1
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
2
|
Liu P, Shui X, Shi M, Kang M, Liu Y, Yang X, Zhang G. The comparative study of two new Schiff bases derived from 5-(thiophene-2-yl)isoxazole as "Off-On-Off" fluorescence sensors for the sequential detection of Ga 3+ and Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124247. [PMID: 38599023 DOI: 10.1016/j.saa.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Two new Schiff bases, TIC ((E)-N'-(2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide) and TIE ((E)-N'-(3-ethoxy-2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide), have been designed and synthesized as chemosensors for distinct recognition of Ga3+ and Fe3+ ions. TIE demonstrated a prominent "turn on" response characterized by clear distinguished fluorescence when coordination with Ga3+ ions in the DMSO/H2O buffer solution. In comparison, TIC also showed "turn on" response of blue fluorescence which was more selective and sensitive than that of TIE due to the steric hindrance of ethoxy group of TIE. The newly formed complexes TIC-Ga3+ and TIE-Ga3+ may act as selective "turn-off" fluorescent probes towards Fe3+ ions. Limits of detection of TIC and TIE towards Ga3+ ions were 7.8809 × 10-9 M and 2.6277 × 10-8 M, respectively. Limits of detection of TIC-Ga3+ and TIE-Ga3+ towards Fe3+ ions were 8.6562 × 10-9 M and 3.3764 × 10-7 M, respectively. The molar ratio of the complex between the sensor and Ga3+ or Fe3+ ions were all 1:2 determined through Job's Plot, mass spectrometry, and theoretical calculations. Both sensors were utilized for the determination of target ions in environment water samples, and the portable paper sensors for detecting Ga3+ ions have been successfully developed.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoxing Shui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Manman Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Bian Y, Qu X, Zhang F, Zhang Z, Kang J. The Monitoring and Cell Imaging of Fe 3+ Using a Chromone-Based Fluorescence Probe. Molecules 2024; 29:1504. [PMID: 38611784 PMCID: PMC11013790 DOI: 10.3390/molecules29071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A new structurally simple fluorescent CP probe based on chromone was designed and synthesized, and its structure was fully characterized using various analytical techniques. The CP probe displays a high selectivity and sensitivity for sensing Fe3+ with a "turn-off" fluorescence response over other metal ions in a DMSO/H2O (4:1, v/v) solution. The experiment results show that the CP probe is stable over a wide pH range of 2.0-12.0. The detection limit for Fe3+ was calculated to be 0.044 μmol•L-1. The molar ratio method indicated that the binding mode between the CP probe and Fe3+ is a 1:1 complex formation. HR-MS and density functional theory (DFT) calculations were also performed to further confirm the recognition mechanism. Both fluorescence imaging experiments and the MTT assay demonstrated that the CP probe was suitable for detecting intracellular Fe3+ and no significant cytotoxicity in living cells.
Collapse
Affiliation(s)
- Yongjun Bian
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| | - Xingyu Qu
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| | - Fengying Zhang
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
| | - Zhengwei Zhang
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| | - Jin Kang
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| |
Collapse
|
4
|
Sung HK, Murugathasan M, Abdul-Sater AA, Sweeney G. Autophagy deficiency exacerbates iron overload induced reactive oxygen species production and apoptotic cell death in skeletal muscle cells. Cell Death Dis 2023; 14:252. [PMID: 37029101 PMCID: PMC10081999 DOI: 10.1038/s41419-022-05484-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 04/09/2023]
Abstract
Iron overload is associated with various pathological changes which contribute to metabolic syndrome, many of which have been proposed to occur via damaging tissue through an excessive amount of reactive oxygen species (ROS) production. In this study, we established a model of iron overload in L6 skeletal muscle cells and observed that iron enhanced cytochrome c release from depolarized mitochondria, assayed by immunofluorescent colocalization of cytochrome c with Tom20 and the use of JC-1, respectively. This subsequently elevated apoptosis, determined via use of a caspase-3/7 activatable fluorescent probe and western blotting for cleaved caspase-3. Using CellROX deep red and mBBr, we observed that iron increased generation of reactive oxygen species (ROS), and that pretreatment with the superoxide dismutase mimetic MnTBAP reduced ROS production and attenuated iron-induced intrinsic apoptosis and cell death. Furthermore, using MitoSox Red we observed that iron enhanced mROS and the mitochondria-targeted anti-oxidant SKQ1 reduced iron-induced ROS generation and cell death. Western blotting for LC3-II and P62 levels as well as immunofluorescent detection of autophagy flux with LC3B and P62 co-localization indicated that iron acutely (2-8 h) activated and later (12-24 h) attenuated autophagic flux. We used autophagy-deficient cell models generated by overexpressing a dominant-negative Atg5 mutant or CRISPR-mediated ATG7 knock out to test the functional significance of autophagy and observed that autophagy-deficiency exacerbated iron-induced ROS production and apoptosis. In conclusion, our study showed that high iron levels promoted ROS production, blunted the self-protective autophagy response and led to cell death in L6 skeletal muscle cells.
Collapse
Affiliation(s)
| | | | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada.
| |
Collapse
|
5
|
AIEE active fluorophores for the sensitive detection of iron ions: An advanced approach towards optical and theoretical investigation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Jiang T, Huang J, Ran G, Song Q, Wang C. A colorimetric and fluorometric dual-mode carbon dots probe derived from phenanthroline precursor for the selective detection of Fe 2+ and Fe 3. ANAL SCI 2023; 39:325-333. [PMID: 36539607 DOI: 10.1007/s44211-022-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Iron's metabolism is heavily involved in the regulation of redox balance for cell functions, however, the simultaneous monitoring of Fe2+/3+ concentration is still a great challenge due to their transitional nature in biological systems. A novel type of carbon dots (CDs) was synthesized by solvothermal treatment with 5-amino-1,10-phenanthroline (Aphen) and salicylic acid as precursors, and the resulting targeted CDs (T-CDs) were used to simultaneously detect Fe2+ and Fe3+. Comprehensive experimental characterizations revealed that the strong binding affinity of Aphen moiety to Fe2+ leads to the formation of rigid T-CDs aggregates, which causes a substantial enhancement of fluorescence intensity, whereas Fe3+ could cause the fluorescence quenching of T-CDs due to the oxidation-reduction induced electron transfer. These different fluorescence responses allow T-CDs to sensitively differentiate Fe2+ from Fe3+, and give the limit of detection (LOD) of 1.78 and 2.78 μM for Fe2+ and Fe3+, respectively. Furthermore, the Aphen dominated structure endows the T-CDs with a colorimetric response to Fe2+ with a LOD of 0.13 μM, which is very different from Fe3+. Thus, the dynamic changes of Fe2+ and Fe3+ in solution can be accurately monitored by T-CDs within the total iron concentration of 50 μM, which is probably the most sensitive dual-mode probe reported so far. In addition, this probe is successfully applied to detect the Fe2+/3+ concentration in cells, demonstrating a huge application potential in the sensing of the dynamic equilibrium of these important transition metals during the cell metabolism or stimulated process. The dynamic changes of Fe2+ and Fe3+ in solution can be accurately monitored by carbon dots based on the colorimetric and fluorometric dual-mode.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Chang X, Miao J. Ferroptosis: Mechanism and potential applications in cervical cancer. Front Mol Biosci 2023; 10:1164398. [PMID: 37025659 PMCID: PMC10070736 DOI: 10.3389/fmolb.2023.1164398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Ferroptosis is a distinct form of cell death mechanism different from the traditional ones. Ferroptosis is characterized biochemically by lipid peroxidation, iron accumulation, and glutathione deficiency. It has already demonstrated significant promise in antitumor therapy. Cervical cancer (CC) progression is closely linked to iron regulation and oxidative stress. Existing research has investigated the role of ferroptosis in CC. Ferroptosis could open up a new avenue of research for treating CC. This review will describe the factors and pathways and the research basis of ferroptosis, which is closely related to CC. Furthermore, the review may provide potential future directions for CC research, and we believe that more studies concerning the therapeutic implications of ferroptosis in CC will come to notice.
Collapse
|
8
|
Wu W, Sung YS, Tomat E. Thiol-Reactive Arylsulfonate Masks for Phenolate Donors in Antiproliferative Iron Prochelators. Inorg Chem 2022; 61:19974-19982. [PMID: 36455205 PMCID: PMC10188280 DOI: 10.1021/acs.inorgchem.2c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Tridentate thiosemicarbazones, among several families of iron chelators, have shown promising results in anticancer drug discovery because they target the increased need for iron that characterizes malignant cells. Prochelation strategies, in which the chelator is released under specific conditions, have the potential to avoid off-target metal binding (for instance, in the bloodstream) and minimize unwanted side effects. We report a prochelation approach that employs arylsulfonate esters to mask the phenolate donor of salicylaldehyde-based chelators. The new prochelators liberate a tridentate thiosemicarbazone intracellularly upon reaction with abundant nucleophile glutathione (GSH). A 5-bromo-substituted salicylaldehyde thiosemicarbazone (STC4) was selected for the chelator unit because of its antiproliferative activity at low micromolar levels in a panel of six cancer cell lines. The arylsulfonate prochelators were assessed in vitro with respect to their stability, ability to abolish metal binding, and reactivity in the presence of GSH. Cell-based assays indicated that the arylsulfonate-masked prochelators present higher antiproliferative activities relative to the parent compound after 24 h. The activation and release of the chelator intracellularly were corroborated by assays of cytosolic iron binding and iron supplementation effects as well as cell cycle analysis. This study introduces the 1,3,4-thiadiazole sulfonate moiety to mask the phenolate donor of an iron chelator and impart good solubility and stability to prochelator constructs. The reactivity of these systems can be tuned to release the chelator at high glutathione levels, as encountered in several cancer phenotypes.
Collapse
Affiliation(s)
- Wangbin Wu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
9
|
Silva FT, Espósito BP. Intracellular Iron Binding and Antioxidant Activity of Phytochelators. Biol Trace Elem Res 2022; 200:3910-3918. [PMID: 34648123 DOI: 10.1007/s12011-021-02965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Phytochelators have been studied as templates for designing new drugs for chelation therapy. This work evaluated key chemical and biological properties of five candidate phytochelators for iron overload diseases: maltol, mimosine, morin, tropolone, and esculetin. Intra- and extracellular iron affinity and antioxidant activity, as well as the ability to scavenge iron from holo-transferrin, were studied in physiologically relevant settings. Tropolone and mimosine (and, to a lesser extent, maltol) presented good binding capacity for iron, removing it from calcein, a high-affinity fluorescent probe. Tropolone and mimosine arrested iron-mediated oxidation of ascorbate with the same efficiency as the standard iron chelator DFO. Also, both were cell permeant and able to access labile pools of iron in HeLa and HepG2 cells. Mimosine was an effective antioxidant in cells stressed by iron and peroxide, being as efficient as the cell-permeant iron chelator deferiprone. These results reinforce the potential of those molecules, especially mimosine, as adjuvants in treatments for iron overload.
Collapse
Affiliation(s)
- Fredson Torres Silva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Kawabata T. Iron-Induced Oxidative Stress in Human Diseases. Cells 2022; 11:cells11142152. [PMID: 35883594 PMCID: PMC9324531 DOI: 10.3390/cells11142152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is responsible for the regulation of several cell functions. However, iron ions are catalytic and dangerous for cells, so the cells sequester such redox-active irons in the transport and storage proteins. In systemic iron overload and local pathological conditions, redox-active iron increases in the human body and induces oxidative stress through the formation of reactive oxygen species. Non-transferrin bound iron is a candidate for the redox-active iron in extracellular space. Cells take iron by the uptake machinery such as transferrin receptor and divalent metal transporter 1. These irons are delivered to places where they are needed by poly(rC)-binding proteins 1/2 and excess irons are stored in ferritin or released out of the cell by ferroportin 1. We can imagine transit iron pool in the cell from iron import to the export. Since the iron in the transit pool is another candidate for the redox-active iron, the size of the pool may be kept minimally. When a large amount of iron enters cells and overflows the capacity of iron binding proteins, the iron behaves as a redox-active iron in the cell. This review focuses on redox-active iron in extracellular and intracellular spaces through a biophysical and chemical point of view.
Collapse
Affiliation(s)
- Teruyuki Kawabata
- Department of Applied Physics, Postgraduate School of Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
11
|
Porous Carbons Derived from Desiliconized Rice Husk Char and Their Applications as an Adsorbent in Multivalent Ions Recycling for Spent Battery. J CHEM-NY 2022. [DOI: 10.1155/2022/8225088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recycling of spent lithium-ion batteries (LIBs) has attracted increasing attentions recently on account of continuous growth demand for corresponding critical metals/materials and environmental requirement of solid waste disposal. In this work, rice husk as one of the most abundant renewable fuel materials in the world was used to prepare rice husk char (RC) and applied to recycle multivalent ions in waste water from hydrometallurgical technology dispose of spent LIBs. Rice husk char with specific surface area and abundant pores was obtained via pickling and desilication process (DPRC). The structural characterization of the obtained rice husk char and its adsorption capacity for multivalent ions in recycled batteries were studied. XRD, TEM, SEM, Raman, and BET were used for the characterization of the raw and the modified samples. The results show rice husk chars after desilication has more flourishing pore structure and larger pore size about 50–60 nm. Meanwhile, after desilication, the particle size of rice husk char decreased to 31.392 μm, and the specific surface area is about 402.10 m2/g. Its nitrogen adsorption desorption curve (BET) conforms to the type IV adsorption isotherm with H3 hysteresis ring, indicating that the prepared rice husk char is a mesoporous material. And the adsorption capacity of optimized DPRC for Ni, Co, and Mn ions is 7.00 mg/g, 4.84 mg/g, and 2.67 mg/g, respectively. It also demonstrated a good fit in the Freundlich model for DPRC-600°C, and a possible adsorption mechanism is proposed. The study indicates biochar materials have great potential as an adsorbent to recover multivalent ions from spent batteries.
Collapse
|
12
|
Alhawsah B, Yan B, Aydin Z, Niu X, Guo M. Highly Selective Fluorescent Probe With an Ideal pH Profile for the Rapid and Unambiguous Determination of Subcellular Labile Iron (III) Pools in Human Cells. ANAL LETT 2022; 55:1954-1970. [DOI: 10.1080/00032719.2022.2039932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Bayan Alhawsah
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Bing Yan
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Ziya Aydin
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
- Vocational School of Technical Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Xiangyu Niu
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
| | - Maolin Guo
- Department of Chemistry and Biochemistry and UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, Dartmouth, MA, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
13
|
Wang L, Su X, Xie JH, Ming LJ. Specific recognitions of multivalent cyclotriphosphazene derivatives in sensing, imaging, theranostics, and biomimetic catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Sodia T, David AA, Chesney AP, Perri JN, Gutierrez GE, Nepple CM, Isbell SM, Cash KJ. Nanoparticle-Based Liquid-Liquid Extraction for the Determination of Metal Ions. ACS Sens 2021; 6:4408-4416. [PMID: 34793121 PMCID: PMC8715536 DOI: 10.1021/acssensors.1c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022]
Abstract
Traditional liquid phase extraction techniques that use optically responsive ligands provide benefits that enable cost-efficient and rapid measurements. However, these approaches have limitations in their excessive use of organic solvents and multistep procedures. Here, we developed a simple, nanoscale extraction approach by replacing the macroscopic organic phase with hydrophobic polymeric nanoparticles that are dispersed in an aqueous feed. The concentration of analytes in polymeric nanoparticle suspensions is governed by similar partition principles to liquid-liquid phase extraction techniques. By encasing optically responsive metal ligands inside polymeric nanoparticles, we introduce a one-step metal quantification assay based on traditional two-phase extraction methodologies. As an initial proof of concept, we encapsulated bathophenanthroline (BP) inside the particles to extract then quantify Fe2+ with colorimetry in a dissolved supplement tablet and creek water. These Fe2+ nanosensors are sensitive and selective and report out with fluorescence by adding a fluorophore (DiO) into the particle core. To show that this new rapid extraction assay is not exclusive to measuring Fe2+, we replaced BP with either 8-hydroxyquinoline or bathocuproine to measure Al3+ or Cu+, respectively, in water samples. Utilizing this nanoscale extraction approach will allow users to rapidly quantify metals of interest without the drawbacks of larger-scale phase extraction approaches while also allowing for the expansion of phase extraction methodologies into areas of biological research.
Collapse
Affiliation(s)
- Tyler
Z. Sodia
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Alexa A. David
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Ashley P. Chesney
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Juliana N. Perri
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | | | - Cecilia M. Nepple
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Sydney M. Isbell
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Kevin J. Cash
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
15
|
Liu Y, Wang Y, Song S, Zhang H. Cancer therapeutic strategies based on metal ions. Chem Sci 2021; 12:12234-12247. [PMID: 34603654 PMCID: PMC8480331 DOI: 10.1039/d1sc03516a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
As a necessary substance to maintain the body's normal life activities, metal ions are ubiquitous in organisms and play a major role in various complex physiological and biochemical processes, such as material transportation, energy conversion, information transmission, metabolic regulation, etc. Their abnormal distribution/accumulation in cells can interfere with these processes, causing irreversible physical damage to cells or activating biochemical reactions to induce cell death. Therefore, metal ions can be exploited against a wide spectrum of cancers with high efficiency and without drug resistance, which can effectively inhibit the growth of cancer cells by triggering biocatalysis, breaking the osmotic balance, affecting metabolism, interfering with signal transduction, damaging DNA, etc. This perspective systematically summarizes the latest research progress of metal ion-based anti-tumor therapy, and emphasizes the challenges and development directions of this type of therapeutic strategy, hoping to provide a general implication for future research.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
16
|
Khan N, Halcrow PW, Lakpa LK, Rehan M, Chen X, Geiger JD. Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression. J Neurovirol 2021; 27:755-773. [PMID: 34550543 DOI: 10.1007/s13365-021-01016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Peter W Halcrow
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Leo K Lakpa
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
17
|
Chansiw N, Kulprachakarn K, Paradee N, Prommaban A, Srichairatanakool S. Protection of Iron-Induced Oxidative Damage in Neuroblastoma (SH-SY5Y) Cells by Combination of 1-(N-Acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one and Green Tea Extract. Bioinorg Chem Appl 2021; 2021:5539666. [PMID: 33986790 PMCID: PMC8079199 DOI: 10.1155/2021/5539666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/11/2021] [Indexed: 01/03/2023] Open
Abstract
Iron is a crucial trace element and essential for many cellular processes; however, excessive iron accumulation can induce oxidative stress and cell damage. Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, have been associated with altered iron homoeostasis causing altered iron distribution and accumulation in brain tissue. This study aims to investigate the protective effect of 1-(N-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) in combination with green tea extract (GTE) on iron-induced oxidative stress in neuroblastoma (SH-SY5Y) cells. Cells were cultured in medium with or without ferric chloride loading. Their viability and mitochondrial activity were assessed using MTT and JC-1 staining methods. Levels of the cellular labile iron pool (LIP), reactive oxygen species (ROS), and lipid-peroxidation products were determined using calcein acetoxymethyl ester, 2',7'-dichlorohydrofluorescein diacetate, and TBARS-based assays, respectively. The viability of iron-loaded cells was found to be significantly increased after treatment with CM1 (10 µM) for 24 h. CM1 co-treatment with GTE resulted in a greater protective effect than their monotherapy. Combination of CM1 and GTE also reduced mitochondrial disruption and LIP content and ROS and TBARS production. In conclusion, the combination of CM1 and GTE exhibits protection against iron-induced oxidative stress in neuroblastoma cells.
Collapse
Affiliation(s)
- Nittaya Chansiw
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanokwan Kulprachakarn
- Research Institute for Health Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narisara Paradee
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Adchara Prommaban
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somdet Srichairatanakool
- Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
18
|
Huang S, Li S, Feng H, Chen Y. Iron Metabolism Disorders for Cognitive Dysfunction After Mild Traumatic Brain Injury. Front Neurosci 2021; 15:587197. [PMID: 33796002 PMCID: PMC8007909 DOI: 10.3389/fnins.2021.587197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most harmful forms of acute brain injury and predicted to be one of the three major neurological diseases that cause neurological disabilities by 2030. A series of secondary injury cascades often cause cognitive dysfunction of TBI patients leading to poor prognosis. However, there are still no effective intervention measures, which drive us to explore new therapeutic targets. In this process, the most part of mild traumatic brain injury (mTBI) is ignored because its initial symptoms seemed not serious. Unfortunately, the ignored mTBI accounts for 80% of the total TBI, and a large part of the patients have long-term cognitive dysfunction. Iron deposition has been observed in mTBI patients and accompanies the whole pathological process. Iron accumulation may affect long-term cognitive dysfunction from three pathways: local injury, iron deposition induces tau phosphorylation, the formation of neurofibrillary tangles; neural cells death; and neural network damage, iron deposition leads to axonal injury by utilizing the iron sensibility of oligodendrocytes. Thus, iron overload and metabolism dysfunction was thought to play a pivotal role in mTBI pathophysiology. Cerebrospinal fluid-contacting neurons (CSF-cNs) located in the ependyma have bidirectional communication function between cerebral-spinal fluid and brain parenchyma, and may participate in the pathway of iron-induced cognitive dysfunction through projected nerve fibers and transmitted factor, such as 5-hydroxytryptamine, etc. The present review provides an overview of the metabolism and function of iron in mTBI, and to seek a potential new treatment target for mTBI with a novel perspective through combined iron and CSF-cNs.
Collapse
Affiliation(s)
- Suna Huang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Su Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
19
|
Abbasi U, Abbina S, Gill A, Bhagat V, Kizhakkedathu JN. A facile colorimetric method for the quantification of labile iron pool and total iron in cells and tissue specimens. Sci Rep 2021; 11:6008. [PMID: 33727584 PMCID: PMC7971025 DOI: 10.1038/s41598-021-85387-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Quantification of iron is an important step to assess the iron burden in patients suffering from iron overload diseases, as well as tremendous value in understanding the underlying role of iron in the pathophysiology of these diseases. Current iron determination of total or labile iron, requires extensive sample handling and specialized instruments, whilst being time consuming and laborious. Moreover, there is minimal to no overlap between total iron and labile iron quantification methodologies-i.e. requiring entirely separate protocols, techniques and instruments. Herein, we report a unified-ferene (u-ferene) assay that enables a 2-in-1 quantification of both labile and total iron from the same preparation of a biological specimen. We demonstrate that labile iron concentrations determined from the u-ferene assay is in agreement with confocal laser scanning microscopy techniques employed within the literature. Further, this assay offers the same sensitivity as the current gold standard, inductively coupled plasma mass spectrometry (ICP-MS), for total iron measurements. The new u-ferene assay will have tremendous value for the wider scientific community as it offers an economic and readily accessible method for convenient 2-in-1 measurement of total and labile iron from biological samples, whilst maintaining the precision and sensitivity, as compared to ICP-MS.
Collapse
Affiliation(s)
- Usama Abbasi
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Srinivas Abbina
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Arshdeep Gill
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Vriti Bhagat
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada. .,Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada. .,Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada. .,The School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Development of a platform for the production of multiple modal chelating and imaging agents using desferrioxamine and bovine albumin as a model. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Conjugates of desferrioxamine and aromatic amines improve markers of iron-dependent neurotoxicity. Biometals 2021; 34:259-275. [PMID: 33389339 DOI: 10.1007/s10534-020-00277-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disorder associated in some instances with dyshomeostasis of redox-active metal ions, such as copper and iron. In this work, we investigated whether the conjugation of various aromatic amines would improve the pharmacological efficacy of the iron chelator desferrioxamine (DFO). Conjugates of DFO with aniline (DFOANI), benzosulfanylamide (DFOBAN), 2-naphthalenamine (DFONAF) and 6-quinolinamine (DFOQUN) were obtained and their properties examined. DFOQUN had good chelating activity, promoted a significant increase in the inhibition of β-amyloid peptide aggregation when compared to DFO, and also inhibited acetylcholinesterase (AChE) activity both in vitro and in vivo (Caenorhabditis elegans). These data indicate that the covalent conjugation of a strong iron chelator to an AChE inhibitor offers a powerful approach for the amelioration of iron-induced neurotoxicity symptoms.
Collapse
|
22
|
Melman A, Bou-Abdallah F. Iron mineralization and core dissociation in mammalian homopolymeric H-ferritin: Current understanding and future perspectives. Biochim Biophys Acta Gen Subj 2020; 1864:129700. [DOI: 10.1016/j.bbagen.2020.129700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/13/2023]
|
23
|
Pan Y, Tang P, Cao J, Song Q, Zhu L, Ma S, Zhang J. Lipid peroxidation aggravates anti-tuberculosis drug-induced liver injury: Evidence of ferroptosis induction. Biochem Biophys Res Commun 2020; 533:1512-1518. [PMID: 33121683 DOI: 10.1016/j.bbrc.2020.09.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022]
Abstract
Anti-tuberculosis drug-induced liver injury (ATB-DILI) is a common adverse reaction of anti-tuberculosis drug treatment. Studies have shown that isoniazid (INH) and rifampicin (RFP) are mainly metabolized in the liver and a large amount of intracellular glutathione is used up during the metabolism of these drugs, resulting in lipid peroxidation and hepatocyte death. Ferroptosis is a novel form of programmed cell death caused by iron-ion-dependent lipid peroxidation. In this study, we explored lipid peroxidation and ferroptosis during ATB-DILI. Morphology of ferroptosis was discovered in ATB-DILI mouse livers by transmission electron microscopy. Flow cytometry was used to assess the molecular markers of lipid peroxidation and ferroptosis including reactive oxygen species, lipid peroxidation, and cellular iron content. Glutathione peroxidase 4 (GPX4) was depleted, while acyl-CoA synthetase long chain family member 4 (ACSL4) was overexpressed in the ATB-DILI tissues. And glutathione supplementation significantly reduced the level of lipid peroxidation and the risk of liver damage. Retrospective study of tuberculosis patients who underwent INH and RFP treatment also revealed an association between the intake of glutathione and a negative ATB-DILI rate. In addition, iron supplementation enhanced the degree of lipid peroxidation and liver injury induced by INH and RFP in vivo and clinical retrospective study. Taken together, these results indicate that lipid peroxidation and evidence suggestive of ferroptosis occurs during ATB-DILI, and glutathione replenishment prevents this process while iron supplementation augmenting this effect.
Collapse
Affiliation(s)
- Yunzhi Pan
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215007, China
| | - Peijun Tang
- Department of Tuberculosis, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215007, China
| | - Jun Cao
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215007, China
| | - Quan Song
- Department of Pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215007, China
| | - Li Zhu
- Department of Hepatology, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215007, China
| | - Sai Ma
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China.
| | - Jianping Zhang
- Department of Tuberculosis, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, 215007, China.
| |
Collapse
|
24
|
Espósito BP, Martins AC, de Carvalho RRV, Aschner M. High throughput fluorimetric assessment of iron traffic and chelation in iron-overloaded Caenorhabditis elegans. Biometals 2020; 33:255-267. [PMID: 32979113 DOI: 10.1007/s10534-020-00250-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023]
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a convenient tool to evaluate iron metabolism as it shares great orthology with human proteins involved in iron transport, in addition to being transparent and readily available. In this work, we describe how wild-type (N2) C. elegans nematodes in the first larval stage can be loaded with acetomethoxycalcein (CAL-AM) and study it as a whole-organism model for both iron speciation and chelator permeability of the labile iron pool (LIP). This model may be relevant for high throughput assessment of molecules intended for chelation therapy of iron overload diseases.
Collapse
Affiliation(s)
- Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil.
| | - Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
25
|
Philpott CC, Patel SJ, Protchenko O. Management versus miscues in the cytosolic labile iron pool: The varied functions of iron chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118830. [PMID: 32835748 DOI: 10.1016/j.bbamcr.2020.118830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
Iron-containing proteins rely on the incorporation of a set of iron cofactors for activity. The cofactors must be synthesized or assembled from raw materials located within the cell. The chemical nature of this pool of raw material - referred to as the labile iron pool - has become clearer with the identification of micro- and macro-molecules that coordinate iron within the cell. These molecules function as a buffer system for the management of intracellular iron and are the focus of this review, with emphasis on the major iron chaperone protein coordinating the labile iron pool: poly C-binding protein 1.
Collapse
Affiliation(s)
| | - Sarju J Patel
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| | - Olga Protchenko
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| |
Collapse
|
26
|
Bou-Abdallah F, Flint N, Wilkinson T, Salim S, Srivastava AK, Poli M, Arosio P, Melman A. Ferritin exhibits Michaelis-Menten behavior with oxygen but not with iron during iron oxidation and core mineralization. Metallomics 2020; 11:774-783. [PMID: 30720039 DOI: 10.1039/c9mt00001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The excessively high and inconsistent literature values for Km,Fe and Km,O2 prompted us to examine the iron oxidation kinetics in ferritin, the major iron storage protein in mammals, and to determine whether a traditional Michaelis-Menten enzymatic behavior is obeyed. The kinetics of Fe(ii) oxidation and mineralization catalyzed by three different types of ferritins (recombinant human homopolymer 24H, HuHF, human heteropolymer ∼21H:3L, HL, and horse spleen heteropolymer ∼3.3H:20.7L, HosF) were therefore studied under physiologically relevant O2 concentrations, but also in the presence of excess Fe(ii) and O2 concentrations. The observed iron oxidation kinetics exhibited two distinct phases (phase I and phase II), neither of which obeyed Michaelis-Menten kinetics. While phase I was very rapid and corresponded to the oxidation of approximately 2 Fe(ii) ions per H-subunit, phase II was much slower and varied linearly with the concentration of iron(ii) cations in solution, independent of the size of the iron core. Under low oxygen concentration close to physiological, the iron uptake kinetics revealed a Michaelis-Menten behavior with Km,O2 values in the low μM range (i.e. ∼1-2 μM range). Our experimental Km,O2 values are significantly lower than typical cellular oxygen concentration, indicating that iron oxidation and mineralization in ferritin should not be affected by the oxygenation level of cells, and should proceed even under hypoxic events. A kinetic model is proposed in which the inhibition of the protein's activity is caused by bound iron(iii) cations at the ferroxidase center, with the rate limiting step corresponding to an exchange or a displacement reaction between incoming Fe(ii) cations and bound Fe(iii) cations.
Collapse
Affiliation(s)
- Fadi Bou-Abdallah
- Department of Chemistry, State University of New York, Potsdam, NY 13676, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bayır H, Anthonymuthu TS, Tyurina YY, Patel SJ, Amoscato AA, Lamade AM, Yang Q, Vladimirov GK, Philpott CC, Kagan VE. Achieving Life through Death: Redox Biology of Lipid Peroxidation in Ferroptosis. Cell Chem Biol 2020; 27:387-408. [PMID: 32275865 DOI: 10.1016/j.chembiol.2020.03.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Redox balance is essential for normal brain, hence dis-coordinated oxidative reactions leading to neuronal death, including programs of regulated death, are commonly viewed as an inevitable pathogenic penalty for acute neuro-injury and neurodegenerative diseases. Ferroptosis is one of these programs triggered by dyshomeostasis of three metabolic pillars: iron, thiols, and polyunsaturated phospholipids. This review focuses on: (1) lipid peroxidation (LPO) as the major instrument of cell demise, (2) iron as its catalytic mechanism, and (3) thiols as regulators of pro-ferroptotic signals, hydroperoxy lipids. Given the central role of LPO, we discuss the engagement of selective and specific enzymatic pathways versus random free radical chemical reactions in the context of the phospholipid substrates, their biosynthesis, intracellular location, and related oxygenating machinery as participants in ferroptotic cascades. These concepts are discussed in the light of emerging neuro-therapeutic approaches controlling intracellular production of pro-ferroptotic phospholipid signals and their non-cell-autonomous spreading, leading to ferroptosis-associated necroinflammation.
Collapse
Affiliation(s)
- Hülya Bayır
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Tamil S Anthonymuthu
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarju J Patel
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew M Lamade
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Qin Yang
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Georgy K Vladimirov
- Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Valerian E Kagan
- Children's Neuroscience Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA; Center for Free Radical and Antioxidant Health, Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15213, USA; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
| |
Collapse
|
28
|
Kornberg TG, Stueckle TA, Coyle J, Derk R, Demokritou P, Rojanasakul Y, Rojanasakul LW. Iron Oxide Nanoparticle-Induced Neoplastic-Like Cell Transformation in Vitro Is Reduced with a Protective Amorphous Silica Coating. Chem Res Toxicol 2019; 32:2382-2397. [PMID: 31657553 DOI: 10.1021/acs.chemrestox.9b00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron oxide nanoparticles (IONP) have recently surged in production and use in a wide variety of biomedical and environmental applications. However, their potential long-term health effects, including carcinogenesis, are unknown. Limited research suggests IONP can induce genotoxicity and neoplastic transformation associated with particle dissolution and release of free iron ions. "Safe by design" strategies involve the modification of particle physicochemical properties to affect subsequent adverse outcomes, such as an amorphous silica coating to reduce IONP dissolution and direct interaction with cells. We hypothesized that long-term exposure to a specific IONP (nFe2O3) would induce neoplastic-like cell transformation, which could be prevented with an amorphous silica coating (SiO2-nFe2O3). To test this hypothesis, human bronchial epithelial cells (Beas-2B) were continuously exposed to a 0.6 μg/cm2 administered a dose of nFe2O3 (∼0.58 μg/cm2 delivered dose), SiO2-nFe2O3 (∼0.55 μg/cm2 delivered dose), or gas metal arc mild steel welding fumes (GMA-MS, ∼0.58 μg/cm2 delivered dose) for 6.5 months. GMA-MS are composed of roughly 80% iron/iron oxide and were recently classified as a total human carcinogen. Our results showed that low-dose/long-term in vitro exposure to nFe2O3 induced a time-dependent neoplastic-like cell transformation, as indicated by increased cell proliferation and attachment-independent colony formation, which closely matched that induced by GMA-MS. This transformation was associated with decreases in intracellular iron, minimal changes in reactive oxygen species (ROS) production, and the induction of double-stranded DNA damage. An amorphous silica-coated but otherwise identical particle (SiO2-nFe2O3) did not induce this neoplastic-like phenotype or changes in the parameters mentioned above. Overall, the presented data suggest the carcinogenic potential of long-term nFe2O3 exposure and the utility of an amorphous silica coating in a "safe by design" hazard reduction strategy, within the context of a physiologically relevant exposure scenario (low-dose/long-term), with model validation using GMA-MS.
Collapse
Affiliation(s)
- Tiffany G Kornberg
- Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy , West Virginia University , Morgantown , West Virginia 26506 , United States.,Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia 26505 , United States
| | - Todd A Stueckle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia 26505 , United States
| | - Jayme Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia 26505 , United States
| | - Raymond Derk
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia 26505 , United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| | - Yon Rojanasakul
- Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Liying W Rojanasakul
- Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy , West Virginia University , Morgantown , West Virginia 26506 , United States.,Allergy and Clinical Immunology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , West Virginia 26505 , United States
| |
Collapse
|
29
|
Jahng JWS, Alsaadi RM, Palanivel R, Song E, Hipolito VEB, Sung HK, Botelho RJ, Russell RC, Sweeney G. Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Rep 2019; 20:e47911. [PMID: 31441223 PMCID: PMC6776927 DOI: 10.15252/embr.201947911] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Erfei Song
- Department of BiologyYork UniversityTorontoONCanada
| | | | | | - Roberto Jorge Botelho
- Department of Chemistry and Biology and the Molecular Science Graduate ProgramRyerson UniversityTorontoONCanada
| | | | - Gary Sweeney
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
30
|
A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol 2019; 15:872-881. [PMID: 31406370 PMCID: PMC6702080 DOI: 10.1038/s41589-019-0330-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Hundreds of cellular proteins require iron cofactors for activity, and cells express systems for their assembly and distribution. Molecular details of the cytosolic iron pool used for iron cofactors are lacking, but iron chaperones of the poly(rC)-binding protein (PCBP) family play a key role in ferrous ion distribution. Here we show that, in cells and in vitro, PCBP1 coordinates iron via conserved cysteine and glutamate residues and a molecule of noncovalently bound glutathione (GSH). Proteomics analysis of PCBP1-interacting proteins identified BolA2, which functions, in complex with Glrx3, as a cytosolic [2Fe-2S] cluster chaperone. The Fe-GSH-bound form of PCBP1 complexes with cytosolic BolA2 via a bridging Fe ligand. Biochemical analysis of PCBP1 and BolA2, in cells and in vitro, indicates that PCBP1-Fe-GSH-BolA2 serves as an intermediate complex required for the assembly of [2Fe-2S] clusters on BolA2-Glrx3, thereby linking the ferrous iron and Fe-S distribution systems in cells.
Collapse
|
31
|
Nash B, Tarn K, Irollo E, Luchetta J, Festa L, Halcrow P, Datta G, Geiger JD, Meucci O. Morphine-Induced Modulation of Endolysosomal Iron Mediates Upregulation of Ferritin Heavy Chain in Cortical Neurons. eNeuro 2019; 6:ENEURO.0237-19.2019. [PMID: 31300544 PMCID: PMC6675873 DOI: 10.1523/eneuro.0237-19.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain prevalent and are aggravated by µ-opioid use. We have previously shown that morphine and other µ-opioids may contribute to HAND by inhibiting the homeostatic and neuroprotective chemokine receptor CXCR4 in cortical neurons, and this novel mechanism depends on upregulation of the protein ferritin heavy chain (FHC). Here, we examined the cellular events and potential mechanisms involved in morphine-mediated FHC upregulation using rat cortical neurons of either sex in vitro and in vivo. Morphine dose dependently increased FHC protein levels in primary neurons through µ-opioid receptor (µOR) and Gαi-protein signaling. Cytoplasmic FHC levels were significantly elevated, but nuclear FHC levels and FHC gene expression were unchanged. Morphine-treated rats also displayed increased FHC levels in layer 2/3 neurons of the prefrontal cortex. Importantly, both in vitro and in vivo FHC upregulation was accompanied by loss of mature dendritic spines, which was also dependent on µOR and Gαi-protein signaling. Moreover, morphine upregulated ferritin light chain (FLC), a component of the ferritin iron storage complex, suggesting that morphine altered neuronal iron metabolism. Indeed, prior to FHC upregulation, morphine increased cytoplasmic labile iron levels as a function of decreased endolysosomal iron. In line with this, chelation of endolysosomal iron (but not extracellular iron) blocked morphine-induced FHC upregulation and dendritic spine reduction, whereas iron overloading mimicked the effect of morphine on FHC and dendritic spines. Overall, these data demonstrate that iron mediates morphine-induced FHC upregulation and consequent dendritic spine deficits and implicate endolysosomal iron efflux to the cytoplasm in these effects.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Kevin Tarn
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Lindsay Festa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Peter Halcrow
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
32
|
Antioxidant activity and cellular uptake of the hydroxamate-based fungal iron chelators pyridoxatin, desferriastechrome and desferricoprogen. Biometals 2019; 32:707-715. [DOI: 10.1007/s10534-019-00202-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
|
33
|
Hirayama T. Fluorescent probes for the detection of catalytic Fe(II) ion. Free Radic Biol Med 2019; 133:38-45. [PMID: 29990536 DOI: 10.1016/j.freeradbiomed.2018.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
Iron (Fe) is the most abundant redox-active metal ion in the human body, and its redox-active inter-convertible multiple oxidation states contributes to numerous essential biological processes. Moreover, iron overload can potentially cause cellular damage and death, as wel as numerous diseases through the aberrant production of highly reactive oxidative species (hROS). Protein-free or weakly-protein-bound Fe ions play a pivotal role as catalytic reactants of the Fenton reaction. In this reaction, hROS, such as hydroxyl radicals and high valent-iron-oxo species, are generated by a reaction between hydrogen peroxide and Fe(II), which is re-generated through reduction using abundant intracellular reductants, such as glutathione. This results in the catalytic evolution of hROS. Thus, selective detection of the catalytic Fe(II) in the living systems can explain both of the pathological and physiological functions of Fe(II). Written from the perspective of their modes of actions, this paper presents recent advances in the development of fluorescent and bioluminescent probes that can selectively detect catalytic Fe(II) together with their biological applications.
Collapse
Affiliation(s)
- Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu-shi, Gifu 501-1196, Japan.
| |
Collapse
|
34
|
Burkitt MJ. Chemical, Biological and Medical Controversies Surrounding the Fenton Reaction. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967403103165468] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A critical evaluation is made of the role of the Fenton reaction (Fe2+ + H2O2 → Fe3+ + •OH + OH-) in the promotion of oxidative damage in mammalian systems. Following a brief, historical overview of the Fenton reaction, including the formulation of the Haber–Weiss cycle as a mechanism for the catalysis of hydroxyl radical production, an appraisal is made of the biological relevance of the reaction today, following recognition of the important role played by nitric oxide and its congers in the promotion of biomolecular damage. In depth coverage is then given of the evidence (largely from EPR studies) for and against the hydroxyl radical as the active oxidant produced in the Fenton reaction and the role of metal chelating agents (including those of biological importance) and ascorbic acid in the modulation of its generation. This is followed by a description of the important developments that have occurred recently in the molecular and cellular biology of iron, including evidence for the presence of ‘free’ iron that is available in vivo for the Fenton reaction. Particular attention here is given to the role of the iron-regulatory proteins in the modulation of cellular iron status and how their functioning may become dysregulated during oxidative and nitrosative stress, as well as in hereditary haemochromatosis, a common disorder of iron metabolism. Finally, an assessment is made of the biological relevance of ascorbic acid in the promotion of hydroxyl radical generation by the Fenton reaction in health and disease.
Collapse
Affiliation(s)
- Mark J. Burkitt
- Cancer Research UK Free Radicals Research Group, Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR, UK
| |
Collapse
|
35
|
Pramanik S, Chakraborty S, Sivan M, Patro BS, Chatterjee S, Goswami D. Cell Permeable Imidazole-Desferrioxamine Conjugates: Synthesis and In Vitro Evaluation. Bioconjug Chem 2019; 30:841-852. [PMID: 30762349 DOI: 10.1021/acs.bioconjchem.8b00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Desferrioxamine (DFO), a clinically approved iron chelator used for iron overload, is unable to chelate labile plasma iron (LPI) because of its limited cell permeability. Herein, alkyl chain modified imidazolium cations with varied hydrophobicities have been conjugated with DFO. The iron binding abilities and the antioxidant properties of the conjugates were found to be similar to DFO. The degree of cellular internalization was much higher in the octyl-imidazolium-DFO conjugate (IV) compared with DFO, and IV was able to chelate LPI in vitro. This opens up a new avenue in using N-alkyl imidazolium salts as a delivery vector for hydrophilic cell-impermeable drugs.
Collapse
Affiliation(s)
- Shreya Pramanik
- Centre for Excellence in Basic Sciences , Mumbai 400098 , India
| | - Saikat Chakraborty
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India
| | - Malavika Sivan
- Indian Institute of Science Education and Research , Bhopal 462066 , India
| | - Birija S Patro
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| | - Sucheta Chatterjee
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India
| | - Dibakar Goswami
- Bio-Organic Division , Bhabha Atomic Research Centre , Trombay, Mumbai 400085 , India.,Homi Bhabha National Institute , Anushaktinagar, Mumbai 400094 , India
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Terminal differentiation of erythropoietic progenitors requires the rapid accumulation of large amounts of iron, which is transported to the mitochondria, where it is incorporated into heme. Ferritin is the sole site of iron storage present in the cytosol. Yet the role of iron accumulation into ferritin in the context of red cell development had not been clearly defined. Early studies indicated that at the onset of terminal differentiation, iron initially accumulates in ferritin and precedes heme synthesis. Whether this accumulation is physiologically important for red cell development was unclear until recent studies defined an obligatory pathway of iron flux through ferritin. RECENT FINDINGS The iron chaperone functions of poly rC-binding protein 1 (PCBP1) and the autophagic cargo receptor for ferritin, nuclear co-activator 4 (NCOA4) are required for the flux of iron through ferritin in developing red cells. In the absence of these functions, iron delivery to mitochondria for heme synthesis is impaired. SUMMARY The regulated trafficking of iron through ferritin is important for maintaining a consistent flow of iron to mitochondria without releasing potentially damaging redox-active species in the cell. Other components of the iron trafficking machinery are likely to be important in red cell development.
Collapse
|
37
|
Schoenfeld JD, Alexander MS, Waldron TJ, Sibenaller ZA, Spitz DR, Buettner GR, Allen BG, Cullen JJ. Pharmacological Ascorbate as a Means of Sensitizing Cancer Cells to Radio-Chemotherapy While Protecting Normal Tissue. Semin Radiat Oncol 2019; 29:25-32. [PMID: 30573181 PMCID: PMC6310038 DOI: 10.1016/j.semradonc.2018.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemoradiation has remained the standard of care treatment for many of the most aggressive cancers. However, despite effective toxicity to cancer cells, current chemoradiation regimens are limited in efficacy due to significant normal cell toxicity. Thus, efforts have been made to identify agents demonstrating selective toxicity, whereby treatments simultaneously sensitize cancer cells to protect normal cells from chemoradiation. Pharmacological ascorbate (intravenous infusions of vitamin C resulting in plasma ascorbate concentrations ≥20 mM; P-AscH-) has demonstrated selective toxicity in a variety of preclinical tumor models and is currently being assessed as an adjuvant to standard-of-care therapies in several early phase clinical trials. This review summarizes the most current preclinical and clinical data available demonstrating the multidimensional role of P-AscH- in cancer therapy including: selective toxicity to cancer cells via a hydrogen peroxide (H2O2)-mediated mechanism; action as a sensitizing agent of cancer cells to chemoradiation; a protectant of normal tissues exposed to chemoradiation; and its safety and tolerability in clinical trials.
Collapse
Affiliation(s)
- Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA
| | - Matthew S Alexander
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; Department of Surgery, Iowa City, IA
| | - Timothy J Waldron
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Zita A Sibenaller
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Joseph J Cullen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; Department of Surgery, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA; Veterans Affairs Medical Center, Iowa City, IA.
| |
Collapse
|
38
|
Ahmed M, Faisal M, Ihsan A, Naseer MM. Fluorescent organic nanoparticles (FONs) as convenient probes for metal ion detection in aqueous medium. Analyst 2019; 144:2480-2497. [DOI: 10.1039/c8an01801d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent organic nanoparticle (FON)-based chemosensors are emerging as a valuable tool for the fast and accurate detection of metal ions in aqueous media. In this review, we highlight the recent developments in this field.
Collapse
Affiliation(s)
- Mukhtiar Ahmed
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Muhammad Faisal
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology group
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad
- Pakistan
| | | |
Collapse
|
39
|
Vitorino HA, Ortega P, Alta RYP, Zanotto FP, Espósito BP. Magnetite nanoparticles coated with oleic acid: accumulation in hepatopancreatic cells of the mangrove crab Ucides cordatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:35672-35681. [PMID: 30357663 DOI: 10.1007/s11356-018-3480-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
The field of nanotechnology had enormous developments, resulting in new methods for the controlled synthesis of a wide variety of nanoscale materials with unique properties. Efficient methods such as thermal decomposition for efficient size control have been developed in recent years for the synthesis of oleic acid (OA)-coated magnetite (Fe3O4) nanoparticles (MNP-OA). These nanostructures can be a source of pollution when emitted in the aquatic environment and could be accumulated by vulnerable marine species such as crustaceans. In this work, we synthesized and characterized MNP-OA of three different diameters (5, 8, and 12 nm) by thermal decomposition. These nanoparticles were remarkably stable after treatment with high affinity iron chelators (calcein, fluorescent desferrioxamine, and fluorescent apotransferrin); however, they displayed pro-oxidant activity after being challenged with ascorbate under two physiological buffers. Free or nanoparticle iron displayed low toxicity to four types of hepatopancreatic cells (E, R, F, and B) of the mangrove crab Ucides cordatus; however, they were promptly bioavailable, posing the risk of ecosystem disruption due to the release of excess nutrients.
Collapse
Affiliation(s)
- Hector Aguilar Vitorino
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil.
| | - Priscila Ortega
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
40
|
Jansová H, Kubeš J, Reimerová P, Štěrbová-Kovaříková P, Roh J, Šimůnek T. 2,6-Dihydroxybenzaldehyde Analogues of the Iron Chelator Salicylaldehyde Isonicotinoyl Hydrazone: Increased Hydrolytic Stability and Cytoprotective Activity against Oxidative Stress. Chem Res Toxicol 2018; 31:1151-1163. [DOI: 10.1021/acs.chemrestox.8b00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hana Jansová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jan Kubeš
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Reimerová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Štěrbová-Kovaříková
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
41
|
Hrušková K, Potůčková E, Opálka L, Hergeselová T, Hašková P, Kovaříková P, Šimůnek T, Vávrová K. Structure-Activity Relationships of Nitro-Substituted Aroylhydrazone Iron Chelators with Antioxidant and Antiproliferative Activities. Chem Res Toxicol 2018; 31:435-446. [PMID: 29766723 DOI: 10.1021/acs.chemrestox.7b00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 μM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.
Collapse
Affiliation(s)
- Kateřina Hrušková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Eliška Potůčková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Lukáš Opálka
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Tereza Hergeselová
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Pavlína Hašková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Petra Kovaříková
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Tomáš Šimůnek
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic
| |
Collapse
|
42
|
Vitorino HA, Ortega P, Pastrana Alta RY, Zanotto FP, Espósito BP. Evaluation of iron loading in four types of hepatopancreatic cells of the mangrove crab Ucides cordatus using ferrocene derivatives and iron supplements. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15962-15970. [PMID: 29589242 DOI: 10.1007/s11356-018-1819-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The mangrove crab Ucides cordatus is a bioindicator of aquatic contamination. In this work, the iron availability and redox activity of saccharide-coated mineral iron supplements (for both human and veterinary use) and ferrocene derivatives in Saline Ucides Buffer (SUB) medium were assessed. The transport of these metallodrugs by four different hepatopancreatic cell types (embryonic (E), resorptive (R), fibrillar (F), and blister (B)) of U. cordatus were measured. Organic coated iron minerals (iron supplements) were stable against strong chelators (calcein and transferrin). Ascorbic acid efficiently mediated the release of iron only from ferrocene compounds, leading to redox-active species. Ferrous iron and iron supplements were efficient in loading iron to all hepatopancreatic cell types. In contrast, ferrocene derivatives were loaded only in F and B cell types. Acute exposition to the iron compounds resulted in cell viability of 70-95%, and to intracellular iron levels as high as 0.40 μmol L-1 depending upon the compound and the cell line. The easiness that iron from iron metallodrugs was loaded/transported into U. cordatus hepatopancreatic cells reinforces a cautionary approach to the widespread disposal and use of highly bioavailable iron species as far as the long-term environmental welfare is concerned.
Collapse
Affiliation(s)
- Hector Aguilar Vitorino
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| | - Priscila Ortega
- Department of Physiology, Biosciences Institute, University of São Paulo, Rua do Matão, Travessa 14, 321, São Paulo, SP, 05508-090, Brazil
| | - Roxana Y Pastrana Alta
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Flavia Pinheiro Zanotto
- Department of Physiology, Biosciences Institute, University of São Paulo, Rua do Matão, Travessa 14, 321, São Paulo, SP, 05508-090, Brazil
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
43
|
Biswas S, Sharma V, Kumar P, Koner AL. Selective sensing of lysosomal iron(III) via three-component fluorescence-based strategy in living cells. SENSORS AND ACTUATORS B: CHEMICAL 2018; 260:460-464. [DOI: 10.1016/j.snb.2018.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
44
|
Farhi A, Firdaus F, Shakir M. Design and application of a tripodal on–off type chemosensor for discriminative and selective detection of Fe2+ ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj00214b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A simple and cost effective tris 2(amino ethyl) amine based chemosensor is synthesized via a single-step procedure.
Collapse
Affiliation(s)
- Atika Farhi
- Division of Inorganic Chemistry
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Farha Firdaus
- Chemistry Section
- Women's College
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohammad Shakir
- Division of Inorganic Chemistry
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
45
|
García-Beltrán O, Mena NP, Aguirre P, Barriga-González G, Galdámez A, Nagles E, Adasme T, Hidalgo C, Núñez MT. Development of an iron-selective antioxidant probe with protective effects on neuronal function. PLoS One 2017; 12:e0189043. [PMID: 29228015 PMCID: PMC5724820 DOI: 10.1371/journal.pone.0189043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022] Open
Abstract
Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer’s diseases, Friedreich ataxia and Huntington’s disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Natalia P. Mena
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pabla Aguirre
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Germán Barriga-González
- Universidad Metropolitana de Ciencias de la Educación, Facultad de Ciencias Básicas, Departamento de Química, Santiago, Chile
| | - Antonio Galdámez
- Department of Chemistry, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Edgar Nagles
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Ibagué, Colombia
| | - Tatiana Adasme
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Integrative Center for Applied Biology and Chemistry (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Neuroscience, CEMC and ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| | - Marco T. Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CH); (MTN)
| |
Collapse
|
46
|
Kirby RJ, Divlianska DB, Whig K, Bryan N, Morfa CJ, Koo A, Nguyen KH, Maloney P, Peddibhotla S, Sessions EH, Hershberger PM, Smith LH, Malany S. Discovery of Novel Small-Molecule Inducers of Heme Oxygenase-1 That Protect Human iPSC-Derived Cardiomyocytes from Oxidative Stress. J Pharmacol Exp Ther 2017; 364:87-96. [PMID: 29101218 DOI: 10.1124/jpet.117.243717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Oxidative injury to cardiomyocytes plays a critical role in cardiac pathogenesis following myocardial infarction. Transplantation of stem cell-derived cardiomyocytes has recently progressed as a novel treatment to repair damaged cardiac tissue but its efficacy has been limited by poor survival of transplanted cells owing to oxidative stress in the post-transplantation environment. Identification of small molecules that activate cardioprotective pathways to prevent oxidative damage and increase survival of stem cells post-transplantation is therefore of great interest for improving the efficacy of stem cell therapies. This report describes a chemical biology phenotypic screening approach to identify and validate small molecules that protect human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from oxidative stress. A luminescence-based high-throughput assay for cell viability was used to screen a diverse collection of 48,640 small molecules for protection of hiPSC-CMs from peroxide-induced cell death. Cardioprotective activity of "hit" compounds was confirmed using impedance-based detection of cardiomyocyte monolayer integrity and contractile function. Structure-activity relationship studies led to the identification of a potent class of compounds with 4-(pyridine-2-yl)thiazole scaffold. Examination of gene expression in hiPSC-CMs revealed that the hit compound, designated cardioprotectant 312 (CP-312), induces robust upregulation of heme oxygenase-1, a marker of the antioxidant response network that has been strongly correlated with protection of cardiomyocytes from oxidative stress. CP-312 therefore represents a novel chemical scaffold identified by phenotypic high-throughput screening using hiPSC-CMs that activates the antioxidant defense response and may lead to improved pharmacological cardioprotective therapies.
Collapse
Affiliation(s)
- R Jason Kirby
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Daniela B Divlianska
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kanupriya Whig
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Nadezda Bryan
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Camilo J Morfa
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Ada Koo
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Kevin H Nguyen
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Patrick Maloney
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Satayamaheshwar Peddibhotla
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - E Hampton Sessions
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Paul M Hershberger
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Layton H Smith
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| | - Siobhan Malany
- Sanford Burham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, Orlando, Florida
| |
Collapse
|
47
|
Alta RYP, Vitorino HA, Goswami D, Terêsa Machini M, Espósito BP. Triphenylphosphonium-desferrioxamine as a candidate mitochondrial iron chelator. Biometals 2017; 30:709-718. [PMID: 28770399 DOI: 10.1007/s10534-017-0039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
Abstract
Cell-impermeant iron chelator desferrioxamine (DFO) can have access to organelles if appended to suitable vectors. Mitochondria are important targets for the treatment of iron overload-related neurodegenerative diseases. Triphenylphosphonium (TPP) is a delocalized lipophilic cation used to ferry molecules to mitochondria. Here we report the synthesis and characterization of the conjugate TPP-DFO as a mitochondrial iron chelator. TPP-DFO maintained both a high affinity for iron and the antioxidant activity when compared to parent DFO. TPP-DFO was less toxic than TPP alone to A2780 cells (IC50 = 135.60 ± 1.08 and 4.34 ± 1.06 μmol L-1, respectively) and its native fluorescence was used to assess its mitochondrial localization (Rr = +0.56). These results suggest that TPP-DFO could be an interesting alternative for the treatment of mitochondrial iron overload e.g. in Friedreich's ataxia.
Collapse
Affiliation(s)
- Roxana Y P Alta
- Laboratory of Bioinorganic Chemistry and Metallodrugs, Department of Fundamental Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil. .,Laboratory of Peptide Chemistry, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil.
| | - Hector A Vitorino
- Laboratory of Bioinorganic Chemistry and Metallodrugs, Department of Fundamental Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil
| | | | - M Terêsa Machini
- Laboratory of Peptide Chemistry, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil
| | - Breno P Espósito
- Laboratory of Bioinorganic Chemistry and Metallodrugs, Department of Fundamental Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil
| |
Collapse
|
48
|
Novotná E, Waisser K, Kuneš J, Palát K, Skálová L, Szotáková B, Buchta V, Stolaříková J, Ulmann V, Pávová M, Weber J, Komrsková J, Hašková P, Vokřál I, Wsól V. Design, Synthesis, and Biological Evaluation of Isothiosemicarbazones with Antimycobacterial Activity. Arch Pharm (Weinheim) 2017. [DOI: 10.1002/ardp.201700020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eva Novotná
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences; Charles University; Hradec Králové Czech Republic
| | - Karel Waisser
- Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry; Charles University; Hradec Králové Czech Republic
| | - Jiří Kuneš
- Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry; Charles University; Hradec Králové Czech Republic
| | - Karel Palát
- Faculty of Pharmacy in Hradec Králové, Department of Inorganic and Organic Chemistry; Charles University; Hradec Králové Czech Republic
| | - Lenka Skálová
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences; Charles University; Hradec Králové Czech Republic
| | - Barbora Szotáková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences; Charles University; Hradec Králové Czech Republic
| | - Vladimír Buchta
- Department of Clinical Microbiology; University Hospital; Hradec Králové Czech Republic
| | | | - Vít Ulmann
- Regional Institute of Public Health; Ostrava Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry; The Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry; The Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Jitka Komrsková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences; Charles University; Hradec Králové Czech Republic
| | - Pavlína Hašková
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences; Charles University; Hradec Králové Czech Republic
| | - Ivan Vokřál
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences; Charles University; Hradec Králové Czech Republic
| | - Vladimír Wsól
- Faculty of Pharmacy in Hradec Králové, Department of Biochemical Sciences; Charles University; Hradec Králové Czech Republic
| |
Collapse
|
49
|
Huayhuaz JAA, Vitorino HA, Campos OS, Serrano SHP, Kaneko TM, Espósito BP. Desferrioxamine and desferrioxamine-caffeine as carriers of aluminum and gallium to microbes via the Trojan Horse Effect. J Trace Elem Med Biol 2017; 41:16-22. [PMID: 28347458 DOI: 10.1016/j.jtemb.2017.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/24/2023]
Abstract
Iron acquisition by bacteria and fungi involves in several cases the promiscuous usage of siderophores. Thus, antibiotic resistance from these microorganisms can be circumvented through a strategy of loading toxic metals into siderophores (Trojan Horse Effect). Desferrioxamine (dfo) and its cell-permeant derivative desferrioxamine-caffeine (dfcaf) were complexed with aluminum or gallium for this purpose. The complexes Me(dfo) and Me(dfcaf) (Me=Al3+ and Ga3+) were synthesized and characterized by mass spectroscopy and cyclic voltammetry. Their relative stabilities were studied through competitive equilibria with fluorescent probes calcein, fluorescein-desferrioxamine and 8-hydroxyquinoline. Me(dfo) and Me(dfcaf) were consistently more toxic than free Me3+ against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans, demonstrating the Trojan Horse Effect. Wide spectrum antimicrobial action can be obtained by loading non-essential or toxic metal ions to microbes via a convenient siderophore carrier.
Collapse
Affiliation(s)
- Jesus Antonio Alvarado Huayhuaz
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo,Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Hector Aguilar Vitorino
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo,Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Othon Souto Campos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo,Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Silvia Helena Pires Serrano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo,Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Telma Mary Kaneko
- Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Breno Pannia Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo,Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
50
|
Saha P, Yeoh BS, Olvera RA, Xiao X, Singh V, Awasthi D, Subramanian BC, Chen Q, Dikshit M, Wang Y, Parent CA, Vijay-Kumar M. Bacterial Siderophores Hijack Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2017; 198:4293-4303. [PMID: 28432145 DOI: 10.4049/jimmunol.1700261] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Neutrophils are the primary immune cells that respond to inflammation and combat microbial transgression. To thrive, the bacteria residing in their mammalian host have to withstand the antibactericidal responses of neutrophils. We report that enterobactin (Ent), a catecholate siderophore expressed by Escherichia coli, inhibited PMA-induced generation of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in mouse and human neutrophils. Ent also impaired the degranulation of primary granules and inhibited phagocytosis and bactericidal activity of neutrophils, without affecting their migration and chemotaxis. Molecular analysis revealed that Ent can chelate intracellular labile iron that is required for neutrophil oxidative responses. Other siderophores (pyoverdine, ferrichrome, deferoxamine) likewise inhibited ROS and NETs in neutrophils, thus indicating that the chelation of iron may largely explain their inhibitory effects. To counter iron theft by Ent, neutrophils rely on the siderophore-binding protein lipocalin 2 (Lcn2) in a "tug-of-war" for iron. The inhibition of neutrophil ROS and NETs by Ent was augmented in Lcn2-deficient neutrophils compared with wild-type neutrophils but was rescued by the exogenous addition of recombinant Lcn2. Taken together, our findings illustrate the novel concept that microbial siderophore's iron-scavenging property may serve as an antiradical defense system that neutralizes the immune functions of neutrophils.
Collapse
Affiliation(s)
- Piu Saha
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Rodrigo A Olvera
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qiuyan Chen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yanming Wang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802; .,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, PA 17033
| |
Collapse
|