1
|
Li TR, Liu FQ. β-Amyloid promotes platelet activation and activated platelets act as bridge between risk factors and Alzheimer's disease. Mech Ageing Dev 2022; 207:111725. [PMID: 35995275 DOI: 10.1016/j.mad.2022.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an evolving challenge that places an enormous burden on families and society. The presence of obvious brain β-amyloid (Aβ) deposition is a premise to diagnose AD, which induces the subsequent tau hyperphosphorylation and neurodegeneration. Platelets are the primary source of circulating amyloid precursor protein (APP). Upon activation, they can secrete significant amounts of Aβ into the blood, which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. In this review, we summarized the changes in the platelet APP metabolic pathway in patients with AD and further comprehensively explored the targets and downstream events of Aβ-activated platelets. In addition, we attempted to clarify whether patients with AD are in a state of general platelet activation, with inconsistent results. Considering the increasingly evident bidirectional relationship between AD and vascular events, we speculate that the AD pathology alone seems to be insufficient to induce the general activation of platelets; however, the intervention of third-party factors, such as atherosclerosis, exposes the extracellular matrix and leads to platelet activation, further promoting AD progression. Therefore, we proposed a framework in which the relationship between platelets and AD is indirect and mediated by vascular factors. Therapies targeting platelets and interventions for vascular risk factors are likely to contribute to the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Feng-Qi Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Rawish E, Langer HF. Platelets and the Role of P2X Receptors in Nociception, Pain, Neuronal Toxicity and Thromboinflammation. Int J Mol Sci 2022; 23:6585. [PMID: 35743029 PMCID: PMC9224425 DOI: 10.3390/ijms23126585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
P2X receptors belong to a family of cation channel proteins, which respond to extracellular adenosine 5'-triphosphate (ATP). These receptors have gained increasing attention in basic and translational research, as they are central to a variety of important pathophysiological processes such as the modulation of cardiovascular physiology, mediation of nociception, platelet and macrophage activation, or neuronal-glial integration. While P2X1 receptor activation is long known to drive platelet aggregation, P2X7 receptor antagonists have recently been reported to inhibit platelet activation. Considering the role of both P2X receptors and platelet-mediated inflammation in neuronal diseases such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and stroke, targeting purinergic receptors may provide a valuable novel therapeutic approach in these diseases. Therefore, the present review illuminates the role of platelets and purinergic signaling in these neurological conditions to evaluate potential translational implications.
Collapse
Affiliation(s)
- Elias Rawish
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, 23538 Lübeck, Germany;
- University Hospital Schleswig-Holstein, Department of Cardiology, University Heart Center Lübeck, 23538 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| |
Collapse
|
3
|
Rawish E, Nording H, Münte T, Langer HF. Platelets as Mediators of Neuroinflammation and Thrombosis. Front Immunol 2020; 11:548631. [PMID: 33123127 PMCID: PMC7572851 DOI: 10.3389/fimmu.2020.548631] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Collapse
Affiliation(s)
- Elias Rawish
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Münte
- University Hospital Schleswig-Holstein, Clinic for Neurology, Lübeck, Germany
| | - Harald F. Langer
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Leiter O, Walker TL. Platelets in Neurodegenerative Conditions-Friend or Foe? Front Immunol 2020; 11:747. [PMID: 32431701 PMCID: PMC7214916 DOI: 10.3389/fimmu.2020.00747] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
It is now apparent that platelet function is more diverse than originally thought, shifting the view of platelets from blood cells involved in hemostasis and wound healing to major contributors to numerous regulatory processes across different tissues. Given their intriguing ability to store, produce and release distinct subsets of bioactive molecules, including intercellular signaling molecules and neurotransmitters, platelets may play an important role in orchestrating healthy brain function. Conversely, a number of neurodegenerative conditions have recently been associated with platelet dysfunction, further highlighting the tissue-independent role of these cells. In this review we summarize the requirements for platelet-neural cell communication with a focus on neurodegenerative diseases, and discuss the therapeutic potential of healthy platelets and the proteins which they release to counteract these conditions.
Collapse
Affiliation(s)
- Odette Leiter
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Tara L Walker
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem Pharmacol 2020; 176:113818. [PMID: 31978378 DOI: 10.1016/j.bcp.2020.113818] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a gaseous molecule that plays a multifactorial role in several cellular processes. In the central nervous system, the NO dual nature in neuroprotection and neurotoxicity has been explored to unveil its involvement in Alzheimer's disease (AD). A growing body of research shows that the activation of the NO signaling pathway leading to the phosphorylation of the transcription factor cyclic adenine monophosphate responsive element binding protein (CREB) (so-called NO/cGMP/PKG/CREB signaling pathway) ameliorates altered neuroplasticity and memory deficits in AD animal models. In addition to NO donors, several other pharmacological agents, such as phosphodiesterase 5 (PDE5) inhibitors have been used to activate the pathway and rescue memory disorders. PDE5 inhibitors, including sildenafil, tadalafil and vardenafil, are marketed for the treatment of erectile dysfunction and arterial pulmonary hypertension due to their vasodilatory properties. The ability of PDE5 inhibitors to interfere with the NO/cGMP/PKG/CREB signaling pathway by increasing the levels of cGMP has prompted the hypothesis that PDE5 inhibition might be used as an effective therapeutic strategy for the treatment of AD. To this end, newly designed PDE5 inhibitors belonging to different chemical classes with improved pharmacologic profile (e.g. higher potency, improved selectivity, and blood-brain barrier penetration) have been synthesized and evaluated in several animal models of AD. In addition, recent medicinal chemistry effort has led to the development of agents concurrently acting on the PDE5 enzyme and a second target involved in AD. Both marketed and investigational PDE5 inhibitors have shown to reverse cognitive defects in young and aged wild type mice as well as transgenic mouse models of AD and tauopathy using a variety of behavioral tasks. These studies confirmed the therapeutic potential of PDE5 inhibitors as cognitive enhancers. However, clinical studies assessing cognitive functions using marketed PDE5 inhibitors have not been conclusive. Drug discovery efforts by our group and others are currently directed towards the development of novel PDE5 inhibitors tailored to AD with improved pharmacodynamic and pharmacokinetic properties. In summary, the present perspective reports an overview of the correlation between the NO signaling and AD, as well as an outline of the PDE5 inhibitors used as an alternative approach in altering the NO pathway leading to an improvement of learning and memory. The last two sections describe the preclinical and clinical evaluation of PDE5 inhibitors for the treatment of AD, providing a comprehensive analysis of the current status of the AD drug discovery efforts involving PDE5 as a new therapeutic target.
Collapse
Affiliation(s)
- Elisa Zuccarello
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Erica Acquarone
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Medicine, Columbia University, New York, NY, United States; Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States; Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, United States.
| |
Collapse
|
6
|
Schmaier AH. The amyloid beta-precursor protein-The unappreciated cerebral anticoagulant. Thromb Res 2017; 155:149-151. [PMID: 28599849 DOI: 10.1016/j.thromres.2017.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Alvin H Schmaier
- Hematology and Oncology Division, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Donner L, Fälker K, Gremer L, Klinker S, Pagani G, Ljungberg LU, Lothmann K, Rizzi F, Schaller M, Gohlke H, Willbold D, Grenegard M, Elvers M. Platelets contribute to amyloid-β aggregation in cerebral vessels through integrin αIIbβ3-induced outside-in signaling and clusterin release. Sci Signal 2016; 9:ra52. [PMID: 27221710 DOI: 10.1126/scisignal.aaf6240] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a vascular dysfunction disorder characterized by deposits of amyloid-β (Aβ) in the walls of cerebral vessels. CAA and Aβ deposition in the brain parenchyma contribute to dementia and Alzheimer's disease (AD). We investigated the contribution of platelets, which accumulate at vascular Aβ deposits, to CAA. We found that synthetic monomeric Aβ40 bound through its RHDS (Arg-His-Asp-Ser) sequence to integrin αIIbβ3, which is the receptor for the extracellular matrix protein fibrinogen, and stimulated the secretion of adenosine diphosphate (ADP) and the chaperone protein clusterin from platelets. Clusterin promoted the formation of fibrillar Aβ aggregates, and ADP acted through its receptors P2Y1 and P2Y12 on platelets to enhance integrin αIIbβ3 activation, further increasing the secretion of clusterin and Aβ40 binding to platelets. Platelets from patients with Glanzmann's thrombasthenia, a bleeding disorder in which platelets have little or dysfunctional αIIbβ3, indicated that the abundance of this integrin dictated Aβ-induced clusterin release and platelet-induced Aβ aggregation. The antiplatelet agent clopidogrel, which irreversibly inhibits P2Y12, inhibited Aβ aggregation in platelet cultures; in transgenic AD model mice, this drug reduced the amount of clusterin in the circulation and the incidence of CAA. Our findings indicate that activated platelets directly contribute to CAA by promoting the formation of Aβ aggregates and that Aβ, in turn, activates platelets, creating a feed-forward loop. Thus, antiplatelet therapy may alleviate fibril formation in cerebral vessels of AD patients.
Collapse
Affiliation(s)
- Lili Donner
- Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Knut Fälker
- Cardiovascular Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Lothar Gremer
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany. Institute of Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Stefan Klinker
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Giulia Pagani
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Liza U Ljungberg
- Cardiovascular Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Kimberley Lothmann
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Federica Rizzi
- Department of Biomedical, Biotechnological, and Translation Sciences, University of Parma, Via Volturno 39/a, 43126 Parma, Italy. Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy. National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Martin Schaller
- Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Department of Mathematics and Natural Sciences, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany. Institute of Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Magnus Grenegard
- Cardiovascular Research Centre, Örebro University, SE-701 82 Örebro, Sweden
| | - Margitta Elvers
- Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Schmaier AH. Alzheimer disease is in part a thrombohemorrhagic disorder. J Thromb Haemost 2016; 14:991-4. [PMID: 26817920 DOI: 10.1111/jth.13277] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 12/23/2022]
Affiliation(s)
- A H Schmaier
- Department of Medicine, Case Western Reserve University and University Hospital Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
9
|
Mercatelli R, Lana D, Bucciantini M, Giovannini MG, Cerbai F, Quercioli F, Zecchi-Orlandini S, Delfino G, Wenk GL, Nosi D. Clasmatodendrosis and β-amyloidosis in aging hippocampus. FASEB J 2015; 30:1480-91. [PMID: 26722005 DOI: 10.1096/fj.15-275503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/08/2015] [Indexed: 01/25/2023]
Abstract
Alterations of the tightly interwoven neuron/astrocyte interactions are frequent traits of aging, but also favor neurodegenerative diseases, such as Alzheimer disease (AD). These alterations reflect impairments of the innate responses to inflammation-related processes, such as β-amyloid (Aβ) burdening. Multidisciplinary studies, spanning from the tissue to the molecular level, are needed to assess how neuron/astrocyte interactions are influenced by aging. Our study addressed this requirement by joining fluorescence-lifetime imaging microscopy/phasor multiphoton analysis with confocal microscopy, implemented with a novel method to separate spectrally overlapped immunofluorescence and Aβ autofluorescence. By comparing data from young control rats, chronically inflamed rats, and old rats, we identified age-specific alterations of neuron/astrocyte interactions in the hippocampus. We found a correlation between Aβ aggregation (+300 and +800% of aggregated Aβ peptide in chronically inflamed and oldvs.control rats, respectively) and fragmentation (clasmatodendrosis) of astrocyte projections (APJs) (+250 and +1300% of APJ fragments in chronically inflamed and oldvs.control rats, respectively). Clasmatodendrosis, in aged rats, associates with impairment of astrocyte-mediated Aβ clearance (-45% of Aβ deposits on APJs, and +33% of Aβ deposits on neurons in oldvs.chronically inflamed rats). Furthermore, APJ fragments colocalize with Aβ deposits and are involved in novel Aβ-mediated adhesions between neurons. These data define the effects of Aβ deposition on astrocyte/neuron interactions as a key topic in AD biology.-Mercatelli, R., Lana, D., Bucciantini, M., Giovannini, M. G., Cerbai, F., Quercioli, F., Zecchi-Orlandini, S., Delfino, G., Wenk, G. L., Nos, D. Clasmatodendrosis and β-amyloidosis in aging hippocampus.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Daniele Lana
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Monica Bucciantini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Maria Grazia Giovannini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Francesca Cerbai
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Franco Quercioli
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sandra Zecchi-Orlandini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Delfino
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Gary L Wenk
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Daniele Nosi
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Kerch G. The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 2015; 13:2158-82. [PMID: 25871293 PMCID: PMC4413205 DOI: 10.3390/md13042158] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023] Open
Abstract
Age-related, diet-related and protein conformational diseases, such as atherosclerosis, diabetes mellitus, cancer, hypercholesterolemia, cardiovascular and neurodegenerative diseases are common in the elderly population. The potential of chitosan, chitooligosaccharides and their derivatives in prevention and treatment of age-related dysfunctions is reviewed and discussed in this paper. The influence of oxidative stress, low density lipoprotein oxidation, increase of tissue stiffness, protein conformational changes, aging-associated chronic inflammation and their pathobiological significance have been considered. The chitosan-based functional food also has been reviewed.
Collapse
Affiliation(s)
- Garry Kerch
- Department of Materials Science and Applied Chemistry, Riga Technical University, Azenes 14/24, Riga, LV-1048, Latvia.
| |
Collapse
|
11
|
Teich AF, Nicholls RE, Puzzo D, Fiorito J, Purgatorio R, Fa’ M, Arancio O. Synaptic therapy in Alzheimer's disease: a CREB-centric approach. Neurotherapeutics 2015; 12:29-41. [PMID: 25575647 PMCID: PMC4322064 DOI: 10.1007/s13311-014-0327-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Therapeutic attempts to cure Alzheimer's disease (AD) have failed, and new strategies are desperately needed. Motivated by this reality, many laboratories (including our own) have focused on synaptic dysfunction in AD because synaptic changes are highly correlated with the severity of clinical dementia. In particular, memory formation is accompanied by altered synaptic strength, and this phenomenon (and its dysfunction in AD) has been a recent focus for many laboratories. The molecule cyclic adenosine monophosphate response element-binding protein (CREB) is at a central converging point of pathways and mechanisms activated during the processes of synaptic strengthening and memory formation, as CREB phosphorylation leads to transcription of memory-associated genes. Disruption of these mechanisms in AD results in a reduction of CREB activation with accompanying memory impairment. Thus, it is likely that strategies aimed at these mechanisms will lead to future therapies for AD. In this review, we will summarize literature that investigates 5 possible therapeutic pathways for rescuing synaptic dysfunction in AD: 4 enzymatic pathways that lead to CREB phosphorylation (the cyclic adenosine monophosphate cascade, the serine/threonine kinases extracellular regulated kinases 1 and 2, the nitric oxide cascade, and the calpains), as well as histone acetyltransferases and histone deacetylases (2 enzymes that regulate the histone acetylation necessary for gene transcription).
Collapse
Affiliation(s)
- Andrew F. Teich
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Russell E. Nicholls
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- />Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, 95125 Italy
| | - Jole Fiorito
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Rosa Purgatorio
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Mauro Fa’
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| | - Ottavio Arancio
- />Department of Pathology & Cell Biology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032 USA
| |
Collapse
|
12
|
Evin G, Li QX. Platelets and Alzheimer’s disease: Potential of APP as a biomarker. World J Psychiatry 2012; 2:102-13. [PMID: 24175176 PMCID: PMC3782192 DOI: 10.5498/wjp.v2.i6.102] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 07/13/2012] [Accepted: 07/23/2012] [Indexed: 02/05/2023] Open
Abstract
Platelets are the first peripheral source of amyloid precursor protein (APP). They possess the proteolytic machinery to produce Aβ and fragments similar to those produced in neurons, and thus offer an ex-vivo model to study APP processing and changes associated with Alzheimer’s disease (AD). Platelet process APP mostly through the α-secretase pathway to release soluble APP (sAPP). They produce small amounts of Aβ, predominantly Aβ40 over Aβ42. sAPP and Aβ are stored in α-granules and are released upon platelet activation by thrombin and collagen, and agents inducing platelet degranulation. A small proportion of full-length APP is present at the platelet surface and this increases by 3-fold upon platelet activation. Immunoblotting of platelet lysates detects APP as isoforms of 130 kDa and 106-110 kDa. The ratio of these of APP isoforms is significantly lower in patients with AD and mild cognitive impairment (MCI) than in healthy controls. This ratio follows a decrease that parallels cognitive decline and can predict conversion from MCI to AD. Alterations in the levels of α-secretase ADAM10 and in the enzymatic activities of α- and β-secretase observed in platelets of patients with AD are consistent with increased processing through the amyloidogenic pathway. β-APP cleaving enzyme activity is increased by 24% in platelet membranes of patients with MCI and by 17% in those with AD. Reports of changes in platelet APP expression with MCI and AD have been promising so far and merit further investigation as the search for blood biomarkers in AD, in particular at the prodromal stage, remains a priority and a challenge.
Collapse
Affiliation(s)
- Geneviève Evin
- Geneviève Evin, Qiao-Xin Li, Department of Pathology and Mental Health Research Institute, The University of Melbourne, Parkville 3010, Australia
| | | |
Collapse
|
13
|
Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer's disease. Neuron 2010; 66:695-709. [PMID: 20547128 DOI: 10.1016/j.neuron.2010.05.014] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2010] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in which vascular pathology plays an important role. Since the beta-amyloid peptide (Abeta) is a critical factor in this disease, we examined its relationship to fibrin clot formation in AD. In vitro and in vivo experiments showed that fibrin clots formed in the presence of Abeta are structurally abnormal and resistant to degradation. Fibrin(ogen) was observed in blood vessels positive for amyloid in mouse and human AD samples, and intravital brain imaging of clot formation and dissolution revealed abnormal thrombosis and fibrinolysis in AD mice. Moreover, depletion of fibrinogen lessened cerebral amyloid angiopathy pathology and reduced cognitive impairment in AD mice. These experiments suggest that one important contribution of Abeta to AD is via its effects on fibrin clots, implicating fibrin(ogen) as a potential critical factor in this disease.
Collapse
Affiliation(s)
- Marta Cortes-Canteli
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Swiderek M, Kozubski W, Watala C. Abnormalities in platelet membrane structure and function in Alzheimer's disease and ischaemic stroke. Platelets 2010; 8:125-33. [DOI: 10.1080/09537109709169327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Ajmo JM, Bailey LA, Howell MD, Cortez LK, Pennypacker KR, Mehta HN, Morgan D, Gordon MN, Gottschall PE. Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw. J Neurochem 2010; 113:784-95. [PMID: 20180882 DOI: 10.1111/j.1471-4159.2010.06647.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aggregation of amyloid-beta (Abeta) in the forebrain of Alzheimer's disease (AD) subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that Abeta, or another amyloid precursor protein (APP) dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate (CS)-bearing proteoglycan, were altered in brains of Abeta-depositing transgenic mice (APPsw - APP gene bearing the Swedish mutation) as a model of AD. The molecular size of CS chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing Abeta deposits compared to non-transgenic mice, likely because of changes in the CS chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that Abeta or APP exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. As proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in Abeta-bearing mice and potentially end-stage human AD, may contribute to deficient neural plasticity.
Collapse
Affiliation(s)
- Joanne M Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Smirnov A, Trupp A, Henkel A, Bloch E, Reulbach U, Lewczuk P, Riggert J, Kornhuber J, Wiltfang J. Differential processing and secretion of Aβ peptides and sAPPα in human platelets is regulated by thrombin and prostaglandine 2. Neurobiol Aging 2009; 30:1552-62. [DOI: 10.1016/j.neurobiolaging.2007.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
|
17
|
Abdul-Hay SO, Luo J, Ashghodom RT, Thatcher GRJ. NO-flurbiprofen reduces amyloid-beta, is neuroprotective in cell culture, and enhances cognition in response to cholinergic blockade. J Neurochem 2009; 111:766-76. [PMID: 19702655 DOI: 10.1111/j.1471-4159.2009.06353.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The non-steroidal anti-inflammatory drug flurbiprofen is a selective amyloid lowering agent which has been studied clinically in Alzheimer's disease. HCT-1026 is an ester prodrug of flurbiprofen incorporating a nitrate carrier moiety that in vivo provides NO bioactivity and an improved safety profile. In vitro, HCT-1026 retained the cyclooxygenase inhibitory and non-steroidal anti-inflammatory drug activity of flurbiprofen, but at concentrations at which levels of amyloid-beta 1-42 amino acid were lowered by flurbiprofen, amyloid-beta 1-42 amino acid levels were elevated 200% by HCT-1026. Conversely, at lower concentrations, HCT-1026 behaved as a selective amyloid lowering agent with greater potency than flurbiprofen. The difference in concentration-responses between flurbiprofen and HCT-1026 in vitro suggests different cellular targets; and in no case did a combination of nitrate drug with flurbiprofen provide similar actions. In vivo, HCT-1026 was observed to reverse cognitive deficits induced by scopolamine in two behavioral assays; activity that was also shown by a classical nitrate drug, but not by flurbiprofen. The ability to restore aversive memory and spatial working and reference memory after cholinergic blockade has been demonstrated by other agents that stimulate NO/cGMP signaling. These observations add positively to the preclinical profile of HCT-1026 and NO chimeras in Alzheimer's disease.
Collapse
Affiliation(s)
- Samer O Abdul-Hay
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive loss of cognitive function and subsequent death. Since the first case of this disease was diagnosed one century ago, much effort has been dedicated to find a cure. However, even though progress has been made in the knowledge of the pathogenesis of this disease, an effective treatment has not been found. Therefore, new approaches are needed urgently. AD patients have an abnormal cerebral vasculature and brain hypoperfusion, and a large body of research, including some from our lab, implicates cerebrovascular dysfunction as a contributing factor to AD. Reducing fibrinogen, a circulating protein critical in hemostasis, provides a significant decrease in the neurovascular damage, blood-brain barrier permeability and neuroinflammation present in AD. These studies implicate fibrinogen as a possible contributor to AD.
Collapse
Affiliation(s)
- M Cortes-Canteli
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
19
|
Herczenik E, Gebbink MFBG. Molecular and cellular aspects of protein misfolding and disease. FASEB J 2008; 22:2115-33. [PMID: 18303094 DOI: 10.1096/fj.07-099671] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are essential elements for life. They are building blocks of all organisms and the operators of cellular functions. Humans produce a repertoire of at least 30,000 different proteins, each with a different role. Each protein has its own unique sequence and shape (native conformation) to fulfill its specific function. The appearance of incorrectly shaped (misfolded) proteins occurs on exposure to environmental changes. Protein misfolding and the subsequent aggregation is associated with various, often highly debilitating, diseases for which no sufficient cure is available yet. In the first part of this review we summarize the structural composition of proteins and the current knowledge of underlying forces that lead proteins to lose their native structure. In the second and third parts we describe the molecular and cellular mechanisms that are associated with protein misfolding in disease. Finally, in the last part we portray recent efforts to develop treatments for protein misfolding diseases.
Collapse
Affiliation(s)
- Eszter Herczenik
- Laboratory of Thrombosis and Haemostasis, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
20
|
Puzzo D, Palmeri A, Arancio O. Involvement of the nitric oxide pathway in synaptic dysfunction following amyloid elevation in Alzheimer's disease. Rev Neurosci 2007; 17:497-523. [PMID: 17180876 DOI: 10.1515/revneuro.2006.17.5.497] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-beta (Abeta), a peptide thought to play a crucial role in Alzheimer's disease (AD), has attracted scientific interest with the aim of characterizing the mechanisms by which it is involved in AD pathogenesis. Abeta has been found to markedly impair hippocampal long-term potentiation (LTP), a widely studied cellular model of synaptic plasticity that is thought to underlie learning and memory. The overall purpose of this review is to define the role of the nitric oxide (NO)/cGMP/cAMP-regulatory element binding (CREB) pathway in beta-amyloid-induced changes of basal neurotransmission and synaptic plasticity in the hippocampus, a structure within the temporal lobe of the brain critical for memory storage.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Pathology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
21
|
|
22
|
Cáceres M, Suwyn C, Maddox M, Thomas JW, Preuss TM. Increased cortical expression of two synaptogenic thrombospondins in human brain evolution. ACTA ACUST UNITED AC 2006; 17:2312-21. [PMID: 17182969 DOI: 10.1093/cercor/bhl140] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thrombospondins are extracellular-matrix glycoproteins implicated in the control of synaptogenesis and neurite growth. Previous microarray studies suggested that one gene of this family, thrombospondin 4 (THBS4), was upregulated during human brain evolution. Using independent techniques to examine thrombospondin expression patterns in adult brain samples, we report approximately 6-fold and approximately 2-fold greater expression of THBS4 and THBS2 messenger RNA (mRNA), respectively, in human cerebral cortex compared with chimpanzees and macaques, with corresponding differences in protein levels. In humans and chimpanzees, thrombospondin expression differences were observed in the forebrain (cortex and caudate), whereas the cerebellum and most nonbrain tissues exhibited similar levels of the 2 mRNAs. Histological examination revealed THBS4 mRNA and protein expression in numerous pyramidal and glial cells in the 3 species but humans also exhibited very prominent immunostaining of the synapse-rich cortical neuropil. In humans, additionally, THBS4 antibodies labeled beta-amyloid containing plaques in Alzheimer's cases and some control cases. This is the first detailed characterization of gene-expression changes in human evolution that involve specific brain regions, including portions of cerebral cortex. Increased expression of thrombospondins in human brain evolution could result in changes in synaptic organization and plasticity, and contribute to the distinctive cognitive abilities of humans, as well as to our unique vulnerability to neurodegenerative disease.
Collapse
Affiliation(s)
- Mario Cáceres
- Division of Neuroscience and Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
23
|
Hoozemans JJM, Veerhuis R, Rozemuller JM, Eikelenboom P. Neuroinflammation and regeneration in the early stages of Alzheimer's disease pathology. Int J Dev Neurosci 2005; 24:157-65. [PMID: 16384684 DOI: 10.1016/j.ijdevneu.2005.11.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022] Open
Abstract
The initial stages of Alzheimer's disease pathology in the neocortex show upregulation of cell cycle proteins, adhesion and inflammation related factors, indicating the early involvement of inflammatory and regenerating pathways in Alzheimer's disease pathogenesis. These brain changes precede the neurofibrillary pathology and the extensive process of neurodestruction and (astro)gliosis. Amyloid beta deposition, inflammation and regenerative mechanisms are also early pathogenic events in transgenic mouse models harbouring the pathological Alzheimer's disease mutations, while neurodegenerative characteristics are not seen in these models. This review will discuss the relationship between neuroinflammation and neuroregeneration in the early stages of Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- J J M Hoozemans
- Department of Neuropathology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 110DE Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
24
|
Lee G. Tau and src family tyrosine kinases. Biochim Biophys Acta Mol Basis Dis 2005; 1739:323-30. [PMID: 15615649 DOI: 10.1016/j.bbadis.2004.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 09/01/2004] [Indexed: 11/26/2022]
Abstract
The interaction between tau and src family non-receptor tyrosine kinases represents a new function for tau. Mediated by the proline-rich region of tau and the SH3 domain of fyn or src, this interaction has the potential to confer novel cellular activities for tau in the growth cone and in the membrane. The subsequent finding that tau is tyrosine phosphorylated has led to the observation that tau in neurofibrillary tangles is tyrosine phosphorylated. Therefore, a role for tyrosine kinases such as fyn in neuropathogenesis is predicted.
Collapse
Affiliation(s)
- Gloria Lee
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
25
|
Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci 2003. [PMID: 12533609 DOI: 10.1523/jneurosci.23-02-00493.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal dystrophy is a pathological hallmark of Alzheimer's disease (AD) that is not observed in other neurodegenerative disorders that lack amyloid deposition. Treatment of cortical neurons with fibrillar amyloid beta (Abeta) peptides induces progressive neuritic dystrophy accompanied by a marked loss of synaptophysin immunoreactivity (Grace et al., 2002). Here, we report that fibrillar Abeta-induced neuronal dystrophy is mediated by the activation of focal adhesion (FA) proteins and the formation of aberrant FA structures adjacent to Abeta deposits. In the AD brain, activated FA proteins are observed associated with the majority of senile plaques. Clustered integrin receptors and activated paxillin (phosphorylated at Tyr-31) and focal adhesion kinase (phosphorylated at Tyr-297) are mainly detected in dystrophic neurites surrounding Abeta plaque cores, where they colocalize with hyperphosphorylated tau. Deletion experiments demonstrated that the presence of the LIM domains in the paxillin C terminus and the recruitment of the protein-Tyr phosphatase (PTP)-PEST to the FA complex are required for Abeta-induced neuronal dystrophy. Therefore, both paxillin and PTP-PEST appear to be critical elements in the generation of the dystrophic response. Paxillin is a scaffolding protein to which other FA proteins bind, leading to the formation of the FA contact and initiation of signaling cascades. PTP-PEST plays a key role in the dynamic regulation of focal adhesion contacts in response to extracellular cues. Thus, in the AD brain, fibrillar Abeta may induce neuronal dystrophy by triggering a maladaptive plastic response mediated by FA protein activation and tau hyperphosphorylation.
Collapse
|
26
|
Abstract
The extracellular deposition of short amyloid peptides in the brain of patients is thought to be a central event in the pathogenesis of Alzheimer's Disease. The generation of the amyloid peptide occurs via a regulated cascade of cleavage events in its precursor protein, A beta PP. At least three enzymes are responsible for A beta PP proteolysis and have been tentatively named alpha-, beta- and gamma-secretases. The recent identification of several of these secretases is a major leap in the understanding how these secretases regulate amyloid peptide formation. Members of the ADAM family of metalloproteases are involved in the non-amyloidogenic alpha-secretase pathway. The amyloidogenic counterpart pathway is initiated by the recently cloned novel aspartate protease named BACE. The available data are conclusive and crown BACE as the long-sought beta-secretase. This enzyme is a prime candidate drug target for the development of therapy aiming to lower the amyloid burden in the disease. Finally, the gamma-secretases are intimately linked to the function of the presenilins. These multi-transmembrane domain proteins remain intriguing study objects. The hypothesis that the presenilins constitute a complete novel type of protease family, and are cleaving A beta PP within the transmembrane region, remains an issue of debate. Several questions remain unanswered and direct proof that they exert catalytic activity is still lacking. The subcellular localization of presenilins in neurons, their integration in functional multiprotein complexes and the recent identification of additional modulators of gamma-secretase, like nicastrin, indicate already that several players are involved. Nevertheless, the rapidly increasing knowledge in this area is already paving the road towards selective inhibitors of this secretase as well. It is hoped that such drugs, possibly in concert with the experimental vaccination therapies that are currently tested, will lead to a cure of this inexorable disease.
Collapse
Affiliation(s)
- D I Dominguez
- Flanders Interuniversitary Institute for Biotechnology and K.U. Leuven, Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Gasthuisberg, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
27
|
Baskin F, Rosenberg RN, Iyer L, Schellenberg GD, Hynan L, Nee LE. Platelet APP isoform ratios in asymptomatic young adults expressing an AD-related presenilin-1 mutation. J Neurol Sci 2001; 183:85-8. [PMID: 11166800 DOI: 10.1016/s0022-510x(00)00483-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Alzheimer's disease (AD) related amyloid precursor protein (APP) is stored, cleaved and released similarly from neurons and from platelets. We have reported that the proportion of 120-130 to 110 kDa carboxyl-cleaved APP present in the platelets of AD patients is significantly lower than that of platelets of age-matched controls. This reduced APP isoform ratio, not seen in several other disease groups, is further reduced as the severity of AD increases. Since the neuropathology of AD is believed to begin many years before the onset of cognitive loss, we have also compared platelet APP ratios of four pre-symptomatic young adults carrying a presenilin-1 mutation to seven siblings homozygous for the normal PS-1 gene in an effort to determine whether reduced APP ratios are present before apparent cognitive loss in familial AD. Decreased platelet APP ratios were not seen in any of these subjects at this time. We will continue to monitor these subjects as they near the mean age of AD onset in these families. As the magnitude of the APP ratio reduction is proportional to the severity of cognitive loss in sporadic AD, these cognitively normal incipient AD subjects would not be expected to present significant reductions in this AD severity index at this time. Alternatively, the absence of platelet APP ratio reductions may result from a failure of platelets from familial PS-1 AD subjects to manifest altered APPs, as has been reported for PS-2 AD subjects, unlike those of sporadic AD patients. Continued monitoring of cognitive status in our sub-set of controls with AD-like low APP ratios may yet validate the ability of this assay to detect incipient sporadic AD.
Collapse
Affiliation(s)
- F Baskin
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., 75390-9036, Dallas, TX, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Baskin F, Rosenberg RN, Iyer L, Hynan L, Cullum CM. Platelet APP isoform ratios correlate with declining cognition in AD. Neurology 2000; 54:1907-9. [PMID: 10822427 DOI: 10.1212/wnl.54.10.1907] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Platelets and neurons both contain large quantities of two carboxyl-truncated 120 to 130 and 110 kDa Alzheimer amyloid precursor proteins (APPs). Platelets taken from patients with AD have been reported to contain a reduced ratio of these APPs. OBJECTIVE To further study the AD specificity of reduced platelet APP ratios and to determine whether, after 3 years, cognitive losses in AD are accompanied by similarly reduced platelet APP ratios. METHODS To test the AD specificity of reduced platelet APP ratios, we quantitated these APPs in eight patients with PD and six patients with hemorrhagic stroke (HS). To determine whether further cognitive losses correlate with platelet APP ratio reductions in patients with AD, the authors re-examined platelet APPs and Mini-Mental State Examination (MMSE) scores of 10 patients with AD and 11 controls, who were tested 3 years ago. APP ratios were determined by the average of six assays using Western blotting with m22C11 monoclonal antibody, enhanced chemoluminescence, and digital scanning of autoradiographs. RESULTS APP ratios were normal in the patients with PD and HS, further supporting the AD specificity of this assay. After 3 years, the MMSE scores and APP ratios of our control subjects changed by <4%. However, the average MMSE scores of our patients with AD declined from 16.4 to 8.3, and their average 120 to 130/110 kDa APP ratios declined from 5.8 to 3.6. The difference between AD and control APP ratios, with no overlap, is significant and the correlation between the 3-year decline in AD MMSE scores and reduced APP ratios (r = 0.69) was significant. CONCLUSIONS Although the number of subjects analyzed was limited, reduced platelet APP ratios appear to be a specific biological marker of AD and a biological index of the severity of cognitive loss in AD.
Collapse
Affiliation(s)
- F Baskin
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9036, USA.
| | | | | | | | | |
Collapse
|
29
|
Coulson EJ, Paliga K, Beyreuther K, Masters CL. What the evolution of the amyloid protein precursor supergene family tells us about its function. Neurochem Int 2000; 36:175-84. [PMID: 10676850 DOI: 10.1016/s0197-0186(99)00125-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Alzheimer's disease amyloid protein precursor (APP) gene is part of a multi-gene super-family from which sixteen homologous amyloid precursor-like proteins (APLP) and APP species homologues have been isolated and characterised. Comparison of exon structure (including the uncharacterised APL-1 gene), construction of phylogenetic trees, and analysis of the protein sequence alignment of known homologues of the APP super-family were performed to reconstruct the evolution of the family and to assess the functional significance of conserved protein sequences between homologues. This analysis supports an adhesion function for all members of the APP super family, with specificity determined by those sequences which are not conserved between APLP lineages, and provides evidence for an increasingly complex APP superfamily during evolution. The analysis also suggests that Drosophila APPL and Caenorhabditis elegans APL-1 may be a fourth APLP lineage indicating that these proteins, while not functional homologues of human APP, are similarly likely to regulate cell adhesion. Furthermore, the betaA4 sequence is highly conserved only in APP orthologues, strongly suggesting this sequence is of significant functional importance in this lineage.
Collapse
Affiliation(s)
- E J Coulson
- Department of Pathology, University of Melbourne and The Mental Health Research Institute, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
30
|
Smith CC, Stanyer L, Cooper MB, Betteridge DJ. Platelet aggregation may not be a prerequisite for collagen-stimulated platelet generation of nitric oxide. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1473:286-92. [PMID: 10594366 DOI: 10.1016/s0304-4165(99)00202-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By determining the sum of the supernatant concentrations of nitrite and nitrate the stimulated generation of nitric oxide (NO) by human washed platelets induced by a range of fibrillar collagen concentrations (0.0156-25 microg ml(-1)) was investigated. Platelet serotonin (5-hydroxytryptamine, 5-HT) efflux and platelet aggregation were also measured. Under resting conditions (0 microg ml(-1) collagen) platelet NO release was equivalent to 1.06+/-0.17 nmol per 10(8) platelets. Maximal NO release, equivalent to 2.1+/-0. 37 nmol per 10(8) platelets, was observed with only 0.0625 microg ml(-1) collagen (P<0.02, stimulated vs. resting release), higher collagen concentrations producing no further increases in platelet NO output. By contrast, maximal platelet aggregation and 5-HT efflux did not occur until collagen concentrations of 2.5 microg ml(-1) and 10-25 microg ml-1), respectively, had been achieved. L-NAME (1 mmol l(-1)) and L-NMMA (1 mmol l(-1)) inhibited stimulated platelet NO generation by 78+/-6% and 72%, respectively. Contrasting with fibrillar collagen, fibrillar beta-amyloid protein had no effect on platelet NO generation, or on 5-HT efflux or aggregation. These data perhaps indicate that NO generation by human platelets is stimulated by concentrations of fibrillar collagen insufficient to elicit an aggregatory response. Such a mechanism could operate in vivo to inhibit platelet aggregation which might otherwise be induced by low concentrations of circulating agonists.
Collapse
Affiliation(s)
- C C Smith
- Department of Medicine, Royal Free and University College Medical School, Sir Jules Thorn Institute, Middlesex Hospital, Mortimer Street, London, UK.
| | | | | | | |
Collapse
|
31
|
Kowalska MA, Ratajczak J, Hoxie J, Brass LF, Gewirtz A, Poncz M, Ratajczak MZ. Megakaryocyte precursors, megakaryocytes and platelets express the HIV co-receptor CXCR4 on their surface: determination of response to stromal-derived factor-1 by megakaryocytes and platelets. Br J Haematol 1999; 104:220-9. [PMID: 10050701 DOI: 10.1046/j.1365-2141.1999.01169.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombocytopenia is a late complication of human immunodeficiency virus (HIV) infection. The chemokine receptor CXCR4 has been shown to be a co-receptor for lymphocyte-tropic HIV-1 strains. CXCR4 is also a natural receptor for the chemokine SDF-1. We have previously shown that CXCR1 and CXCR2 are present on megakaryocytes and platelets. Although interleukin-8 (IL-8) and other chemokines that bind to these two receptors do not activate platelets, they are able to inhibit megakaryocytopoiesis, presumably through these receptors. We therefore examined whether CXCR4 is present on developing and mature megakaryocytes and on platelets. Reverse transcription-polymerase chain reaction (RT-PCR) demonstrated the presence of CXCR4 message. Immature and mature alphaIIbbeta3+ megakaryocytes, and platelets were also positive for CXCR4 by flow cytometric studies using a CXCR4-specific antibody. We then tested whether SDF-1 can affect the biology of these cells. CD34+ cells and immature alphaIIbbeta3+ cells responded to SDF-1 as indicated by Ca2+ mobilization and chemotaxis. However, mature megakaryocytes failed to demonstrate either of these responses, in spite of their continued ability to bind 125I-SDF-1. Further, SDF-1 failed to inhibit megakaryocyte colony growth. Platelets bound 125I-SDF-1 with a K(D) similar to the affinity seen for CXCR4 on other cells, yet SDF-1 did not aggregate washed platelets nor augment aggregation by low-dose ADP or thrombin. SDF-1 also failed to stimulate Ca2+ mobilization, granular release or expression of P-selectin in platelets. Accordingly, although our studies demonstrate that CD34+ precursors, megakaryocytes and platelets all express CXCR4 and bind SDF-1, biological effects were only demonstrable of SDF-1 on CD34+ precursors. The potential biological implications of CXCR4 expression on maturing megakaryocytes and platelets in normal individuals and following HIV infection are discussed.
Collapse
Affiliation(s)
- M A Kowalska
- The Children's Hospital of Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Henry A, Li QX, Galatis D, Hesse L, Multhaup G, Beyreuther K, Masters CL, Cappai R. Inhibition of platelet activation by the Alzheimer's disease amyloid precursor protein. Br J Haematol 1998; 103:402-15. [PMID: 9827912 DOI: 10.1046/j.1365-2141.1998.01005.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The amyloid precursor protein (APP) of Alzheimer's disease is abundantly expressed in the platelet alpha-granule where its role remains unclear. This study describes a novel function for APP in regulating human platelet activation. Preincubation of platelet-rich plasma with recombinant secreted APP (sAPP) isoforms dose-dependently inhibited platelet aggregation and secretion induced by ADP or adrenaline. Similarly, sAPP potently inhibited low-dose thrombin-induced activation in washed platelet suspensions, indicating that the activity does not require plasma cofactors. There were no functional differences between sAPP forms with or without the Kunitz protease inhibitor domain or derived from either alpha- or beta-secretase cleavage. In fact, the N-terminal cysteine-rich region of APP (residues 18-194) was as effective as the entire sAPP region in the inhibition of platelet activation. The inhibitory activity of sAPP correlated with a significant reduction in the agonist-induced production of the arachidonic acid (AA) metabolites thromboxane B2 and prostaglandin E2. However, sAPP did not affect AA-induced platelet aggregation or secretion, indicating the enzymatic conversion of AA was not inhibited. The addition of a threshold dose of AA reversed the sAPP-inhibition of agonist-induced platelet activation. This suggests that sAPP decreases the availability of free AA, although the mechanism is not yet known. These data provide evidence that the release of sAPP upon platelet degranulation may result in negative feedback regulation during platelet activation.
Collapse
Affiliation(s)
- A Henry
- Department of Pathology, University of Melbourne and Mental Health Research Institute of Victoria, Parkville, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Beta-amyloid1-42 (Abeta) is a naturally occuring peptide whose accumulation in the brain is putatively coupled to Alzheimer's disease pathogenesis. Deleterious effects of Abeta on neurons have been linked to the inappropriate activation of signaling pathways within the cell (reviewed in Yankner, 1996), including tyrosine phosphorylation of focal adhesion kinase (FAK) (Zhang et al., 1994, 1996a,b). Here we have investigated the effects of Abeta on paxillin in a neural cell line. Paxillin, a substrate for FAK, is thought to act as a signal "integrator," functioning to link other proteins into multi-molecular signaling complexes (reviewed in Turner, 1994). Treatment of the rat central nervous system B103 cell line with aggregates of Abeta was found to induce the tyrosine phosphorylation of paxillin within 30 min, nearly 24 hr prior to significant cell death. Particularly striking was a subsequent "mobilization" of paxillin to the cytoskeleton in Abeta-treated cells. The amount of paxillin associated with the cytoskeleton in Abeta-treated cells was increased 10-fold over controls. The Abeta-induced paxillin accumulation could be visualized immunocytochemically, with an increase in number and size of paxillin-labeled focal contacts upon treatment with Abeta. This effect was specific, in that vinculin, another focal contact protein, was unaffected by Abeta. Disruption of f-actin, which inhibits both Abeta-induced neurotoxicity (Furukawa and Mattson, 1995) and focal contact signaling in B103 cells (Zhang et al., 1996b) was found to block the cytoskeletal paxillin accumulation. The rapid tyrosine phosphorylation and cytoskeletal mobilization of paxillin links Abeta to the activation of focal contact signaling events that may influence neuronal cytoskeletal architecture, gene expression, synaptic plasticity and cell viability.
Collapse
Affiliation(s)
- M M Berg
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
34
|
Smith CC. Stimulated release of the beta-amyloid protein of Alzheimer's disease by normal human platelets. Neurosci Lett 1997; 235:157-9. [PMID: 9406893 DOI: 10.1016/s0304-3940(97)00738-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The circulatory system is a potential source of the beta-amyloid protein (A beta) of ageing and Alzheimer's disease (AD), platelets accounting for the bulk of A beta immunoreactivity detectable in blood. Evidence for the release of A beta by platelets, however, has not been reported. Platelets from normal donors were therefore stimulated with collagen to establish if A beta immunoreactive material is released on activation. For comparison, the release of the platelet monoamines, serotonin (5-HT) adrenaline (Adr) and noradrenaline (NA) was also measured. Like the monoamines, collagen-induced A beta release was concentration-dependent, maximal stimulated release exceeding basal efflux by 184%. Collagen EC50 values for A beta release were similar to those for Adr and NA (3.6 +/- 0.6, 3.4 +/- 0.6 and 3.3 +/- 0.2 microg/ml collagen, respectively) but not 5-HT (9.8 +/- 1.9 microg/ml). These data provide the first evidence that platelets release A beta immunoreactive material on stimulation and may indicate that A beta, Adr and NA reside in the same subcellular compartment.
Collapse
Affiliation(s)
- C C Smith
- Department of Medicine, University College London Medical School, Sir Jules Thorn Institute, The Middlesex Hospital, UK
| |
Collapse
|
35
|
Gillian AM, McFarlane I, Lucy FM, Overly C, McConlogue L, Breen KC. Individual isoforms of the amyloid beta precursor protein demonstrate differential adhesive potentials to constituents of the extracellular matrix. J Neurosci Res 1997; 49:154-60. [PMID: 9272638 DOI: 10.1002/(sici)1097-4547(19970715)49:2<154::aid-jnr4>3.0.co;2-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The amyloid beta precursor protein (AbetaPP) can exist as a membrane-bound glycoprotein which modulates neural cell adhesion. The adhesion of clones of the AtT20 mouse pituitary cell line, transfected with cDNA coding for the 695 (AbetaPP695) and 751 (AbetaPP751) amino acid forms of the protein, to individual components of the extracellular matrix was determined using a centrifugal shear assay. On laminin, poly-L-lysine, fibronectin, and uncoated glass substrata, the cells transfected with AbetaPP695 (6A1 cells) demonstrated a 50% increase in adhesivity over nontransfected cells, while those transfected with AbetaPP751 (7A1 cells) showed a significant decrease in adhesion. There was, however, a significant increase in the adhesive strength of the 7A1 cells to collagen type IV with no change in the adhesivity of the 6A1 cells when compared with control. These changes in adhesivity could be attributed to changes in the levels of the membrane-bound protein and were not due to the interaction of soluble AbetaPP with elements of the extracellular matrix. These studies provide evidence for differential adhesivities of the constituent AbetaPP isoforms and the possible role of the Kunitz protease inhibitor (KPI) domain in influencing the adhesive properties of the protein backbone.
Collapse
Affiliation(s)
- A M Gillian
- Neurosciences Institute, Department of Pharmacology and Clinical Pharmacology, University of Dundee, Ninewells Hospital Medical School, Scotland
| | | | | | | | | | | |
Collapse
|
36
|
Schmitt TL, Steger MM, Pavelka M, Grubeck-Loebenstein B. Interactions of the Alzheimer beta amyloid fragment (25-35) with peripheral blood dendritic cells. Mech Ageing Dev 1997; 94:223-32. [PMID: 9147374 DOI: 10.1016/s0047-6374(97)01866-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously demonstrated that soluble amyloid beta protein (A beta) induces IL-2 receptor expression and proliferation in peripheral T cells from young and old healthy individuals, but not from patients with Alzheimer's disease (AD). It seemed of interest to examine how the immune system would react upon stimulation with A beta in its aggregated form. It was the aim of this study to define interactions between the spontaneously aggregating A beta (25-35) and antigen-presenting cells. Human dendritic cells (DC), propagated from the peripheral blood of young healthy individuals, were incubated with A beta (25-35) and its effects on DC survival, cytokine release, and surface marker expression were monitored. The question whether DC could present amyloid to T cells was also addressed. We demonstrated that A beta (25-35) does not induce DC apoptosis or necrosis. This was shown by electron microscopy as well as by nuclear staining with propidium iodide. Some peptide aggregates were found in intracellular vacuoles of DC. This process did not increase production of TNF alpha and did not change the surface expression of CD18, CD11a or CD11b. A decreased surface expression of MHC class II molecules was, however, noted. DC pulsed with A beta aggregates were unable to stimulate T cells in an autologous coculture system. The results demonstrate that amyloid may escape immune recognition by its failure to activate antigen-presenting cells and by inhibiting MHC class II surface expression.
Collapse
Affiliation(s)
- T L Schmitt
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | |
Collapse
|