1
|
Chen WW, Tang W, Hamerton EK, Kuo PX, Lemieux GA, Ashrafi K, Cicerone MT. Identifying lipid particle sub-types in live Caenorhabditis elegans with two-photon fluorescence lifetime imaging. Front Chem 2023; 11:1161775. [PMID: 37123874 PMCID: PMC10137682 DOI: 10.3389/fchem.2023.1161775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Fat metabolism is an important modifier of aging and longevity in Caenorhabditis elegans. Given the anatomy and hermaphroditic nature of C. elegans, a major challenge is to distinguish fats that serve the energetic needs of the parent from those that are allocated to the progeny. Broadband coherent anti-Stokes Raman scattering (BCARS) microscopy has revealed that the composition and dynamics of lipid particles are heterogeneous both within and between different tissues of this organism. Using BCARS, we have previously succeeded in distinguishing lipid-rich particles that serve as energetic reservoirs of the parent from those that are destined for the progeny. While BCARS microscopy produces high-resolution images with very high information content, it is not yet a widely available platform. Here we report a new approach combining the lipophilic vital dye Nile Red and two-photon fluorescence lifetime imaging microscopy (2p-FLIM) for the in vivo discrimination of lipid particle sub-types. While it is widely accepted that Nile Red staining yields unreliable results for detecting lipid structures in live C. elegans due to strong interference of autofluorescence and non-specific staining signals, our results show that simple FLIM phasor analysis can effectively separate those signals and is capable of differentiating the non-polar lipid-dominant (lipid-storage), polar lipid-dominant (yolk lipoprotein) particles, and the intermediates that have been observed using BCARS microscopy. An advantage of this approach is that images can be acquired using common, commercially available 2p-FLIM systems within about 10% of the time required to generate a BCARS image. Our work provides a novel, broadly accessible approach for analyzing lipid-containing structures in a complex, live whole organism context.
Collapse
Affiliation(s)
- Wei-Wen Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Wenyu Tang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Emily K. Hamerton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Penelope X. Kuo
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States
| | - George A. Lemieux
- School of Medicine, University of California, San Francisco, CA, United States
| | - Kaveh Ashrafi
- School of Medicine, University of California, San Francisco, CA, United States
| | - Marcus T. Cicerone
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Smolen JA, Wooley KL. Fluorescence lifetime image microscopy prediction with convolutional neural networks for cell detection and classification in tissues. PNAS NEXUS 2022; 1:pgac235. [PMID: 36712353 PMCID: PMC9802238 DOI: 10.1093/pnasnexus/pgac235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
Convolutional neural networks (CNNs) and other deep-learning models have proven to be transformative tools for the automated analysis of microscopy images, particularly in the domain of cellular and tissue imaging. These computer-vision models have primarily been applied with traditional microscopy imaging modalities (e.g. brightfield and fluorescence), likely due to the availability of large datasets in these regimes. However, more advanced microscopy imaging techniques could, potentially, allow for improved model performance in various computational histopathology tasks. In this work, we demonstrate that CNNs can achieve high accuracy in cell detection and classification without large amounts of data when applied to histology images acquired by fluorescence lifetime imaging microscopy (FLIM). This accuracy is higher than what would be achieved with regular single or dual-channel fluorescence images under the same settings, particularly for CNNs pretrained on publicly available fluorescent cell or general image datasets. Additionally, generated FLIM images could be predicted from just the fluorescence image data by using a dense U-Net CNN model trained on a subset of ground-truth FLIM images. These U-Net CNN generated FLIM images demonstrated high similarity to ground truth and improved accuracy in cell detection and classification over fluorescence alone when used as input to a variety of commonly used CNNs. This improved accuracy was maintained even when the FLIM images were generated by a U-Net CNN trained on only a few example FLIM images.
Collapse
Affiliation(s)
- Justin A Smolen
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
3
|
Gerkau NJ, Rakers C, Durry S, Petzold GC, Rose CR. Reverse NCX Attenuates Cellular Sodium Loading in Metabolically Compromised Cortex. Cereb Cortex 2019; 28:4264-4280. [PMID: 29136153 DOI: 10.1093/cercor/bhx280] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany
| | - Simone Durry
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| |
Collapse
|
4
|
Meyer J, Untiet V, Fahlke C, Gensch T, Rose CR. Quantitative determination of cellular [Na +] by fluorescence lifetime imaging with CoroNaGreen. J Gen Physiol 2019; 151:1319-1331. [PMID: 31597684 PMCID: PMC6829561 DOI: 10.1085/jgp.201912404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Meyer et al. establish the suitability of the sodium-sensitive indicator dye CoroNaGreen for fluorescence lifetime imaging inside cells. This approach represents a valuable tool for quantitative and dynamic determination of intracellular sodium concentrations independent of dye concentration. Fluorescence lifetime imaging microscopy (FLIM) with fluorescent ion sensors enables the measurement of ion concentrations based on the detection of photon emission events after brief excitation with a pulsed laser source. In contrast to intensity-based imaging, it is independent of dye concentration, photobleaching, or focus drift and has thus been successfully employed for quantitative analysis of, e.g., calcium levels in different cell types and cellular microdomains. Here, we tested the suitability of CoroNaGreen for FLIM-based determination of sodium concentration ([Na+]) inside cells. In vitro measurements confirmed that fluorescence lifetimes of CoroNaGreen (CoroNaFL) increased with increasing [Na+]. Moreover, CoroNaFL was largely independent of changes in potassium concentration or viscosity. Changes in pH slightly affected FL in the acidic range (pH ≤ 5.5). For intracellular determination of [Na+], HEK293T cells were loaded with the membrane-permeable form of CoroNaGreen. Fluorescence decay curves of CoroNaGreen, derived from time-correlated single-photon counting, were approximated by a bi-exponential decay. In situ calibrations revealed a sigmoidal dependence of CoroNaFL on [Na+] between 0 and 150 mM, exhibiting an apparent Kd of ∼80 mM. Based on these calibrations, a [Na+] of 17.6 mM was determined in the cytosol. Cellular nuclei showed a significantly lower [Na+] of 13.0 mM, whereas [Na+] in perinuclear regions was significantly higher (26.5 mM). Metabolic inhibition or blocking the Na+/K+-ATPase by removal of extracellular K+ caused significant [Na+] increases in all cellular subcompartments. Using an alternative approach for data analysis (“Ratio FLIM”) increased the temporal resolution and revealed a sequential response to K+ removal, with cytosolic [Na+] increasing first, followed by the nucleus and finally the perinuclear regions. Taken together, our results show that CoroNaGreen is suitable for dynamic, FLIM-based determination of intracellular [Na+]. This approach thus represents a valuable tool for quantitative determination of [Na+] and changes thereof in different subcellular compartments.
Collapse
Affiliation(s)
- Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Verena Untiet
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Schwarze T, Riemer J, Müller H, John L, Holdt H, Wessig P. Na + Selective Fluorescent Tools Based on Fluorescence Intensity Enhancements, Lifetime Changes, and on a Ratiometric Response. Chemistry 2019; 25:12412-12422. [PMID: 31271482 PMCID: PMC6790620 DOI: 10.1002/chem.201902536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+ -induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different Kd values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (Kd =106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (Kd =78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm.
Collapse
Affiliation(s)
- Thomas Schwarze
- Institut für Chemie, Anorganische ChemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476GolmGermany
| | - Janine Riemer
- Institut für Chemie, Anorganische ChemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476GolmGermany
| | - Holger Müller
- Institut für Chemie, Anorganische ChemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476GolmGermany
| | - Leonard John
- Institut für ChemieBioorganische ChemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476GolmGermany
| | - Hans‐Jürgen Holdt
- Institut für Chemie, Anorganische ChemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476GolmGermany
| | - Pablo Wessig
- Institut für ChemieBioorganische ChemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476GolmGermany
| |
Collapse
|
6
|
Rong G, Kim EH, Qiang Y, Di W, Zhong Y, Zhao X, Fang H, Clark HA. Imaging Sodium Flux during Action Potentials in Neurons with Fluorescent Nanosensors and Transparent Microelectrodes. ACS Sens 2018; 3:2499-2505. [PMID: 30358986 DOI: 10.1021/acssensors.8b00903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sodium flux plays a pivotal role in neurobiological processes including initiation of action potentials and regulation of neuronal cell excitability. However, unlike the wide range of fluorescent calcium indicators used extensively for cellular studies, the choice of sodium probes remains limited. We have previously demonstrated optode-based nanosensors (OBNs) for detecting sodium ions with advantageous modular properties such as tunable physiological sensing range, full reversibility, and superb selectivity against key physiological interfering ion potassium. (1) Motivated by bridging the gap between the great interest in sodium imaging of neuronal cell activity as an alternative to patch clamp and limited choices of optical sodium indicators, in this Letter we report the application of nanosensors capable of detecting intracellular sodium flux in isolated rat dorsal root ganglion neurons during electrical stimulation using transparent microelectrodes. Taking advantage of the ratiometric detection scheme offered by this fluorescent modular sensing platform, we performed dual color imaging of the sensor to monitor the intracellular sodium currents underlying trains of action potentials in real time. The combination of nanosensors and microelectrodes for monitoring neuronal sodium dynamics is a novel tool for investigating the regulatory role of sodium ions involved during neural activities.
Collapse
|
7
|
Sediqi H, Wray A, Jones C, Jones M. Application of Spectral Phasor analysis to sodium microenvironments in myoblast progenitor cells. PLoS One 2018; 13:e0204611. [PMID: 30379959 PMCID: PMC6209149 DOI: 10.1371/journal.pone.0204611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022] Open
Abstract
Sodium ions (Na+) are key regulators of molecular events in many cellular processes, yet the dynamics of this ion remain poorly defined. Developing approaches to identify and characterise Na+ microenvironments will enable more detailed elucidation of the mechanisms of signal transduction. Here we report the application of Spectral Phasor analysis to the Na+ fluorophore, CoroNa Green, to identify and spatially map spectral emissions that report Na+ microenvironments. We use differentiating stem cells where Na+ fluxes were reported as an antecedent. Myoblast stem cells were induced to differentiate by serum starvation and then fixed at intervals between 0 and 40-minutes of differentiation prior to addition of CoroNa Green. The fluorescent intensity was insufficient to identify discrete Na+ microenvironments. However, using Spectral Phasor analysis we identified spectral shifts in CoroNa Green fluorescence which is related to the Na+ microenvironment. Further, spectral-heterogeneity appears to be contingent on the distance of Na+ from the nucleus in the early stages of differentiation. Spectral Phasor analysis of CoroNa Green in fixed stem cells demonstrates for the first time that CoroNa Green has unique spectral emissions depending on the nature of the Na+ environment in differentiating stem cells. Applying Spectral Phasor analysis to CoroNa Green in live stem cells is likely to further elucidate the role of Na+ microenvironments in the differentiation process.
Collapse
Affiliation(s)
- Hamid Sediqi
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Alex Wray
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Christopher Jones
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark Jones
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
8
|
Naumann G, Lippmann K, Eilers J. Photophysical properties of Na + -indicator dyes suitable for quantitative two-photon fluorescence-lifetime measurements. J Microsc 2018; 272:136-144. [PMID: 30191999 DOI: 10.1111/jmi.12754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
Abstract
Two-photon microscopy (2PM) offers great potential in fluorescence imaging of intracellular Na+ dynamics of live cells. A severe drawback, however, is that quantitative ratioing of fluorescence intensities at different wavelengths [possible in one-photon imaging with the classical Na+ -indicator dye sodium-binding benzofuran isophtalate (SBFI)] is not practical in 2PM. We aimed at establishing 2PM-based time-correlated fluorescence lifetime measurements as an alternative method for quantifying Na+ dynamics. We compared the photophysical properties of the four Na+ -sensitive fluorescent indicator dyes SBFI, CoroNa Green, Sodium Green and Asante NaTRIUM Green-2 (ANG-2) in cuvette calibrations. All four dyes showed Na+ -dependent intensity changes, with ANG-2 having the most favourable properties for 2PM. All dyes but SBFI showed significant changes in their fluorescence lifetime upon Na+ binding, again with ANG-2 being the most promising dye. We found that, unfortunately, the fluorescence lifetime of ANG-2 is not only affected by Na+ but also by protons, K+ and dye impurities, rendering a quantitative description of the individual lifetime components impractical. However, a simplified calibration procedure, based on a published approach for Ca2+ imaging, allowed relating lifetimes to Na+ concentration. Using ANG-2 and the simplified calibration will allow quantitative two-photon Na+ imaging with millimolar sensitivity. LAY DESCRIPTION Dynamic changes of ion concentrations, which play crucial roles in cellular physiology, can be monitored with appropriate fluorescent indicator dyes. For intracellular sodium ions (Na+ ), certain dyes even allow quantitative measurements with standard microscopic techniques. However, for two-photon microscopy, which allows resolving cells deep in intact tissue, imaging solutions that are fully quantitative are lacking. For the four commercially available Na+ dyes 'SBFI', 'CoroNa Green', 'Sodium Green', and 'Asante NaTRIUM Green-2' (ANG2) we analyzed whether their fluorescent lifetime (LT), i.e., the nanosecond decay of emission of photons after a pulsed excitation, could serve as a quantitative measure of intracellular Na+ . Pulsed excitation in the femtosecond range is an inherent feature of two-photon microscopy and, in combination with fast, single-photon counting microscopes, allows for easy-to-implement LT microscopy. We found that Sodium Green and ANG2 showed strong Na+ -dependent changes in the fluorescence LT, while SBFI showed no, and CoroNa Green only small changes. ANG2, as the brightest dye, was further characterized regarding effects of protons and potassium ions (K+ ), both also present in cells at significant concentrations, on the fluorescence LT. We found that the LT of ANG2 is affected in a predictable manner by Na+ , K+ , and protons. However, our data reveal that the commercial dye must also contain impurities with unexpected Na+ - and K+ -binding characteristics, rendering a quantitative description of the individual lifetime components impractical. We, therefore, adapted a simplified calibration procedure, based on a published approach for Ca2+ imaging, that allows relating the average lifetime to Na+ concentration. With this simplified calibration procedure, ANG2 is well suited for quantitative two-photon Na+ imaging with millimolar sensitivity.
Collapse
Affiliation(s)
- G Naumann
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| | - K Lippmann
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| | - J Eilers
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| |
Collapse
|
9
|
Lee JA, Collings DA, Glover CN. A model system using confocal fluorescence microscopy for examining real-time intracellular sodium ion regulation. Anal Biochem 2016; 507:40-6. [DOI: 10.1016/j.ab.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/01/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
|
10
|
Rose CR, Verkhratsky A. Principles of sodium homeostasis and sodium signalling in astroglia. Glia 2016; 64:1611-27. [DOI: 10.1002/glia.22964] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences; the University of Manchester; Manchester United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
- University of Nizhny Novgorod; Nizhny Novgorod Russia
| |
Collapse
|
11
|
Abstract
Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely relies on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well-established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems and outlines areas of potential high impact in the future.
Collapse
Affiliation(s)
- Pinaki Sarder
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Dolonchampa Maji
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biomedical Engineering, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, Missouri 63110
| |
Collapse
|
12
|
Taki M, Ogasawara H, Osaki H, Fukazawa A, Sato Y, Ogasawara K, Higashiyama T, Yamaguchi S. A red-emitting ratiometric fluorescent probe based on a benzophosphole P-oxide scaffold for the detection of intracellular sodium ions. Chem Commun (Camb) 2015; 51:11880-3. [DOI: 10.1039/c5cc03547c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A red-emitting fluorescent probe based on a benzophospholeP-oxide can ratiometrically visualize the change in Na+concentration in living cells.
Collapse
Affiliation(s)
- Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Hiroaki Ogasawara
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Hiroshi Osaki
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Aiko Fukazawa
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kimi Ogasawara
- JST ERATO Higashiyama Live-Holonics Project
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8602
- Japan
- JST ERATO Higashiyama Live-Holonics Project
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8602
- Japan
- Department of Chemistry
| |
Collapse
|
13
|
Roder P, Hille C. ANG-2 for quantitative Na(+) determination in living cells by time-resolved fluorescence microscopy. Photochem Photobiol Sci 2014; 13:1699-710. [PMID: 25311309 DOI: 10.1039/c4pp00061g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sodium ions (Na(+)) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na(+) concentrations ([Na(+)]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na(+)-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na(+)-sensitivity appropriate for recordings in living cells. The Na(+)-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na(+)]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na(+)]i rise in cockroach salivary gland cells, which was dependent on a Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems.
Collapse
Affiliation(s)
- Phillip Roder
- Physical Chemistry/Applied Laser Sensing in Complex Biosystems (ALS ComBi), Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| | | |
Collapse
|
14
|
Mahmmoud YA, Shattock M, Cornelius F, Pavlovic D. Inhibition of K+ transport through Na+, K+-ATPase by capsazepine: role of membrane span 10 of the α-subunit in the modulation of ion gating. PLoS One 2014; 9:e96909. [PMID: 24816799 PMCID: PMC4016139 DOI: 10.1371/journal.pone.0096909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/14/2014] [Indexed: 11/25/2022] Open
Abstract
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4-.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.
Collapse
Affiliation(s)
- Yasser A. Mahmmoud
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
- * E-mail:
| | - Michael Shattock
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Davor Pavlovic
- Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
15
|
Lamy CM, Sallin O, Loussert C, Chatton JY. Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS NANO 2012; 6:1176-1187. [PMID: 22288942 DOI: 10.1021/nn203822t] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.
Collapse
Affiliation(s)
- Christophe M Lamy
- Department of Cell Biology and Morphology, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
16
|
Lamy CM, Chatton JY. Optical probing of sodium dynamics in neurons and astrocytes. Neuroimage 2011; 58:572-8. [DOI: 10.1016/j.neuroimage.2011.06.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/03/2011] [Accepted: 06/24/2011] [Indexed: 11/16/2022] Open
|
17
|
Lahn M, Dosche C, Hille C. Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl− changes in cockroach salivary acinar cells. Am J Physiol Cell Physiol 2011; 300:C1323-36. [DOI: 10.1152/ajpcell.00320.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular ion homeostasis in cockroach salivary acinar cells during salivation is not satisfactorily understood. This is mainly due to technical problems regarding strong tissue autofluorescence and ineffective ion concentration quantification. For minimizing these problems, we describe the successful application of two-photon (2P) microscopy partly in combination with fluorescence lifetime imaging microscopy (FLIM) to record intracellular Na+ and Cl− concentrations ([Na+]i, [Cl−]i) in cockroach salivary acinar cells. Quantitative 2P-FLIM Cl− measurements with the dye N-(ethoxycarbonylmethyl)-6-methoxy-quinolinium bromide indicate that the resting [Cl−]i is 1.6 times above the Cl− electrochemical equilibrium but is not influenced by pharmacological inhibition of the Na+-K+-2Cl− cotransporter (NKCC) and anion exchanger using bumetanide and 4,4′-diisothiocyanatodihydrostilbene-2,2′-disulfonic acid disodium salt. In contrast, rapid Cl− reuptake after extracellular Cl− removal is almost totally NKCC mediated both in the absence and presence of dopamine. However, in physiological saline [Cl−]i does not change during dopamine stimulation although dopamine stimulates fluid secretion in these glands. On the other hand, dopamine causes a decrease in the sodium-binding benzofuran isophthalate tetra-ammonium salt (SBFI) fluorescence and an increase in the Sodium Green fluorescence after 2P excitation. This opposite behavior of both dyes suggests a dopamine-induced [Na+]i rise in the acinar cells, which is supported by the determined 2P-action cross sections of SBFI. The [Na+]i rise is Cl− dependent and inhibited by bumetanide. The Ca2+-ionophore ionomycin also causes a bumetanide-sensitive [Na+]i rise. We propose that a Ca2+-mediated NKCC activity in acinar peripheral cells attributable to dopamine stimulation serves for basolateral Na+ uptake during saliva secretion and that the concomitantly transported Cl− is recycled back to the bath.
Collapse
Affiliation(s)
- Mattes Lahn
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Dosche
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Carsten Hille
- Physical Chemistry, Applied Laser Sensing, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
18
|
Wang Y, Mao H, Wong LB. Na+₋sensing quantum dots for cell-based screening of intracellular Na+ concentrations ([Na+]i). Talanta 2011; 85:694-700. [PMID: 21645760 DOI: 10.1016/j.talanta.2011.04.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/17/2022]
Abstract
We have developed a Na-quantum dot (QD) nanosensor for [Na(+)]i measurements. Using this Na-QD, we determined the dynamic physiological responses of [Na(+)]i in nonexcitable human HEK-293F cells and excitable primary rat cardiac myocytes by pharmacologically manipulating the membrane permeability to Na(+), the Na-K-2Cl cotransporter, and the Na(+)/H(+) antiporter. These data suggest that the mechanisms of [Na(+)]i homeostasis can now be elucidated with this novel Na-QD nanosensor. This could have a broad impact on Na(+) channel drug discovery.
Collapse
Affiliation(s)
- Yuchi Wang
- Cytoptics Corporation, 9030 Kenamar Dr., Ste 308, San Diego, CA 92121, United States.
| | | | | |
Collapse
|
19
|
Pelet S, Previte MJR, Kim D, Kim KH, Su TTJ, So PTC. Frequency domain lifetime and spectral imaging microscopy. Microsc Res Tech 2006; 69:861-74. [PMID: 16924635 DOI: 10.1002/jemt.20361] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the femtoliter observation volume of a two-photon microscope, multiple fluorophores can be present and complex photophysics can take place. Combined detection of the fluorescence emission spectra and lifetimes can provide deeper insight into specimen properties than these two imaging modalities taken separately. Therefore, we have developed a detection scheme based on a frequency-modulated multichannel photomultiplier, which measures simultaneously the spectrum and the lifetime of the emitted fluorescence. Experimentally, the efficiency of the frequency domain lifetime measurement was compared to a time domain set-up. The performance of this spectrally and lifetime-resolved microscope was evaluated on reference specimens and living cells labeled with three different stains targeting the membrane, the mitochondria, and the nucleus.
Collapse
Affiliation(s)
- Serge Pelet
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Meier SD, Kovalchuk Y, Rose CR. Properties of the new fluorescent Na+ indicator CoroNa Green: comparison with SBFI and confocal Na+ imaging. J Neurosci Methods 2006; 155:251-9. [PMID: 16488020 DOI: 10.1016/j.jneumeth.2006.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 11/21/2022]
Abstract
Neuronal activity causes substantial Na+ transients in fine cellular processes such as dendrites and spines. The physiological consequences of such Na+ transients are still largely unknown. High-resolution Na+ imaging is pivotal to study these questions, and, up to now, two-photon imaging with the fluorescent Na+ indicator sodium-binding benzofuran isophthalate (SBFI) has been the primary method of choice. Recently, a new Na+ indicator dye, CoroNa Green (CoroNa), that has its absorbance maximum at 492 nm, has become available. In the present study, we have compared the properties of SBFI with those of CoroNa by performing Na+ measurements in neurons of hippocampal slices. We show that CoroNa is suitable for measurement of Na+ transients using non-confocal wide-field imaging with a CCD camera. However, substantial transmembrane dye leakage and lower Na+ sensitivity are clearly disadvantages when compared to SBFI. We also tested CoroNa for its suitability for high-resolution imaging of Na+ transients using a confocal laser scanning system. We demonstrate that CoroNa, in contrast to SBFI, can be employed for confocal imaging using a conventional argon laser and report the first Na+ measurements in dendrites using this dye. In conclusion, CoroNa may prove to be a valuable tool for confocal Na+ imaging in fine cellular processes.
Collapse
Affiliation(s)
- Silke D Meier
- Physiologisches Institut, Ludwig-Maximilians-Universität München, Pettenkofer Strasse 12, D-80336 Munich, Germany.
| | | | | |
Collapse
|
21
|
von Ballmoos C, Dimroth P. A continuous fluorescent method for measuring Na+ transport. Anal Biochem 2004; 335:334-7. [PMID: 15556574 DOI: 10.1016/j.ab.2004.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Christoph von Ballmoos
- Institut für Mikrobiologie der Eidgenössischen Technischen Hochschule, ETH Zentrum, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
22
|
Pelet S, Previte MJR, Laiho LH, So PTC. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation. Biophys J 2004; 87:2807-17. [PMID: 15454472 PMCID: PMC1304699 DOI: 10.1529/biophysj.104.045492] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 07/16/2004] [Indexed: 11/18/2022] Open
Abstract
Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits.
Collapse
Affiliation(s)
- S Pelet
- Department of Mechanical Engineering and Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | |
Collapse
|
23
|
van Zandvoort MAMJ, de Grauw CJ, Gerritsen HC, Broers JLV, oude Egbrink MGA, Ramaekers FCS, Slaaf DW. Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of SYTO13 in healthy and apoptotic cells. CYTOMETRY 2002; 47:226-35. [PMID: 11933012 DOI: 10.1002/cyto.10076] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Of the few vital DNA and RNA probes, the SYTO dyes are the most specific for nucleic acids. However, they show no spectral contrast upon DNA or RNA binding. We show that fluorescence lifetime imaging using two-photon excitation of SYTO13 allows differential and simultaneous imaging of DNA and RNA in living cells, as well as sequential and repetitive assessment of staining patterns. METHODS Two-photon imaging of SYTO13 is combined with lifetime contrast, using time-gated detection. We focus on distinguishing DNA and RNA in healthy and apoptotic Chinese hamster ovary cells. RESULTS In healthy cells, SYTO13 has a fluorescence lifetime of 3.4 +/- 0.2 ns when associated with nuclear DNA. Bound to RNA, its lifetime is 4.1 +/- 0.1 ns. After induction of apoptosis, clusters of SYTO13 with fluorescence lifetime of 3.4 +/- 0.2 ns become apparent in the cytoplasm. They are identified as mitochondrial DNA on the basis of colocalization experiments with the DNA-specific dye, DRAQ5, and the mitochondrial-specific dye, CMXRos. Upon progression of apoptosis, the lifetime of SYTO13 attached to DNA shortens significantly, which is indicative of changes in the molecular environment of the dye. CONCLUSIONS We have characterized SYTO13 as a vital lifetime probe, allowing repetitive and differential imaging of DNA and RNA.
Collapse
Affiliation(s)
- Marc A M J van Zandvoort
- Department of Biophysics, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Taylor DL, Woo ES, Giuliano KA. Real-time molecular and cellular analysis: the new frontier of drug discovery. Curr Opin Biotechnol 2001; 12:75-81. [PMID: 11167077 DOI: 10.1016/s0958-1669(00)00180-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The pharmaceutical industry is currently facing the challenge of maintaining increased efficiency and productivity while contending with a deluge of genomic and high-throughput screening data. To ease the bottlenecks at target validation and lead optimization, the industry must look to the living cell, the ultimate target of all drugs, as a source of new biological knowledge. This new 'cell-centric' perspective must integrate reagents that report on the state of molecular processes within the cell, automated detection and analysis of these processes, and cellular knowledge, building into a single platform.
Collapse
Affiliation(s)
- D L Taylor
- Cellomics, Inc., 635 William Pitt Way, Pittsburgh, PA 15238, USA
| | | | | |
Collapse
|