1
|
Sulaj E, Sandell FL, Schwaigerlehner L, Marzban G, Dohm JC, Kunert R. Systems Biology of Recombinant 2G12 and 353/11 mAb Production in CHO-K1 Cell Lines at Phosphoproteome Level. Proteomes 2025; 13:9. [PMID: 39982319 PMCID: PMC11843875 DOI: 10.3390/proteomes13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Background: Chinese hamster ovary (CHO) cells are extensively used in the pharmaceutical industry for producing complex proteins, primarily because of their ability to perform human-like post-translational modifications. However, the efficiency of high-quality protein production can vary significantly for monoclonal antibody-producing cell lines, within the CHO host cell lines or by extrinsic factors. Methods: To investigate the complex cellular mechanisms underlying this variability, a phosphoproteomics analysis was performed using label-free quantitative liquid chromatography after a phosphopeptide enrichment of recombinant CHO cells producing two different antibodies and a tunicamycin treatment experiment. Using MaxQuant and Perseus for data analysis, we identified 2109 proteins and quantified 4059 phosphosites. Results: Significant phosphorylation dynamics were observed in nuclear proteins of cells producing the difficult-to-produce 2G12 mAb. It suggests that the expression of 2G12 regulates nuclear pathways based on increases and decreases in phosphorylation abundance. Furthermore, a substantial number of changes in the phosphorylation pattern related to tunicamycin treatment have been detected. TM treatment affects, among other phosphoproteins, the eukaryotic elongation factor 2 kinase (Eef2k). Conclusions: The alterations in the phosphorylation landscape of key proteins involved in cellular processes highlight the mechanisms behind stress-induced cellular responses.
Collapse
Affiliation(s)
- Eldi Sulaj
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Felix L. Sandell
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Linda Schwaigerlehner
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Gorji Marzban
- Department of Biotechnology and Food Science, Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Juliane C. Dohm
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Renate Kunert
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| |
Collapse
|
2
|
Chen J, Shiyanov P, Green KB. Top-down mass spectrometry of intact phosphorylated β-casein: Correlation between the precursor charge state and internal fragments. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:527-539. [PMID: 30997701 PMCID: PMC6779312 DOI: 10.1002/jms.4364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/25/2019] [Accepted: 04/11/2019] [Indexed: 05/12/2023]
Abstract
Phosphorylated proteins play essential roles in many cellular processes, and identification and characterization of the relevant phosphoproteins can help to understand underlying mechanisms. Herein, we report a collision-induced dissociation top-down approach for characterizing phosphoproteins on a quadrupole time-of-flight mass spectrometer. β-casein, a protein with two major isoforms and five phosphorylatable serine residues, was used as a model. Peaks corresponding to intact β-casein ions with charged states up to 36+ were detected. Tandem mass spectrometry was performed on β-casein ions of different charge states (12+ , and 15+ to 28+ ) in order to determine the effects of charge state on dissociation of this protein. Most of the abundant fragments corresponded to y, b ions, and internal fragments caused by cleavage of the N-terminal amide bond adjacent to proline residues (Xxx-Pro). The abundance of internal fragments increased with the charge state of the protein precursor ion; these internal fragments predominantly arose from one or two Xxx-Pro cleavage events and were difficult to accurately assign. The presence of abundant sodium adducts of β-casein further complicated the spectra. Our results suggest that when interpreting top-down mass spectra of phosphoproteins and other proteins, researchers should consider the potential formation of internal fragments and sodium adducts for reliable characterization.
Collapse
Affiliation(s)
- Jianzhong Chen
- Department of Optometry and Vision Science; University of Alabama at Birmingham; Birmingham, AL, 35294
- Applied Biotechnology Branch; Air Force Research Laboratory; Dayton, OH 45433, USA
- Mass Spectrometry and Proteomics Facility; The Ohio State University; Columbus, OH 43210, USA
- Corresponding author: Jianzhong Chen, Ph.D., Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA; ; Phone: 205.934.8230
| | - Pavel Shiyanov
- Applied Biotechnology Branch; Air Force Research Laboratory; Dayton, OH 45433, USA
| | - Kari B Green
- Mass Spectrometry and Proteomics Facility; The Ohio State University; Columbus, OH 43210, USA
| |
Collapse
|
3
|
Savastano M, Liu Y, Mels J, Dittrich D, Haus S, Gensberger-Reigl S, Pischetsrieder M. Profiling of Multiphosphorylated Peptides in Kefir and Their Release During Simulated Gastrointestinal Digestion. ACS OMEGA 2019; 4:7963-7970. [PMID: 31172034 PMCID: PMC6545566 DOI: 10.1021/acsomega.8b03105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Casein phosphopeptides are multiphosphorylated milk peptides, which can have anticariogenic activity and improve mineral absorption by binding bivalent metal ions. The present study investigated phosphopeptides in kefir because fermentation may lead to their enhanced release from milk proteins. After selective enrichment by hydroxyapatite extraction, phosphopeptides and their phosphorylation degree were identified by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) before and after enzymatic dephosphorylation. Peptide structures were determined by ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) revealing 27 phosphopeptides in kefir, including nine peptides containing the motif pSpSpSEE, which binds minerals most efficiently. The majority (18) of phosphopeptides were derived from β-casein, but only three were derived from the most abundant milk protein αs1-casein. After simulated gastrointestinal digestion, MALDI-TOF-MS analysis detected eight putative phosphopeptides in kefir, four of which were assigned by UHPLC-ESI-MS/MS to αs2-casein124-133, αs2-casein137-146, β-casein30-40, and κ-casein147-161. These results indicate that kefir is a good dietary source of multiphosphorylated peptides.
Collapse
Affiliation(s)
- Maria
Luisa Savastano
- Department
of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
- Department
of Agricultural, Food and Environmental Sciences (SAFE), University of Foggia, Via Napoli 25, 71100 Foggia, Italy
| | - Yufang Liu
- Department
of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Jennifer Mels
- Department
of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Daniel Dittrich
- Department
of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Sabrina Haus
- Department
of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Sabrina Gensberger-Reigl
- Department
of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Monika Pischetsrieder
- Department
of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Beeman K, Baumgärtner J, Laubenheimer M, Hergesell K, Hoffmann M, Pehl U, Fischer F, Pieck JC. Integration of an In Situ MALDI-Based High-Throughput Screening Process: A Case Study with Receptor Tyrosine Kinase c-MET. SLAS DISCOVERY 2017; 22:1203-1210. [DOI: 10.1177/2472555217727701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated “in-line reader” for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.
Collapse
Affiliation(s)
- Katrin Beeman
- Global Research & Development, Discovery Technologies, Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Jens Baumgärtner
- Analytics Healthcare, Biomolecule Analytics, Merck KGaA, Darmstadt, Germany
| | - Manuel Laubenheimer
- Global Research & Development, Discovery Technologies, Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Karlheinz Hergesell
- Global Research & Development, Discovery Technologies, Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Martin Hoffmann
- Global Research & Development, Discovery Technologies, Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Ulrich Pehl
- Global Research & Development, Discovery Technologies, Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Frank Fischer
- Analytics Healthcare, Biomolecule Analytics, Merck KGaA, Darmstadt, Germany
| | - Jan-Carsten Pieck
- Global Research & Development, Discovery Technologies, Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
5
|
Mataj A, Boysen RI, Hearn MTW. Phosphoprotein Analysis by MALDI-TOF Mass Spectrometry using On-Probe Tandem Proteolysis and Dephosphorylation. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1229785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Agron Mataj
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Reinhard I. Boysen
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| | - Milton T. W. Hearn
- Australian Center for Research on Separation Science, School of Chemistry, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Küster SK, Pabst M, Zenobi R, Dittrich PS. Automatisierte Detektion von Proteinphosphorylierung durch Nanoliter-Enzymreaktionen auf Mikroarrays. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Küster SK, Pabst M, Zenobi R, Dittrich PS. Screening for protein phosphorylation using nanoscale reactions on microdroplet arrays. Angew Chem Int Ed Engl 2014; 54:1671-5. [PMID: 25504774 DOI: 10.1002/anie.201409440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/25/2022]
Abstract
We present a novel and straightforward screening method to detect protein phosphorylations in complex protein mixtures. A proteolytic digest is separated by a conventional nanoscale liquid chromatography (nano-LC) separation and the eluate is immediately compartmentalized into microdroplets, which are spotted on a microarray MALDI plate. Subsequently, the enzyme alkaline phosphatase is applied to every second microarray spot to remove the phosphate groups from phosphorylated peptides, which results in a mass shift of n×-80 Da. The MALDI-MS scan of the microarray is then evaluated by a software algorithm to automatically identify the phosphorylated peptides by exploiting the characteristic chromatographic peak profile induced by the phosphatase treatment. This screening method does not require extensive MS/MS experiments or peak list evaluation and can be easily extended to other enzymatic or chemical reactions.
Collapse
Affiliation(s)
- Simon K Küster
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich (Switzerland)
| | | | | | | |
Collapse
|
8
|
Yang TH, Chang HT, Hsiao ES, Sun JL, Wang CC, Wu HY, Liao PC, Wu WS. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation. BMC Bioinformatics 2014; 15 Suppl 16:S10. [PMID: 25521246 PMCID: PMC4290636 DOI: 10.1186/1471-2105-15-s16-s10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Comprehensive characterization of the phosphoproteome in living cells is critical in signal transduction research. But the low abundance of phosphopeptides among the total proteome in cells remains an obstacle in mass spectrometry-based proteomic analysis. To provide a solution, an alternative analytic strategy to confidently identify phosphorylated peptides by using the alkaline phosphatase (AP) treatment combined with high-resolution mass spectrometry was provided. While the process is applicable, the key integration along the pipeline was mostly done by tedious manual work. Results We developed a software toolkit, iPhos, to facilitate and streamline the work-flow of AP-assisted phosphoproteome characterization. The iPhos tookit includes one assister and three modules. The iPhos Peak Extraction Assister automates the batch mode peak extraction for multiple liquid chromatography mass spectrometry (LC-MS) runs. iPhos Module-1 can process the peak lists extracted from the LC-MS analyses derived from the original and dephosphorylated samples to mine out potential phosphorylated peptide signals based on mass shift caused by the loss of some multiples of phosphate groups. And iPhos Module-2 provides customized inclusion lists with peak retention time windows for subsequent targeted LC-MS/MS experiments. Finally, iPhos Module-3 facilitates to link the peptide identifications from protein search engines to the quantification results from pattern-based label-free quantification tools. We further demonstrated the utility of the iPhos toolkit on the data of human metastatic lung cancer cells (CL1-5). Conclusions In the comparison study of the control group of CL1-5 cell lysates and the treatment group of dasatinib-treated CL1-5 cell lysates, we demonstrated the applicability of the iPhos toolkit and reported the experimental results based on the iPhos-facilitated phosphoproteome investigation. And further, we also compared the strategy with pure DDA-based LC-MS/MS phosphoproteome investigation. The results of iPhos-facilitated targeted LC-MS/MS analysis convey more thorough and confident phosphopeptide identification than the results of pure DDA-based analysis.
Collapse
|
9
|
Wang MC, Lee YH, Liao PC. Optimization of titanium dioxide and immunoaffinity-based enrichment procedures for tyrosine phosphopeptide using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Bioanal Chem 2014; 407:1343-56. [PMID: 25486920 DOI: 10.1007/s00216-014-8352-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/06/2014] [Accepted: 11/17/2014] [Indexed: 01/25/2023]
Abstract
Tyrosine phosphorylation is an important regulator of signaling in cellular pathways, and dysregulated tyrosine phosphorylation causes several diseases. Mass spectrometry has revealed the importance of global phosphoproteomic characterization. Analysis of tyrosine phosphorylation by studying the mass-spectrometry (MS)-determined phosphoproteome remains difficult because of the relatively low abundance of tyrosine phosphoproteins. To effectively evaluate tyrosine-phosphopeptide enrichment and reduce ion suppression from non-phosphorylated peptides in MS analysis, three trypsin-digested BSA peptides and 14 standard phosphopeptides, including six tyrosine phosphopeptides, four serine phosphopeptides, and four threonine phosphopeptides, were subjected to titanium dioxide immunoaffinity-based enrichment and also to combined enrichment using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-mass spectrometry (LC-MS) analyses. The enrichment factors were evaluated to determine the efficiency of each enrichment procedure. Comparison of five optimized enrichment methods, including TiO2-based immunoaffinity purification in Tris and MOPS buffer systems, TiO2-immunoaffinity enrichment, and immunoaffinity-TiO2 enrichment for total tyrosine, serine and threonine phosphopeptides, revealed that the order of the enrichment factors for total tyrosine phosphopeptides is: (i) immunoaffinity-TiO2 (enrichment factor = 38,244), (ii) TiO2-immunoaffinity (enrichment factor = 24,987), (iii) TiO2 micro-column (enrichment factor = 10,305), (iv) immunoaffinity in Tris buffer system (enrichment factor = 1450), and (v) immunoaffinity in the MOPS buffer system (enrichment factor = 32). These results reveal that an alternative enrichment scheme before use of a TiO2 micro-column, using immunoaffinity 4G10 and PY99 antibody enrichment under optimized conditions, can provide greater selectivity for tyrosine-phosphopeptide enrichment.
Collapse
Affiliation(s)
- Ming-Chuan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan, Republic of China
| | | | | |
Collapse
|
10
|
Sandoval W. Matrix‐Assisted Laser Desorption/Ionization Time‐of‐Flight Mass Analysis of Peptides. ACTA ACUST UNITED AC 2014; 77:16.2.1-16.2.11. [DOI: 10.1002/0471140864.ps1602s77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wendy Sandoval
- Department of Protein Chemistry, Genentech South San Francisco California
| |
Collapse
|
11
|
Zhu L, Zhang J, Guo Y. Enhanced detection and desalting free protocol for phosphopeptides eluted from immobilized Fe (III) affinity chromatography in direct MALDI TOF analysis. J Proteomics 2014; 96:360-5. [DOI: 10.1016/j.jprot.2013.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 12/24/2022]
|
12
|
Baum F, Fedorova M, Ebner J, Hoffmann R, Pischetsrieder M. Analysis of the Endogenous Peptide Profile of Milk: Identification of 248 Mainly Casein-Derived Peptides. J Proteome Res 2013; 12:5447-62. [DOI: 10.1021/pr4003273] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florian Baum
- Department
of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Maria Fedorova
- Center
for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz
5, 04103 Leipzig, Germany
| | - Jennifer Ebner
- Department
of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Ralf Hoffmann
- Center
for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz
5, 04103 Leipzig, Germany
| | - Monika Pischetsrieder
- Department
of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|
13
|
Baum F, Ebner J, Pischetsrieder M. Identification of multiphosphorylated peptides in milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9110-9117. [PMID: 23992542 DOI: 10.1021/jf401865q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multiphosphorylated peptides endogenously present in milk exert anticariogenic activity due to their calcium binding capacity. This study performed comprehensive analysis of multiphosphorylated peptides in raw milk using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Since phosphopeptides are often negatively discriminated during ionization, putative phosphopeptides were identified by three different methods: (i) selective detection in 4-chloro-α-cyanocinnamic acid MALDI matrix compared to α-cyano-4-hydroxycinnamic acid; (ii) higher relative signal intensity in negative compared to positive ionization mode; and (iii) detection of signal pairs with mass differences of -80 Da or multiples thereof before and after enzymatic dephosphorylation. Thus, 18 putative phosphopeptides from raw milk were annotated. Peptide structures were then determined by product ion spectra from targeted liquid chromatography electrospray ionization tandem-MS analysis. Thus, β-casein33-48, β-casein29-48, β-casein1-21, β-casein2-25, β-casein1-25, β-casein1-27, β-casein1-28, β-casein1-29, β-casein1-32, αS2-casein1-21, and αS2-casein1-24 were revealed as major peptides with one or four phosphorylation sites in raw milk.
Collapse
Affiliation(s)
- Florian Baum
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nuremberg , Schuhstrasse 19, 91052 Erlangen, Germany
| | | | | |
Collapse
|
14
|
Nika H, Nieves E, Hawke DH, Angeletti RH. Optimization of the β-elimination/michael addition chemistry on reversed-phase supports for mass spectrometry analysis of O-linked protein modifications. J Biomol Tech 2013; 24:132-53. [PMID: 23997661 PMCID: PMC3703673 DOI: 10.7171/jbt.13-2403-005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization.
Collapse
Affiliation(s)
- Heinz Nika
- Laboratory for Macromolecular Analysis and Proteomics and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| | - Edward Nieves
- Laboratory for Macromolecular Analysis and Proteomics and
| | - David H. Hawke
- Department of Pathology, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| |
Collapse
|
15
|
Salovska B, Tichy A, Fabrik I, Rezacova M, Vavrova J. Comparison of Resins for Metal Oxide Affinity Chromatography with Mass Spectrometry Detection for the Determination of Phosphopeptides. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.773437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zheng L, Dong H, Hu L. Zirconium-Cation-Immobilized Core/Shell (Fe3O4@Polymer) Microspheres as an IMAC Material for the Selective Enrichment of Phosphopeptides. Ind Eng Chem Res 2013. [DOI: 10.1021/ie4003377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leyou Zheng
- NHU Co. Ltd. of Zhejiang, 4 Jiangbei Road,
Xinchang, Zhejiang 312500, P. R. China
| | - Huaping Dong
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing,
Zhejiang 312000, P. R. China
| | - Liujiang Hu
- College of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing,
Zhejiang 312000, P. R. China
| |
Collapse
|
17
|
Fischnaller M, Bakry R, Vallant RM, Huber LA, Bonn GK. C60-fullerene bound silica for the preconcentration and the fractionation of multiphosphorylated peptides. Anal Chim Acta 2013; 761:92-101. [DOI: 10.1016/j.aca.2012.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/05/2012] [Accepted: 11/10/2012] [Indexed: 12/20/2022]
|
18
|
Cho K, Yoo JS, Kim EM, Kim JY, Kim YH, Oh HB, Yoo JS. A Multidimensional System for Phosphopeptide Analysis Using TiO2Enrichment and Ion-exchange Chromatography with Mass Spectrometry. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.10.3298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Nika H, Lee J, Willis IM, Angeletti RH, Hawke DH. Phosphopeptide characterization by mass spectrometry using reversed-phase supports for solid-phase β-elimination/Michael addition. J Biomol Tech 2012; 23:51-68. [PMID: 22951960 PMCID: PMC3324170 DOI: 10.7171/jbt.2012-2302-002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have adapted the Ba(2+) ion-catalyzed concurrent Michael addition reaction to solid-phase derivatization on ZipTip(C18) pipette tips using 2-aminoethanethiol as a nucleophile. This approach provides several advantages over the classical in-solution-based techniques, including ease of operation, completeness of reaction, improved throughput, efficient use of dilute samples, and amenability to automation. Phosphoseryl and phosphothreonyl peptides, as well as phosphoserine peptides with adjoining prolines, were used to optimize the reaction conditions, which proved highly compatible with the integrity of the samples. The analyte was recovered from the silica-based C18 resin at minimal sample loss. The use of the protocol for improved phosphopeptide detection by signal enhancement was demonstrated with low-level amounts of proteolytic digests from model proteins and experimental samples, an effect found especially prominent with multiple phosphorylated species. The reaction products proved highly suitable for structural characterization by collisionally induced dissociation (CID), and the resultant increased spectral information content, greatly facilitating mapping of the site of phosphorylation. In select cases, the method enables phosphorylation site localization within known protein sequences on the basis of single-stage data alone. The solid-phase strategy presented here provides a simple, versatile, and efficient tool for phosphopeptide structural characterization equipment readily available in most biological laboratories.
Collapse
Affiliation(s)
- Heinz Nika
- MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA; and
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - David H. Hawke
- MD Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA; and
| |
Collapse
|
20
|
Tichy A, Salovska B, Rehulka P, Klimentova J, Vavrova J, Stulik J, Hernychova L. Phosphoproteomics: Searching for a needle in a haystack. J Proteomics 2011; 74:2786-97. [DOI: 10.1016/j.jprot.2011.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 11/27/2022]
|
21
|
Palumbo AM, Smith SA, Kalcic CL, Dantus M, Stemmer PM, Reid GE. Tandem mass spectrometry strategies for phosphoproteome analysis. MASS SPECTROMETRY REVIEWS 2011; 30:600-25. [PMID: 21294150 DOI: 10.1002/mas.20310] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MS(n) ) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MS(n) approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas-phase ion chemistries, mechanisms and other factors that influence the gas-phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600-625, 2011.
Collapse
Affiliation(s)
- Amanda M Palumbo
- Department of Chemistry, Michigan State University, East Lansing, USA
| | | | | | | | | | | |
Collapse
|
22
|
Eyrich B, Sickmann A, Zahedi RP. Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies. Proteomics 2011; 11:554-70. [PMID: 21226000 DOI: 10.1002/pmic.201000489] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/13/2010] [Accepted: 09/21/2010] [Indexed: 01/16/2023]
Abstract
Phosphorylation of proteins is one of the most prominent PTMs and for instance a key regulator of signal transduction. In order to improve our understanding of cellular phosphorylation events, considerable effort has been devoted to improving the analysis of phosphorylation by MS-based proteomics. Different enrichment strategies for phosphorylated peptides/proteins, such as immunoaffinity chromatography (IMAC) or titanium dioxide, have been established and constantly optimized for subsequent MS analysis. Concurrently, specific MS techniques were developed for more confident identification and phosphorylation site localization. In addition, more attention is paid to the LC-MS instrumentation to avoid premature loss of phosphorylated peptides within the analytical system. Despite major advances in all of these fields, the analysis of phosphopeptides still remains far from being routine in proteomics. However, to reveal cellular regulation by phosphorylation events, not only qualitative information about the phosphorylation status of proteins but also, in particular, quantitative information about distinct changes in phosphorylation patterns upon specific stimulation is mandatory. Thus, yielded insights are of outstanding importance for the emerging field of systems biology. In this review, we will give an insight into the historical development of phosphoproteome analysis and discuss its recent progress particularly regarding phosphopeptide quantification and assessment of phosphorylation stoichiometry.
Collapse
Affiliation(s)
- Beate Eyrich
- Leibniz-Institut für Analytische Wissenschaften-ISAS-eV, Dortmund, Germany
| | | | | |
Collapse
|
23
|
Shah B, Kozlowski RL, Han J, Borchers CH. Emerging mass spectrometry-based technologies for analyses of chromatin changes: analysis of histones and histone modifications. Methods Mol Biol 2011; 773:259-303. [PMID: 21898261 DOI: 10.1007/978-1-61779-231-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mass spectrometry (MS) is rapidly becoming an indispensable tool for the analysis of posttranslational modifications (PTMs) of proteins, and particularly histone PTMs that regulate physiological processes. The more traditional bottom-up approach of searching for modifications on peptides rather than intact proteins (top-down) has proven useful for finding phosphorylation, acetylation, and ubiquitination sites. With the use of modern instrumentation and various MS-based techniques, peptides and their PTMs can be characterized in a high-throughput manner while still maintaining high sensitivity and specificity. In complement to bottom-up MS, recent advances in MS technology, such as high-field Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, have permitted the study of intact proteins and their modifications. On-line and off-line protein separation instruments coupled to FTICR-MS allow the characterization of PTMs previously undetectable with bottom-up approaches. The use of unique fragmentation techniques in FTICR-MS provides a viable option for the study of labile modifications. In this chapter, we provide a detailed description of the analytical tools - mass spectrometry in particular - that are used to characterize modifications on peptides and proteins. We also examine the applicability of these mass spectrometric techniques to the study of PTMs on histones via both the bottom-up and top-down proteomics approaches.
Collapse
Affiliation(s)
- Brinda Shah
- Department of Biochemistry and Microbiology, and the University of Victoria - Genome British Columbia Protein Center, University of Victoria, Victoria, BC, Canada
| | | | | | | |
Collapse
|
24
|
Abstract
Reversible protein phosphorylation serves as a basis for regulating a number of cellular processes. Aberrant activation of kinase signaling pathways is commonly associated with several cancers. Recent developments in phosphoprotein/phosphopeptide enrichment strategies and quantitative mass spectrometry have resulted in robust pipelines for high-throughput characterization of phosphorylation in a global fashion. Today, it is possible to profile site-specific phosphorylation events on thousands of proteins in a single experiment. The potential of this approach is already being realized to characterize signaling pathways that govern oncogenesis. In addition, chemical proteomic strategies have been used to unravel targets of kinase inhibitors, which are otherwise difficult to characterize. This review summarizes various approaches used for analysis of the phosphoproteome in general, and protein kinases in particular, highlighting key cancer phosphoproteomic studies.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India.
| | | |
Collapse
|
25
|
Wang L, Harshman SW, Liu S, Ren C, Xu H, Sallans L, Grever M, Byrd JC, Marcucci G, Freitas MA. Assaying pharmacodynamic endpoints with targeted therapy: flavopiridol and 17AAG induced dephosphorylation of histone H1.5 in acute myeloid leukemia. Proteomics 2010; 10:4281-92. [PMID: 21110323 PMCID: PMC3021470 DOI: 10.1002/pmic.201000080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 08/31/2010] [Indexed: 01/04/2023]
Abstract
Histone H1 is commonly used to assay kinase activity in vitro. As many promising targeted therapies affect kinase activity of specific enzymes involved in cancer transformation, H1 phosphorylation can serve as potential pharmacodynamic marker for drug activity within the cell. In this study we utilized a phosphoproteomic workflow to characterize histone H1 phosphorylation changes associated with two targeted therapies in the Kasumi-1 acute myeloid leukemia cell line. The phosphoproteomic workflow was first validated with standard casein phosphoproteins and then applied to the direct analysis of histone H1 from Kasumi-1 nuclear lysates. Ten H1 phosphorylation sites were identified on the H1 variants, H1.2, H1.3, H1.4, H1.5 and H1.x. LC MS profiling of intact H1s demonstrated global dephosphorylation of H1.5 associated with therapy by the cyclin-dependent kinase inhibitor, flavopiridol and the Heat Shock Protein 90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin. In contrast, independent treatments with a nucleotide analog, proteosome inhibitor and histone deacetylase inhibitor did not exhibit decreased H1.5 phosphorylation. The data presented herein demonstrate that potential of histones to assess the cellular response of reagents that have direct and indirect effects on kinase activity that alters histone phosphorylation. As such, this approach may be a highly informative marker for response to targeted therapies influencing histone phosphorylation.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Chemistry, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Sean W. Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Shujun Liu
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Chen Ren
- Department of Chemistry, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Hua Xu
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Larry Sallans
- Mass Spectrometry Facility, University of Cincinnati, Cincinnati OH, 45221, USA
| | - Michael Grever
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - John C. Byrd
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Guido Marcucci
- Department of Internal Medicine, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus OH, 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, 43210, USA
| |
Collapse
|
26
|
Kyono Y, Sugiyama N, Tomita M, Ishihama Y. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2277-2282. [PMID: 20623713 DOI: 10.1002/rcm.4627] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a novel strategy to improve the efficiency of identification of multiply phosphorylated peptides isolated by hydroxy acid modified metal oxide chromatography (HAMMOC). This strategy consists of alkali-induced chemical dephosphorylation (beta-elimination reaction) of phosphopeptides isolated by HAMMOC prior to analysis by liquid chromatography/mass spectrometry (LC/MS). This approach identified 1.9-fold more multiply phosphorylated peptides than the conventional approach without beta-elimination from a digested mixture of three standard phosphoproteins. In addition, the accuracy of phosphorylation site determination in synthetic phosphopeptides was significantly improved. Finally, we applied this approach to a cell lysate. By combining this dephosphorylation approach with the conventional approach, we successfully identified 1649 unique phosphopeptides, including 325 multiply phosphorylated phosphopeptides, from 200 microg of cultured Arabidopsis cells. These results indicate that chemical dephosphorylation prior to LC/MS analysis increases the efficiency of identification of multiply phosphorylated peptides, as well as the accuracy of phosphorylation site determination.
Collapse
Affiliation(s)
- Yutaka Kyono
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | |
Collapse
|
27
|
Domanski D, Murphy LC, Borchers CH. Assay development for the determination of phosphorylation stoichiometry using multiple reaction monitoring methods with and without phosphatase treatment: application to breast cancer signaling pathways. Anal Chem 2010; 82:5610-20. [PMID: 20524616 PMCID: PMC2909760 DOI: 10.1021/ac1005553] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have developed a phosphatase-based phosphopeptide quantitation (PPQ) method for determining phosphorylation stoichiometry in complex biological samples. This PPQ method is based on enzymatic dephosphorylation, combined with specific and accurate peptide identification and quantification by multiple reaction monitoring (MRM) with stable-isotope-labeled standard peptides. In contrast with classical MRM methods for the quantitation of phosphorylation stoichiometry, the PPQ-MRM method needs only one nonphosphorylated SIS (stable isotope-coded standard) and two analyses (one for the untreated sample and one for the phosphatase-treated sample), from which the expression and modification levels can accurately be determined. From these analyses, the percent phosphorylation can be determined. In this manuscript, we compare the PPQ-MRM method with an MRM method without phosphatase and demonstrate the application of these methods to the detection and quantitation of phosphorylation of the classic phosphorylated breast cancer biomarkers (ERalpha and HER2), and for phosphorylated RAF and ERK1, which also contain phosphorylation sites of biological importance. Using synthetic peptides spiked into a complex protein digest, we were able to use our PPQ-MRM method to accurately determine the total phosphorylation stoichiometry on specific peptides as well as the absolute amount of the peptide and phosphopeptide present. Analyses of samples containing ERalpha protein revealed that the PPQ-MRM method is capable of determining phosphorylation stoichiometry in proteins from cell lines, and is in good agreement with determinations obtained using the direct MRM approach in terms of phosphorylation and total protein amount.
Collapse
Affiliation(s)
- Dominik Domanski
- University of Victoria – Genome BC Proteomics Centre, #3101-4464 Markham St., Victoria, BC, Canada, V8Z-7X8
| | - Leigh C. Murphy
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Ave. Rm. ON5008B, Winnipeg, MB R3E 0V9
| | - Christoph H. Borchers
- University of Victoria – Genome BC Proteomics Centre, #3101-4464 Markham St., Victoria, BC, Canada, V8Z-7X8
| |
Collapse
|
28
|
Enhanced MALDI-TOF MS analysis of phosphopeptides using an optimized DHAP/DAHC matrix. J Biomed Biotechnol 2010; 2010:759690. [PMID: 20339515 PMCID: PMC2842900 DOI: 10.1155/2010/759690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/11/2009] [Accepted: 12/31/2009] [Indexed: 11/17/2022] Open
Abstract
Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS.
Collapse
|
29
|
Histidine-mediated RNA transfer to GDP for unique mRNA capping by vesicular stomatitis virus RNA polymerase. Proc Natl Acad Sci U S A 2010; 107:3463-8. [PMID: 20142503 DOI: 10.1073/pnas.0913083107] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA-dependent RNA polymerase L protein of vesicular stomatitis virus, a prototype of nonsegmented negative-strand (NNS) RNA viruses, forms a covalent complex with a 5'-phosphorylated viral mRNA-start sequence (L-pRNA), a putative intermediate in the unconventional mRNA capping reaction catalyzed by the RNA:GDP polyribonucleotidyltransferase (PRNTase) activity. Here, we directly demonstrate that the purified L-pRNA complex transfers pRNA to GDP to produce the capped RNA (Gpp-pRNA), indicating that the complex is a bona fide intermediate in the RNA transfer reaction. To locate the active site of the PRNTase domain in the L protein, the covalent RNA attachment site was mapped. We found that the 5'-monophosphate end of the RNA is linked to the histidine residue at position 1,227 (H1227) of the L protein through a phosphoamide bond. Interestingly, H1227 is part of the histidine-arginine (HR) motif, which is conserved within the L proteins of the NNS RNA viruses including rabies, measles, Ebola, and Borna disease viruses. Mutagenesis analyses revealed that the HR motif is required for the PRNTase activity at the step of the enzyme-pRNA intermediate formation. Thus, our findings suggest that an ancient NNS RNA viral polymerase has acquired the PRNTase domain independently of the eukaryotic mRNA capping enzyme during evolution and PRNTase becomes a rational target for designing antiviral agents.
Collapse
|
30
|
Dunn JD, Reid GE, Bruening ML. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:29-54. [PMID: 19263479 DOI: 10.1002/mas.20219] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mass spectrometry is the tool of choice to investigate protein phosphorylation, which plays a vital role in cell regulation and diseases such as cancer. However, low abundances of phosphopeptides and low degrees of phosphorylation typically necessitate isolation and concentration of phosphopeptides prior to MS analysis. This review discusses the enrichment of phosphopeptides with immobilized metal affinity chromatography, reversible covalent binding, and metal oxide affinity chromatography. Capture of phosphopeptides on TiO(2) seems especially promising in terms of selectivity and recovery, but the success of all methods depends on careful selection of binding, washing, and elution solutions. Enrichment techniques are complementary, such that a combination of methods greatly enhances the number of phosphopeptides isolated from complex samples. Development of a standard series of phosphopeptides in a highly complex mixture of digested proteins would greatly aid the comparison of different enrichment methods. Phosphopeptide binding to magnetic beads and on-plate isolation prior to MALDI-MS are emerging as convenient methods for purification of small (microL) samples. On-plate enrichment can yield >70% recoveries of phosphopeptides in mixtures of a few digested proteins and can avoid sample-handling steps, but this technique is likely limited to relatively simple samples such as immunoprecipitates. With recent advances in enrichment techniques in hand, MS analysis should provide important insights into phosphorylation pathways.
Collapse
Affiliation(s)
- Jamie D Dunn
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
31
|
Wu HY, Tseng VSM, Chen LC, Chang YC, Ping P, Liao CC, Tsay YG, Yu JS, Liao PC. Combining alkaline phosphatase treatment and hybrid linear ion trap/Orbitrap high mass accuracy liquid chromatography-mass spectrometry data for the efficient and confident identification of protein phosphorylation. Anal Chem 2009; 81:7778-87. [PMID: 19702290 DOI: 10.1021/ac9013435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphorylation is a vital post-translational modification that is involved in a variety of biological processes. Several mass spectrometry-based methods have been developed for phosphoprotein characterization. In our previous work, we demonstrated the capability of a computational algorithm in mining phosphopeptide signals in large LC-MS data sets by measuring the mass shifts due to phosphatase treatment (Wu, H. Y.; Tseng, V. S.; Liao, P. C. J. Proteome Res. 2007, 6, 1812-1821). Mass accuracy seems to play an important role in efficiently selecting out phosphopeptide signals. In recent years, the hybrid linear ion trap (LTQ)/Orbitrap mass spectrometer, which provides a high mass accuracy, has emerged as a powerful instrument in proteomic analysis. Here, we developed a process to incorporate LC-MS data that was generated from an LTQ/Orbitrap mass spectrometer into our strategy for taking advantage of the accurate mass measurement. LTQ/Orbitrap raw files were converted to the open file format mzXML via the ReAdW.exe program. To find peaks that were contained in each mzXML file, an open-source computer program, msInspect, was utilized to locate isotopes and assemble those isotopes into peptides. An in-house program, LcmsFormatConverter, was utilized for signal filtering and format transformation. A proposed in-house program, DeltaFinder, was modified and used for defining signals with an exact mass shift due to the dephosphorylation reaction, which generated a table that listed potential phosphopeptide signals. The retention times and m/z values of these selected LC-MS signals were used to program subsequent LC-MS/MS experiments to get high-confidence phosphorylation site determination. Compared to our previous work finished by using a quadrupole/time-of-flight mass spectrometer, a larger number of phosphopeptides in the casein mixture were identified by using LTQ/Orbitrap data, demonstrating the merit of high mass accuracy in our strategy. In addition, the characterization of the lung cancer cell tyrosine phosphoproteome revealed that the use of alkaline phosphatase treatment combined with accurate mass measurement in this strategy increased data repeatability and confidence.
Collapse
Affiliation(s)
- Hsin-Yi Wu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhou LH, Kang GY, Kim KP. A binary matrix for improved detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:2264-2272. [PMID: 19551845 DOI: 10.1002/rcm.4139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analysis and characterization of phosphopeptides in peptide mixtures may have a limitation, because of the lower ionizing efficiency of phosphopeptides than nonphosphorylated peptides in MALDI MS. In this work, a binary matrix that consists of two conventional matrices of 3-hydroxypicolinic acid (3-HPA) and alpha-cyano-4-hydroxycinnamic acid (CCA) was tested for phosphopeptide analysis. 3-HPA and CCA were found to be hot matrices, and 3-HPA not as good as CCA and 2,5-dihydroxybenzoic acid (DHB) for peptide analysis. However, the presence of 3-HPA in the CCA solution with a volume ratio of 1:1 could significantly enhance ion signals for phosphopeptides in both positive-ion and negative-ion detection modes compared with the use of pure CCA or DHB, the most common phosphopeptide matrices. Higher signal intensities of phosphopeptides could be obtained with lower laser power using the binary matrix. Neutral loss of the phosphate group (-80 Da) and phosphoric acid (-98 Da) from the phosphorylated-residue-containing peptide ions with the binary matrix was decreased compared with CCA alone. In addition, since the crystal shape prepared with the binary matrix was more homogeneous than that prepared with DHB, searching for 'sweet' spots can be avoided. The sensitivity to detect singly or doubly phosphorylated peptides in peptide mixtures was higher than that obtained with pure CCA and as good as that obtained using DHB. We also used the binary matrix to detect the in-solution tryptic digest of the crude casein extracted from commercially available low fat milk sample, and found six phosphopeptides to match the digestion products of casein, based on mass-to-charge values and LIFT TOF-TOF spectra.
Collapse
Affiliation(s)
- Li-Hua Zhou
- Department of Molecular Biotechnology, Konkuk University, Seoul 143-701, Korea
| | | | | |
Collapse
|
33
|
Boersema PJ, Mohammed S, Heck AJR. Phosphopeptide fragmentation and analysis by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:861-878. [PMID: 19504542 DOI: 10.1002/jms.1599] [Citation(s) in RCA: 289] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reversible phosphorylation is a key event in many biological processes and is therefore a much studied phenomenon. The mass spectrometric (MS) analysis of phosphorylation is challenged by the substoichiometric levels of phosphorylation and the lability of the phosphate group in collision-induced dissociation (CID). Here, we review the fragmentation behaviour of phosphorylated peptides in MS and discuss several MS approaches that have been developed to improve and facilitate the analysis of phosphorylated peptides. CID of phosphopeptides typically results in spectra dominated by a neutral loss of the phosphate group. Several proposed mechanisms for this neutral loss and several factors affecting the extent at which this occurs are discussed. Approaches are described to interpret such neutral loss-dominated spectra to identify the phosphopeptide and localize the phosphorylation site. Methods using additional activation, such as MS(3) and multistage activation (MSA), have been designed to generate more sequence-informative fragments from the ion produced by the neutral loss. The characteristics and benefits of these methods are reviewed together with approaches using phosphopeptide derivatization or specific MS scan modes. Additionally, electron-driven dissociation methods by electron capture dissociation (ECD) or electron transfer dissociation (ETD) and their application in phosphopeptide analysis are evaluated. Finally, these techniques are put into perspective for their use in large-scale phosphoproteomics studies.
Collapse
Affiliation(s)
- Paul J Boersema
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
34
|
Nojiri M, Loyet KM, Klenchin VA, Kabachinski G, Martin TFJ. CAPS activity in priming vesicle exocytosis requires CK2 phosphorylation. J Biol Chem 2009; 284:18707-14. [PMID: 19460754 DOI: 10.1074/jbc.m109.017483] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CAPS (Ca(2+)-dependent activator protein for secretion) functions in priming Ca(2+)-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca(2+)-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in the 1289 residue protein. Ser-5, -6, and -7 but not Ser-1281 to Ala substitutions abolished CAPS activity. Protein kinase CK2 phosphorylated CAPS in vitro at these sites and restored the activity of dephosphorylated CAPS. CK2 is the likely in vivo CAPS protein kinase based on inhibition of phosphorylation by tetrabromo-2-benzotriazole in PC12 cells and by the identity of in vivo and in vitro phosphorylation sites. CAPS phosphorylation by CK2 was constitutive, but the elevation of Ca(2+) in synaptosomes increased CAPS Ser-5 and -6 dephosphorylation, which terminates CAPS activity. These results identify a functionally important N-terminal phosphorylation site that regulates CAPS activity in priming vesicle exocytosis.
Collapse
Affiliation(s)
- Mari Nojiri
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
35
|
Dave KA, Whelan F, Bindloss C, Furness SGB, Chapman-Smith A, Whitelaw ML, Gorman JJ. Sulfonation and phosphorylation of regions of the dioxin receptor susceptible to methionine modifications. Mol Cell Proteomics 2008; 8:706-19. [PMID: 19059900 DOI: 10.1074/mcp.m800459-mcp200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tagged murine dioxin receptor was purified from mammalian cells, digested with trypsin, and analyzed by capillary HPLC-MALDI-TOF/TOF-MS and -MS/MS. Several chromatographically distinct semitryptic peptides matching two regions spanning residues Glu(409)-Arg(424) and Ser(547)-Arg(555) of the dioxin receptor were revealed by de novo sequencing. Methionine residues at 418 and 548 were detected in these peptides as either unmodified or modified by moieties of 16 (oxidation) or 57 amu (S-carboxamidomethylation) or in a form corresponding to degradative removal of 105 amu from the S-carboxamidomethylated methionine. MS/MS spectra revealed that the peptides containing modified methionine residues also existed in forms with a modification of +80 amu on serine residues 411, 415, and 547. The MS/MS spectra of these peptide ions also revealed diagnostic neutral loss fragment ions of 64, 98, and/or 80 amu, and in some instances combinations of these neutral losses were apparent. Taken together, these data indicated that serines 411 and 547 of the dioxin receptor were sulfonated and serine 415 was phosphorylated. Separate digests of the dioxin receptor were prepared in H(2)(16)O and H(2)(18)O, and enzymatic dephosphorylation was subsequently performed on the H(2)(16)O digest only. The digests were mixed in equal proportions and analyzed by capillary HPLC-MALDI-TOF/TOF-MS and -MS/MS. This strategy confirmed assignment of sulfonation as the cause of the +80-amu modifications on serines 411 and 547 and phosphorylation as the predominant cause of the +80-amu modification of serine 415. The relative quantitation of phosphorylation and sulfonation enabled by this differential phosphatase strategy also suggested the presence of sulfonation on a serine other than residue 411 within the sequence spanning Glu(409)-Arg(424). This represents the first description of post-translational sulfonation sites and identification of a new phosphorylation site of the latent dioxin receptor. Furthermore this is only the second report of serine sulfonation of eukaryotic proteins. Mutagenesis studies are underway to assess the functional consequences of these modifications.
Collapse
Affiliation(s)
- Keyur A Dave
- Protein Discovery Centre, Queensland Institute of Medical Research, P. O. Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Identification of phosphorylation sites of proteins by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 43:561-8. [PMID: 18726350 DOI: 10.1007/bf02882276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/1999] [Revised: 04/30/2000] [Indexed: 10/22/2022]
Abstract
The phosphorylation sites of two phosphorylated proteins, bovine beta-casein and myelin basic protein (MBP), were identified by high performance liquid chromatography-electrospray ionization-quadrupole ion trap mass spectrometry (HPLC-ESI-QITMS). The tryptic digest of each protein was separated by HPLC, the molecular weight of each peptide was determined by ESI-QITMS on line, and MS/MS spectrum of each peptide was simultaneously obtained by the combination of collision-induced desorption (CID) technique and tandem mass spectrometry (MS/MS) of QITMS. The phosphorylated peptide was identified by looking into whether the difference between the observed and predicted molecular weights of a peptide is 80 u or its integral multiple. Then the phosphorylation site was identified through manual interpretation of the MS/MS spectrum of the phosphorylated peptide or automatic SEQUEST data base-searching.
Collapse
|
37
|
Tan F, Zhang Y, Wang J, Wei J, Cai Y, Qian X. An efficient method for dephosphorylation of phosphopeptides by cerium oxide. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:628-632. [PMID: 18076124 DOI: 10.1002/jms.1362] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this article, an effective method for dephosphorylation of phosphopeptides by cerium oxide is described. The dephosphorylation activity of cerium oxide was evaluated by two standard phosphopeptides and the phosphopeptides in digests of phosphoprotein alpha-casein and beta-casein. Results showed that the dephosphorylation of all the phosphopeptides was completed in 10 min, and temperature had little effect on the dephosphorylation, the dephosphorylation could be carried out at 0 degrees C, room temperature and 37 degrees C. The dephosphorylation mediated by cerium oxide can be attributed to Lewis acid and nucleophile activations. Advantages of using cerium oxide as catalyst for the dephosphorylation include: safe, simple, high catalytic activity, and no precise control of the treatment temperature. The method is valid for the phosphorylation of Ser, Thr and Tyr, and can be used for phosphoprotein analysis.
Collapse
Affiliation(s)
- Feng Tan
- State Key Laboratory of Proteomics-Beijing Proteome Research Center-Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
38
|
Gabant G, Lorphelin A, Nozerand N, Marchetti C, Bellanger L, Dedieu A, Quéméneur E, Alpha-Bazin B. Autophosphorylated residues involved in the regulation of human chk2 in vitro. J Mol Biol 2008; 380:489-503. [PMID: 18538787 DOI: 10.1016/j.jmb.2008.04.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/10/2008] [Accepted: 04/23/2008] [Indexed: 01/10/2023]
Abstract
Human checkpoint kinase 2 is a major actor in checkpoint activation through phosphorylation by ataxia telangiectasia mutated in response to DNA double-strand breaks. In the absence of de novo DNA damage, its autoactivation, reported in the event of increased Cds1/checkpoint kinase 2 (Chk2) expression, has been attributed to oligomerization. Here we report a study performed on autoactivated recombinant Chk2 proteins that aims to correlate kinase activity and phosphorylation status. Using a fluorescence-based technique to assay human checkpoint kinase 2 catalytic activity, slight differences in the ability to phosphorylate Cdc25C were observed, depending on the recombinant system used. Using mass spectrometry, the phosphorylation sites were mapped to identify sites potentially involved in the kinase activity. Five phosphorylated positions, at Ser120, Ser260, Thr225, Ser379 and Ser435, were found to be common to bacteria and insect cells expression systems. They were present in addition to the six known phosphorylation sites induced by ionizing radiation (Thr68, Thr432, Thr387, Ser516, Ser33/35 and Ser19) detected by immunoblotting. After phosphatase treatment, Chk2 regained activity via autorephosphorylation. The determination of the five common sites and ionizing-radiation-inducible positions as rephosphorylated confirms that they are potential positive regulators of Chk2 kinase activity. For Escherichia coli's most highly phosphorylated 6His-Chk2, 13 additional phosphorylation sites were assigned, including 7 novel sites on top of recently reported phosphorylation sites.
Collapse
Affiliation(s)
- Guillaume Gabant
- CEA, DSV, iBEB, Service de biochimie et toxicologie nucléaire, Centre de Marcoule, BP 17171, F-30207 Bagnols-sur-Cèze Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Patterson SD. Protein identification and characterization by mass spectrometry. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.22. [PMID: 18265063 DOI: 10.1002/0471142727.mb1022s41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This overview describes some of the new technologies that can be employed to facilitate rapid identification and characterization of proteins, including the use of correlative approaches for protein identification, rapid posttranslational modification analysis, identification of components in complex mixtures, and direct mass analysis of gel-separated proteins. The mass spectrometric methods referred to in this overview include matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS).
Collapse
|
40
|
Jagannadham MV, Nagaraj R. Detecting the site of phosphorylation in phosphopeptides without loss of phosphate group using MALDI TOF mass spectrometry. ANALYTICAL CHEMISTRY INSIGHTS 2008; 3:21-9. [PMID: 19609387 PMCID: PMC2701175 DOI: 10.4137/aci.s497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphopeptides with one and four phosphate groups were characterized by MALDI mass spectrometry. The molecular ion of monophosphopeptide could be detected both as positive and negative ions by MALDI TOF with delayed extraction (DE) and in the reflector mode. The tetraphospho peptide could be detected in linear mode. When MS/MS spectra of the monophospho peptides were obtained in a MALDI TOF TOF instrument by CID, b and y ions with the intact phosphate group were observed, in addition the b and y ions without the phosphate group. Our study indicates that it is possible to detect phosphorylated peptides with out the loss of phosphate group by MALDI TOF as well as MALDI TOF TOF instruments with delayed extraction and in the reflector mode.
Collapse
|
41
|
Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, Zhao D. Mesoporous Fe2O3 microspheres: Rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. J Colloid Interface Sci 2008; 318:315-21. [DOI: 10.1016/j.jcis.2007.10.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/12/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
42
|
O’Brien-Simpson NM, Attard TJ, Loganathan A, Huq NL, Cross KJ, Riley PF, Reynolds EC. Synthesis and Characterisation of a Multiphosphorylated Phosphophoryn Repeat Motif; H-[Asp-(Ser(P))2]3-Asp-OH. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9106-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Wang Y, Chen W, Wu J, Guo Y, Xia X. Highly efficient and selective enrichment of phosphopeptides using porous anodic alumina membrane for MALDI-TOF MS analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1387-95. [PMID: 17533135 DOI: 10.1016/j.jasms.2007.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/22/2007] [Accepted: 04/24/2007] [Indexed: 05/15/2023]
Abstract
Because of its good biocompatibility, high surface-to-volume ratio, and distinct surface electrical properties, porous anodic alumina (PAA) membrane has been used to selectively enrich phosphopeptides from a mixture of synthetic peptides and tryptic digest product of beta-casein by a direct MALDI-TOF MS analysis. As we reported previously, PAA membrane has strong incorporation ability to the phosphate anion. Herein, we describe the application of PAA membrane as a selective sampling absorbent for phosphopeptides. The PAA membrane could enrich phosphopeptides with high efficiency and selectivity; for example, the tryptic digest product of beta-casein at a concentration as low as 4 x 10(-9) M can be satisfactorily detected. Compared to that from the nonenriching peptide mixture, the MS signal of the phosphorylated peptides enriched by the PAA membrane is remarkably improved. In addition, acidic peptides have insignificant influence on the enriching process. Results show that the adsorption of phosphate anions on the PAA membrane plays a determining role in achieving highly selective enriching capacity toward phosphopeptides. The feasibility of PAA membranes as specific absorbents for phosphopeptides is also demonstrated.
Collapse
Affiliation(s)
- Yuebo Wang
- Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | | | | | | | | |
Collapse
|
44
|
D'Ambrosio C, Salzano AM, Arena S, Renzone G, Scaloni A. Analytical methodologies for the detection and structural characterization of phosphorylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:163-80. [PMID: 16891166 DOI: 10.1016/j.jchromb.2006.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/28/2006] [Indexed: 01/12/2023]
Abstract
Phosphorylation of proteins is a frequent post-translational modification affecting a great number of fundamental cellular functions in living organisms. Because of its key role in many biological processes, much effort has been spent over the time on the development of analytical methodologies for characterizing phosphoproteins. In the past decade, mass spectrometry-based techniques have emerged as a viable alternative to more traditional methods of phosphorylation analysis, providing accurate information for a purified protein on the number of the occurring phosphate groups and their exact localization on the polypeptide sequence. This review summarizes the analytical methodologies currently available for the analysis of protein phosphorylation, emphasizing novel mass spectrometry (MS) technologies and dedicated biochemical procedures that have been recently introduced in this field. A formidable armamentarium is now available for selective enrichment, exaustive structural characterization and quantitative determination of the modification degree for phosphopeptides/phosphoproteins. These methodologies are now successfully applied to the global analysis of cellular proteome repertoire according a holistic approach, allowing the quantitative study of phosphoproteomes on a dynamic time-course basis. The enormous complexity of the protein phosphorylation pattern inside the cell and its dynamic modification will grant important challenges to future scientists, contributing significantly to deeper insights into cellular processes and cell regulation.
Collapse
Affiliation(s)
- Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, via Argine 1085, 80147 Naples, Italy
| | | | | | | | | |
Collapse
|
45
|
Maccarrone G, Kolb N, Teplytska L, Birg I, Zollinger R, Holsboer F, Turck CW. Phosphopeptide enrichment by IEF. Electrophoresis 2007; 27:4585-95. [PMID: 17066382 DOI: 10.1002/elps.200600145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In our efforts to improve the identification of phosphopeptides by MS we have used peptide IEF on IPG strips. Phosphopeptides derived from trypsin digests of single proteins as well as complex cellular protein mixtures can be enriched by IEF and recovered in excellent yields at the acidic end of an IPG strip. IPG peptide fractionation in combination with MS/MS analysis has allowed us to identify phosphopeptides from tryptic digests of a cellular protein extract.
Collapse
|
46
|
Hathaway GM. Determination of phosphorylated and O-glycosylated sites by chemical targeting (CTID) at ambient temperature. Methods Mol Biol 2007; 386:79-93. [PMID: 18604943 DOI: 10.1007/978-1-59745-430-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the analytical approach called chemically targeted identification (CTID), peptides containing phosphorylated or glycosylated serine and threonine underwent beta-elimination to produce an unsaturated double bond. Nucleophilic addition of 2-aminoethanethiol to this bond occurred, yielding aminoethylcysteine. Thus, sites containing posttranslational modifications were made susceptible to lysine endopeptidase. Structural information could then be obtained by mass analysis of the proteolytic products. The method was demonstrated by the analysis of beta-casein tryptic digest peptides and an O-glycosylated peptide. Contrary to an earlier report, the glycopeptide was found to react with essentially the same kinetics as phosphopeptides. Conversion of all five phosphoserines in residues 15, 17, 18, 19, and 35 in N-terminal tryptic phosphopeptides from bovine beta-casein were followed by monitoring the time course of the addition reaction. The chemistry proceeded rapidly at room temperature with a half-reaction time of 15 min. No side reaction products were observed. However, care had to be taken to minimize all counterions, which either precipitate barium or neutralize the base. In the case of 2-aminoethanethiol, excess Ba(OH)2 was needed to offset the effect of the hydrochloride. Alternatively, pre-incubation with base followed by nucleophilic addition was found to work satisfactorily. The use of water-soluble thiol allowed the procedure to be carried out in the solid phase, with a micro pipet greatly facilitating sample cleanup.
Collapse
Affiliation(s)
- Gary M Hathaway
- The Beckman Institute, California Institute of Technology, Pasadena, USA
| |
Collapse
|
47
|
Molle V, Zanella-Cleon I, Robin JP, Mallejac S, Cozzone AJ, Becchi M. Characterization of the phosphorylation sites of Mycobacterium tuberculosis serine/threonine protein kinases, PknA, PknD, PknE, and PknH by mass spectrometry. Proteomics 2006; 6:3754-66. [PMID: 16739134 DOI: 10.1002/pmic.200500900] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In Mycobacterium tuberculosis (Mtb), regulatory phosphorylation of proteins at serine and/or threonine residues by serine/threonine protein kinases (STPKs) is an emerging theme connected with the involvement of these enzymes in virulence mechanisms. The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to identify the corresponding interaction networks. Detection of phosphorylated proteins as well as assignment of the phosphorylated sites in STPKs is a major challenge in proteomics since some of these enzymes might be interesting therapeutical targets. Using different strategies to identify phosphorylated residues, we report, in the present work, MS studies of the entire intracellular regions of recombinant protein kinases PknA, PknD, PknE, and PknH from Mtb. The on-target dephosphorylation/MALDI-TOF for identification of phosphorylated peptides was used in combination with LC-ESI/MS/MS for localization of phosphorylation sites. By doing so, seven and nine phosphorylated serine and/or threonine residues were identified as phosphorylation sites in the recombinant intracellular regions of PknA and PknH, respectively. The same technique led also to the identification of seven phosphorylation sites in each of the two recombinant kinases, PknD and PknE.
Collapse
Affiliation(s)
- Virginie Molle
- Institute of Biology and Chemistry of Proteins, CNRS/University of Lyon, IFR128, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
48
|
Zahedi RP, Begonja AJ, Gambaryan S, Sickmann A. Phosphoproteomics of human platelets: A quest for novel activation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1963-76. [PMID: 17049321 DOI: 10.1016/j.bbapap.2006.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 07/28/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
Besides their role in hemostasis, platelets are also highly involved in the pathogenesis and progression of cardiovascular diseases. Since important and initial steps of platelet activation and aggregation are regulated by phosphorylation events, a comprehensive study aimed at the characterization of phosphorylation-driven signaling cascades might lead to the identification of new target proteins for clinical research. However, it becomes increasingly evident that only a comprehensive phosphoproteomic approach may help to characterize functional protein networks and their dynamic alteration during physiological and pathophysiological processes in platelets. In this review, we discuss current methodologies in phosphoproteome research including their potentials as well as limitations, from sample preparation to classical approaches like radiolabeling and state-of-the-art mass spectrometry techniques.
Collapse
Affiliation(s)
- René P Zahedi
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | | | | | | |
Collapse
|
49
|
Krabbe JG, Gao F, Li J, Ahlskog JE, Lingeman H, Niessen WMA, Irth H. Selective detection and identification of phosphorylated proteins by simultaneous ligand-exchange fluorescence detection and mass spectrometry. J Chromatogr A 2006; 1130:287-95. [PMID: 16820161 DOI: 10.1016/j.chroma.2006.05.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 05/24/2006] [Accepted: 05/29/2006] [Indexed: 11/30/2022]
Abstract
A ligand-exchange method for the detection and identification of phosphorylated peptides in complex mixtures is presented that is based on the characterization of phosphorylated species by solution-phase interactions with Fe(III) ions and subsequent fluorescence readout. After the separation of the peptides and digest products on a reversed-phase LC column, the flow is split between the two detection systems. One part is directed towards an electrospray mass spectrometer for direct detection and identification of all the peptides present in the sample. The other part of the flow is directed towards a ligand-exchange detection system. This system relies on the specific release of a fluorescent reporter ligand from a Fe(III)-complex in the presence of phosphorylated peptides. To recognize false positive signals due to high-affinity non-phosphorylated high-acidic peptides and other compounds which are known to be a problem in for instance immobilized metal affinity chromatography (IMAC), a second run is performed after incubation of the sample with alkaline phosphatase. A positive signal in this second run indicates a high-affinity non-phosphorylated compound. The method is illustrated using digest from a phosphorylated alpha-casein. Automated switching between MS and MS-MS was performed to obtain additional information about the compounds present in the sample. The linearity of the method was tested in the range of 0.5-80 microM of phosphorylated peptides. A limit of detection (LOD) of 0.5 microM was obtained for a mono-phosphorylated peptide. The interday (n=4) and intraday precision (n=3) expressed as relative standard deviation was better than 10%.
Collapse
Affiliation(s)
- J G Krabbe
- Department of Analytical Chemistry and Applied Spectroscopy, Division of Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Jogie-Brahim S, Min HK, Oh Y. Potential of proteomics towards the investigation of the IGF-independent actions of IGFBP-3. Expert Rev Proteomics 2006; 2:71-86. [PMID: 15966854 DOI: 10.1586/14789450.2.1.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Early investigations into the insulin-like growth factor (IGF)-independent actions of insulin-like growth factor-binding protein (IGFBP)-3 have implicated a large array of signaling proteins with links to cell cycle control and apoptosis. However, the actual mechanism of IGFBP-3 action is still unclear. In an effort to clearly understand the mechanism of IGF-independent IGFBP-3 actions, a proteomic approach to identify the actual proteins involved in interaction with IGFBP-3 from different cell compartments, the phosphorylation status of IGFBP-3 under different physiologic conditions and the proteins upregulated by IGFBP-3 are briefly reviewed. The IGF system is a well-recognized key player in diseases such as cancer, diabetes and malnutrition. It is only after the signaling pathways of the IGF-independent actions of IGFBP-3 are clearly understood that the system can be manipulated to affect these disorders.
Collapse
Affiliation(s)
- Sherryline Jogie-Brahim
- Department of Pathology, Virginia Commonwealth University, School of Medicine, MCV Campus, Sanger Hall, Room 5-011, 1101 East Marshall Street, PO Box 980662, Richmond, Virginia 23298-0662, USA.
| | | | | |
Collapse
|