds. The w59 grains were also characterized by a marked decrease in starch content. Consistent with a decrease in number and size of the w59 amyloplasts, large empty spaces were observed in the central region of the w59 endosperm, at the early grain-filling stage. Moreover, a phylogenetic analysis revealed four potential rice isoforms of OsPKp. We validated the in vitro PK activity of these OsPKps through reconstituting active PKp complexes derived from inactive individual OsPKps, revealing the heteromeric structure of rice PKps, which was further confirmed using a protein-protein interaction analysis. These findings suggest a functional connection between lipid and starch synthesis in rice endosperm amyloplasts.
Collapse
Affiliation(s)
- Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahuan Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingang Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojie Tang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoxiang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Cai Y, Li S, Jiao G, Sheng Z, Wu Y, Shao G, Xie L, Peng C, Xu J, Tang S, Wei X, Hu P. OsPK2 encodes a plastidic pyruvate kinase involved in rice endosperm starch synthesis, compound granule formation and grain filling. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1878-1891. [PMID: 29577566 PMCID: PMC6181219 DOI: 10.1111/pbi.12923] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 05/18/2023]
Abstract
Starch is the main form of energy storage in higher plants. Although several enzymes and regulators of starch biosynthesis have been defined, the complete molecular machinery remains largely unknown. Screening for irregularities in endosperm formation in rice represents valuable prospect for studying starch synthesis pathway. Here, we identified a novel rice white-core endosperm and defective grain filling mutant, ospk2, which displays significantly lower grain weight, decreased starch content and alteration of starch physicochemical properties when compared to wild-type grains. The normal starch compound granules were drastically reduced and more single granules filled the endosperm cells of ospk2. Meanwhile, the germination rate of ospk2 seeds after 1-year storage was observably reduced compared with wild-type. Map-based cloning of OsPK2 indicated that it encodes a pyruvate kinase (PK, ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40), which catalyses an irreversible step of glycolysis. OsPK2 has a constitutive expression in rice and its protein localizes in chloroplasts. Enzyme assay showed that the protein product from expressed OsPK2 and the crude protein extracted from tissues of wild-type exhibits strong PK activity; however, the mutant presented reduced protein activity. OsPK2 (PKpα1) and three other putative rice plastidic isozymes, PKpα2, PKpβ1 and PKpβ2, can interact to form heteromer. Moreover, the mutation leads to multiple metabolic disorders. Altogether, these results denote new insights into the role of OsPK2 in plant seed development, especially in starch synthesis, compound granules formation and grain filling, which would be useful for genetic improvement of high yield and rice grain quality.
Collapse
Affiliation(s)
- Yicong Cai
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Sanfeng Li
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guiai Jiao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhonghua Sheng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yawen Wu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Gaoneng Shao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Lihong Xie
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Cheng Peng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Junfeng Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shaoqing Tang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiangjin Wei
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Peisong Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
8
|
Guan C, Du X, Zhang Q, Ma F, Luo Z, Yang Y. DkPK Genes Promote Natural Deastringency in C-PCNA Persimmon by Up-regulating DkPDC and DkADH Expression. FRONTIERS IN PLANT SCIENCE 2017; 8:149. [PMID: 28243247 PMCID: PMC5303730 DOI: 10.3389/fpls.2017.00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/24/2017] [Indexed: 05/09/2023]
Abstract
The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree. This process is controlled by a single locus and is dominant against other types of persimmons; therefore, this variant is an important candidate for commercial cultivation and the breeding of PCNA cultivars. In our previous study, six full-length coding sequences (CDS) for pyruvate kinase genes (DkPK1-6) were isolated, and DkPK1 is thought to be involved in the natural deastringency of C-PCNA persimmon fruit. Here, we characterize the eight other DkPK genes (DkPK7-14) from C-PCNA persimmon fruit based on transcriptome data. The transcript changes in DkPK7-14 genes and correlations with the proanthocyanidin (PA) content were investigated during different fruit development stages in C-PCNA, J-PCNA, and non-PCNA persimmon; DkPK7 and DkPK8 exhibited up-regulation patterns during the last developmental stage in C-PCNA persimmon that was negatively correlated with the decrease in soluble PAs. Phylogenetic analysis and subcellular localization analysis revealed that DkPK7 and DkPK8 are cytosolic proteins. Notably, DkPK7 and DkPK8 were ubiquitously expressed in various persimmon organs and abundantly up-regulated in seeds. Furthermore, transient over-expression of DkPK7 and DkPK8 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the pyruvate decarboxylase (DkPDC) and alcohol dehydrogenase genes (DkADH), which are closely related to acetaldehyde metabolism. The accumulated acetaldehyde that results from the up-regulation of the DkPDC and DkADH genes can combine with soluble PAs to form insoluble PAs, resulting in the removal of astringency from persimmon fruit. Thus, we suggest that both DkPK7 and DkPK8 are likely to be involved in natural deastringency via the up-regulation of DkPDC and DkADH expression during the last developmental stage in C-PCNA persimmon.
Collapse
Affiliation(s)
- Changfei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology – Ministry of Education, Huazhong Agricultural UniversityWuhan, China
| | - Xiaoyun Du
- Institute of Pomology, Yantai Academy of Agricultural SciencesYantai, China
- *Correspondence: Yong Yang, Xiaoyun Du,
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology – Ministry of Education, Huazhong Agricultural UniversityWuhan, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology – Ministry of Education, Huazhong Agricultural UniversityWuhan, China
| | - Yong Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- *Correspondence: Yong Yang, Xiaoyun Du,
| |
Collapse
|
9
|
Guan C, Chen W, Mo R, Du X, Zhang Q, Luo Z. Isolation and Characterization of DkPK Genes Associated with Natural Deastringency in C-PCNA Persimmon. FRONTIERS IN PLANT SCIENCE 2016; 7:156. [PMID: 26925075 PMCID: PMC4756295 DOI: 10.3389/fpls.2016.00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/30/2016] [Indexed: 05/09/2023]
Abstract
Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) is considered to be an important germplasm resource for the breeding of PCNA cultivars, though its molecular mechanisms of astringency removal remain to be elucidated. Previously, we showed that the abundance of pyruvate kinase gene transcripts increased rapidly during astringency removal in C-PCNA persimmon fruit. Here, we report the full-length coding sequences of six novel DkPK genes from C-PCNA persimmon fruit isolated based on a complementary DNA (cDNA) library and transcriptome data. The expression patterns of these six DkPK genes and correlations with the soluble proanthocyanidin (PA) content were analyzed during various fruit development stages in different types of persimmon, with DkPK1 showing an expression pattern during the last stage in C-PCNA persimmon that was positively correlated with a decrease in soluble PAs. Phylogenetic analysis revealed that DkPK1 belongs to cytosolic-1 subgroup, and subcellular localization analysis confirmed that DkPK1 is located in the cytosol. Notably, tissue expression profiling revealed ubiquitous DkPK1 expression in different persimmon organs, with the highest expression in seeds. Furthermore, transient over-expression of DkPK1 in persimmon leaves resulted in a significant decrease in the content of soluble PAs but a significant increase in the transcript levels of pyruvate decarboxylase genes (DkPDC1, -3, -4, -5), which catalyze the conversion of pyruvate to acetaldehyde. Thus, we propose that an acetaldehyde-based coagulation effect reduces the content of soluble PAs. Taken together, our results suggest that DkPK1 might be involved in the natural removal of astringency at the last developmental stage in C-PCNA persimmon. This is the first report to identify several novel full-length DkPK genes as well as their potential roles in the natural loss of astringency in C-PCNA persimmon.
Collapse
Affiliation(s)
- Changfei Guan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural UniversityWuhan, China
| | - Wenxing Chen
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural UniversityWuhan, China
| | - Rongli Mo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural UniversityWuhan, China
| | - Xiaoyun Du
- Institute of Horticultural Sciences, Jiangxi Academy of Agricultural SciencesNanchang, China
- *Correspondence: Xiaoyun Du, ; Zhengrong Luo,
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural UniversityWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural UniversityWuhan, China
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie MountainsHuanggang, China
- *Correspondence: Xiaoyun Du, ; Zhengrong Luo,
| |
Collapse
|
10
|
Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S, Zhu C, Capell T, Christou P, Fraser P, Sandmann G. Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3141-50. [PMID: 25796085 PMCID: PMC4449536 DOI: 10.1093/jxb/erv120] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The aim of this study was to assess whether endosperm-specific carotenoid biosynthesis influenced core metabolic processes in maize embryo and endosperm and how global seed metabolism adapted to this expanded biosynthetic capacity. Although enhancement of carotenoid biosynthesis was targeted to the endosperm of maize kernels, a concurrent up-regulation of sterol and fatty acid biosynthesis in the embryo was measured. Targeted terpenoid analysis, and non-targeted metabolomic, proteomic, and transcriptomic profiling revealed changes especially in carbohydrate metabolism in the transgenic line. In-depth analysis of the data, including changes of metabolite pools and increased enzyme and transcript concentrations, gave a first insight into the metabolic variation precipitated by the higher up-stream metabolite demand by the extended biosynthesis capacities for terpenoids and fatty acids. An integrative model is put forward to explain the metabolic regulation for the increased provision of terpenoid and fatty acid precursors, particularly glyceraldehyde 3-phosphate and pyruvate or acetyl-CoA from imported fructose and glucose. The model was supported by higher activities of fructokinase, glucose 6-phosphate isomerase, and fructose 1,6-bisphosphate aldolase indicating a higher flux through the glycolytic pathway. Although pyruvate and acetyl-CoA utilization was higher in the engineered line, pyruvate kinase activity was lower. A sufficient provision of both metabolites may be supported by a by-pass in a reaction sequence involving phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme.
Collapse
Affiliation(s)
- Mathilde Decourcelle
- Unité de Biochimie et Physiologie Moléculaire des Plantes, INRA, 34060 Montpellier, France
| | - Laura Perez-Fons
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
| | | | - Sabine Steiger
- Biosynthesis Group, Institute of Molecular Biosciences, Goethe University Frankfurt/M, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| | | | - Sonia Hem
- Unité de Biochimie et Physiologie Moléculaire des Plantes, INRA, 34060 Montpellier, France
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain Institució Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Paul Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK
| | - Gerhard Sandmann
- Biosynthesis Group, Institute of Molecular Biosciences, Goethe University Frankfurt/M, Max von Laue Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
11
|
Auslender EL, Dorion S, Dumont S, Rivoal J. Expression, purification and characterization of Solanum tuberosum recombinant cytosolic pyruvate kinase. Protein Expr Purif 2015; 110:7-13. [PMID: 25573389 DOI: 10.1016/j.pep.2014.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates.
Collapse
Affiliation(s)
- Evgenia L Auslender
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada
| | - Sébastien Dumont
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, Qc H1X 2B2, Canada.
| |
Collapse
|
12
|
Banerjee A, Sharkey TD. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 2014; 31:1043-55. [DOI: 10.1039/c3np70124g] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The methylerythritol 4-phosphate pathway provides precursors for isoprenoids in bacteria, some eukaryotic parasites, and chloroplasts of plants. Metabolic regulatory mechanisms control flux through the pathway and the concentration of a central intermediate, methylerythritol cyclodiphosphate.
Collapse
Affiliation(s)
- A. Banerjee
- Department of Biochemistry and Molecular Biology
- Michigan State University
- East Lansing, 48824 USA
| | - T. D. Sharkey
- Department of Biochemistry and Molecular Biology
- Michigan State University
- East Lansing, 48824 USA
| |
Collapse
|
13
|
Claeyssen É, Dorion S, Clendenning A, He JZ, Wally O, Chen J, Auslender EL, Moisan MC, Jolicoeur M, Rivoal J. The futile cycling of hexose phosphates could account for the fact that hexokinase exerts a high control on glucose phosphorylation but not on glycolytic rate in transgenic potato (Solanum tuberosum) roots. PLoS One 2013; 8:e53898. [PMID: 23382859 PMCID: PMC3557296 DOI: 10.1371/journal.pone.0053898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O2 uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using 14C-glucose as precursor showed the formation of 14C-fructose and 14C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed.
Collapse
Affiliation(s)
- Éric Claeyssen
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Audrey Clendenning
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Jiang Zhou He
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Owen Wally
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Jingkui Chen
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Evgenia L. Auslender
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Claude Moisan
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | - Mario Jolicoeur
- Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
14
|
Zhang Y, Xiao W, Luo L, Pang J, Rong W, He C. Downregulation of OsPK1, a cytosolic pyruvate kinase, by T-DNA insertion causes dwarfism and panicle enclosure in rice. PLANTA 2012; 235:25-38. [PMID: 21805151 DOI: 10.1007/s00425-011-1471-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/22/2011] [Indexed: 05/13/2023]
Abstract
Pyruvate kinase (PK) catalyzes the final step of glycolysis. There are few reports on the role of PK in rice. Here, we identified a novel rice dwarf mutant, designated as ospk1, showing dwarfism, panicle enclosure, reduced seed set, and outgrowth of axillary buds from culm nodes. Sequence analyses of 5'-RACE indicated that a single T-DNA was inserted in the transcriptional regulatory region of OsPK1 in ospk1. Quantitative RT-PCR result showed that OsPK1 expression was decreased by approximately 90% in ospk1 compared with that in WT. Enzyme assay and transient expression in protoplasts indicated that OsPK1 encodes a cytosolic PK (PK(c)). Complementation with OsPK1 demonstrated that OsPK1 is responsible for the phenotype of ospk1. Quantitative RT-PCR and GUS staining analyses exhibited that OsPK1 was expressed mainly in leaf mesophyll cells, phloem companion cells in stems, and cortical parenchyma cells in roots. The transcriptions of four other putative enzymes involved in the glycolysis/gluconeogenesis pathway were altered in ospk1. The amount of pyruvate is decreased in ospk1. We propose that OsPK1 plays an important role through affecting the glycolytic pathway. The contents of glucose and fructose were markedly accumulated in flag leaf blade and panicle of ospk1. The sucrose level in panicle of ospk1 was decreased by approximately 84%. These findings indicated that both monosaccharide metabolism and sugar transport are altered due to the decreased expression of OsPK1. Together, these results provide new insights into the role of PK(c) in plant morphological development, especially plant height.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
15
|
Troncoso-Ponce MA, Rivoal J, Cejudo FJ, Dorion S, Garcés R, Martínez-Force E. Cloning, biochemical characterisation, tissue localisation and possible post-translational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds. PLANTA 2010; 232:845-859. [PMID: 20628759 DOI: 10.1007/s00425-010-1219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Lipid biosynthesis in developing sunflower (Helianthus annuus L.) seeds requires reducing power. One of the main sources of cellular NADPH is the oxidative pentose phosphate pathway (OPPP), generated from the oxidation of glucose-6-phosphate. This glycolytic intermediate, which can be imported to the plastid and enter in the OPPP, is the substrate and product of cytosolic phosphoglucose isomerase (cPGI, EC 5.3.1.9). In this report, we describe the cloning of a full-length cDNA encoding cPGI from developing sunflower seeds. The sequence was predicted to code for a protein of 566 residues characterised by the presence of two sugar isomerase domains. This cDNA was heterologously expressed in Escherichia coli as a His-tagged protein. The recombinant protein was purified using immobilised metal ion affinity chromatography and biochemically characterised. The enzyme had a specific activity of 1,436 micromol min(-1) mg(-1) and 1,011 micromol min(-1) mg(-1) protein when the reaction was initiated with glucose-6-phosphate and fructose-6-phosphate, respectively. Activity was not affected by erythrose-4-phosphate, but was inhibited by 6-P gluconate and glyceraldehyde-3-phosphate. A polyclonal immune serum was raised against the purified enzyme, allowing the study of protein levels during the period of active lipid synthesis in seeds. These results were compared with PGI activity profiles and mRNA expression levels obtained from Q-PCR studies. Our results point to the existence of a possible post-translational regulatory mechanism during seed development. Immunolocalisation of the protein in seed tissues further indicated that cPGI is highly expressed in the procambial ring.
Collapse
|
16
|
Fu SX, Cheng H, Qi C. Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Mol Biol Rep 2009; 36:2375-86. [PMID: 19219639 DOI: 10.1007/s11033-009-9460-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, Arabidopsis microarray was used to analyze the gene differential expression of the immature seeds 30 days after flowering of a high oil Brassica napus, H105, whose oil content was 46.04 +/- 1.42, 53.94 +/- 1.35 and 53.09 +/- 1.35% when planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m), respectively. Transcript levels of 363 genes and 421 genes were altered twofold or more for H105 planted in Xining and Lhasa compared to that in Nanjing, respectively. Together, there were 53 common up-regulated and 42 common down-regulated expression transcripts shared by H105 planted in Xining and Lhasa compared to that in Nanjing. Some important genes, such as sucrose synthase, pyruvate kinase and 6-phosphogluconate dehydrogenase which related to sugar metabolism were identified common up-regulated in higher oil content H105. These results revealed the expressional disciplinarian of correlative genes, and provided important information of the molecular genetic mechanism of oil content difference of rapeseed. In addition, these differential expression genes could be suitable as targets for genetic improvement of seed oil content.
Collapse
Affiliation(s)
- San-Xiong Fu
- Nanjing Sub-Center (Rapeseed) of National Center of Oilseeds Crop Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | | |
Collapse
|
17
|
Oliver SN, Lunn JE, Urbanczyk-Wochniak E, Lytovchenko A, van Dongen JT, Faix B, Schmälzlin E, Fernie AR, Geigenberger P. Decreased expression of cytosolic pyruvate kinase in potato tubers leads to a decline in pyruvate resulting in an in vivo repression of the alternative oxidase. PLANT PHYSIOLOGY 2008; 148:1640-54. [PMID: 18829984 PMCID: PMC2577264 DOI: 10.1104/pp.108.126516] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/24/2008] [Indexed: 05/18/2023]
Abstract
The aim of this work was to investigate the effect of decreased cytosolic pyruvate kinase (PKc) on potato (Solanum tuberosum) tuber metabolism. Transgenic potato plants with strongly reduced levels of PKc were generated by RNA interference gene silencing under the control of a tuber-specific promoter. Metabolite profiling showed that decreased PKc activity led to a decrease in the levels of pyruvate and some other organic acids involved in the tricarboxylic acid cycle. Flux analysis showed that this was accompanied by changes in carbon partitioning, with carbon flux being diverted from glycolysis toward starch synthesis. However, this metabolic shift was relatively small and hence did not result in enhanced starch levels in the tubers. Although total respiration rates and the ATP to ADP ratio were largely unchanged, transgenic tubers showed a strong decrease in the levels of alternative oxidase (AOX) protein and a corresponding decrease in the capacity of the alternative pathway of respiration. External feeding of pyruvate to tuber tissue or isolated mitochondria resulted in activation of the AOX pathway, both in the wild type and the PKc transgenic lines, providing direct evidence for the regulation of AOX by changes in pyruvate levels. Overall, these results provide evidence for a crucial role of PKc in the regulation of pyruvate levels as well as the level of the AOX in heterotrophic plant tissue, and furthermore reveal that these parameters are interlinked in vivo.
Collapse
Affiliation(s)
- Sandra N Oliver
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mentzen WI, Peng J, Ransom N, Nikolau BJ, Wurtele ES. Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis, leucine catabolism and starch metabolism. BMC PLANT BIOLOGY 2008; 8:76. [PMID: 18616834 PMCID: PMC2483283 DOI: 10.1186/1471-2229-8-76] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 07/11/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Elucidating metabolic network structures and functions in multicellular organisms is an emerging goal of functional genomics. We describe the co-expression network of three core metabolic processes in the genetic model plant Arabidopsis thaliana: fatty acid biosynthesis, starch metabolism and amino acid (leucine) catabolism. RESULTS These co-expression networks form modules populated by genes coding for enzymes that represent the reactions generally considered to define each pathway. However, the modules also incorporate a wider set of genes that encode transporters, cofactor biosynthetic enzymes, precursor-producing enzymes, and regulatory molecules. We tested experimentally the hypothesis that one of the genes tightly co-expressed with starch metabolism module, a putative kinase AtPERK10, will have a role in this process. Indeed, knockout lines of AtPERK10 have an altered starch accumulation. In addition, the co-expression data define a novel hierarchical transcript-level structure associated with catabolism, in which genes performing smaller, more specific tasks appear to be recruited into higher-order modules with a broader catabolic function. CONCLUSION Each of these core metabolic pathways is structured as a module of co-expressed transcripts that co-accumulate over a wide range of environmental and genetic perturbations and developmental stages, and represent an expanded set of macromolecules associated with the common task of supporting the functionality of each metabolic pathway. As experimentally demonstrated, co-expression analysis can provide a rich approach towards understanding gene function.
Collapse
Affiliation(s)
- Wieslawa I Mentzen
- CRS4 Bioinformatics Laboratory, Loc. Piscinamanna, 09010 Pula (CA), Italy
| | - Jianling Peng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Nick Ransom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Basil J Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
19
|
Baud S, Wuillème S, Dubreucq B, de Almeida A, Vuagnat C, Lepiniec L, Miquel M, Rochat C. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:405-19. [PMID: 17892448 DOI: 10.1111/j.1365-313x.2007.03232.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Pyruvate kinase (PK) catalyses the irreversible synthesis of pyruvate and ATP, which are both used in multiple biochemical pathways. These compounds are essential for sustained fatty acid production in the plastids of maturing Arabidopsis embryos. Using a real-time quantitative reverse transcriptase (RT)-PCR approach, the three genes encoding putative plastidial PKs (PKps) in Arabidopsis, namely PKp1 (At3g22960), PKp2 (At5g52920) and PKp3 (At1g32440), were shown to be ubiquitously expressed. However, only PKp1 and PKp2 exhibited significant expression in maturing seeds. The activity of PKp1 and PKp2 promoters was consistent with this pattern, and the study of the PKp1:GFP and PKp2:GFP fusion proteins confirmed the plastidial localization of these enzymes. To further investigate the function of these two PKp isoforms in seeds comprehensive functional analyses were carried out, including the cytological, biochemical and molecular characterization of two pkp1 and two pkp2 alleles, together with a pkp1pkp2 double mutant. The results obtained outlined the importance of these PKps for fatty acid synthesis and embryo development. Mutant seeds were depleted of oil, their fatty acid content was drastically modified, embryo elongation was retarded and, finally, seed germination was also affected. Together, these results provide interesting insights concerning the carbon fluxes leading to oil synthesis in maturing Arabidopsis seeds. The regulation of this metabolic network by the WRINKLED1 transcription factor is discussed, and emphasizes the role of plastidial metabolism and the importance of its tight regulation.
Collapse
Affiliation(s)
- Sébastien Baud
- Laboratoire de Biologie des Semences, IJPB, UMR204, INRA/AgroParisTech, F-78000 Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Andre C, Froehlich JE, Moll MR, Benning C. A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. THE PLANT CELL 2007; 19:2006-22. [PMID: 17557808 PMCID: PMC1955724 DOI: 10.1105/tpc.106.048629] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Glycolysis is a ubiquitous pathway thought to be essential for the production of oil in developing seeds of Arabidopsis thaliana and oil crops. Compartmentation of primary metabolism in developing embryos poses a significant challenge for testing this hypothesis and for the engineering of seed biomass production. It also raises the question whether there is a preferred route of carbon from imported photosynthate to seed oil in the embryo. Plastidic pyruvate kinase catalyzes a highly regulated, ATP-producing reaction of glycolysis. The Arabidopsis genome encodes 14 putative isoforms of pyruvate kinases. Three genes encode subunits alpha, beta(1), and beta(2) of plastidic pyruvate kinase. The plastid enzyme prevalent in developing seeds likely has a subunit composition of 4alpha4beta(1), is most active at pH 8.0, and is inhibited by Glu. Disruption of the gene encoding the beta(1) subunit causes a reduction in plastidic pyruvate kinase activity and 60% reduction in seed oil content. The seed oil phenotype is fully restored by expression of the beta(1) subunit-encoding cDNA and partially by the beta(2) subunit-encoding cDNA. Therefore, the identified pyruvate kinase catalyzes a crucial step in the conversion of photosynthate into oil, suggesting a preferred plastid route from its substrate phosphoenolpyruvate to fatty acids.
Collapse
Affiliation(s)
- Carl Andre
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
21
|
Li RJ, Wang HZ, Mao H, Lu YT, Hua W. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. PLANTA 2006; 224:952-62. [PMID: 16575595 DOI: 10.1007/s00425-006-0266-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 03/09/2006] [Indexed: 05/08/2023]
Abstract
The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, we compared the gene expression during seed development between two lines of Brassica napus with a 10% difference in oil content. We isolated the immature seeds 15 and 25 days after flowering at periods preceding and including the major accumulation of storage oils and proteins. The differentially expressed gene clones between the two rape lines were isolated by subtractive suppression hybridization (SSH). All SSH clones were arrayed and screened by dot blot hybridization, followed by RT-PCR analysis for selected clones. A total of 217 cDNA clones corresponding to 30 genes were found to have a high expression in seeds with high oil content. Six genes were highly expressed in seeds with low oil content. Northern blot and enzyme activity analysis demonstrated a change in expression pattern of several genes. The results provide information on gene-encoding factors responsible for the regulation of oil synthesis. The possible role of these genes in seeds is discussed. The genes in this study may be suitable as novel targets for genetic improvement of seed oil content and may also provide molecular markers for studies of rape breeding.
Collapse
Affiliation(s)
- Rong-Jun Li
- Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China
| | | | | | | | | |
Collapse
|
22
|
Turner WL, Knowles VL, Plaxton WC. Cytosolic pyruvate kinase: subunit composition, activity, and amount in developing castor and soybean seeds, and biochemical characterization of the purified castor seed enzyme. PLANTA 2005; 222:1051-62. [PMID: 16049677 DOI: 10.1007/s00425-005-0044-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/04/2005] [Indexed: 05/03/2023]
Abstract
Antibodies against Brassica napus cytosolic pyruvate kinase (PKc) (EC 2.7.1.40) were employed to examine PKc subunit composition and developmental profiles in castor and soybean seeds. A 56-kDa immunoreactive polypeptide was uniformly detected on immunoblots of clarified extracts from developing castor endosperm or soybean embryos. Maximal PKc activities occurred early in castor oil seed (COS) and soybean development (7.1 and 5.5 (micromol of pyruvate produced/min) g(-1) FW, respectively) and were up to 25-fold greater than those of fully mature seeds. Time-course studies revealed a close correlation between extractable PKc activity and the relative amount of the immunoreactive 56-kDa PKc polypeptide. PKc from developing COS was purified 1,874-fold to homogeneity and a final specific activity of 73.1 (micromol of pyruvate produced/min) mg(-1) protein. Gel filtration and SDS-PAGE indicated that this PKc exists as a 230-kDa homotetramer composed of 56-kDa subunits. The mass fingerprint of tryptic peptides of the 56-kDa COS PKc subunit best matched three putative PK(c)s from Arabidopsis thaliana. The purified enzyme was relatively heat-stable and displayed a broad pH optimum of 6.4. However, more efficient substrate utilization (in terms of Vmax /Km for phosphoenolpyruvate or ADP) was observed at pH 7.4. Glutamate was the most effective inhibitor, whereas aspartate functioned as an activator by partially relieving glutamate inhibition. Together with our previous studies, the results: (1) allow a model to be formulated regarding the coordinate allosteric control of PKc and phosphoenolpyruvate carboxylase by aspartate and glutamate in developing COS, and (2) provide further biochemical evidence that castor plant PKc exists as tissue-specific isozymes that exhibit substantial differences in their respective physical and regulatory properties.
Collapse
Affiliation(s)
- William L Turner
- Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | | | |
Collapse
|
23
|
Saavedra E, Olivos A, Encalada R, Moreno-Sánchez R. Entamoeba histolytica: kinetic and molecular evidence of a previously unidentified pyruvate kinase. Exp Parasitol 2004; 106:11-21. [PMID: 15013784 DOI: 10.1016/j.exppara.2004.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Revised: 09/23/2003] [Accepted: 01/28/2004] [Indexed: 11/22/2022]
Abstract
We report the kinetic characterization of a previously unidentified pyruvate kinase (PK) activity in extracts from Entamoeba histolytica trophozoites. This activity was about 74% of the activity of pyruvate phosphate dikinase. EhPK differed from most PKs in that its pH optimum was 5.5-6.5 and was inhibited by high PEP concentrations (1-5mM); these are concentrations at which PK is usually assayed. The optimal temperature was above 40 degrees C with negligible activity below 20 degrees C. EhPK exhibited hyperbolic kinetics with respect to both PEP (K(m) = 0.018 mM) and ADP (K(m) = 1.05 mM). However, it exhibited a sigmoidal behavior with respect to PEP at sub-saturating ADP concentrations. EhPK did not require monovalent cations for activity. Fructose-1,6 bisphosphate was a potent non-essential activator; it increased the affinity for ADP without modification of the V(max) or the affinity for PEP. Phosphate, citrate, malate, and alpha-ketoglutarate significantly inhibited EhPK activity. A putative EhPK gene fragment found in EhDNA was analyzed. The data indicate that E. histolytica trophozoites contain an active PK, which might contribute to the generation of glycolytic ATP for parasite survival.
Collapse
Affiliation(s)
- Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México D.F. 14080, Mexico.
| | | | | | | |
Collapse
|
24
|
Muñoz ME, Ponce E. Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:197-218. [PMID: 12798932 DOI: 10.1016/s1096-4959(03)00081-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pyruvate kinase (PK) is a key enzyme for the glycolytic pathway and carbon metabolism in general. On the basis of the relevance and enormous diverse properties of this enzyme, this paper describes the results of a current and extensive review that determines the sites of conservation and/or difference in PK sequences, and the differences in the functional and regulatory properties of the enzymes. An alignment and analysis of 50 PK sequences from different sources and a phylogenetic tree are presented. This analysis was performed with reference to crystallographically characterized PK principally from E. coli, cat and rabbit muscle. A number of attributes of the enzyme that make it of particular interest in biomedicine and industry are also discussed.
Collapse
Affiliation(s)
- Ma Enriqueta Muñoz
- Facultad de Ciencias Quíicas e Ingenierí, Universidad Autónoma de Baja California, Av. Tecnológico s/n, Mesa de Otay, B.C., Tijuana, Mexico C.P. 22390
| | | |
Collapse
|