1
|
Manas F, Piterois H, Labrousse C, Beaugeard L, Uzbekov R, Bressac C. Gone but not forgotten: dynamics of sperm storage and potential ejaculate digestion in the black soldier fly Hermetia illucens. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241205. [PMID: 39479251 PMCID: PMC11521600 DOI: 10.1098/rsos.241205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024]
Abstract
Understanding the dynamics of sperm storage is essential to unravel the complexity of post-copulatory sexual selection processes in internally fertilized species. This physiological process goes from sperm transfer during copulation to its use for fertilization. In this context, the spatiotemporal dynamics of sperm storage were described in the black soldier fly (BSF) with fluorescence and transmission electron microscopy (TEM). BSF females have compartmentalized spermathecae with a transfer compartment, the fishnet canals, and a storage compartment, the reservoirs. Spermatozoa were counted both during and after mating in the two compartments. In addition to seminal fluids, the male transfers a mass of sperm in the fishnet canals, then only 49% of the transferred spermatozoa reach the reservoirs over two days. TEM observations of the fishnet canals revealed potential digestive functions, explaining the decline in the number and viability of spermatozoa in this compartment but not in the reservoirs. After one mating, females laid up to three fertile clutches, showing no constraints on sperm quantity or quality. Spermatic and ultrastructural investigations strongly suggest that BSF ejaculate acts both as a sperm plug and as a nuptial gift, reinforcing the interest in studying this farming insect as a new model for sexual selection.
Collapse
Affiliation(s)
- Frédéric Manas
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Harmony Piterois
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Carole Labrousse
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Laureen Beaugeard
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Rustem Uzbekov
- Plateforme IBiSA de Microscopie Electronique, University of Tours and CHRU of Tours, Tours37200, France
| | - Christophe Bressac
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| |
Collapse
|
2
|
Zhao X, Jiang J, Pang Z, Ma W, Jiang Y, Fu Y, Liu Y. Tracking Existing Factors Directly Affecting the Reproduction of Bumblebees: Current Knowledge. INSECTS 2024; 15:654. [PMID: 39336622 PMCID: PMC11432074 DOI: 10.3390/insects15090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bumblebees are primary social insects and a vital class of pollinating insects. Their distinctive reproductive mode is characterized by the independent initiation and construction of the nest by the queen and the subsequent production of sufficient workers, males, and gynes following colony development. After successful mating, the queen transitions to the first phase of its annual life cycle. The reproductive processes are directly influenced by environmental factors, including floral resources and pesticides. Moreover, the reproductive level is regulated by biological factors, particularly the role of workers, who participate in egg laying and pass on their genetic material to the next generation of queens. Successful reproduction can only be achieved by maintaining colony development under natural or artificial breeding conditions. Consequently, understanding the known factors that influence bumblebee reproduction is essential for developing conservation strategies for wild bumblebees and for successfully breeding diverse bumblebee species. Breeding various bumblebee species is crucial for in-depth research into known factors and for further exploration of other potential factors, which will also help to meet the demand for pollination in agricultural facilities globally.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Jingxin Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Zilin Pang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Yusuo Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Yanfang Fu
- HeBei Provincial Animal Husbandry Station, Shijiazhuang 050035, China;
| | - Yanjie Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| |
Collapse
|
3
|
Chen X, Wang Y, Zhou Y, Wang F, Wang J, Yao X, Imran M, Luo S. Imidacloprid reduces the mating success of males in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172525. [PMID: 38631635 DOI: 10.1016/j.scitotenv.2024.172525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Bumblebees play a vital role in both natural and agricultural environments, but there has been a noticeable decline in their populations. Pesticides, particularly neonicotinoids, are widely regarded as a substantial contributing factor to the decline in bumblebee populations, as evidenced by the detrimental impacts documented across many stages of their life cycle. Mating is vital for the population maintenance of bumblebees. Nevertheless, there is a scarcity of research conducted on the effects of pesticides on the mating process. In this study, we individually examined the impact of imidacloprid on the mating behavior of bumblebee males and queens. A competitive mating experiment was conducted to evaluate the effect on the competitive prowess of male individuals and the mate selection behavior of female individuals. The study revealed that the mating rate of bumblebees exposed to a concentration of 10 ppb of imidacloprid was 3 %. This finding demonstrated a statistically significant impact when compared to the control group, which exhibited a mating rate of 58 % in the normal mating experiment. Furthermore, in the competitive mating experiment, we found that the competitive mating success rate of treated males (1 %) was significantly lower than that of untreated males (35 %). Hence, it provides evidence that neonicotinoid imidacloprid negatively affects bumblebee mating success and cautions us to protect bumblebees from pesticide exposure to prevent a severe impact on their populations.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yuhao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yao Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Feiran Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China
| | - Jian Wang
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China
| | - Xudong Yao
- Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China
| | - Muhammad Imran
- Department of Entomology, University of Poonch Rawalakot, AJK 12350, Pakistan
| | - Shudong Luo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Western Research Institute, Chinese Academy of Agricultural Sciences, Changji 831100, China; Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832061, China.
| |
Collapse
|
4
|
Kubo R, Asanuma Y, Fujimoto E, Okuyama H, Ono M, Takahashi JI. Cross-mating between the alien bumblebee Bombus terrestris and two native Japanese bumblebees, B. hypocrita sapporensis and B. cryptarum florilegus, in the Nemuro Peninsula, Japan. Sci Rep 2023; 13:11506. [PMID: 37460583 PMCID: PMC10352366 DOI: 10.1038/s41598-023-38631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The rapid naturalization of Bombus terrestris across the Nemuro Peninsula has led to a decline in two closely related native Japanese species, namely Bombus hypocrita sapporensis and Bombus cryptarum florilegus, both belonging to the common subgenus Bombus. Although it is widely believed that cross-mating of native and non-native species is influenced by the common male sex pheromone in this region, no study has been conducted to substantiate this claim. Thus, we investigated the cross-activities of male sex pheromones between native and non-native bumblebees, as well as the frequencies of cross-mating, using chemical and DNA assays. Our gas chromatography-electroantennographic detector analyses and behavioral tests revealed the presence of sex pheromonal cross-activities between B. terrestris and the two Japanese bumblebees species. Furthermore, DNA analyses revealed the occurrence of cross-mating between native and non-native species in the Nemuro Peninsula. Overall, these results indicate the immediate need for conservation measures to safeguard Japanese bumblebee populations in the Nemuro Peninsula.
Collapse
Affiliation(s)
- Ryohei Kubo
- Honeybee Science Research Center, Tamagawa University, 6-1-1, Tamagawagakuen, Machida, Tokyo, Japan
| | - Yuine Asanuma
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-Ku, Kyoto, Japan
| | - Erina Fujimoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-Ku, Kyoto, Japan
| | - Hisashi Okuyama
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-Ku, Kyoto, Japan
| | - Masato Ono
- Honeybee Science Research Center, Tamagawa University, 6-1-1, Tamagawagakuen, Machida, Tokyo, Japan
| | - Jun-Ichi Takahashi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-Ku, Kyoto, Japan.
| |
Collapse
|
5
|
Kárpáti Z, Deutsch F, Kiss B, Schmitt T. Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii. Sci Rep 2023; 13:5649. [PMID: 37024537 PMCID: PMC10079849 DOI: 10.1038/s41598-023-32652-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Seasonal plasticity in insects is often triggered by temperature and photoperiod changes. When climatic conditions become sub-optimal, insects might undergo reproductive diapause, a form of seasonal plasticity delaying the development of reproductive organs and activities. During the reproductive diapause, the cuticular hydrocarbon (CHC) profile, which covers the insect body surface, might also change to protect insects from desiccation and cold temperature. However, CHCs are often important cues and signals for mate recognition and changes in CHC composition might affect mate recognition. In the present study, we investigated the CHC profile composition and the mating success of Drosophila suzukii in 1- and 5-day-old males and females of summer and winter morphs. CHC compositions differed with age and morphs. However, no significant differences were found between the sexes of the same age and morph. The results of the behavioral assays show that summer morph pairs start to mate earlier in their life, have a shorter mating duration, and have more offspring compared to winter morph pairs. We hypothesize that CHC profiles of winter morphs are adapted to survive winter conditions, potentially at the cost of reduced mate recognition cues.
Collapse
Affiliation(s)
- Zsolt Kárpáti
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany.
- Zoology Department, Plant Protection Institute, Centre of Agricultural Research, ELKH, Budapest, Hungary.
| | - Ferenc Deutsch
- Zoology Department, Plant Protection Institute, Centre of Agricultural Research, ELKH, Budapest, Hungary
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kiss
- Zoology Department, Plant Protection Institute, Centre of Agricultural Research, ELKH, Budapest, Hungary
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Glück M, Geue JC, Thomassen HA. Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator. BMC Ecol Evol 2022; 22:8. [PMID: 35105300 PMCID: PMC8808969 DOI: 10.1186/s12862-022-01963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. Consequently, these species might falsely be considered quasi-panmictic and hence potentially mismanaged. A species this might apply to, is the buff-tailed bumble bee (Bombus terrestris), an economically important and widespread pollinator, which is considered to be quasi-panmictic at mainland continental scales. Here we aimed to (i) quantify genetic structure in 21+ populations of the buff-tailed bumble bee, sampled throughout two Eastern European countries, and (ii) analyse the degree to which structure is explained by environmental differences, habitat permeability and geographic distance. Using 12 microsatellite loci, we characterised populations of this species with Fst analyses, complemented by discriminant analysis of principal components and Bayesian clustering approaches. We then applied generalized dissimilarity modelling to simultaneously assess the informativeness of geographic distance, habitat permeability and environmental differences among populations in explaining divergence. RESULTS Genetic structure of the buff-tailed bumble bee quantified by means of Fst was subtle and not detected by Bayesian clustering. Discriminant analysis of principal components suggested insignificant but still noticeable structure that slightly exceeded estimates obtained through Fst analyses. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. CONCLUSIONS In contrast to previous studies reporting quasi-panmixia in continental populations of this species, we demonstrated the presence of subtle population structure related to environmental heterogeneity. Environmental data proved to be highly useful in unravelling the drivers of genetic structure in this vagile and opportunistic species. We highlight the potential of including these data to obtain a better understanding of population structure and the processes driving it in species considered to be quasi-panmictic.
Collapse
Affiliation(s)
- Marcel Glück
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany.
| | - Julia C Geue
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Henri A Thomassen
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany
| |
Collapse
|
7
|
Straub L, Minnameyer A, Camenzind D, Kalbermatten I, Tosi S, Van Oystaeyen A, Wäckers F, Neumann P, Strobl V. Thiamethoxam as an inadvertent anti-aphrodisiac in male bees. Toxicol Rep 2022; 9:36-45. [PMID: 34987978 PMCID: PMC8693414 DOI: 10.1016/j.toxrep.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
There is consensus that neonicotinoids can impact non-target animal fertility. Thiamethoxam reduced both mating success and sperm physiology in bumblebees. Queens mated by exposed males had 50% less total living sperm in their spermatheca. Thiamethoxam may act as anti-aphrodisiac, thereby limiting conservation efforts.
Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g−1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | | | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Guo Y, Zhang Q, Hu X, Pang C, Li J, Huang J. Mating Stimulates the Immune Response and Sperm Storage-Related Genes Expression in Spermathecae of Bumblebee ( Bombus terrestris) Queen. Front Genet 2021; 12:795669. [PMID: 34899871 PMCID: PMC8661091 DOI: 10.3389/fgene.2021.795669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bumblebee queens have remarkable spermathecae that store sperm for year-round reproduction. The spermathecal gland is regarded as a secretory organ that could benefit sperm storage. Queen mating provokes substantial physiological, behavioral, and gene expression changes. Here, the transcriptomes of spermathecae were compared between virgins and mated queens of the bumblebee, Bombus terrestris L., at 24 h post mating. Differentially expressed genes were further validated by real time quantitative PCR and immunofluorescence assay. In total, the expression of 11, 069 and 10, 862 genes were identified in virgins and mated queens, respectively. We identified that 176 differentially expressed genes between virgin and mated queen spermathecae: 110 (62.5%) genes were upregulated, and 66 (37.5%) genes were downregulated in mated queens. Most of the differentially expressed genes validated by RT-qPCR were concentrated on immune response [i.e., leucine-rich repeat-containing protein 70 (35.8-fold), phenoloxidase 2 (41.9-fold), and defensin (4.9-fold)] and sperm storage [i.e., chymotrypsin inhibitor (6.2-fold), trehalose transporter Tret1 (1.7-, 1.9-, 2.4-, and 2.4-fold), and heterogeneous nuclear ribonucleoprotein A3 (1.2-, and 2.6-fold)] functions in the spermathecae of mated queens. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) was hypothesized to promote the mating behavior according to RT-qPCR and immunofluorescence assay. The expression levels of most upregulated immune genes were decreased significantly at 3 days post mating. In conclusion, the external sperm transfer into spermathecae led to the significantly upregulated immune response genes in bumblebees. These gene expression differences in queen spermathecae contribute to understanding the bumblebee post mating regulatory network.
Collapse
Affiliation(s)
- Yueqin Guo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiao Hu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiu Pang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jilian Li
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Zhao H, Liu Y, Zhang H, Breeze TD, An J. Worker-Born Males Are Smaller but Have Similar Reproduction Ability to Queen-Born Males in Bumblebees. INSECTS 2021; 12:insects12111008. [PMID: 34821809 PMCID: PMC8622041 DOI: 10.3390/insects12111008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022]
Abstract
Queen-worker conflict over the reproduction of males exists in the majority of haplodiplioidy hymenpteran species such as bees, wasps, and ants, whose workers lose mating ability but can produce haploid males in colony. Bumblebee is one of the representatives of primitively eusocial insects with plastic division labor and belongs to monandrous and facultative low polyandry species that have reproductive totipotent workers, which are capable of competing with mother queen to produce haploid males in the queenright colony compared to higher eusocial species, e.g., honeybees. So, bumblebees should be a better material to study worker reproduction, but the reproductive characteristics of worker-born males (WMs) remain unclear. Here, we choose the best-studied bumblebee Bombus terrestris to evaluate the morphological characteristics and reproductive ability of WMs from the queenless micro-colonies. The sexually matured WMs showed smaller in forewing length and weight, relatively less sperm counts but equally high sperm viability in comparison with the queen-born males (QMs) of the queenright colony. Despite with smaller size, the WMs are able to successfully mate with the virgin queens in competition with the QMs under laboratory conditions, which is quite different from the honeybees reported. In addition, there was no difference in the colony development, including the traits such as egg-laying rate, colony establishment rate, and populations of offspring, between the WM- and the QM-mated queens. Our study highlights the equivalent reproductive ability of worker-born males compared to that of queens, which might exhibit a positive application or special use of bumblebee rearing, especially for species whose males are not enough for copulation. Further, our finding contributes new evidence to the kin selection theory and suggests worker reproduction might relate to the evolution of sociality in bees.
Collapse
Affiliation(s)
- Huiyue Zhao
- Key Laboratory for Insect-Pollinator Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (H.Z.); (Y.L.); (H.Z.)
| | - Yanjie Liu
- Key Laboratory for Insect-Pollinator Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (H.Z.); (Y.L.); (H.Z.)
| | - Hong Zhang
- Key Laboratory for Insect-Pollinator Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (H.Z.); (Y.L.); (H.Z.)
| | - Tom D. Breeze
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, Reading University, Reading RG6 6AH, UK;
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (H.Z.); (Y.L.); (H.Z.)
- Correspondence:
| |
Collapse
|
10
|
Zhao H, Mashilingi SK, Liu Y, An J. Factors Influencing the Reproductive Ability of Male Bees: Current Knowledge and Further Directions. INSECTS 2021; 12:insects12060529. [PMID: 34200253 PMCID: PMC8229853 DOI: 10.3390/insects12060529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Bumblebees and honeybees are well known as the dominant and most important pollinators in natural and agricultural ecosystems. The quality characteristics of their colonies depend greatly on the reproductive ability/quality of the parents (queens and drones). Male bees, despite their exclusive reproductive role and ability to determine colony quality, have been less considered than female bees, especially bumblebees. We reviewed the current studies on environmental factors and inherent characteristics that affect the mating success and fecundity of male honeybees and bumblebees. Temperature, nutrients, pesticides, body size, weight and age affect reproduction in male bees and consequently the progeny colony quality. However, more studies, especially in male bumblebees, are still needed to address the impacts of these factors in detail to confront the requirements of agricultural pollination and declining wild bee pollinators worldwide. Abstract Bumblebees and honeybees are very important pollinators and play a vital role in agricultural and natural ecosystems. The quality of their colonies is determined by the queens and the reproductive drones of mother colonies, and mated drones transmit semen, including half of the genetic materials, to queens and enhance their fertility. Therefore, factors affecting drone fecundity will also directly affect progeny at the colony level. Here, we review environmental and bee-related factors that are closely related to drone reproductive ability. The environmental factors that mainly affect the sperm count and the viability of males include temperature, nutrients and pesticides. In addition, the inherent characteristics of male bees, such as body size, weight, age, seminal fluid proteins and proteins of the spermathecal fluid, contribute to mating success, sperm quality during long-term storage in the spermathecae and the reproductive behaviors of queens. Based on the results of previous studies, we also suggest that the effects of somatotype dimorphism in bumblebee males on sperm quality and queen fecundity and the indispensable and exploitable function of gland proteins in the fecundity of males and queens should be given more attention in further studies.
Collapse
|
11
|
Martinet B, Zambra E, Przybyla K, Lecocq T, Anselmo A, Nonclercq D, Rasmont P, Michez D, Hennebert E. Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Baptiste Martinet
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
- Evolutionary Biology & Ecology Université Libre de Bruxelles Bruxelles Belgium
| | - Ella Zambra
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Kimberly Przybyla
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Thomas Lecocq
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
- INRAEURAFPAUniversity of Lorraine Nancy France
| | - Abigaël Anselmo
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Denis Nonclercq
- Laboratory of Histology Research Institute of BiosciencesUniversity of Mons Mons Belgium
| | - Pierre Rasmont
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Denis Michez
- Laboratory of Zoology Research Institute of Biosciences University of Mons Mons Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology Research Institute of BiosciencesUniversity of Mons Mons Belgium
| |
Collapse
|
12
|
Belsky JE, Camp AA, Lehmann DM. The Importance of Males to Bumble Bee ( Bombus Species) Nest Development and Colony Viability. INSECTS 2020; 11:E506. [PMID: 32764336 PMCID: PMC7469185 DOI: 10.3390/insects11080506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/18/2022]
Abstract
Bumble bee population declines over the last decade have stimulated strong interest in determining causative factors and necessary conservation measures. Research attention has largely been directed toward bumble bee worker and queen health and their contributions to population stability, while male bees (i.e., drones) have typically been overlooked regarding their role in influencing colony fitness and longevity. In this review we assess existing literature on the diverse role of males within bumble bee nests and their importance to queen health and fitness, as well as to overall nest success. The implications of reproductive measures, including sperm transfer, mating behavior, mating plugs, and male immunity, among other topics, are examined. Overall, bumble bee males are found to drive colony function in a unique manner. Current knowledge gaps pertaining to the role of males are discussed. We highlight the importance of drones to queen success and fitness in many ways, and suggest future research exploring impacts of this often-neglected caste.
Collapse
Affiliation(s)
- Joseph E Belsky
- Public Health & Environmental Systems Division, Integrated Health Assessment Branch Center for Public Health and Environmental Assessment (CPHEA), US-Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Allison A Camp
- ORISE Researcher, Research Triangle Park Oak Ridge Associated Universities, Research Triangle Park, Durham, NC 27711, USA
| | - David M Lehmann
- Public Health & Environmental Systems Division, Integrated Health Assessment Branch Center for Public Health and Environmental Assessment (CPHEA), US-Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| |
Collapse
|
13
|
Oviedo‐Diego MA, Mattoni CI, Vrech DE, Michalik P, Peretti AV. The morphology of mating plugs and its formation in scorpions: Implications for intersexual participation. J Morphol 2020; 281:620-635. [DOI: 10.1002/jmor.21125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Mariela A. Oviedo‐Diego
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Diversidad Biológica y Ecología Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución Córdoba Argentina
| | - Camilo I. Mattoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Diversidad Biológica y Ecología Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Físicas y Naturales, Departamento de Diversidad Biológica y Ecología Córdoba Argentina
| | - David E. Vrech
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Diversidad Biológica y Ecología Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Físicas y Naturales, Departamento de Diversidad Biológica y Ecología Córdoba Argentina
| | - Peter Michalik
- Zoological Institute and Museum, Universität Greifswald Greifswald Germany
| | - Alfredo V. Peretti
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas Físicas y Naturales, Departamento de Diversidad Biológica y Ecología Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Físicas y Naturales, Departamento de Diversidad Biológica y Ecología Córdoba Argentina
| |
Collapse
|
14
|
Liang C, Ding G, Huang J, Zhang X, Miao C, An J. Characteristics of the Two Asian Bumblebee Species Bombus friseanus and Bombus breviceps (Hymenoptera: Apidae). INSECTS 2020; 11:insects11030163. [PMID: 32138226 PMCID: PMC7143170 DOI: 10.3390/insects11030163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022]
Abstract
This study compared the food plants, life cycle, colony development, and mating behaviour of the two Asian bumblebee species Bombus friseanus and B. breviceps, which are very important pollinators for many wild flowers and crops in local ecosystems. Both species were shown to be highly polylectic. Differences were observed in their life cycles and colony development patterns. The colony foundation rate of the field-collected queens was high in both species, 95.5% in B. friseanus and 86.5% in B. breviceps. The intervals from colony initiation to colony sizes of 30, 60, and 80 workers and to the first male and gyne emergence were significantly shorter in B. friseanus than in B. breviceps (p < 0.01). The development period of the first batch of workers showed no significant difference between the two species (p > 0.05). Compared with B. friseanus, B. breviceps produced remarkably higher numbers of workers (135 ± 30 workers/colony in B. friseanus and 318 ± 123 workers/colony in B. breviceps) and males (199 ± 46 males/colony in B. friseanus and 355 ± 166 males/colony in B. breviceps) (p < 0.01), with notable variation was found among the colonies in both species. With no significant difference in the mating rate between these two species, the copulation duration of B. breviceps (1.54 ± 0.63 min) was strikingly shorter than that of B. friseanus (27.44 ± 11.16 min) (p < 0.001). This study highlights the characteristics of the two Asian bumblebee species and will aid further studies on their conservation and agricultural pollination use.
Collapse
Affiliation(s)
- Cheng Liang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi 661101, Yunnan, China; (X.Z.); (C.M.)
| | - Guiling Ding
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
- Correspondence: (G.D.); (J.A.)
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
| | - Xuewen Zhang
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi 661101, Yunnan, China; (X.Z.); (C.M.)
| | - Chunhui Miao
- Institute of Sericulture and Apiculture, Yunnan Academy of Agricultural Sciences, Mengzi 661101, Yunnan, China; (X.Z.); (C.M.)
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (C.L.); (J.H.)
- Correspondence: (G.D.); (J.A.)
| |
Collapse
|
15
|
Oviedo-Diego MA, Mattoni CI, Peretti AV. Specificity of the female's local cellular immune response in genital plug producing scorpion species. PLoS One 2019; 14:e0208682. [PMID: 30742645 PMCID: PMC6370188 DOI: 10.1371/journal.pone.0208682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 02/05/2023] Open
Abstract
Immune defense is a key feature in the life history of organisms, expensive to maintain, highly regulated by individuals and exposed to physiological and evolutionary trade-offs. In chelicerates, relatively scarce are the studies that relate postcopulatory mechanisms and immune response parameters. This work makes an approximation to the female’s immunological consequences produced after the placement of a foreign body in the genitalia of three scorpions species, two species that normally receive genital plugs during mating (Urophonius brachycentrus and U. achalensis) and one that does not (Zabius fuscus). Here we performed the first morphological description of the natural plugs of the two Urophonius species. We described complex three zoned structure anchored to the female genital atrium and based on this information we placed implants in the genitalia (for eliciting the local immune response) of virgin females of the three species and measured the immune encapsulation response to this foreign body. We found a greater and heterogeneous response in different zones of the implants in the plug producing species. To corroborate the specificity of this immune response, we compared the local genital reaction with the triggered response at a systemic level by inserting implants into the female body cavity of U. brachycentrus and Zabius fuscus. We found that the systemic response did not differ between species and that only in the plug producing species the local response in the genitalia was higher than the systemic one. We also compared the total hemocyte load before and after the genital implantation to see if this parameter was compromised by the immunological challenge. We confirmed that in Urophonius species the presence of a strange body in the genitalia caused a decrease in the hemocyte load. Besides, we find correlations between the body weight and the immunological parameters, as well as between different immunological parameters with each other. Complementarily, we characterized the hemocytes of the three scorpion species for the first time. This comparative study can help to provide a wider framework of the immunological characteristics of the species, their differences and their relationship with the particular postcopulatory mechanism such as the genital plugs.
Collapse
Affiliation(s)
- Mariela A. Oviedo-Diego
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
- * E-mail:
| | - Camilo I. Mattoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
| | - Alfredo V. Peretti
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Diversidad Biológica y Ecología, Córdoba Capital, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Laboratorio de Biología Reproductiva y Evolución, Córdoba Capital, Cordoba, Argentina
| |
Collapse
|
16
|
Schultner E, Oettler J, Helanterä H. The Role of Brood in Eusocial Hymenoptera. QUARTERLY REVIEW OF BIOLOGY 2018; 92:39-78. [PMID: 29558609 DOI: 10.1086/690840] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Study of social traits in offspring traditionally reflects on interactions in simple family groups, with famous examples including parent-offspring conflict and sibling rivalry in birds and mammals. In contrast, studies of complex social groups such as the societies of ants, bees, and wasps focus mainly on adults and, in particular, on traits and interests of queens and workers. The social role of developing individuals in complex societies remains poorly understood. We attempt to fill this gap by illustrating that development in social Hymenoptera constitutes a crucial life stage with important consequences for the individual as well as the colony. We begin by describing the complex social regulatory network that modulates development in Hymenoptera societies. By highlighting the inclusive fitness interests of developing individuals, we show that they may differ from those of other colony members. We then demonstrate that offspring have evolved specialized traits that allow them to play a functional, cooperative role within colonies and give them the potential power to act toward increasing their inclusive fitness. We conclude by providing testable predictions for investigating the role of brood in colony interactions and giving a general outlook on what can be learned from studying offspring traits in hymenopteran societies.
Collapse
|
17
|
Laranjo LT, Haifig I, Costa-Leonardo AM. Morphology of the male reproductive system during post-embryonic development of the termite Silvestritermes euamignathus (Isoptera: Termitidae). ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Manfredini F, Romero AE, Pedroso I, Paccanaro A, Sumner S, Brown MJF. Neurogenomic Signatures of Successes and Failures in Life-History Transitions in a Key Insect Pollinator. Genome Biol Evol 2017; 9:3059-3072. [PMID: 29087523 PMCID: PMC5714134 DOI: 10.1093/gbe/evx220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
Life-history transitions require major reprogramming at the behavioral and physiological level. Mating and reproductive maturation are known to trigger changes in gene transcription in reproductive tissues in a wide range of organisms, but we understand little about the molecular consequences of a failure to mate or become reproductively mature, and it is not clear to what extent these processes trigger neural as well as physiological changes. In this study, we examined the molecular processes underpinning the behavioral changes that accompany the major life-history transitions in a key pollinator, the bumblebee Bombus terrestris. We compared neuro-transcription in queens that succeeded or failed in switching from virgin and immature states, to mated and reproductively mature states. Both successes and failures were associated with distinct molecular profiles, illustrating how development during adulthood triggers distinct molecular profiles within a single caste of a eusocial insect. Failures in both mating and reproductive maturation were explained by a general up-regulation of brain gene transcription. We identified 21 genes that were highly connected in a gene coexpression network analysis: nine genes are involved in neural processes and four are regulators of gene expression. This suggests that negotiating life-history transitions involves significant neural processing and reprogramming, and not just changes in physiology. These findings provide novel insights into basic life-history transitions of an insect. Failure to mate or to become reproductively mature is an overlooked component of variation in natural systems, despite its prevalence in many sexually reproducing organisms, and deserves deeper investigation in the future.
Collapse
Affiliation(s)
- Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Department of Computer Science, and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, United Kingdom
| | - Alfonso E Romero
- Department of Computer Science, and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, United Kingdom
| | - Inti Pedroso
- Center for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago, Chile
| | - Alberto Paccanaro
- Department of Computer Science, and Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham, United Kingdom
| | - Seirian Sumner
- School of Biological Sciences, University of Bristol, United Kingdom
- Present address: Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
19
|
Hernández L, Aisenberg A, Molina J. Mating plugs and sexual cannibalism in the Colombian orb-web spiderLeucauge mariana. Ethology 2017. [DOI: 10.1111/eth.12697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Linda Hernández
- Centro de Investigaciones en Microbiología y Parasitología Tropical - CIMPAT; Bogotá Universidad de los Andes; Bogotá Colombia
| | - Anita Aisenberg
- Laboratorio de Etología, Ecología y Evolución; Instituto de Investigaciones Biológicas Clemente Estable; Montevideo Uruguay
| | - Jorge Molina
- Centro de Investigaciones en Microbiología y Parasitología Tropical - CIMPAT; Bogotá Universidad de los Andes; Bogotá Colombia
| |
Collapse
|
20
|
Schneider MR, Mangels R, Dean MD. The molecular basis and reproductive function(s) of copulatory plugs. Mol Reprod Dev 2016; 83:755-767. [PMID: 27518218 DOI: 10.1002/mrd.22689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
In many animals, male ejaculates coagulate to form what has been termed a copulatory plug, a structure that varies in size and shape but often fills and seals the female's reproductive tract. The first published observation of a copulatory plug in a mammal was made more than 160 years ago, and questions about its formation and role in reproduction continue to endear evolutionary and population geneticists, behavioral ecologists, and molecular, reproductive, and developmental biologists alike. Here, we review the current knowledge of copulatory plugs, focusing on rodents and asking two main questions: how is it formed and what does it do? An evolutionary biology perspective helps us understand the latter, potentially leading to insights into the selective regimes that have shaped the diversity of this structure. Mol. Reprod. Dev. 83: 755-767, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Rachel Mangels
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Matthew D Dean
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.
| |
Collapse
|
21
|
Retention of Ejaculate by Drosophila melanogaster Females Requires the Male-Derived Mating Plug Protein PEBme. Genetics 2015; 200:1171-9. [PMID: 26058847 DOI: 10.1534/genetics.115.176669] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/30/2015] [Indexed: 11/18/2022] Open
Abstract
Within the mated reproductive tracts of females of many taxa, seminal fluid proteins (SFPs) coagulate into a structure known as the mating plug (MP). MPs have diverse roles, including preventing female remating, altering female receptivity postmating, and being necessary for mated females to successfully store sperm. The Drosophila melanogaster MP, which is maintained in the mated female for several hours postmating, is comprised of a posterior MP (PMP) that forms quickly after mating begins and an anterior MP (AMP) that forms later. The PMP is composed of seminal proteins from the ejaculatory bulb (EB) of the male reproductive tract. To examine the role of the PMP protein PEBme in D. melanogaster reproduction, we identified an EB GAL4 driver and used it to target PEBme for RNA interference (RNAi) knockdown. PEBme knockdown in males compromised PMP coagulation in their mates and resulted in a significant reduction in female fertility, adversely affecting postmating uterine conformation, sperm storage, mating refractoriness, egg laying, and progeny generation. These defects resulted from the inability of females to retain the ejaculate in their reproductive tracts after mating. The uncoagulated MP impaired uncoupling by the knockdown male, and when he ultimately uncoupled, the ejaculate was often pulled out of the female. Thus, PEBme and MP coagulation are required for optimal fertility in D. melanogaster. Given the importance of the PMP for fertility, we identified additional MP proteins by mass spectrometry and found fertility functions for two of them. Our results highlight the importance of the MP and the proteins that comprise it in reproduction and suggest that in Drosophila the PMP is required to retain the ejaculate within the female reproductive tract, ensuring the storage of sperm by mated females.
Collapse
|
22
|
den Boer SPA, Stürup M, Boomsma JJ, Baer B. The ejaculatory biology of leafcutter ants. JOURNAL OF INSECT PHYSIOLOGY 2015; 74:56-62. [PMID: 25702828 DOI: 10.1016/j.jinsphys.2015.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The eusocial ants are unique in that females (queens) acquire and store sperm on a single mating flight early in adult life. This event largely determines the size (possibly millions of workers), longevity (possibly decades) and genetic variation of the colonies that queens found, but our understanding of the fundamental biology of ejaculate production, transfer and physiological function remains extremely limited. We studied the ejaculation process in the leafcutter ant Atta colombica and found that it starts with the appearance of a clear pre-ejaculatory fluid (PEF) at the tip of the endophallus that is followed by the joint expulsion of the remainder of accessory gland (AG) secretion, sperm, accessory testes (AT) secretion, and a small mating plug. PEF, AG secretion and AT secretion all contribute to sperm survival, but PEF and AG secretion also reduce the survival of sperm from other males. We show that PEF is produced in the AGs and is likely identical to AG secretion because protein-banding patterns of PEF and AG secretion were similar on 1D electrophoresis gels, but differed from the protein-banding pattern of AT secretion. We show that proteins in AG secretion are responsible for the incapacitation of rival sperm and infer that transfer of AG secretion prior to sperm may allow these components to interact with rival sperm, while at the same time providing a supportive biochemical environment for the arrival of own sperm.
Collapse
Affiliation(s)
- Susanne P A den Boer
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Centre for Integrative Bee Research (CIBER), ARC CoE in Plant Energy Biology, The University of Western Australia, M316, 35 Stirling Highway, 6009 Crawley, Australia.
| | - Marlene Stürup
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), ARC CoE in Plant Energy Biology, The University of Western Australia, M316, 35 Stirling Highway, 6009 Crawley, Australia
| |
Collapse
|
23
|
Singh A, Singh BN. Studies on remating behaviour in the Drosophila bipectinata species complex: intra- and interspecific variations. Behav Processes 2013; 96:79-87. [PMID: 23518298 DOI: 10.1016/j.beproc.2013.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
Intra- and interspecific variations in female and male remating frequency, latency, and duration of copulation in first and second matings were analyzed in four species of the Drosophila bipectinata complex, employing four strains of each species i.e. D. bipectinata, D. parabipectinata, D. malerkotliana and D. pseudoananassae. Chi-square test revealed significant intraspecific variation in the number of remated females and males in D. malerkotliana and D. bipectinata, whereas D. parabipectinata showed insignificant intraspecific variations in number of remated females and males. D. pseudoananassae showed significant intraspecific variation in the number of remated females, but the frequency of remating was least. One way ANOVA depicted significant intraspecific variation in female and male remating time in D. bipectinata and D. parabipectinata. D. bipectinata took the shortest time to remate and the duration of copulation in first mating was longest. However, D. pseudoananassae exhibited the longest remating time and long duration of copulation in first mating. Results of t-test depicted that all four species exhibited shorter duration of copulation in second mating as compared to the first. Our study puts D. bipectinata and D. pseudoananassae at two extremes, and D. parabipectinata and D. malerkotliana at an intermediate position in a hierarchy of remating behaviours.
Collapse
Affiliation(s)
- Akanksha Singh
- Genetics Laboratory, Department of Zoology, Banaras Hindu University, Uttar Pradesh, India
| | | |
Collapse
|
24
|
Jarau S, Žáček P, Šobotník J, Vrkoslav V, Hadravová R, Coppée A, Vašíčková S, Jiroš P, Valterová I. Leg tendon glands in male bumblebees (Bombus terrestris): structure, secretion chemistry, and possible functions. Naturwissenschaften 2012; 99:1039-49. [DOI: 10.1007/s00114-012-0986-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
|
25
|
del Castillo RC, Fairbairn DJ. Macroevolutionary patterns of bumblebee body size: detecting the interplay between natural and sexual selection. Ecol Evol 2012; 2:46-57. [PMID: 22408725 PMCID: PMC3297177 DOI: 10.1002/ece3.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/16/2022] Open
Abstract
Bumblebees and other eusocial bees offer a unique opportunity to analyze the evolution of body size differences between sexes. The workers, being sterile females, are not subject to selection for reproductive function and thus provide a natural control for parsing the effects of selection on reproductive function (i.e., sexual and fecundity selection) from other natural selection. Using a phylogenetic comparative approach, we explored the allometric relationships among queens, males, and workers in 70 species of bumblebees (Bombus sp.). We found hyperallometry in thorax width for males relative to workers, indicating greater evolutionary divergence of body size in males than in sterile females. This is consistent with the hypothesis that selection for reproductive function, most probably sexual selection, has caused divergence in male size among species. The slope for males on workers was significantly steeper than that for queens on workers and the latter did not depart from isometry, providing further evidence of greater evolutionary divergence in male size than female size, and no evidence that reproductive selection has accelerated divergence of females. We did not detect significant hyperallometry when male size was regressed directly on queen size and our results thus add the genus Bombus to the increasing list of clades that have female-larger sexual size dimorphism and do not conform to Rensch's rule when analyzed according to standard methodology. Nevertheless, by using worker size as a common control, we were able to demonstrate that bumblee species do show the evolutionary pattern underlying Rensch's rule, that being correlated evolution of body size in males and females, but with greater evolutionary divergence in males.
Collapse
Affiliation(s)
| | - Daphne J Fairbairn
- Department of Biology, University of California at RiversideRiverside, California 92521
| |
Collapse
|
26
|
Herberstein M, Wignall A, Nessler S, Harmer A, Schneider J. How effective and persistent are fragmentsof male genitalia as mating plugs? Behav Ecol 2012. [DOI: 10.1093/beheco/ars088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
|
28
|
Coppée A, Mathy T, Cammaerts MC, Verheggen FJ, Terzo M, Iserbyt S, Valterová I, Rasmont P. Age-dependent attractivity of males’ sexual pheromones in Bombus terrestris (L.) [Hymenoptera, Apidae]. CHEMOECOLOGY 2011. [DOI: 10.1007/s00049-011-0070-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
King M, Eubel H, Millar AH, Baer B. Proteins within the seminal fluid are crucial to keep sperm viable in the honeybee Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:409-414. [PMID: 21192944 DOI: 10.1016/j.jinsphys.2010.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Seminal fluid is a biochemically complex mixture of glandular secretions that is transferred to the females sexual tract as part of the ejaculate. Seminal fluid has received increasing scientific interest in the fields of evolutionary and reproductive biology, as it seems a major determinant of male fertility/infertility and reproductive success. Here we used the honeybee Apis mellifera, where seminal fluid can be collected as part of a male's ejaculate, and performed a series of experiments to investigate the effects of seminal fluid and its components on sperm viability. We show that honeybee seminal fluid is highly potent in keeping sperm alive and this positive effect is present over a 24h time span, comparable to the timing of the sperm storage process in the queen. We furthermore show that the presence of proteins within the seminal fluid and their structural integrity are crucial for this effect. Finally, we activated sperm using fructose and provide evidence that the positive effect of seminal fluid proteins on sperm survival cannot be replicated using generic protein substitutes. Our data provide experimental insights into the complex molecular interplay between sperm and seminal fluid defining male fertility and reproductive success.
Collapse
Affiliation(s)
- Michaela King
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 6009 Crawley, Australia
| | | | | | | |
Collapse
|
30
|
Timmermeyer N, Gerlach T, Guempel C, Knoche J, Pfann JF, Schliessmann D, Michiels NK. The function of copulatory plugs in Caenorhabditis remanei: hints for female benefits. Front Zool 2010; 7:28. [PMID: 21044286 PMCID: PMC2987753 DOI: 10.1186/1742-9994-7-28] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/02/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Mating plugs that males place onto the female genital tract are generally assumed to prevent remating with other males. Mating plugs are usually explained as a consequence of male-male competition in multiply mating species. Here, we investigated whether mating plugs also have collateral effects on female fitness. These effects are negative when plugging reduces female mating rate below an optimum. However, plugging may also be positive when plugging prevents excessive forced mating and keeps mating rate closer to a females' optimum. Here, we studied these consequences in the gonochoristic nematode Caenorhabditis remanei. We employed a new CO2-sedation technique to interrupt matings before or after the production of a plug. We then measured mating rate, attractiveness and offspring number. RESULTS The presence of a mating plug did not affect mating rate or attractiveness to roving males. Instead, females with mating plugs produced more offspring than females without copulatory plugs. CONCLUSIONS Our experiment suggests that plugging might have evolved under male-male competition but represents a poor protection against competing males in our experiment. Even if plugging does not reduce mating rate, our results indicate that females may benefit from being plugged in a different sense than remating prevention.
Collapse
Affiliation(s)
- Nadine Timmermeyer
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Tobias Gerlach
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Christian Guempel
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Johanna Knoche
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Jens F Pfann
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Daniel Schliessmann
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Nico K Michiels
- Department of Animal Evolutionary Ecology, Institute for Evolution and Ecology, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
31
|
Mazzi D, Kesäniemi J, Hoikkala A, Klappert K. Sexual conflict over the duration of copulation in Drosophila montana: why is longer better? BMC Evol Biol 2009; 9:132. [PMID: 19523190 PMCID: PMC2704186 DOI: 10.1186/1471-2148-9-132] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 06/12/2009] [Indexed: 11/23/2022] Open
Abstract
Background Conflicts of interest between the sexes are increasingly recognized as an engine driving the (co-)evolution of reproductive traits. The reproductive behaviour of Drosophila montana suggests the occurrence of sexual conflict over the duration of copulation. During the last stages of copulation, females vigorously attempt to dislodge the mounting male, while males struggle to maintain genital contact and often successfully extend copulations far beyond the females' preferred duration. Results By preventing female resistance, we show that females make a substantial contribution towards shortening copulations. We staged matings under different sex ratio conditions, and provide evidence that copulation duration is a form of male reproductive investment that responds to the perceived intensity of sperm competition as predicted by game theoretical models. Further, we investigated potential benefits to persistent males, and costs to females coerced into longer matings. While males did not benefit in terms of increased progeny production by protracting copulation, female remating was delayed after long first copulations. Conclusion Copulation time is a trait subject to sexual conflict. Mating durations exceeding female optima serve males as a form of 'extended mate guarding': by inducing mating refractoriness in the female, a male extends the time over which its sperm is exclusively used to sire progeny and reduces the likelihood of the female being reinseminated by a competitor.
Collapse
Affiliation(s)
- Dominique Mazzi
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, FIN-40014, Finland.
| | | | | | | |
Collapse
|
32
|
Reproductive disturbance of Japanese bumblebees by the introduced European bumblebee Bombus terrestris. Naturwissenschaften 2008; 96:467-75. [PMID: 19089400 DOI: 10.1007/s00114-008-0495-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/17/2008] [Accepted: 11/24/2008] [Indexed: 10/21/2022]
|
33
|
Takami Y, Sasabe M, Nagata N, Sota T. Dual function of seminal substances for mate guarding in a ground beetle. Behav Ecol 2008. [DOI: 10.1093/beheco/arn090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Oppelt A, Heinze J. Dynamics of sperm transfer in the ant Leptothorax gredleri. Naturwissenschaften 2007; 94:781-6. [PMID: 17479234 DOI: 10.1007/s00114-007-0249-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/27/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
Mating tactics differ remarkably between and within species of social Hymenoptera (bees, wasps, ants) concerning, e.g., mating frequencies, sperm competition, and the degree of male sperm limitation. Although social Hymenoptera might, therefore, potentially be ideal model systems for testing sexual selection theory, the dynamics of mating and sperm transfer have rarely been studied in species other than social bees, and basic information needed to draw conclusions about possible sperm competition and female choice is lacking. We investigated sperm transfer in the ant Leptothorax gredleri, a species in which female sexuals attract males by "female calling." The analysis of 38 female sexuals fixed immediately or up to 7 days after copulation with a single male each revealed that the sperm is transferred into the female bursa copulatrix embedded in a gelatinous mass, presumably a spermatophore. Sperm cells rapidly start to migrate from the tip of the spermatophore towards the spermatheca, but transfer is drastically slowed down by an extreme constriction of the spermathecal duct, through which sperm cells have to pass virtually one by one. This results in the spermatheca being filled only between one and several hours after mating. During this time, the posterior part of the spermatophore seals the junction between bursa copulatrix and spermathecal duct and prevents sperm loss. The prolonged duration of sperm transfer might allow female sexuals to chose between ejaculates and explain previously reported patterns of single paternity of the offspring of multiply mated queens.
Collapse
Affiliation(s)
- Angelika Oppelt
- Biology I, Zoology, University Regensburg, 93040, Regensburg, Germany.
| | | |
Collapse
|
35
|
Wilfert L, Gadau J, Schmid-Hempel P. THE GENETIC ARCHITECTURE OF IMMUNE DEFENSE AND REPRODUCTION IN MALE BOMBUS TERRESTRIS BUMBLEBEES. Evolution 2007; 61:804-15. [PMID: 17439613 DOI: 10.1111/j.1558-5646.2007.00079.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Understanding the architecture of genetic variation, that is the number, effect, location, and interaction, of genes responsible for phenotypic variability in nature is important for the understanding of microevolutionary processes. In this study, we have used a quantitative trait loci (QTL) approach to uncover the genetic architecture of fitness-relevant traits associated with reproduction and immune defense in male Bombus terrestris bumblebees. Three male reproductive investment traits, the number and length of the produced sperm and the size of the accessory glands, were studied. Two branches of the insect innate immune system, the activation of the Phenoloxidase-cascade and the hemolymph's antibacterial activity, were investigated. We found that variation in most of the studied traits is based on a network of minor QTLs and epistatic interactions. Unexpectedly, there was no evidence for phenotypic or genetic trade-offs between the presumably costly investment in immune defense and reproductive effort in this population for the measured traits. In fact, we found a positive correlation, both, in phenotype and genetic architecture for the number of produced sperm and antibacterial activity against an insect pathogen. A major finding for all traits analyzed was that the epistatic interactions accounted for a major proportion of the explained phenotypic variance. Especially for traits involved in immune defense, this pattern highlights the possible role of parasites in the evolution and maintenance of recombination and sexual reproduction.
Collapse
Affiliation(s)
- Lena Wilfert
- ETH Zürich, Institute of Integrative Biology (IBZ), Experimental Ecology Group, ETH-Zentrum CHN, CH-8092 Zürich, Switzerland.
| | | | | |
Collapse
|
36
|
Baer B, Boomsma JJ. Mating biology of the leaf-cutting ants Atta colombica and A. cephalotes. J Morphol 2007; 267:1165-71. [PMID: 16817214 DOI: 10.1002/jmor.10467] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Copulation behavior has often been shaped by sexually selected sperm competition or cryptic female choice. However, manipulation of previously deposited ejaculates is unknown in the social Hymenoptera and the degree to which sperm competes after insemination or is actively selected by females has remained ambiguous. We studied the mating process in the leaf-cutting ants Atta colombica and A. cephalotes, which belong to one of the few derived social insect lineages where obligate multiple mating has evolved. As copulations often occur at night and in remote places, direct observations were impossible, so we had to reconstruct the sequential copulation events by morphological analysis of the male and female genitalia and by tracking the process of sperm transfer and sperm storage. We show that Atta male genitalia have two external rows of spiny teeth, which fit into a specialized pouch organ in the female sexual tract. Reconstruction of the sperm storage process indicated that sperm is transferred to the spermatheca during or immediately after ejaculation and without being mixed with sperm and seminal fluids from other males. A convergent mechanism of direct sperm transfer to the spermatheca of queens is known from two species of dwarf honeybees. Direct sperm transfer may restrict female control over the sperm storage process and the number of males that contribute to the stored sperm.
Collapse
Affiliation(s)
- Boris Baer
- Institute of Biology, Department of Population Biology, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
37
|
Eberhard W. Sexually antagonistic coevolution in insects is associated with only limited morphological diversity. J Evol Biol 2006; 19:657-81. [PMID: 16674564 DOI: 10.1111/j.1420-9101.2005.01057.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Morphological traits involved in male-female sexual interactions, such as male genitalia, often show rapid divergent evolution. This widespread evolutionary pattern could result from sustained sexually antagonistic coevolution, or from other types of selection such as female choice or selection for species isolation. I reviewed the extensive but under-utilized taxonomic literature on a selected subset of insects, in which male-female conflict has apparently resulted in antagonistic coevolution in males and females. I checked the sexual morphology of groups comprising 500-1000 species in six orders for three evolutionary trends predicted by the sexually antagonistic coevolution hypothesis: males with species-specific differences and elaborate morphology in structures that grasp or perforate females in sexual contexts; corresponding female structures with apparently coevolved species-specific morphology; and potentially defensive designs of female morphology. The expectation was that the predictions were especially likely to be fulfilled in these groups. A largely qualitative overview revealed several surprising patterns: sexually antagonistic coevolution is associated with frequent, relatively weak species-specific differences in males, but male designs are usually relatively simple and conservative (in contrast to the diverse and elaborate designs common in male structures specialized to contact and hold females in other species, and also in weapons such as horns and pincers used in intra-specific battles); coevolutionary divergence of females is not common; and defensive female divergence is very uncommon. No cases were found of female defensive devices that can be facultatively deployed. Coevolutionary morphological races may have occurred between males and females of some bugs with traumatic insemination, but apparently as a result of female attempts to control fertilization, rather than to reduce the physical damage and infections resulting from insertion of the male's hypodermic genitalia. In sum, the sexually antagonistic coevolution that probably occurs in these groups has generally not resulted in rapid, sustained evolutionary divergence in male and female external sexual morphology. Several limitations of this study, and directions for further analyses are discussed.
Collapse
Affiliation(s)
- W Eberhard
- Smithsonian Tropical Research Institute and Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria, San Jose, Costa Rica.
| |
Collapse
|
38
|
Krieger GM, Duchateau MJ, Van Doorn A, Ibarra F, Francke W, Ayasse M. Identification of queen sex pheromone components of the bumblebee Bombus terrestris. J Chem Ecol 2006; 32:453-71. [PMID: 16555129 DOI: 10.1007/s10886-005-9013-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/28/2022]
Abstract
We investigated the origin and chemical composition of the queen sex pheromone of the primitively eusocial bumblebee, Bombus terrestris (Apidae). Physiologically and behaviorally active compounds were identified by coupled gas chromatography electro-antennography (GC-EAD), gas chromatography-mass spectrometry (GC-MS), and laboratory behavioral tests. In the behavioral assays, virgin queens frozen previously at -20 degrees C were highly attractive to males. Dummies impregnated with surface and cephalic extracts obtained from virgin queens that had been frozen at -50 degrees C were more attractive to males than odorless dummies. Male mating behavior was stimulated by components of cephalic secretions that are smeared onto the cuticle surface by the queen. Overall, 21 compounds present in surface and cephalic extracts evoked electroantennographic responses in male antennae. These included saturated and unsaturated fatty acids, ethyl- and methyl esters of the fatty acids, heptacosene, 2-nonanone, and geranyl geraniol. A blend of synthetic versions of these compounds elicited typical male mating behavior. Since solvent-impregnated dummies were approached by the males, but did not release copulatory behavior, visual cues may be important in the initial step of stimulating male mating behavior. Close-range olfactory signals are more important for releasing male mating behavior as well as for species recognition. In further behavioral assays, the attractiveness of a frozen virgin queen decreased as the storage time at -20 degrees C increased from 2 hr to 1 d. Therefore, the chemical composition of the sex pheromone may change during freezing as behaviorally active compounds may decompose.
Collapse
Affiliation(s)
- Gudrun M Krieger
- Department of Evolutionary Biology, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Baer B, Schmid-Hempel P. Sperm influences female hibernation success, survival and fitness in the bumble-bee Bombus terrestris. Proc Biol Sci 2005; 272:319-23. [PMID: 15705558 PMCID: PMC1634972 DOI: 10.1098/rspb.2004.2958] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present evidence that in the absence of the transfer of male gland compounds in the ejaculate as well as of behavioural male traits, such as mate guarding or harming of females, sperm itself affects female life-history traits such as hibernation success, female longevity and female fitness. Using the bumble-bee Bombus terrestris, we artificially inseminated queens (females) with sperm from one or several males and show that sire groups (groups of brother males) vary in their effects on queen hibernation survival, longevity and fitness. In addition, multiply inseminated queens always had a lower performance as compared to singly inseminated queens. Apart from these main effects, sire groups (in situations of multiple insemination) affected queen longevity and fitness not independently of each other, i.e. certain sire group combinations were more harmful to queens than others. So far, the cause(s) of these effects remain(s) elusive. Harmful male traits as detected here are not necessarily expected to evolve in social insects because males depend on females for a successful completion of a colony cycle and thus have strong convergent interests with their mates.
Collapse
Affiliation(s)
- Boris Baer
- Copenhagen University, Institute of Biology, Department for Population Biology, 2100 Copenhagen, Denmark.
| | | |
Collapse
|
41
|
Abstract
Pair formation in social insects mostly happens early in adult life and away from the social colony context, which precludes promiscuity in the usual sense. Termite males have continuous sperm production, but males of social Hymenoptera have fixed complements of sperm, except for a few species that mate before female dispersal and show male-fighting and lifelong sperm production. We develop an evolutionary framework for testing sexual selection and sperm competition theory across the advanced eusocial insects (ants, wasps, bees, termites) and highlight two areas related to premating sexual selection (sexual dimorphism and male mate number) that have remained understudied and in which considerable progress can be achieved with relatively simple approaches. We also infer that mating plugs may be relatively common, and we review further possibilities for postmating sexual selection, which gradually become less likely in termite evolution, but for which eusocial Hymenoptera provide unusual opportunities because they have clonal ejaculates and store viable sperm for up to several decades.
Collapse
Affiliation(s)
- Jacobus J Boomsma
- Institute of Biology, Department of Population Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
42
|
Snow LSE, Andrade MCB. Pattern of sperm transfer in redback spiders: implications for sperm competition and male sacrifice. Behav Ecol 2004. [DOI: 10.1093/beheco/arh080] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Baer B, Schmid-Hempel P. Bumblebee workers from different sire groups vary in susceptibility to parasite infection. Ecol Lett 2003. [DOI: 10.1046/j.1461-0248.2003.00411.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Tarpy DR. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc Biol Sci 2003; 270:99-103. [PMID: 12596763 PMCID: PMC1691209 DOI: 10.1098/rspb.2002.2199] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple mating by social insect queens increases the genetic diversity among colony members, thereby reducing intracolony relatedness and lowering the potential inclusive fitness gains of altruistic workers. Increased genetic diversity may be adaptive, however, by reducing the prevalence of disease within a nest. Honeybees, whose queens have the highest levels of multiple mating among social insects, were investigated to determine whether genetic variation helps to prevent chronic infections. I instrumentally inseminated honeybee queens with semen that was either genetically similar (from one male) or genetically diverse (from multiple males), and then inoculated their colonies with spores of Ascosphaera apis, a fungal pathogen that kills developing brood. I show that genetically diverse colonies had a lower variance in disease prevalence than genetically similar colonies, which suggests that genetic diversity may benefit colonies by preventing severe infections.
Collapse
Affiliation(s)
- David R Tarpy
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
45
|
Baer B, Schmid-Hempel P. Unexpected consequences of polyandry for parasitism and fitness in the bumblebee, Bombus terrestris. Evolution 2001; 55:1639-43. [PMID: 11580023 DOI: 10.1111/j.0014-3820.2001.tb00683.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple mating by females (polyandry) is taxonomically widespread but the evolution of such behaviors is not clearly understood given potential costs of polyandry such as time, energy, or predation risk. The genetic variability versus parasites hypothesis predicts a reduction of parasitism due to increased genetic variability among offspring and an associated fitness gain. We tested this hypothesis with a field experiment in the bumblebee, Bombus terrestris L. Worker heterogeneity within the colony was experimentally altered by artificially inseminating queens with sperm from one male, four brothers, two males, or four unrelated males. We found genetic variability to be effective, because intensity and prevalence of the most common parasite, Crithidia bombi, a trypanosome, decreased with increasing levels of colony heterogeneity. Fitness differed between treatments but did not increase in a simple way, with increasing genetic heterogeneity among colony workers. Instead, fitness followed a U-shaped function with a minimum for small amounts of genetic heterogeneity. We therefore suggest that polyandry also induces a cost, perhaps as a result of the social structure within the colony. In evolutionary terms, singly mated females appear to be constrained by an adaptive valley that needs to be crossed before high degrees of mating frequency can be reached. This may help to explain why B. terrestris and most other social insects are often monandrous.
Collapse
Affiliation(s)
- B Baer
- ETH Zurich, Experimental Ecology, ETH-Zentum NW, Switzerland.
| | | |
Collapse
|
46
|
Tidarren argo sp. nov. (Araneae: Theridiidae) and its exceptional copulatory behaviour: emasculation, male palpal organ as a mating plug and sexual cannibalism. J Zool (1987) 2001. [DOI: 10.1017/s0952836901000954] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Sauter A, Brown MJ. To copulate or not? The importance of female status and behavioural variation in predicting copulation in a bumblebee. Anim Behav 2001. [DOI: 10.1006/anbe.2001.1742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Sauter A, Brown MJ, Baer B, Schmid-Hempel P. Males of social insects can prevent queens from multiple mating. Proc Biol Sci 2001; 268:1449-54. [PMID: 11454287 PMCID: PMC1088762 DOI: 10.1098/rspb.2001.1680] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During copulation, males of Bombus terrestris fill the queen's sexual tract with a mating plug after transferring their sperm. The sticky secretion is produced by the male's accessory glands and disappears within a couple of days. Experiments now show that the primary function of the plug is to reduce the subsequent mating probability of the queen. The plug is not efficient in preventing sperm migration into the spermatheca. Due to its low energetic value, the plug is also unlikely to serve as a nuptial gift. This type of male interference with female mating propensity has so far not been found in social insects. This finding could, at least tentatively, explain why females of B. terrestris may not be able to take advantage of the demonstrated benefits of multiple mating. Furthermore, such male interference could be a more general phenomenon in social insects, with obvious ramifications for the evolution of polyandry in this group.
Collapse
Affiliation(s)
- A Sauter
- ETH Zürich, Experimental Ecology, ETH-Zentrum NW,CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
49
|
Lung O, Wolfner MF. Identification and characterization of the major Drosophila melanogaster mating plug protein. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:543-551. [PMID: 11267893 DOI: 10.1016/s0965-1748(00)00154-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In many insects, semen coagulates into a mating plug at the distal part of the female's genital tract. Mating plugs have been proposed to facilitate sperm movement or to prevent subsequent matings or sperm loss. The molecular constituents of insect mating plugs have not previously been characterized. Here we report that an abundant autofluorescent protein made by the Drosophila melanogaster male's ejaculatory bulb is a major constituent of the posterior region of the mating plug. Identities in size, chromosomal location and expression pattern indicate that the autofluorescent protein is PEB-me, an abundant ejaculatory bulb protein reported by Ludwig et al. [Biochem. Genet. 29 (1991) 215]. We cloned and sequenced the RNA encoding this protein. The transcript, which is male-specific and expressed only in the ejaculatory bulb, encodes a 377 a.a. predicted secreted protein with PGG repeats similar to those in homopolymer-forming proteins found in spider silk.
Collapse
Affiliation(s)
- O Lung
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
50
|
Baer B, Morgan ED, Schmid-Hempel P. A nonspecific fatty acid within the bumblebee mating plug prevents females from remating. Proc Natl Acad Sci U S A 2001; 98:3926-8. [PMID: 11274412 PMCID: PMC31155 DOI: 10.1073/pnas.061027998] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The best mating strategy for males differs from that of females, because females gain from mating with several males (polyandry), but males gain from monopolizing the females. As a consequence, males have evolved a variety of methods, such as the transfer of inhibitory substances from their accessory glands, to ensure exclusive paternity of the female's offspring, generally with detrimental effects on female fitness. Inhibitory substances have been identified as peptides or other specific molecules. Unfortunately, in social insects male-mating traits are investigated only poorly, although male social insects might have the same fundamental influence on female-mating behavior as found in other species. A recently developed technique for the artificial insemination of bumblebee queens allowed us to investigate which chemical compound in the mating plug of male bumblebees, Bombus terrestris L., prevents females (queens) from further mating. Surprisingly, we found that the active substance is linoleic acid, a ubiquitous and rather unspecific fatty acid. Contrary to mating plugs in other insect species, the bumblebee mating plug is highly efficient and allows the males to determine queen-mating frequencies.
Collapse
Affiliation(s)
- B Baer
- Eidgenössiche Technische Hochschule, Experimental Ecology ETH-Zentrum NW, CH-8092 Zurich, Switzerland
| | | | | |
Collapse
|