1
|
Bissen A, Yunussova N, Myrkhiyeva Z, Salken A, Tosi D, Bekmurzayeva A. Unpacking the packaged optical fiber bio-sensors: understanding the obstacle for biomedical application. Front Bioeng Biotechnol 2024; 12:1401613. [PMID: 39144482 PMCID: PMC11322460 DOI: 10.3389/fbioe.2024.1401613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
A biosensor is a promising alternative tool for the detection of clinically relevant analytes. Optical fiber as a transducer element in biosensors offers low cost, biocompatibility, and lack of electromagnetic interference. Moreover, due to the miniature size of optical fibers, they have the potential to be used in microfluidic chips and in vivo applications. The number of optical fiber biosensors are extensively growing: they have been developed to detect different analytes ranging from small molecules to whole cells. Yet the widespread applications of optical fiber biosensor have been hindered; one of the reasons is the lack of suitable packaging for their real-life application. In order to translate optical fiber biosensors into clinical practice, a proper embedding of biosensors into medical devices or portable chips is often required. A proper packaging approach is frequently as challenging as the sensor architecture itself. Therefore, this review aims to give an unpack different aspects of the integration of optical fiber biosensors into packaging platforms to bring them closer to actual clinical use. Particularly, the paper discusses how optical fiber sensors are integrated into flow cells, organized into microfluidic chips, inserted into catheters, or otherwise encased in medical devices to meet requirements of the prospective applications.
Collapse
Affiliation(s)
- Aidana Bissen
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Nigara Yunussova
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | | | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | | |
Collapse
|
2
|
Hasan H, Kumar V, Ge X, Sundberg C, Slaughter C, Rao G. An automatic glucose monitoring system based on periplasmic binding proteins for online bioprocess monitoring. Biosens Bioelectron 2024; 253:116138. [PMID: 38428070 DOI: 10.1016/j.bios.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
Glucose is one of the most vital nutrients in all living organisms, so its monitoring is critical in healthcare and bioprocessing. Enzymatic sensors are more popular as a technology solution to meet the requirement. However, periplasmic binding proteins have been investigated extensively for their high sensitivity, enabling microdialysis sampling to replace existing complex and expensive glucose monitoring solutions based on enzymatic sensors. The binding proteins are used as optical biosensors by introducing an environment-sensitive fluorophore to the protein. The biosensor's construction, characterization, and potential application are well studied, but a complete glucose monitoring system based on it is yet to be reported. This work documents the development of the first glucose sensor prototype based on glucose binding protein (GBP) for automatic and continuous glucose measurements. The development includes immobilizing the protein into reusable chips and a low-cost solution for non-invasive glucose sampling in bioprocesses using microdialysis sampling technique. A program was written in LabVIEW to accompany the prototype for the complete automation of measurement. The sampling technique allowed glucose measurements of a few micromolar to 260 mM glucose levels. A thorough analysis of the sampling mode and the device's performance was conducted. The reported measurement accuracy was 81.78%, with an RSD of 1.83%. The prototype was also used in online glucose monitoring of E. coli cell culture. The mode of glucose sensing can be expanded to the measurement of other analytes by switching the binding proteins.
Collapse
Affiliation(s)
- Hasibul Hasan
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Vikash Kumar
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Xudong Ge
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Chad Sundberg
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Christopher Slaughter
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Govind Rao
- Center for Advanced Sensor Technology (CAST), University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
3
|
Hwang Y, Jeong JH, Lee DH, Lee SJ. Selective interactions of Co 2+-Ca 2+-concanavalin A with high mannose N-glycans. Dalton Trans 2024; 53:428-433. [PMID: 38086668 DOI: 10.1039/d3dt03575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Concanavalin A (ConA) has an intrinsic binding affinity to carbohydrates. Here, we obtained Co2+-Ca2+-ConA (2.83 Å, PDB: 8I7Q) via X-ray crystallography by substituting native ConA (Mn2+-Ca2+); it has binding selectivity for high-mannose N-glycan similar to native ConA. Our findings may thus inform antiviral reagent design.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Dong-Heon Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
- Institute of Molecular Biology and Genetics, Jeonbuk National University 54896, Republic of Korea
| |
Collapse
|
4
|
Allert MJ, Hellinga HW. Discovery of Thermostable, Fluorescently Responsive Glucose Biosensors by Structure-Assisted Function Extrapolation. Biochemistry 2022; 61:276-293. [PMID: 35084821 DOI: 10.1021/acs.biochem.1c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate assignment of protein function from sequence remains a fascinating and difficult challenge. The periplasmic-binding protein (PBP) superfamily present an interesting case of function prediction because they are both ubiquitous in prokaryotes and tend to diversify through gene duplication "explosions" that can lead to large numbers of paralogs in a genome. An engineered version of the moderately thermostable glucose-binding PBP from Escherichia coli has been used successfully as a reagentless fluorescent biosensor both in vitro and in vivo. To develop more robust sensors that meet the challenges of real-world applications, we report the discovery of thermostable homologues that retain a glucose-mediated conformationally coupled fluorescence response. Accurately identifying a glucose-binding PBP homologue among closely related paralogs is challenging. We demonstrate that a structure-based method that filters sequences by residues that bind glucose in an archetype structure is highly effective. Using fully sequenced bacterial genomes, we found that this filter reduced high paralog numbers to single hits in a genome, consistent with the accurate separation of glucose binding from other functions. We expressed engineered proteins for eight homologues, chosen to represent different degrees of sequence identity, and tested their glucose-mediated fluorescence responses. We accurately predicted the presence of glucose binding down to 31% sequence identity. We have also successfully identified suitable candidates for next-generation robust, fluorescent glucose sensors.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, United States
| |
Collapse
|
5
|
Jang H, Lee C, Hwang Y, Lee SJ. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 2021; 50:17817-17831. [PMID: 34806716 DOI: 10.1039/d1dt03501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein-protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Chaemin Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Yunha Hwang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
6
|
Nematollahzadeh A, Mirzaei-Kalar Z, Abolhasani H, Babapoor A. Synthesize and multi-spectroscopic studies of zinc-naproxen nanodrug as DNA intercalator agent. Anal Biochem 2021; 642:114454. [PMID: 34774837 DOI: 10.1016/j.ab.2021.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022]
Abstract
The zinc-naproxen complex as a nano-drug (NanoD) was synthesized successfully via fast and effective ultrasound-assisted processes. The chemicophysical properties of the NanoD were determined using FT-IR, XRD, SEM, and EDX mapping analyses. The results confirmed the formation of the 55 nm NanoD laminates. The interaction of the obtained NanoD with calf thymus deoxyribonucleic acid (CT-DNA) was studied as well. Structural and topography changes of DNA in interaction with the NanoD were investigated by atomic force microscopy (AFM). The results of electronic absorption spectroscopy, the DNA-viscosity studies, and competition fluorescence spectroscopy showed that CT-DNA binds to the NanoD through the intercalative binding mode. The data of AFM analysis indicated swollen CT-DNA upon interaction with the NanoD. The in vitro investigation of cytotoxicity of the NanoD on HT-29 and Hep G2 cancer cells demonstrated high cytotoxicity activity of the NanoD than that of cisplatin in HT-29 cell line, especially at lower concentrations.
Collapse
Affiliation(s)
- Ali Nematollahzadeh
- Department of Chemical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
| | - Zeinab Mirzaei-Kalar
- Department of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Ardabil, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center and Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
7
|
Photophysical Properties of BADAN Revealed in the Study of GGBP Structural Transitions. Int J Mol Sci 2021; 22:ijms222011113. [PMID: 34681772 PMCID: PMC8540541 DOI: 10.3390/ijms222011113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The fluorescent dye BADAN (6-bromoacetyl-2-dimetylaminonaphtalene) is widely used in various fields of life sciences, however, the photophysical properties of BADAN are not fully understood. The study of the spectral properties of BADAN attached to a number of mutant forms of GGBP, as well as changes in its spectral characteristics during structural changes in proteins, allowed to shed light on the photophysical properties of BADAN. It was shown that spectral properties of BADAN are determined by at least one non-fluorescent and two fluorescent isomers with overlapping absorbing bands. It was found that BADAN fluorescence is determined by the unsolvated "PICT" (planar intramolecular charge transfer state) and solvated "TICT" (twisted intramolecular charge transfer state) excited states. While "TICT" state can be formed both as a result of the "PICT" state solvation and as a result of light absorption by the solvated ground state of the dye. BADAN fluorescence linked to GGBP/H152C apoform is quenched by Trp 183, but this effect is inhibited by glucose intercalation. New details of the changes in the spectral characteristics of BADAN during the unfolding of the protein apo and holoforms have been obtained.
Collapse
|
8
|
Periplasmic-binding protein-based biosensors and bioanalytical assay platforms: Advances, considerations, and strategies for optimal utility. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Keller JP, Marvin JS, Lacin H, Lemon WC, Shea J, Kim S, Lee RT, Koyama M, Keller PJ, Looger LL. In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep 2021; 35:109284. [PMID: 34161775 DOI: 10.1016/j.celrep.2021.109284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/06/2020] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 μM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution. Imaging of neuron/glia co-cultures revealed ∼3-fold faster glucose changes in astrocytes. In larval Drosophila central nervous system explants, intracellular neuronal glucose fluxes suggested a rostro-caudal transport pathway in the ventral nerve cord neuropil. In zebrafish, expected glucose-related physiological sequelae of insulin and epinephrine treatments were directly visualized. Additionally, spontaneous muscle twitches induced glucose uptake in muscle, and sensory and pharmacological perturbations produced large changes in the brain. These sensors will enable rapid, high-resolution imaging of glucose influx, efflux, and metabolism in behaving animals.
Collapse
Affiliation(s)
- Jacob P Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Haluk Lacin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jamien Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Soomin Kim
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Richard T Lee
- Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA; The Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
10
|
Yin A, Sun H, Chen H, Liu Z, Tang Q, Yuan Y, Tu Z, Zhuang Z, Chen T. Measuring calibration factors by imaging a dish of cells expressing different tandem constructs plasmids. Cytometry A 2021; 99:632-640. [PMID: 33491868 DOI: 10.1002/cyto.a.24316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Three-cube Förster resonance energy transfer (FRET) method is the most extensively applied approach for live-cell FRET quantification. Reliable measurements of calibration factors are crucial for quantitative FRET measurement. We here proposed a modified TA-G method (termed as mTA-G) to simultaneously obtain the FRET-sensitized quenching transition factor (G) and extinction coefficients ratio (γ) between donor and acceptor. mTA-G method includes four steps: (1) predetermining the ratio ranges of the sensitized emission of acceptor (FC ) to the donor excitation and donor channel image (IDD [(DA])) for all FRET plasmids; (2) culturing the cells which express every FRET plasmid in one dish respectively; (3) distinguishing and marking the cells expressing different FRET plasmids by detecting their FC /IDD (DA) values; (4) linearly fitting FC /IAA (DA) (acceptor excitation and acceptor channel image) to IDD (DA)/IAA (DA) for different kinds of cells. We implemented mTA-G method by imaging tandem constructs cells with different FRET efficiency cultured in one dish on different days, and obtained consistent G and γ values. mTA-G method not only circumvents switchover of different culture dishes but also keep the constant imaging conditions, exhibiting excellent robustness, and thus will expands the biological applications of quantitative FRET analysis in living cells.
Collapse
Affiliation(s)
- Ao Yin
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Han Sun
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhi Liu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qiling Tang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ye Yuan
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhuang Tu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengfei Zhuang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
11
|
Lighvan ZM, Khonakdar HA, Heydari A, Rafiee M, Jahromi MD, Derakhshani A, Momtazi‐Borojeni AA. Spectral and molecular docking studies of nucleic acids/protein binding interactions of a novel organometallic palladium (II) complex containing bioactive PTA ligands: Its synthesis, anticancer effects and encapsulation in albumin nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zohreh Mehri Lighvan
- Department of Polymer Processing Iran Polymer and Petrochemical Institute P.O. Box 14965‐115 Tehran Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing Iran Polymer and Petrochemical Institute P.O. Box 14965‐115 Tehran Iran
- Leibniz‐Institut für Polymerforschung Dresdene. V Hohe Straße 6, D‐01069 Dresden Germany
| | - Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences Dúbravská cesta 9 Bratislava 845 41 Slovakia
| | - Mina Rafiee
- Department of Chemistry Isfahan University of Technology Isfahan 84156/83111 Iran
| | | | | | | |
Collapse
|
12
|
Lin YR, Hung CC, Chiu HY, Chang BH, Li BR, Cheng SJ, Yang JW, Lin SF, Chen GY. Noninvasive Glucose Monitoring with a Contact Lens and Smartphone. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3208. [PMID: 30249021 PMCID: PMC6210255 DOI: 10.3390/s18103208] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/16/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023]
Abstract
Diabetes has become a chronic metabolic disorder, and the growing diabetes population makes medical care more important. We investigated using a portable and noninvasive contact lens as an ideal sensor for diabetes patients whose tear fluid contains glucose. The key feature is the reversible covalent interaction between boronic acid and glucose, which can provide a noninvasive glucose sensor for diabetes patients. We present a phenylboronic acid (PBA)-based HEMA contact lens that exhibits a reversible swelling/shrinking effect to change its thickness. The difference in thickness can be detected in a picture taken with a smartphone and analyzed using software. Our novel technique offers the following capabilities: (i) non-enzymatic and continuous glucose detection with the contact lens; (ii) no need for an embedded circuit and power source for the glucose sensor; and (iii) the use of a smartphone to detect the change in thickness of the contact lens with no need for additional photo-sensors. This technique is promising for a noninvasive measurement of the glucose level and simple implementation of glucose sensing with a smartphone.
Collapse
Affiliation(s)
- You-Rong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Chin-Chi Hung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Hsien-Yi Chiu
- Department of Dermatology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 30059, Taiwan.
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 10051, Taiwan.
- Department of Dermatology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Department of Dermatology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Bo-Han Chang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Bor-Ran Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Sheng-Jen Cheng
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Jia-Wei Yang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
13
|
Sedighipoor M, Kianfar AH, Sabzalian MR, Abyar F. Synthesis and characterization of new unsymmetrical Schiff base Zn (II) and Co (II) complexes and study of their interactions with bovin serum albumin and DNA by spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:38-50. [PMID: 29505940 DOI: 10.1016/j.saa.2018.02.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
Two novel tetra-coordinated Cobalt(II) and Zinc (II) chelate series with the general formula of [Co (L)·2H2O] (1) and [Zn (L)] (2) [L=N-2-hydroxyacetophenon-N'-2-hydroxynaphthaldehyde-1,2 phenylenediimine)] with biologically active Schiff base ligands were synthesized and recognized by elemental analysis and multi-nuclear spectroscopy (IR and 1H and 13C NMR); then, their biological activities including DNA and protein interactions were studied. The interaction of the synthesized compounds with bovine serum albumin (BSA) was investigated via fluorescence spectroscopy, showing the affinity of the complexes for these proteins with relatively high binding constant values and the changed secondary BSA structure in the presence of the complexes. The interaction of these compounds with CT-DNA was considered by UV-Vis technique, emission titration, viscosity measurements, helix melting methods, and circular dichroism (CD) spectroscopy, confirming that the complexes were bound to CT-DNA by the intercalation binding mode. Furthermore, the complexes had the capability to displace the DNA-bound MB, as shown by the competitive studies of these complexes with methylene blue (MB), thereby suggesting the intercalation mode for the competition. Finally, the theoretical studies carried out by the docking method were performed to calculate the binding constants and recognize the binding site of the BSA and DNA by the complexes. In addition, in vitro and in silico studies showed that the compounds were degradable by bacterial and fungal biodegradation activities.
Collapse
Affiliation(s)
- Maryam Sedighipoor
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Hossein Kianfar
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fatemeh Abyar
- Department of Chemical Engineering, Faculty of Engineering, Ardakan University, Ardakan 89518-95491, Iran
| |
Collapse
|
14
|
Karami K, Rafiee M, Lighvan ZM, Zakariazadeh M, Faal AY, Esmaeili SA, Momtazi-Borojeni AA. Synthesis, spectroscopic characterization and in vitro cytotoxicities of new organometallic palladium complexes with biologically active β-diketones; Biological evaluation probing of the interaction mechanism with DNA/Protein and molecular docking. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Karami K, Mehri Lighvan Z, Farrokhpour H, Dehdashti Jahromi M, Momtazi-Borojeni AA. Synthesis and spectroscopic characterization study of new palladium complexes containing bioactive O,O-chelated ligands: evaluation of the DNA/protein BSA interaction, in vitro antitumoural activity and molecular docking. J Biomol Struct Dyn 2017; 36:3324-3340. [PMID: 29019431 DOI: 10.1080/07391102.2017.1391125] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Pd{(C,N)-C6H4CH2NH(Et) (Qu)] (2) and [Pd{(C,N)-C6H4CH2NH(Et) (Nar)] (3) (Qu = Quercetin, Nar = Naringin) mononuclear palladium (II) complexes have been synthesized and characterized using elemental analysis, IR and electronic spectroscopy. The interaction of the prepared complexes with calf thymus DNA and bovine serum albumin (BSA), monitored by UV-visible and fluorescence titrations, respectively, have been carried out to better understand the mode of their action under biological conditions. Intercalative binding mode between the complexes and DNA is suggested by the binding constant (Kb) values of 2.5 × 106 and 3.2 × 106 for complexes 2 and 3, respectively. In particular, the in vitro cytotoxicity of the complexes on two cancer cells lines (bladder carcinoma TCC and breast cancer MCF7) showed that the compounds had broad spectrum, anti-cancer activity with low IC50 values and the order of in vitro anticancer activities is consistent with the DNA-binding affinities. In the meantime, the quenching of tryptophan emission with the addition of complexes using BSA as a model protein indicated the protein binding ability. The quenching mechanisms of BSA by the complexes were static processes, according to the results obtained. The competitive binding using Warfarin, Digoxin and Ibuprofen site markers, which contain definite biding sites, demonstrated that the complexes bind to site I on BSA. Ultimately, the binding sites of DNA and BSA with the complexes have been determined by molecular modelling studies.
Collapse
Affiliation(s)
- Kazem Karami
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156/83111 , Iran
| | - Zohreh Mehri Lighvan
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156/83111 , Iran
| | - Hossein Farrokhpour
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156/83111 , Iran
| | | | | |
Collapse
|
16
|
Fonin AV, Golikova AD, Zvereva IA, D'Auria S, Staiano M, Uversky VN, Kuznetsova IM, Turoverov KK. Osmolyte-Like Stabilizing Effects of Low GdnHCl Concentrations on d-Glucose/d-Galactose-Binding Protein. Int J Mol Sci 2017; 18:E2008. [PMID: 28925982 PMCID: PMC5618657 DOI: 10.3390/ijms18092008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/16/2022] Open
Abstract
The ability of d-glucose/d-galactose-binding protein (GGBP) to reversibly interact with its ligands, glucose and galactose, makes this protein an attractive candidate for sensing elements of glucose biosensors. This potential is largely responsible for attracting researchers to study the conformational properties of this protein. Previously, we showed that an increase in the fluorescence intensity of the fluorescent dye 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN) is linked to the holo-form of the GGBP/H152C mutant in solutions containing sub-denaturing concentrations of guanidine hydrochloride (GdnHCl). It was hypothesized that low GdnHCl concentrations might lead to compaction of the protein, thereby facilitating ligand binding. In this work, we utilize BADAN fluorescence spectroscopy, intrinsic protein UV fluorescence spectroscopy, and isothermal titration calorimetry (ITC) to show that the sub-denaturing GdnHCl concentrations possess osmolyte-like stabilizing effects on the structural dynamics, conformational stability, and functional activity of GGBP/H152C and the wild type of this protein (wtGGBP). Our data are consistent with the model where low GdnHCl concentrations promote a shift in the dynamic distribution of the protein molecules toward a conformational ensemble enriched in molecules with a tighter structure and a more closed conformation. This promotes the increase in the configurational complementarity between the protein and glucose molecules that leads to the increase in glucose affinity in both GGBP/H152C and wtGGBP.
Collapse
Affiliation(s)
- Alexander V Fonin
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Alexandra D Golikova
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Irina A Zvereva
- Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia.
| | - Sabato D'Auria
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Maria Staiano
- CNR, Institute of Food Science, via Roma 64, 83100 Avellino, Italy.
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Irina M Kuznetsova
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Institute of Cytology of the Russian Academy of Sciences, Laboratory of Structural Dynamics, Stability and Folding of Proteins, Tikhoretsky av. 4, 194064 St. Petersburg, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya av. 29, 195251 St. Petersburg, Russia.
| |
Collapse
|
17
|
A technology roadmap of smart biosensors from conventional glucose monitoring systems. Ther Deliv 2017; 8:411-423. [DOI: 10.4155/tde-2017-0012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this review article is to focus on technology roadmap of smart biosensors from a conventional glucose monitoring system. The estimation of glucose with commercially available devices involves analysis of blood samples that are obtained by pricking finger or extracting blood from the forearm. Since pain and discomfort are associated with invasive methods, the non-invasive measurement techniques have been investigated. The non-invasive methods show advantages like non-exposure to sharp objects such as needles and syringes, due to which there is an increase in testing frequency, improved control of glucose concentration and absence of pain and biohazard materials. This review study is aimed to describe recent invasive techniques and major noninvasive techniques, viz. biosensors, optical techniques and sensor-embedded contact lenses for glucose estimation.
Collapse
|
18
|
Sedighipoor M, Kianfar AH, Kamil Mahmood WA, Azarian MH. Synthesis and electronic structure of novel Schiff bases Ni/Cu (II) complexes: Evaluation of DNA/serum protein binding by spectroscopic studies. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Preformulation Characterization, Stabilization, and Formulation Design for the Acrylodan-Labeled Glucose-Binding Protein SM4-AC. J Pharm Sci 2017; 106:1197-1210. [DOI: 10.1016/j.xphs.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022]
|
20
|
Tiangco C, Andar A, Quarterman J, Ge X, Sevilla F, Rao G, Stinchcomb A, Bunge A, Tolosa L. Measuring transdermal glucose levels in neonates by passive diffusion: an in vitro porcine skin model. Anal Bioanal Chem 2017; 409:3475-3482. [PMID: 28283718 DOI: 10.1007/s00216-017-0289-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/01/2017] [Accepted: 02/28/2017] [Indexed: 11/30/2022]
Abstract
Current glucose monitoring techniques for neonates rely heavily on blood glucose monitors which require intermittent blood collection through skin-penetrating pricks on the heel or fingers. This procedure is painful and often not clinically conducive, which presents a need for a noninvasive method for monitoring glucose in neonates. Our motivation for this study was to develop an in vitro method for measuring passive diffusion of glucose in premature neonatal skin using a porcine skin model. Such a model will allow us to initially test new devices for noninvasive glucose monitoring without having to do in vivo testing of newborns. The in vitro model is demonstrated by comparing uncompromised and tape-stripped skin in an in-line flow-through diffusion apparatus with glucose concentrations that mimic the hypo-, normo-, and hyper-glycemic conditions in the neonate (2.0, 5.0, and 20 mM, respectively). Transepidermal water loss (TEWL) of the tape-stripped skin was approximately 20 g m-2 h-1, which closely mimics TEWL for neonatal skin at about 190 days post-conceptional age. The tape-stripped skin showed a >15-fold increase in glucose diffusion compared to the uncompromised skin. The very small concentrations of collected glucose were measured with a highly selective and highly sensitive fluorescent glucose biosensor based on the glucose binding protein (GBP). The demonstrated method of glucose determination is noninvasive and painless, which makes it especially desirable for glucose testing in neonates and children. This study is an important step towards an in vitro model for noninvasive real-time glucose monitoring that may be easily transferred to the clinic for glucose monitoring in neonates. Graphical Abstract Glucose diffusion through model skin was measured using an in-line flow-through diffusion apparatus with glucose solutions mimicking hypo-, normo- and hyperglycemia in the neonate. Phosphate buffered saline was added to the top chamber and the glucose that diffused through the model skin into the buffer was measured using a fluorescent glucose binding protein biosensor.
Collapse
Affiliation(s)
- Cristina Tiangco
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,The Graduate School, University of Santo Tomas, España Boulevard, 1015, Manila, Philippines
| | - Abhay Andar
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Juliana Quarterman
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Xudong Ge
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Fortunato Sevilla
- The Graduate School, University of Santo Tomas, España Boulevard, 1015, Manila, Philippines
| | - Govind Rao
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Audra Stinchcomb
- Department of Pharmaceutical Sciences, University of Maryland, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Annette Bunge
- Chemical and Biological Engineering Department, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Leah Tolosa
- Center for Advanced Sensor Technologycsm, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
21
|
The role of water molecules in stereoselectivity of glucose/galactose-binding protein. Sci Rep 2016; 6:36807. [PMID: 27827455 PMCID: PMC5101532 DOI: 10.1038/srep36807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022] Open
Abstract
Using molecular dynamics (MD) simulation methods, we attempted to explain the experimental results on ligand specificity of glucose/galactose-binding protein (GGBP) to β-D-glucose and β-D-galactose. For the simulation, a three-dimensional structure of GGBP was prepared, and homology modeling was performed to generate variant structures of GGBP with mutations at Asp14. Then, docking was carried out to find a reasonable β-D-glucose and β-D-galactose binding conformations with GGBP. Subsequent molecular dynamics simulations of β-D-glucose–GGBP and β-D-galactose–GGBP complexes and estimation of the orientation and stability of water molecules at the binding site revealed how water molecules influence ligand specificity. In our simulation, water molecules mediated interactions of β-D-glucose or β-D-galactose with residue 14 of GGBP. In this mechanism, the Phe16Ala mutant leaves both sugar molecules free to move, and the specific role of water molecules were eliminated, while the wild type, Asp14Asn mutant, and Asp14Glu mutant make hydrogen bond interactions with β-D-glucose more favorable. Our results demonstrate that bound water molecules at the binding site of GGBP are related to localized conformational change, contributing to ligand specificity of GGBP for β-D-glucose over β-D-galactose.
Collapse
|
22
|
|
23
|
Lipska AG, Sieradzan AK, Krupa P, Mozolewska MA, D’Auria S, Liwo A. Studies of conformational changes of an arginine-binding protein from Thermotoga maritima in the presence and absence of ligand via molecular dynamics simulations with the coarse-grained UNRES force field. J Mol Model 2015; 21:64. [DOI: 10.1007/s00894-015-2609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/08/2015] [Indexed: 11/30/2022]
|
24
|
|
25
|
Stepanenko OV, Fonin AV, Stepanenko OV, Staiano M, D'Auria S, Kuznetsova IM, Turoverov KK. Tryptophan residue of the D-galactose/D-glucose-binding protein from E. Coli localized in its active center does not contribute to the change in intrinsic fluorescence upon glucose binding. J Fluoresc 2014; 25:87-94. [PMID: 25501855 DOI: 10.1007/s10895-014-1483-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022]
Abstract
Changes of the characteristics of intrinsic tryptophan fluorescence of the wild type of D-galactose/D-glucose-binding protein from Escherichia coli (GGBPwt) induced by D-glucose binding were examined by the intrinsic UV-fluorescence of proteins, circular dyhroism in the near-UV region, and acrylamide-induced fluorescence quenching. The analysis of the different characteristics of GGBPwt and its mutant form GGBP-W183A together with the analysis of the microenvironment of tryptophan residues of GGBPwt revealed that Trp 183, which is directly involved in sugar binding, has the least influence on the provoked by D-glucose blue shift and increase in the intensity of protein intrinsic fluorescence in comparison with other tryptophan residues of GGBP.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky ave., 4, 194064, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
26
|
Azad T, Tashakor A, Hosseinkhani S. Split-luciferase complementary assay: applications, recent developments, and future perspectives. Anal Bioanal Chem 2014; 406:5541-60. [DOI: 10.1007/s00216-014-7980-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 12/19/2022]
|
27
|
Fonin AV, Stepanenko OV, Povarova OI, Volova CA, Philippova EM, Bublikov GS, Kuznetsova IM, Demchenko AP, Turoverov KK. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ 2014; 2:e275. [PMID: 24711960 PMCID: PMC3970809 DOI: 10.7717/peerj.275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/26/2014] [Indexed: 11/22/2022] Open
Abstract
The mutant form GGBP/H152C of the D-glucose/D-galactose-binding protein with the solvatochromic dye BADAN linked to cysteine residue Cys 152 can be used as a potential base for a sensitive element of glucose biosensor system. We investigated the influence of various external factors on the physical-chemical properties of GGBP/H152C-BADAN and its complex with glucose. The high affinity (Kd = 8.5 µM) and high binding rate of glucose make GGBP/H152C-BADAN a good candidate to determine the sugar content in biological fluids extracted using transdermal techniques. It was shown that changes in the ionic strength and pH of solution within the physiological range did not have a significant influence on the fluorescent characteristics of GGBP/H152C-BADAN. The mutant form GGBP/H152C has relatively low resistance to denaturation action of GdnHCl and urea. This result emphasizes the need to find more stable proteins for the creation of a sensitive element for a glucose biosensor system.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Catherine A Volova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biology, St. Petersburg State University , St. Petersburg , Russia
| | - Elizaveta M Philippova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Physical Electronics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| | - Grigory S Bublikov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biophysics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| | - Alexander P Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine , Kiev , Ukraine
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science , St. Petersburg , Russia ; Department of Biophysics, St. Petersburg State Polytechnical University , St. Petersburg , Russia
| |
Collapse
|
28
|
Woo HC, Tolosa L, El-Metwally D, Viscardi RM. Glucose monitoring in neonates: need for accurate and non-invasive methods. Arch Dis Child Fetal Neonatal Ed 2014; 99:F153-7. [PMID: 24065727 DOI: 10.1136/archdischild-2013-304682] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neonatal hypoglycaemia can lead to devastating consequences. Thus, constant, accurate and safe glucose monitoring is imperative in neonatal care. However, point-of-care (POC) devices for glucose testing currently used for neonates were originally designed for adults and do not address issues specific to neonates. This review will address currently available monitoring options and describe new methodologies for non-invasive glucose monitoring in newborns.
Collapse
Affiliation(s)
- Hyung Chul Woo
- Division of Neonatology, Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, , Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
29
|
Kanjananimmanont S, Ge X, Mupparapu K, Rao G, Potts R, Tolosa L. Passive Diffusion of Transdermal Glucose: Noninvasive Glucose Sensing Using a Fluorescent Glucose Binding Protein. J Diabetes Sci Technol 2014; 8:291-298. [PMID: 24876581 PMCID: PMC4455416 DOI: 10.1177/1932296813519994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The motivation for this study was to determine if a statistically significant correlation exists between blood glucose (BG) and transdermal glucose (TG) collected by passive diffusion. A positive outcome will indicate that noninvasive passive TG diffusion is a painless alternative to collecting blood through a break on the skin. Sampling involves placing a small volume of buffer solution on the surface of membrane or skin for 5 minutes. The sample is then assayed with fluorescent GBP. In vitro testing was done on regenerated cellulose and a porcine skin model to determine diffusion of standard glucose solutions. In vivo testing was done on a healthy subject and a subject with type 2 diabetes. Glucose diffused readily through the regenerated cellulose membrane with good correlation between surface and internal glucose concentrations (R 2 = .997). But the porcine skin model required a surface prewash to achieve the same good correlation R 2 = .943). Based on this, an optimum prewash step was determined for the in vivo studies. The resulting correlation coefficients between TG and BG after a 15-minute prewash in a healthy subject and type 2 subject were .87 and .93, respectively. Removal of the extraneous glucose in the skin by prewashing was an important step in achieving good correlation between TG and BG. The results suggest that passive collection of TG is a noninvasive alternative to current practice of breaking the skin. Further studies are under way to determine the lag time between TG and BG and for the sampling protocol to be more amenable to point-of-care application.
Collapse
Affiliation(s)
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - KarunaSri Mupparapu
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Russell Potts
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
30
|
Paek SH, Park JN, Kim DH, Kim HS, Ha UH, Seo SK, Paek SH. Semi-continuous, label-free immunosensing approach for Ca2+-based conformation change of a calcium-binding protein. Analyst 2014; 139:3781-9. [DOI: 10.1039/c4an00343h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Label-free immunosensing based on the conformational change of CBP depending on analyte concentration was explored for semi-continuous analysis of Ca2+.
Collapse
Affiliation(s)
- Sung-Ho Paek
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701, Korea
| | - Ji-Na Park
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701, Korea
| | - Dong-Hyung Kim
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701, Korea
| | - Hee-Soo Kim
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701, Korea
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics
- Korea University
- Sejong 339-700, Korea
| | - Sung-Kyu Seo
- Department of Electronics & Information Engineering
- Korea University
- Sejong 339-700, Korea
| | - Se-Hwan Paek
- Department of Bio-Microsystem Technology
- Korea University
- Seoul 136-701, Korea
- Department of Biotechnology and Bioinformatics
- Korea University
| |
Collapse
|
31
|
Near-infrared fluorescence glucose sensing based on glucose/galactose-binding protein coupled to 651-Blue Oxazine. Biochem Biophys Res Commun 2013; 438:488-92. [PMID: 23928160 DOI: 10.1016/j.bbrc.2013.07.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 01/14/2023]
Abstract
Near-infrared (NIR) fluorescent dyes that are environmentally sensitive or solvatochromic are useful tools for protein labelling in in vivo biosensor applications such as glucose monitoring in diabetes since their spectral properties are mostly independent of tissue autofluorescence and light scattering, and they offer potential for non-invasive analyte sensing. We showed that the fluorophore 651-Blue Oxazine is polarity-sensitive, with a marked reduction in NIR fluorescence on increasing solvent polarity. Mutants of glucose/galactose-binding protein (GBP) used as the glucose receptor were site-specifically and covalently labelled with Blue Oxazine using click chemistry. Mutants H152C/A213R and H152C/A213R/L238S showed fluorescence increases of 15% and 21% on addition of saturating glucose concentrations and binding constants of 6 and 25mM respectively. Fluorescence responses to glucose were preserved when GBP-Blue Oxazine was immobilised to agarose beads, and the beads were excited by NIR light through a mouse skin preparation studied in vitro. We conclude GBP-Blue Oxazine shows proof-of-concept as a non-invasive continuous glucose sensing system.
Collapse
|
32
|
Cummins BM, Garza JT, Coté GL. Optimization of a Concanavalin A-based glucose sensor using fluorescence anisotropy. Anal Chem 2013; 85:5397-404. [PMID: 23627407 DOI: 10.1021/ac303689j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To date, the dependent nature of the recognition and transduction mechanisms in optical glucose sensors based upon Concanavalin A (ConA) has tended to prevent the sensors' full potential from being realized. In this paper, these mechanisms are independently optimized for a given assay configuration in order to decrease the predictive error of a ConA-based glucose sensor and to give a more accurate demonstration of its potential. To this end, we used fluorescence anisotropy as the transduction mechanism to determine the binding of ConA to 4 kDa FITC-dextran by measuring the change in the rotational correlation lifetime between the bound and unbound populations. By tracking the fluorescence anisotropy of this ligand, the ranges of ConA and 4 kDa FITC-dextran concentrations capable of being explored were not limited by the transduction mechanism. Using predetermined association constants, the binding responses to physiological glucose concentrations were predicted for different assay configurations, and experimentally collected fluorescence anisotropy data displayed the predicted trends for these assay configurations. From the experimental results, a calibration fit was generated for the optimized assay configuration to predict the glucose concentrations using the fluorescence anisotropy. This optimized assay displayed a mean standard error of prediction of 7.5 mg/dL (0-300 mg/dL), and 100% of the data points fell within clinically acceptable zones (A and B) upon the Clarke Error Grid Analysis. This indicates that, by independently optimizing the recognition and transduction mechanisms for the final assay configuration, the sensitivity of a competitive binding chemistry using ConA can be appropriately configured for continuous glucose monitoring applications.
Collapse
Affiliation(s)
- Brian M Cummins
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | | | | |
Collapse
|
33
|
Pickup JC, Khan F, Zhi ZL, Coulter J, Birch DJS. Fluorescence intensity- and lifetime-based glucose sensing using glucose/galactose-binding protein. J Diabetes Sci Technol 2013; 7:62-71. [PMID: 23439161 PMCID: PMC3692217 DOI: 10.1177/193229681300700108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.
Collapse
Affiliation(s)
- John C Pickup
- Diabetes Research Group, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
Ge X, Rao G, Kostov Y, Kanjananimmanont S, Viscardi RM, Woo H, Tolosa L. Detection of trace glucose on the surface of a semipermeable membrane using a fluorescently labeled glucose-binding protein: a promising approach to noninvasive glucose monitoring. J Diabetes Sci Technol 2013; 7:4-12. [PMID: 23439155 PMCID: PMC3692211 DOI: 10.1177/193229681300700102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Our motivation for this study was to develop a noninvasive glucose sensor for low birth weight neonates. We hypothesized that the underdeveloped skin of neonates will allow for the diffusion of glucose to the surface where it can be sampled noninvasively. On further study, we found that measurable amounts of glucose can also be collected on the skin of adults. METHOD Cellulose acetate dialysis membrane was used as surrogate for preterm neonatal skin. Glucose on the surface was collected by saline-moistened swabs and analyzed with glucose-binding protein (GBP). The saline-moistened swab was also tested in the neonatal intensive care unit. Saline was directly applied on adult skin and collected for analysis with two methods: GBP and high-performance anion-exchange chromatography (HPAEC). RESULTS The amount of glucose on the membrane surface was found (1) to accumulate with time but gradually level off, (2) to be proportional to the swab dwell time, and (3) the concentration of the glucose solution on the opposite side of the membrane. The swab, however, failed to absorb glucose on neonatal skin. On direct application of saline onto adult skin, we were able to measure by HPAEC and GBP the amount of glucose collected on the surface. Blood glucose appears to track transdermal glucose levels. CONCLUSIONS We were able to measure trace amounts of glucose on the skin surface that appear to follow blood glucose levels. The present results show modest correlation with blood glucose. Nonetheless, this method may present a noninvasive alternative to tracking glucose trends.
Collapse
Affiliation(s)
- Xudong Ge
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Govind Rao
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Yordan Kostov
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Sunsanee Kanjananimmanont
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Rose M. Viscardi
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hyung Woo
- Division of Neonatology, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Leah Tolosa
- Center for Advanced Sensor Technology, Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
35
|
Zhang J, Wang X, Chen L, Li J, Luzak K. Harnessing a nanostructured fluorescence energy transfer sensor for quick detection of extremely small amounts of glucose. J Diabetes Sci Technol 2013; 7:45-52. [PMID: 23439159 PMCID: PMC3692215 DOI: 10.1177/193229681300700106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04-4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by obtaining the pixels from the resulting matrix using Matlab image processing functions. We have also studied the in vitro cytotoxicity of the device. The nanostructured FRET sensor may provide an alternative method to help patients manage the disease continuously.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
36
|
Ruggiero A, Dattelbaum JD, Pennacchio A, Iozzino L, Staiano M, Luchansky MS, Der BS, Berisio R, D'Auria S, Vitagliano L. Crystallization and preliminary X-ray crystallographic analysis of ligand-free and arginine-bound forms of Thermotoga maritima arginine-binding protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1462-5. [PMID: 22102257 DOI: 10.1107/s1744309111037341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/13/2011] [Indexed: 11/10/2022]
Abstract
The arginine-binding protein from Thermotoga maritima (TmArgBP) is an arginine-binding component of the ATP-binding cassette (ABC) transport system in this hyperthermophilic bacterium. This protein is endowed with an extraordinary stability towards thermal and chemical denaturation. Its structural characterization may provide useful insights for the clarification of structure-stability relationships and for the design of new biosensors. Crystallization trials were set up for both arginine-bound and ligand-free forms of TmArgBP and crystals suitable for crystallographic investigations were obtained for both forms. Ordered crystals of the arginine adduct of TmArgBP could only be obtained by using the detergent LDAO as an additive to the crystallization medium. These crystals were hexagonal, with unit-cell parameters a = 78.2, c = 434.7 Å, and diffracted to 2.7 Å resolution. The crystals of the ligand-free form were orthorhombic, with unit-cell parameters a = 51.8, b = 91.9, c = 117.9 Å, and diffracted to 2.25 Å resolution.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Stepanenko OV, Fonin AV, Stepanenko OV, Morozova KS, Verkhusha VV, Kuznetsova IM, Turoverov KK, Staiano M, D’Auria S. New Insight in Protein–Ligand Interactions. 2. Stability and Properties of Two Mutant Forms of the d-Galactose/d-Glucose-Binding Protein from E. coli. J Phys Chem B 2011; 115:9022-32. [DOI: 10.1021/jp204555h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Alexander V. Fonin
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Kateryna S. Morozova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States
| | - Irina M. Kuznetsova
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of Protein structure, stability and folding of proteins, Institute of Cytology RAS, 194064 St. Petersburg, Russia
| | - Maria Staiano
- Laboratory for Molecular Sensing, IBP-CNR, 111 80131 Naples, Italy
| | - Sabato D’Auria
- Laboratory for Molecular Sensing, IBP-CNR, 111 80131 Naples, Italy
| |
Collapse
|
38
|
Cashman DJ, Mamonov AB, Bhatt D, Zuckerman DM. Thermal motions of the E. coli glucose-galactose binding protein studied using well-sampled, semi-atomistic simulations. Curr Top Med Chem 2011; 11:211-20. [PMID: 20939787 DOI: 10.2174/156802611794863607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 04/14/2010] [Indexed: 11/22/2022]
Abstract
The E. coli glucose-galactose chemosensory receptor is a 309 residue, 32 kDa protein consisting of two distinct structural domains. We used two computational methods to examine the protein's thermal fluctuations, including both the large-scale interdomain movements that contribute to the receptor's mechanism of action, as well as smaller-scale motions. We primarily employ extremely fast, "semi-atomistic" Library-Based Monte Carlo (LBMC) simulations, which include all backbone atoms but "implicit" side chains. Our results were compared with previous experiments and all-atom molecular dynamics (MD) simulation. Both LBMC and MD simulations were performed using both the apo and glucose-bound form of the protein, with LBMC exhibiting significantly larger fluctuations. The LBMC simulations are in general agreement with the disulfide trapping experiments of Careaga & Falke (J. Mol. Biol., 1992, Vol. 226, 1219-35), which indicate that distant residues in the crystal structure (i.e. beta carbons separated by 10 to 20 angstroms) form spontaneous transient contacts in solution. Our simulations illustrate several possible "mechanisms" (configurational pathways) for these fluctuations. We also observe several discrepancies between our calculations and experimental rate constants. Nevertheless, we believe that our semi-atomistic approach could be used to study fluctuations in other proteins, perhaps for ensemble docking or other analyses of protein flexibility in virtual screening studies.
Collapse
Affiliation(s)
- D J Cashman
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
39
|
Weidemaier K, Lastovich A, Keith S, Pitner JB, Sistare M, Jacobson R, Kurisko D. Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor. Biosens Bioelectron 2011; 26:4117-23. [PMID: 21549586 DOI: 10.1016/j.bios.2011.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 11/27/2022]
Abstract
We report here the first pre-clinical demonstration of continuous glucose tracking by fluorophore-labeled and genetically engineered glucose/galactose binding protein (GGBP). Acrylodan-labeled GGBP was immobilized in a hydrogel matrix at the tip of a small diameter optical fiber contained in a stainless steel needle. The fiber optic biosensors were inserted subcutaneously into Yucatan and Yorkshire swine, and the sensor response to changing glucose levels was monitored at intervals over a 7-day period. Sensor mean percent error on day 7 was 16.4±5.0% using a single daily reference blood glucose value to calibrate the sensor. The GGBP sensor's susceptibility to common interferents was tested in a well-plate system using human sera. No significant interference was observed from the tested interferents except for tetracycline at the drug's maximum plasma concentration. The robust performance of the GGBP-based fiber optic sensor in swine models and resistance to interferents indicates the potential of this technology for continuous glucose monitoring in humans.
Collapse
|
40
|
Stepanenko OV, Stepanenko OV, Povarova OI, Fonin AV, Kuznetsova IM, Turoverov KK, Staiano M, Varriale A, D’Auria S. New Insight into Protein−Ligand Interactions. The Case of the d-Galactose/d-Glucose-Binding Protein from Escherichia coli. J Phys Chem B 2011; 115:2765-73. [DOI: 10.1021/jp1095486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olga V. Stepanenko
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Olga I. Povarova
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Alexander V. Fonin
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Institute of Cytology, Russian Academy of Science, 194064 St. Petersburg, Russia
| | | | - Maria Staiano
- CNR, Laboratory for Molecular Sensing, IBP, Naples, Italy
- University of Siena, Siena, Italy
| | | | - Sabato D’Auria
- CNR, Laboratory for Molecular Sensing, IBP, Naples, Italy
| |
Collapse
|
41
|
Jeffery CJ. Engineering periplasmic ligand binding proteins as glucose nanosensors. NANO REVIEWS 2011; 2:NANO-2-5743. [PMID: 22110874 PMCID: PMC3215197 DOI: 10.3402/nano.v2i0.5743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/02/2010] [Accepted: 12/02/2010] [Indexed: 12/21/2022]
Abstract
Diabetes affects over 100 million people worldwide. Better methods for monitoring blood glucose levels are needed for improving disease management. Several labs have previously made glucose nanosensors by modifying members of the periplasmic ligand binding protein superfamily. This minireview summarizes recent developments in constructing new versions of these proteins that are responsive within the physiological range of blood glucose levels, employ new reporter groups, and/or are more robust. These experiments are important steps in the development of novel proteins that have the characteristics needed for an implantable glucose nanosensor for diabetes management: specificity for glucose, rapid response, sensitivity within the physiological range of glucose concentrations, reproducibility, and robustness.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
42
|
Yoon H, Ahn JH, Barone PW, Yum K, Sharma R, Boghossian AA, Han JH, Strano MS. Periplasmic Binding Proteins as Optical Modulators of Single-Walled Carbon Nanotube Fluorescence: Amplifying a Nanoscale Actuator. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Yoon H, Ahn JH, Barone PW, Yum K, Sharma R, Boghossian AA, Han JH, Strano MS. Periplasmic Binding Proteins as Optical Modulators of Single-Walled Carbon Nanotube Fluorescence: Amplifying a Nanoscale Actuator. Angew Chem Int Ed Engl 2011; 50:1828-31. [DOI: 10.1002/anie.201006167] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/13/2010] [Indexed: 02/05/2023]
|
44
|
Saxl T, Khan F, Ferla M, Birch D, Pickup J. A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst 2011; 136:968-72. [DOI: 10.1039/c0an00430h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
|
46
|
Sakaguchi-Mikami A, Taniguchi A, Sode K, Yamazaki T. Construction of a novel glucose-sensing molecule based on a substrate-binding protein for intracellular sensing. Biotechnol Bioeng 2010; 108:725-33. [PMID: 21404246 DOI: 10.1002/bit.23006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/14/2010] [Accepted: 10/20/2010] [Indexed: 01/29/2023]
Abstract
A novel transcriptional regulator responding to glucose was designed with a substrate-binding protein (SBP) as a probe towards intracellular sensing system for glucose in mammalian cells. A chimeric protein of an SBP for glucose (GBP) and a LacI-type regulator, LacI (SLCP(GL) ), was designed, constructed and characterized using Escherichia coli recombinant protein. We report that SLCP(GL) has a glucose-specific binding ability and an operator-sequence specific DNA-binding ability. The loss of its DNA-binding ability in the presence of glucose suggests a role as a transcriptional regulator in vitro. The glucose-dependent gene regulation function of SLCP(GL) in cells was investigated using mammalian cells co-transfected with SLCP(GL) and Lac operator-fused luciferase gene constructs. The luciferase activity of the transfected cells increased with the glucose concentration in the medium, showing that the expression of the luciferase gene is regulated by SLCP(GL) , which can dissociate from DNA in a glucose concentration-dependent manner. Therefore, we demonstrated that SLCP(GL) functions as a glucose-sensitive transcriptional regulator in mammalian cells. These results reveal the possibility of developing an SBP-based regulator as a probe of intracellular sensing and gene regulation system for mammalian cells in response to a desired ligands depending on the SBP ligand specificity.
Collapse
Affiliation(s)
- Akane Sakaguchi-Mikami
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Namiki, Tsukuba, 305-0044 Ibaraki, Japan
| | | | | | | |
Collapse
|
47
|
Chaudhary A, Raina M, McShane MJ, Srivastava R. Dissolved core alginate microspheres as "smart-tattoo" glucose sensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:4098-101. [PMID: 19965020 DOI: 10.1109/iembs.2009.5334597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The feasibility of multilayer thin film coated dissolved-core alginate-templated microsphere sensors based on fluorescence resonance energy transfer and competitive binding, was explored in simulated interstitial fluid, using glucose as a model analyte. The glucose sensitivity was observed to be 0.89%/mM glucose with a linear response in the range of 0-50 mM glucose. The sensor response was observed to be completely reversible in nature with a response time of 120 seconds. The system was further demonstrated to respond similarly using near-infrared dyes (Alexa Fluor-647-labeled dextran as donor and QSY-21-conjugated apo-GOx as acceptor) which exhibited a sensitivity of 0.94%/mM glucose with a linear response in range of 0-50 mM glucose, making the sensor more amenable to in vivo use, when implanted in scattering tissue.
Collapse
Affiliation(s)
- Ayesha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | | | | | |
Collapse
|
48
|
Khan F, Saxl TE, Pickup JC. Fluorescence intensity- and lifetime-based glucose sensing using an engineered high-Kd mutant of glucose/galactose-binding protein. Anal Biochem 2010; 399:39-43. [DOI: 10.1016/j.ab.2009.11.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 11/27/2022]
|
49
|
Scirè A, Marabotti A, Staiano M, Iozzino L, Luchansky MS, Der BS, Dattelbaum JD, Tanfani F, D'Auria S. Amino acid transport in thermophiles: characterization of an arginine-binding protein in Thermotoga maritima. 2. Molecular organization and structural stability. MOLECULAR BIOSYSTEMS 2010; 6:687-98. [PMID: 20237647 DOI: 10.1039/b922092e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABC transport systems provide selective passage of metabolites across cell membranes and typically require the presence of a soluble binding protein with high specificity to a specific ligand. In addition to their primary role in nutrient gathering, the binding proteins associated with bacterial transport systems have been studied for their potential to serve as design scaffolds for the development of fluorescent protein biosensors. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the physicochemical properties of a hyperthermophilic binding protein from Thermotoga maritima. We demonstrated preferential binding for the polar amino acid arginine and experimentally monitored the significant stabilization achieved upon binding of ligand to protein. The effect of temperature, pH, and detergent was also studied to provide a more complete picture of the protein dynamics. A protein structure model was obtained and molecular dynamic experiments were performed to investigate and couple the spectroscopic observations with specific secondary structural elements. The data determined the presence of a buried beta-sheet providing significant stability to the protein under all conditions investigated. The specific amino acid residues responsible for arginine binding were also identified. Our data on dynamics and stability will contribute to our understanding of bacterial binding protein family members and their potential biotechnological applications.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Biochemistry, Biology, and Genetics, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chaudhary A, Raina M, Harma H, Hanninen P, McShane MJ, Srivastava R. Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolved-core alginate microspheres. Biotechnol Bioeng 2010; 104:1075-85. [PMID: 19655392 DOI: 10.1002/bit.22500] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The feasibility of dissolved-core alginate-templated fluorescent microspheres as "smart tattoo" glucose biosensors was investigated in simulated interstitial fluid (SIF). The sensor works on the principle of competitive binding and fluorescence resonance energy transfer. The sensor consists of multilayer thin film coated alginate microspheres incorporating dye-labeled glucose receptor and competing ligand within the partially dissolved alginate core. In this study, different approaches for the sensing and detection chemistry were studied, and the response of encapsulated reagents was compared with the solution-phase counterparts. The glucose sensitivity of the encapsulated TRITC-Con A/FITC-dextran (500 kDa) assay in DI water was estimated to be 0.26%/mM glucose while that in SIF was observed to be 0.3%/mM glucose. The glucose sensitivity of TRITC-apo-GOx/FITC-dextran (500 kDa) assay was estimated to be 0.33%/mM glucose in DI water and 0.5%/mM glucose in SIF and both demonstrated a response in the range of 0-50 mM glucose. Therefore, it is hypothesized that the calcium ion concentration outside the microsphere (in the SIF) does not interfere with the response sensitivity. The sensor response was observed to exhibit a maximum response time of 120 s. The system further exhibited a sensitivity of 0.94%/mM glucose with a response in range of 0-50 mM glucose, using near-infrared dyes (Alexa Fluor-647-labeled dextran as donor and QSY-21-conjugated apo-GOx as acceptor), thereby making the sensor more amenable to in vivo use, when implanted in scattering tissue.
Collapse
|