1
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
2
|
Song Q, Kobayashi S, Kataoka Y, Oda H. Direct Molecular Action of Taurine on Hepatic Gene Expression Associated with the Amelioration of Hypercholesterolemia in Rats. Antioxidants (Basel) 2024; 13:990. [PMID: 39199235 PMCID: PMC11351134 DOI: 10.3390/antiox13080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Taurine can ameliorate hypercholesterolemia by facilitating cholesterol efflux and increasing cytochrome P450 7A1 (CYP7A1) without clear underlying molecular mechanisms. This study aims to elucidate the molecular action of taurine in diet-induced hypercholesterolemia. Male Wistar rats were fed a high cholesterol diet containing 5% taurine for 14 days. Three-dimensional primary hepatocytes from rats were exposed to 10 mM taurine for 24 h. Transcriptome analyses of both the liver and hepatocytes were performed using DNA microarray. Taurine significantly decreased serum cholesterol levels and increased hepatic CYP7A1 mRNA levels and transcription rates in rats. Taurine altered the expression of seventy-seven genes in the liver, involving lipid, drug, amino acid metabolism, and gluconeogenesis pathways. The small heterodimer partner (SHP), a transcription factor regulated by taurine, was suppressed. "Network analysis" revealed a negative correlation between the SHP and induction of CYP7A1 and cytochrome P450 8B1 (CYP8B1). However, CYP7A1 and CYP8B1 levels were not altered by taurine in 3D-primary hepatocytes. Venn diagram analyses of the transcriptomes in both hepatocytes and the liver indicated a consistent upregulation of organic anion transporting polypeptide 2 (OATP2) and betaine homocysteine methyltransferase (BHMT). Taurine ameliorated hypercholesterolemia in rats fed a high cholesterol diet by directly enhancing the hepatic expression of BHMT and OATP2, which modulated the SHP and induced CYP7A1 and CYP8B1, thereby promoting cholesterol catabolism and lowering blood cholesterol levels.
Collapse
Affiliation(s)
| | | | | | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Kim MK, Jeong W, Jeon S, Kang HW. 3D bioprinting of dECM-incorporated hepatocyte spheroid for simultaneous promotion of cell-cell and -ECM interactions. Front Bioeng Biotechnol 2023; 11:1305023. [PMID: 38026892 PMCID: PMC10679743 DOI: 10.3389/fbioe.2023.1305023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
The cell spheroid technology, which greatly enhances cell-cell interactions, has gained significant attention in the development of in vitro liver models. However, existing cell spheroid technologies still have limitations in improving hepatocyte-extracellular matrix (ECM) interaction, which have a significant impact on hepatic function. In this study, we have developed a novel bioprinting technology for decellularized ECM (dECM)-incorporated hepatocyte spheroids that could enhance both cell-cell and -ECM interactions simultaneously. To provide a biomimetic environment, a porcine liver dECM-based cell bio-ink was developed, and a spheroid printing process using this bio-ink was established. As a result, we precisely printed the dECM-incorporated hepatocyte spheroids with a diameter of approximately 160-220 μm using primary mouse hepatocyte (PMHs). The dECM materials were uniformly distributed within the bio-printed spheroids, and even after more than 2 weeks of culture, the spheroids maintained their spherical shape and high viability. The incorporation of dECM also significantly improved the hepatic function of hepatocyte spheroids. Compared to hepatocyte-only spheroids, dECM-incorporated hepatocyte spheroids showed approximately 4.3- and 2.5-fold increased levels of albumin and urea secretion, respectively, and a 2.0-fold increase in CYP enzyme activity. These characteristics were also reflected in the hepatic gene expression levels of ALB, HNF4A, CPS1, and others. Furthermore, the dECM-incorporated hepatocyte spheroids exhibited up to a 1.8-fold enhanced drug responsiveness to representative hepatotoxic drugs such as acetaminophen, celecoxib, and amiodarone. Based on these results, it can be concluded that the dECM-incorporated spheroid printing technology has great potential for the development of highly functional in vitro liver tissue models for drug toxicity assessment.
Collapse
Affiliation(s)
- Min Kyeong Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute, Chungbuk, Republic of Korea
| | - Wonwoo Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Seunggyu Jeon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
4
|
Skipping breakfast regimen induces an increase in body weight and a decrease in muscle weight with a shifted circadian rhythm in peripheral tissues of mice. Br J Nutr 2022; 128:2308-2319. [PMID: 35272720 DOI: 10.1017/s0007114522000356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Meal timing is a key factor in synchronising the circadian clock in peripheral tissues. Circadian disorders are associated with the metabolic syndrome. Previously, we demonstrated that a skipping breakfast regimen (SBR) with a high-fat diet increased body weight gain in rats. In this study, we investigated whether SBR with a normal diet led to abnormal lipid metabolism and muscle metabolism in mice. Male C57BL/6 mice were fed during zeitgeber time (ZT) 12-24 in the control group and ZT 16-24 in the SBR group for 2 weeks. SBR mice showed increased body weight gain and perirenal adipose tissue weight. The plantar muscle weight was decreased in the SBR group compared with that in the control group. Furthermore, SBR delayed the circadian oscillations in clock gene expression in peripheral tissues, such as the liver, adipose tissue and muscle, as well as the oscillations in the expression of lipid metabolism-related genes in the liver and adipose tissue. These results suggest that skipping breakfast over a long period of time is associated with a risk of obesity, the metabolic syndrome and muscle loss, such as sarcopenia.
Collapse
|
5
|
Oda H, Okuda Y, Yoshida Y, Kimura N, Kakinuma A. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats. Biochem Biophys Res Commun 2015; 466:306-11. [PMID: 26348778 DOI: 10.1016/j.bbrc.2015.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/03/2015] [Indexed: 11/15/2022]
Abstract
The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis.
Collapse
Affiliation(s)
- Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Yuji Okuda
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yukiko Yoshida
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Nagoya University, Nagoya 464-8601, Japan
| | - Noriko Kimura
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Nagoya University, Nagoya 464-8601, Japan
| | - Atsushi Kakinuma
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Maharana T, Pattanaik S, Routaray A, Nath N, Sutar AK. Synthesis and characterization of poly(lactic acid) based graft copolymers. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Chijimatsu T, Umeki M, Kobayashi S, Kataoka Y, Yamada K, Oda H, Mochizuki S. Dietary freshwater clam (Corbicula fluminea) extract suppresses accumulation of hepatic lipids and increases in serum cholesterol and aminotransferase activities induced by dietary chloretone in rats. Biosci Biotechnol Biochem 2015; 79:1155-63. [DOI: 10.1080/09168451.2015.1012147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
We investigated the ameliorative effect of freshwater clam extract (FCE) on fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone. Furthermore, we examined the effects of major FCE components (fat and protein fractions) to determine the active components in FCE. Chloretone increased serum aminotransferase activities and led to hepatic lipid accumulation. Serum aminotransferase activities and hepatic lipid content were lower in rats fed total FCE or fat/protein fractions of FCE. Expression of fatty acid synthase and fatty acid desaturase genes was upregulated by chloretone. Total FCE and fat/protein fractions of FCE suppressed the increase in gene expression involved in fatty acid synthesis. Serum cholesterol levels increased twofold upon chloretone exposure. Total FCE or fat/protein fractions of FCE showed hypocholesterolemic effects in rats with hypercholesterolemia induced by chloretone. These suggest that FCE contains at least two active components against fatty liver, hypercholesterolemia, and liver injury in rats exposed to chloretone.
Collapse
Affiliation(s)
| | - Miki Umeki
- Faculty of Education and Welfare Science, Oita University, Oita, Japan
| | - Satoru Kobayashi
- Department of Applied Molecular Biosciences, Nagoya University, Nagoya, Japan
| | - Yutaro Kataoka
- Department of Applied Molecular Biosciences, Nagoya University, Nagoya, Japan
| | - Koji Yamada
- Garden for Medical Plants, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Oda
- Department of Applied Molecular Biosciences, Nagoya University, Nagoya, Japan
| | - Satoshi Mochizuki
- Faculty of Education and Welfare Science, Oita University, Oita, Japan
| |
Collapse
|
8
|
Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices. PLoS One 2015; 10:e0124867. [PMID: 25901575 PMCID: PMC4406752 DOI: 10.1371/journal.pone.0124867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023] Open
Abstract
Liver-enriched transcription factors (LETF) play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM) are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001) most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and metabolic competency that should be considered when used in cell biology studies and drug toxicity testing.
Collapse
|
9
|
A Freshwater Clam (Corbicula fluminea) Extract Improves Cholesterol Metabolism in Rats Fed on a High-Cholesterol Diet. Biosci Biotechnol Biochem 2014; 72:2566-71. [DOI: 10.1271/bbb.80257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Kondo Y, Iwao T, Nakamura K, Sasaki T, Takahashi S, Kamada N, Matsubara T, Gonzalez FJ, Akutsu H, Miyagawa Y, Okita H, Kiyokawa N, Toyoda M, Umezawa A, Nagata K, Matsunaga T, Ohmori S. An efficient method for differentiation of human induced pluripotent stem cells into hepatocyte-like cells retaining drug metabolizing activity. Drug Metab Pharmacokinet 2013; 29:237-43. [PMID: 24334537 DOI: 10.2133/dmpk.dmpk-13-rg-104] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of human induced pluripotent stem (iPS) cells would be of great value for a variety of applications involving drug development studies. Several reports have been published on the differentiation of human iPS cells into hepatocyte-like cells; however, the cells were insufficient for application in drug metabolism studies. In this study, we aimed to establish effective methods for differentiation of human iPS cells into hepatocytes. Two human iPS cell lines were differentiated by addition of activin A, dimethyl sulfoxide, hepatocyte growth factor, oncostatin M, and dexamethasone. The differentiated cells expressed hepatocyte markers and drug-metabolizing enzymes, revealing that the human iPS cells were differentiated into hepatocyte-like cells. Expression of CYP3A4 and UGT1A1 mRNAs increased with treatment with typical inducers of the enzymes, and the response of the cells against the inducers was similar to that of human hepatocytes. Furthermore, the drug-metabolizing activity of CYP3A4, as monitored by testosterone 6β-hydroxylase activity, was elevated by these inducers. In conclusion, we established methods for differentiation of hepatocyte-like cells expressing drug metabolizing activity from human iPS cells. The hepatocyte-like cells derived from human iPS cells will be useful for drug metabolism studies.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chijimatsu T, Umeki M, Kataoka Y, Kobayashi S, Yamada K, Oda H, Mochizuki S. Lipid components prepared from a freshwater Clam (Corbicula fluminea) extract ameliorate hypercholesterolaemia in rats fed high-cholesterol diet. Food Chem 2013; 136:328-34. [DOI: 10.1016/j.foodchem.2012.08.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/17/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
|
12
|
Recovery of Mature Hepatocytic Phenotype following Bile Ductular Transdifferentiation of Rat Hepatocytes in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2094-104. [DOI: 10.1016/j.ajpath.2012.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/11/2022]
|
13
|
Laurent T, Kataoka Y, Kobayashi S, Ando M, Nagamori S, Oda H. Spherical cell shape of FLC-4 cell, a human hepatoma cell, enhances hepatocyte-specific function and suppresses tumor phenotype through the integration of mRNA-microRNA interaction. Biol Open 2012; 1:958-64. [PMID: 23213373 PMCID: PMC3507180 DOI: 10.1242/bio.20121438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/27/2012] [Indexed: 02/02/2023] Open
Abstract
The induction mechanism of HNF-4α by spherical cell shape in human hepatoma cells, FLC-4, was investigated. To get insight into the induction mechanism of HNF-4α in three-dimensional FLC-4 cells, mRNA microarray analysis was performed. The gene expression related to drug metabolism and nuclear receptors, such as LXRα, was elevated in spherical FLC-4 cells. We found the first time that the expressions of genes related to malignancy of hepatoma cells, such as HIF-1α, c-Myc and VEGFC, were downregulated by spherical cell shape. Network analysis revealed that HNF-4α would elicit both the enhancement of hepatocyte-specific gene expression and suppression of malignancy. Since HNF-4α gene expression was known to be regulated by microRNA, we inferred that spherical cell shape would induce HNF-4α gene expression through microRNA. To investigate the possibility of such a mechanism, mRNA–microRNA interactions were examined using microRNA microarray and bioinformatics analysis. The level of miR-24, a microRNA targeting HNF-4α, was reduced in spherical FLC-4 cells. On the other hand, spherical cell shape-induced miR-194 and miR-320c would directly downregulate SLC7A5 and E2F1 gene expression, respectively, which are both related to malignancy. Our study suggested that spherical cell shape would induce HNF-4α gene expression and consequent enhancement hepatocyte-specific functions. Spherical cell shape itself would suppress malignancy in FLC-4 cells through microRNA, such as miR-194 and miR-320c.
Collapse
Affiliation(s)
- Thomas Laurent
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Nagoya University , Nagoya 464-8601 , Japan
| | | | | | | | | | | |
Collapse
|
14
|
Basu A. WITHDRAWN: Expression and functional characterization of guanylyl cyclase C receptor in HepG2 cells: Two-step regulation by dexamethasone and hepatocyte nuclear factor 4 (HNF4). J Steroid Biochem Mol Biol 2012:S0960-0760(12)00123-9. [PMID: 22750460 DOI: 10.1016/j.jsbmb.2012.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/24/2012] [Accepted: 06/21/2012] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Arindam Basu
- University of Pennsylvania, School of Veterinary Medicine, Department of Animal Biology, 3800 Spruce Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
15
|
Real-time monitoring in three-dimensional hepatocytes reveals that insulin acts as a synchronizer for liver clock. Sci Rep 2012; 2:439. [PMID: 22666542 PMCID: PMC3365280 DOI: 10.1038/srep00439] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/09/2012] [Indexed: 02/05/2023] Open
Abstract
Resetting the peripheral clock and understanding the integration between the circadian rhythm and metabolic pathways are fundamental questions. To test whether insulin acts as a synchronizer for the hepatic clock by cell-autonomous mechanisms, the phase-resetting capabilities of insulin were investigated in cultured hepatic cells. We provide evidence that three-dimensional (3D) cell culture conditions that preserve the differentiated state of primary hepatocytes sustained the robustness of the molecular clock, while this robustness rapidly dampened under classical monolayer cell culture conditions. Herein, we established a 3D cell culture system coupled with a real-time luciferase reporter, and demonstrated that insulin directly regulates the phase entrainment of hepatocyte circadian oscillators. We found that insulin-deficient diabetic rats had a pronounced phase advance in their hepatic clock. Subsequently, a single administration of insulin induced phase-dependent bi-directional phase shifts in diabetic rat livers. Our results clearly demonstrate that insulin is a liver clock synchronizer.
Collapse
|
16
|
Ito H, Kamiya A, Ito K, Yanagida A, Okada K, Nakauchi H. In vitro expansion and functional recovery of mature hepatocytes from mouse adult liver. Liver Int 2012; 32:592-601. [PMID: 22222094 DOI: 10.1111/j.1478-3231.2011.02741.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 12/08/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND Mature hepatocytes retain the ability to regenerate the liver lobule fully in vivo following injury. Several cytokines and soluble factors (hepatocyte growth factors, epidermal growth factors, insulin and nicotinamide) are known to be important for proliferation of mature hepatocytes in vitro. However, hepatocytes monolayer-cultured on extracellular matrices have gradually lost their specific functions, particularly those in drug metabolism. AIM We have explored and established a new culture system for expansion of functional hepatocytes. METHODS We evaluated two approaches for efficient expansion of mature hepatocytes: (i) Co-culture with mouse embryonic fibroblasts (MEF); (ii) Addition to culture of inhibitors of cell signals involved in liver regeneration. After expansion steps, 3-dimensional spheroid-forming culture was used to re-induce mature hepatocellular function. RESULTS The addition of inhibitors for tumour growth factor (TGF) β and glycogen synthase kinase (GSK) 3β efficiently induced in vitro expansion of mature hepatocytes. Although expression of hepatocellular functional genes decreased after expansion in monolayer culture, their expression and the activity of cytochrome P450 enzymes significantly increased with spheroid formation. Furthermore, when hepatocytes were co-cultured with MEF, addition of a MAPK/ERK kinase (MEK) inhibitor at the spheroid formation step enhanced drug-metabolism-related gene expression. CONCLUSION Combination of the MEF co-culture system with the addition of inhibitors of TGFβ and GSK3β induced in vitro expansion of hepatocytes. Moreover, expression of mature hepatocellular genes and the activity of drug-metabolism enzymes in expanded hepatocytes were re-induced after spheroid culture.
Collapse
Affiliation(s)
- Hidenori Ito
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Laurent T, Murase D, Tsukioka S, Matsuura T, Nagamori S, Oda H. A novel human hepatoma cell line, FLC-4, exhibits highly enhanced liver differentiation functions through the three-dimensional cell shape. J Cell Physiol 2012; 227:2898-906. [DOI: 10.1002/jcp.23033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Takagi S, Ohno M, Ohashi K, Utoh R, Tatsumi K, Okano T. Cell Shape Regulation Based on Hepatocyte Sheet Engineering Technologies. Cell Transplant 2012; 21:411-20. [DOI: 10.3727/096368911x605312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The de novo engineering of a uniform hepatocyte sheet in vitro is considered as a novel approach for liver-directed therapeutics. Hepatocytes can be cultured on a temperature-responsive culture dishes coated with poly( N-isopropylacrylamide) (PIPAAm). Following multiple days of culturing, the hepatocytes can be easily harvested as a uniform sheet by decreasing temperature from 37°C to 20°C. By modifying the sheet harvesting protocol, we have noticed that two different forms of the hepatocyte sheets, “extended” and “shrinking,” were obtained. This study describes the methods for harvesting the two different forms of sheets, and their cellular structure and hepatocyte-specific functions. To obtain an “extended sheet” form, a cluster of hepatocytes covered with a support membrane was harvested by the temperature reduction. For the “shrinking sheet” form, the hepatocyte sheet was floated after reducing the culture temperature, and the floating process allowed the sheet to shrink spontaneously. Histological analysis revealed that the hepatocytes in the extended sheet form were predominantly flat, whereas the shrinking sheet contained cuboidal shaped hepatocytes. The preservation of hepatocyte-specific ultrastructures was confirmed in both types of sheets. To investigate hepatocyte-specific functionality, the harvested hepatocyte sheets were recultured on Matrigel-coated dishes. Assessment of protein production levels and chemical metabolizing activities showed the similar functionalities for each form. In contrast, the recalculation of these values per sheet versus per square centimeter of sheet surface demonstrated that the function of the shrinking sheet was significantly higher than that of the extended sheets. This study demonstrated that the hepatocyte sheets created on the PIPAAm dish could spontaneously shrink in size, but retain their hepatocyte functionality. This type of hepatocyte sheet could be utilized for the engineering of liver tissue in limited areas that are unable to give adequate transplant space.
Collapse
Affiliation(s)
- Soichi Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Maki Ohno
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kohei Tatsumi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
19
|
Hoshiba T, Lu H, Kawazoe N, Chen G. Decellularized matrices for tissue engineering. Expert Opin Biol Ther 2011; 10:1717-28. [PMID: 21058932 DOI: 10.1517/14712598.2010.534079] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE OF THE FIELD Biomimetic scaffolds and substrates of extracellular matrices (ECMs) play an important role in the regulation of cell function and in the guidance of new tissue regeneration, as an ECM has the intrinsic cues necessary to communicate with and dictate to cells. AREAS COVERED IN THIS REVIEW This paper reviews the latest developments in ECM scaffolds and substrates obtained from decellularized tissues, organs or cultured cells and their application in tissue engineering. The ECM composition, structure, interaction with surrounding cells, preparation method and usage in the regeneration of various tissues and organs are summarised. WHAT THE READER WILL GAIN The advantages and challenges of decellularized matrices are highlighted. TAKE HOME MESSAGE Similarity in the composition, microstructure and biomechanical properties of the decellularized scaffolds and substrates to those of the native tissues and organs maximizes the promotion effect in the regeneration of both structural and functional tissues and organs. Simple tissues as well as complicated organs have been decellularized and decellularization methods have been optimized to completely remove the cellular components while keeping the ECM intact.
Collapse
Affiliation(s)
- Takashi Hoshiba
- National Institute for Materials Science, Biomaterials Center, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
20
|
The fat and protein fractions of freshwater clam (Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet. Br J Nutr 2010; 105:526-34. [DOI: 10.1017/s0007114510004058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated whether the fat and protein fractions of freshwater clam (Corbicula fluminea) extract (FCE) could ameliorate hypercholesterolaemia in rats fed a high-cholesterol diet. We also explored the mechanism and the components that exert the hypocholesterolaemic effect of FCE. The doses of the fat and protein fractions were equivalent to those in 30 % FCE. The fat and protein fractions of FCE, two major components of FCE, significantly reduced the serum and hepatic cholesterol levels. The fat fraction more strongly reduced serum cholesterol levels than the same level of total FCE. The excretion of faecal neutral sterols increased in rats fed the total the FCE and the fat fraction of FCE. On the other hand, faecal bile acid levels were greater in rats fed the total FCE and the fat and protein fractions of FCE than in control animals. The hepatic gene expression of ATP-binding cassette transporter G5 and cholesterol 7α-hydroxylase was up-regulated by the administration of the total FCE and both the fat and protein fractions of FCE. These results showed that the fat and protein fractions of FCE had hypocholesterolaemic properties, and that these effects were greater with the fat fraction than with the protein fraction. The present study indicates that FCE exerts its hypocholesterolaemic effects through at least two different mechanisms, including enhanced excretion of neutral sterols and up-regulated biosynthesis of bile acids.
Collapse
|
21
|
Brafman DA, de Minicis S, Seki E, Shah KD, Teng D, Brenner D, Willert K, Chien S. Investigating the role of the extracellular environment in modulating hepatic stellate cell biology with arrayed combinatorial microenvironments. Integr Biol (Camb) 2009; 1:513-24. [PMID: 20023766 DOI: 10.1039/b912926j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatic stellate cells (HSCs) are a major cell type of the liver that are involved in liver homeostasis. Upon liver damage, HSCs exit their normally quiescent state and become activated, leading to an increase of their proliferation, production of abnormal extracellular matrix proteins (ECMPs) and inflammatory mediators, and eventually liver fibrosis and cirrhosis. Current in vitro approaches to identify components that influence HSC biology typically investigate one factor at a time and generally ignore the complex crosstalk among the myriad of components that comprise the microenvironments of quiescent or activated HSCs. Here we describe a high throughput screening (HTS) approach to identify factors that affect HSC biology. Specifically, we integrated the use of ECMPs and signaling molecules into a combinatorial cellular microarray technology platform, thereby creating comprehensive "microenvironments". Using this technology, we performed real-time simultaneous screening of the effects of hundreds of unique microenvironments composed of ECMPs and signaling molecules on HSC proliferation and activation. From these screens, we identified combinations of microenvironment components that differentially modulate the HSC phenotype. Furthermore, analysis of HSC responses revealed that the influences of Wnt signaling molecules on HSC fate are dependent on the ECMP composition in which they are presented. Collectively, our results demonstrate the utility of high-content, array-based screens to provide a better understanding of HSC biology. Our results indicate that array-based screens may provide an efficient means for identifying candidate signaling pathways to be targeted for anti-fibrotic therapies.
Collapse
Affiliation(s)
- David A Brafman
- Department of Bioengineering, University of California, San Diego, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Okumura N, Koh T, Hasebe Y, Seki T, Ariga T. A novel function of thrombin-activatable fibrinolysis inhibitor during rat liver regeneration and in growth-promoted hepatocytes in primary culture. J Biol Chem 2009; 284:16553-16561. [PMID: 19386599 DOI: 10.1074/jbc.m109.011452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) exhibits anti-fibrinolytic activity by removing C-terminal lysine residues from fibrin or plasminogen receptor proteins on the cellular surface, and plays an important role in the regulation of fibrinolysis. In this study, we examined the regulation of TAFI in hepatocytes during liver regeneration, and revealed its pivotal role in hepatocyte proliferation. In rat models, partial hepatectomy or carbon tetrachloride (CCl4)-induced acute liver injury suppressed the levels of plasma TAFI activity and hepatic TAFI mRNA, whereas this operation markedly increased both the hepatic plasmin activity and the level of proliferating cell nuclear antigen. In primary cultures of rat hepatocytes, the TAFI mRNA level was decreased under growth-promoting culture conditions. Treatment of the hepatocytes with TAFI siRNA increased the amount of plasmin on the hepatocytes and promoted hepatocyte proliferation. We concluded that TAFI regulates plasmin activity through its enzymatic activity whereby it reduces the plasminogen-binding capacity of the hepatocytes. The TAFI gene expression is down-regulated in hepatocyte proliferation for producing a fibrinolytic microenvironment suitable for cell growth. This is the first report on the role of TAFI in the pericellular fibrinolysis necessary for cellular proliferation.
Collapse
Affiliation(s)
- Nobuaki Okumura
- From the Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, and the Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Kanagawa 252-8510, Japan
| | - Tomohiko Koh
- From the Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, and the Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Kanagawa 252-8510, Japan
| | - Yuichi Hasebe
- From the Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, and the Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Kanagawa 252-8510, Japan
| | - Taiichiro Seki
- From the Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, and the Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Kanagawa 252-8510, Japan.
| | - Toyohiko Ariga
- From the Department of Applied Life Sciences, Nihon University Graduate School of Bioresource Sciences, and the Department of Chemistry and Life Science, Nihon University College of Bioresource Sciences, Kanagawa 252-8510, Japan
| |
Collapse
|
23
|
Chijimatsu T, Tatsuguchi I, Oda H, Mochizuki S. A Freshwater clam (Corbicula fluminea) extract reduces cholesterol level and hepatic lipids in normal rats and xenobiotics-induced hypercholesterolemic rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3108-3112. [PMID: 19275237 DOI: 10.1021/jf803308h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigated whether a freshwater clam (Corbicula fluminea) extract (FCE) could improve cholesterol metabolism and hepatic lipids accumulation in rats fed xenobiotics such as chloretone. Feeding chloretone resulted in hypercholesterolemia and fatty liver. An increase in serum cholesterol, high density lipoproteins (HDL) in particular, after intake of chloretone was observed. Serum cholesterol was decreased by supplementation with FCE. Accumulation of the hepatic lipids including triacylglycerol, cholesterol, and phospholipid was significantly suppressed by supplementation with FCE. The excretion of neutral and acidic sterols into the feces was enhanced by FCE. The hepatic gene expression of cholesterol 7alpha-hydroxylase was enhanced in rats fed a FCE-containing diet. Apolipoprotein A-I gene expression in the liver, which is a major apolipoprotein of HDL, was suppressed by FCE. These results demonstrated that FCE reduced cholesterol level and hepatic lipids in normal rats and hypercholesterolemic rats fed chloretone.
Collapse
|
24
|
Extracellular matrix is required for the survival and differentiation of transplanted hepatic progenitor cells. Biochem Biophys Res Commun 2009; 381:733-7. [DOI: 10.1016/j.bbrc.2009.02.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/26/2009] [Indexed: 11/24/2022]
|
25
|
Abstract
To know the precise mechanisms underlying the life or death and the regeneration or differentiation of cells would be relevant and useful for the development of a regenerative therapy for organ failure. Liver-specific gene expression is controlled primarily at a transcriptional level. Studies on the transcriptional regulatory elements of genes expressed in hepatocytes have identified several liver-enriched transcriptional factors, including hepatocyte nuclear factor (HNF)-1, HNF-3, HNF-4, HNF-6 and CCAAT/enhancer binding protein families, which are key components of the differentiation process for the fully functional liver. The transcriptional regulation by these HNFs, which form a hierarchical and cooperative network, is both essential for hepatocyte differentiation during mammalian liver development and also crucial for metabolic regulation and liver function. Among these liver-enriched transcription factors, HNF-4 is likely to act the furthest upstream as a master gene in transcriptional cascade and interacts with other liver-enriched transcriptional factors to stimulate hepatocyte-specific gene transcription. A link between the extracellular matrix, changes in cytoskeletal filament assembly and hepatocyte differentiation via HNF-4 has been shown to be involved in the transcriptional regulation of liver-specific gene expression. This review provides an overview of the roles of liver-enriched transcription factors in liver function.
Collapse
Affiliation(s)
- Masahito Nagaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | |
Collapse
|
26
|
Oda H, Yoshida Y, Kawamura A, Kakinuma A. Cell shape, cell-cell contact, cell-extracellular matrix contact and cell polarity are all required for the maximum induction of CYP2B1 and CYP2B2 gene expression by phenobarbital in adult rat cultured hepatocytes. Biochem Pharmacol 2007; 75:1209-17. [PMID: 18164277 DOI: 10.1016/j.bcp.2007.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/05/2007] [Accepted: 11/07/2007] [Indexed: 12/01/2022]
Abstract
The effect of cell shape, cell density, contact with extracellular matrix and cell polarity on the phenobarbital (PB)-induced gene expression of CYP2B1 and CYP2B2 (CYP2B1/2B2) in adult rat hepatocytes was investigated. High cell density enhanced the induction of CYP2B1/2B2 gene expression by PB. Hepatocytes cultured on EHS gel showed a spherical cell shape and highly enhanced the induction of CYP2B1/2B2 gene expression by PB. Although monolayer hepatocytes cultured on type I collagen (TIC) and type IV collagen exhibited poor induction of CYP2B1/2B2 gene expression by PB, monolayer cells on laminin showed substantial induction. The addition of soluble laminin to media did not show any effect on induction in monolayer hepatocytes cultured on TIC. Dishes coated with different concentrations of immovable laminin demonstrated complicated effects. Coating with higher concentrations of laminin resulted in greater induction of CYP2B1/2B2 gene expression by PB. On the other hand, when hepatocytes were cultured on dishes coated with lower concentrations of laminin, they became round and greater induction of CYP2B1/2B2 gene expression by PB was observed. Spherical hepatocytes cultured on low concentrations of TIC also showed highly enhanced induction of CYP2B1/2B2 gene expression by PB. EHS gel overlay to hepatocytes cultured on TIC and collagen sandwich configurations that are known to induce cell polarity enhanced the induction by PB. The induction of CYP2B1/2B2 gene expression needed cytoskeleton organization, such as actin filament, microtubule filament and intermediate filament. These results demonstrate that cell shape, cell density, contact with extracellular matrix and cell polarity all play critical roles in the induction of CYP2B1/2B2 gene expression by PB.
Collapse
Affiliation(s)
- Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Department of Applied Molecular Biosciences, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | |
Collapse
|
27
|
Takashi H, Katsumi M, Toshihiro A. Hepatocytes maintain their function on basement membrane formed by epithelial cells. Biochem Biophys Res Commun 2007; 359:151-6. [PMID: 17531195 DOI: 10.1016/j.bbrc.2007.05.079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/15/2007] [Indexed: 11/24/2022]
Abstract
To establish liver tissue engineering, the effective substratum for hepatocytes culture should be developed. Up to now, it is believed that Matrigel, which contains several basement membrane proteins produced by sarcoma cells, is the most effective substratum. Matrigel does not contain extracellular matrix molecules derived from epithelial cells although the space of Disse contains the molecules such as laminin-511/521 (laminin-10/11). Therefore, the basement membrane formed by epithelial cells can be more effective substratum than Matrigel. In this study, we evaluated hepatocytes behavior on basement membrane (rBM) formed by alveolar epithelial cells. The viability of hepatocytes on rBM is higher than that of Matrigel within 5 days. Also, the expression of Cyp1a2 induced by beta-naphthoflavone can be observed in hepatocytes on rBM but not in Matrigel. These results indicate that rBM is a more effective substratum for hepatocyte culture than Matrigel.
Collapse
Affiliation(s)
- Hoshiba Takashi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
28
|
Kim SH, Akaike T. Epidermal Growth Factor Signaling for Matrix-Dependent Cell Proliferation and Differentiation in Primary Cultured Hepatocytes. ACTA ACUST UNITED AC 2007; 13:601-9. [PMID: 17518606 DOI: 10.1089/ten.2006.0104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding hepatocellular signaling occurring in biomaterial systems is important for successful hepatic tissue engineering. Toward this end, we employed synthetic glycopolymers, as artificial matrices, to examine integrin-mediated epidermal growth factor (EGF) signaling in primary hepatocyte cultures. We dispersed hepatocytes on a collagen matrix or on a synthetic glycopolymer matrix and subsequently stimulated them with EGF. Only hepatocytes cultured on collagen proliferated, and we observed significant expression of cyclin B1 in these cells. Pharmacological agents, LY294004 (a phosphatidylinositol [PI] 3-kinase inhibitor) and AG1478 (an EGF kinase receptor inhibitor), blocked hepatocyte proliferation and cyclin B1 expression. In addition, EGF-stimulated hepatocytes formed spheroids, exhibited membrane ruffling, and increased tryptophan 2,3-oxygenase (TO) expression when cultured on glycopolymer matrices. Interestingly, PI 3-kinase inhibition suppressed membrane ruffling, spheroid formation, and TO expression. Taken together, this data suggests PI 3-kinase plays an important role in mediating cross talk between integrin and the EGF signaling pathways in primary hepatocyte cultures.
Collapse
Affiliation(s)
- Sang-Heon Kim
- Biomaterial Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | | |
Collapse
|
29
|
Sainz B, Chisari FV. Production of infectious hepatitis C virus by well-differentiated, growth-arrested human hepatoma-derived cells. J Virol 2006; 80:10253-7. [PMID: 17005703 PMCID: PMC1617281 DOI: 10.1128/jvi.01059-06] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) has been shown to induce the differentiation of primary hepatocytes in vitro. When actively dividing poorly differentiated human hepatoma-derived (Huh7) cells were cultured in the presence of 1% DMSO, cells became cytologically differentiated and transitioned into a nondividing state, characterized by the induction of hepatocyte-specific genes. Moreover, these cells were highly permissive for acute hepatitis C virus (HCV) infection, and persistent long term infection of these cultures could also be achieved. As HCV naturally replicates in highly differentiated nondividing human hepatocytes, this system may more accurately mimic the conditions under which HCV replicates in vivo than previous models using poorly differentiated rapidly dividing hepatoma cells.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SBR-10, La Jolla, CA 92037, USA
| | | |
Collapse
|
30
|
Kimata T, Nagaki M, Ogiso T, Naiki T, Kato T, Moriwaki H. Actin organization and hepatocyte differentiation are regulated by extracellular matrix via PI-4,5-bisphosphate in the rat. Hepatology 2006; 44:140-51. [PMID: 16799990 DOI: 10.1002/hep.21215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Cell adhesion to the extracellular matrix (ECM) plays vital roles in both morphogenesis and regulation of gene expression in cells of adult organisms. How intracellular, cytoskeletal, and signaling factors connect and communicate with the ECM is a fundamental question. Using a cDNA microarray analysis, we identified phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) phosphatase mRNA as being up-regulated in hepatocytes cultured on a basement membrane matrix, Engelbreth-Holm-Swarm (EHS) gel, which led to the finding that the PI(4,5)P2 levels of hepatocytes decreased on EHS gel. These changes in hepatocytes on EHS gel were accompanied by promotion of actin depolymerization and differentiated phenotypes of the hepatocytes. Treatment with PI(4,5)P2 or a phospholipase C inhibitor, U73122, resulted in decreased mRNA expressions of albumin and hepatocyte nuclear factor 4 (HNF-4) in hepatocytes. In contrast, actin-disrupting agent gelsolin increased mRNA expressions of albumin and HNF-4. In conclusion, organization of the actin cytoskeleton via PI(4,5)P2 is involved in the regulation of hepatocyte differentiation by the ECM.
Collapse
Affiliation(s)
- Takayuki Kimata
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Lu HF, Lim WS, Zhang PC, Chia SM, Yu H, Mao HQ, Leong KW. Galactosylated poly(vinylidene difluoride) hollow fiber bioreactor for hepatocyte culture. ACTA ACUST UNITED AC 2006; 11:1667-77. [PMID: 16411812 DOI: 10.1089/ten.2005.11.1667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To overcome the limitations of long-term expression of highly differentiated hepatocyte functions, we have developed a novel bioreactor in which hepatocytes are seeded in a ligand-immobilized hollow fiber cartridge. Galactosylated Pluronic polymer is immobilized on poly(vinylidene difluoride) (PVDF) hollow fiber surface through an adsorption scheme yielding a substrate with hepatocyte-specific ligand and a hydrophilic surface layer, which can resist nonspecific protein adsorption and facilitate cell binding to the galactose ligand. Interestingly, the galactosylated PVDF hollow fiber shows enhanced serum albumin diffusion across the membrane. Freshly isolated rat hepatocytes were seeded and cultured in the extralumenal space of the hollow fiber cartridge for 18 days in a continuously circulated system. Albumin secretion function of the seeded hepatocytes was monitored by analyzing circulating medium by enzyme-linked immunosorbent assay. Urea synthesis and P-450 function (7-ethoxycoumarin dealkylase activity) were measured periodically by doping the circulating medium with NH4Cl and 7-ethoxycoumarin, respectively. Hepatocytes cultured on galactosylated PVDF hollow fibers maintained better albumin secretion and P-450 functions than on unmodified and serum-coated PVDF hollow fibers when cultured in serum-containing medium. Morphological examination by scanning electron microscopy showed that hepatocytes cultured on galactosylated PVDF hollow fibers developed significant aggregation, in contrast to those cultured on unmodified PVDF fibers or on serum-coated PVDF fibers. Transmission electron microscopy images revealed that tight junctions and canaliculus-like structures formed in these aggregates. These results suggest the potential application of this galactosylated PVDF hollow fiber cartridge for the design of a bioartificial liver assist device.
Collapse
Affiliation(s)
- Hong-Fang Lu
- Tissue and Therapeutic Engineering Laboratory, Division of Biomedical Sciences, Johns Hopkins in Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
32
|
Abu-Absi SF, Hu WS, Hansen LK. Dexamethasone effects on rat hepatocyte spheroid formation and function. ACTA ACUST UNITED AC 2005; 11:415-26. [PMID: 15869420 DOI: 10.1089/ten.2005.11.415] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hepatocytes cultured on moderately adhesive surfaces or in spinner flasks spontaneously self-assemble into spherical tissue-like aggregates (spheroids). These spheroids have smooth surfaces and tissue-like polarized cell morphology, including bile canalicular-like channels, and maintain high viability and liver-specific functions for extended culture periods. Dexamethasone (DEX), a synthetic glucocorticoid, is known to elicit various responses in gene expression, and is often added to hepatocyte culture medium. The morphology and liver-specific protein production of hepatocyte spheroids were assessed under DEX concentrations ranging from 50 nM to 10 microM. DEX altered the kinetics of spheroid formation in a concentration-dependent fashion, with increasing concentrations inhibiting aggregation and promoting aggregate disassembly on culture dishes. DEX addition to spinner cultures resulted in smaller, more irregularly shaped spheroids and a higher incidence of aggregate clumping. Albumin and urea production were also higher in DEX cultures, but this effect was not as sensitive to concentration and occurred irrespective of the state of aggregation. RTPCR was utilized to assess the mRNA levels of extracellular matrix proteins, E-cadherin, and cytochrome P-450 enzymes. Results indicated a slight increase in fibronectin and collagen III mRNA early in the cultures, possibly contributing to the changes in morphology observed.
Collapse
Affiliation(s)
- Susan Fugett Abu-Absi
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, USA
| | | | | |
Collapse
|
33
|
Miyamoto S, Hirata K, Sugimoto S, Harada K, Mitaka T. Expression of cytochrome P450 enzymes in hepatic organoid reconstructed by rat small hepatocytes. J Gastroenterol Hepatol 2005; 20:865-72. [PMID: 15946133 DOI: 10.1111/j.1440-1746.2005.03804.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Small hepatocytes (SH), which are hepatic progenitor cells, were isolated from an adult rat liver. SH in a colony sometimes change their shape from small to large and from flat to rising/piled-up. The morphological changes of SH may be correlated with hepatic maturation. Cytochrome P450s (CYP) are drug-metabolizing enzymes and the expression is one of hepatic differentiated functions. However, it is well known that the re-expression and maintenance of CYP activity are very difficult in cultured hepatocytes. We investigated the expression of CYP and the enzymatic activities in long-term cultured SH. METHODS SH were isolated from adult rat livers and SH colonies were collected, replated on new dishes, and then cultured. CYP1A1/2, CYP2B1, CYP3A2, CYP4A1, and CYP2E1 were induced by the addition of 3-methylcholanthrene, phenobarbital, pregnenolone-16alpha-carbonitrile, clofibric acid, and ethanol, respectively. Immunocytochemistry, immunoblots, and enzyme activities were examined. RESULTS SH could differentiate into mature hepatocytes by the addition of Matrigel and re-express constitutive CYPs. The expression of CYP1A1/2, CYP2B1, CYP3A2, and CYP4A1 dose-dependently increased and the amounts gradually increased with time in culture, especially in the cells treated with Matrigel. Activities of CYP1A, CYP2B, CYP3A and CYP2E in SH treated with Matrigel induced by each of the inducers were approximately 120-fold, 2.8-fold, 6.4-fold and 0.8-fold higher than in the control. CONCLUSION The matured SH could re-express the constitutive CYP and recover inducibility, not only of protein expression but also of enzyme activities.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pathophysiology, Cancer Research Institute, Sapporo Medical University School of Medicine, S-1 W-17 Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | |
Collapse
|
34
|
Abstract
Insufficient donor organs for orthotopic liver transplantation worldwide have urgently increased the requirement for new therapies for acute and chronic liver disease. Whilst none are yet clinically proven there are at least two different approaches for which there is extensive experimental data, some human anecdotal evidence and some data emerging from Phase 1 clinical trials. Both approaches involve bio-engineering. In vivo tissue engineering involves isolated liver cell transplantation into the liver and/or other ectopic sites and in vitro tissue engineering, using an extracorporeal hepatic support system or bioartificial liver. Some questions are common to both these approaches, such as the best cell source and the therapeutic mass required, and are discussed. Others are specific to each approach. For cell transplantation in vivo the initial engraftment and repopulation will make a critical difference to the outcome, and development of markers for transplanted cells has enabled significant advances in understanding, and therefore manipulating, the process. Moreover, the role of immunosuppression is also important and novel approaches to natural immunosuppression are discussed. For use in a bioartificial liver, the ability for hepatocytes to perform ex vivo at in vivo levels is critical. Three dimensional culture improves cell performance over monolayer cultures. Alginate encapsulated cells offer a suitable 3-D environment for a bioartificial liver since they are both easily manipulatable and cryopreservable. The use of cells derived from stem cells or foetal rather than adult liver cells is also emerging as a potential human cell source which may overcome problems associated with xenogeneic cells.
Collapse
Affiliation(s)
- Clare Selden
- Centre for Hepatology, Royal Free Campus, Royal Free and University College Medical School, London NW3 2PF, UK.
| | | |
Collapse
|
35
|
Kim SH, Kim JH, Akaike T. Regulation of cell adhesion signaling by synthetic glycopolymer matrix in primary cultured hepatocyte. FEBS Lett 2003; 553:433-9. [PMID: 14572665 DOI: 10.1016/s0014-5793(03)01047-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Control of cell-matrix interactions is a central principle for the design of biomaterial in tissue engineering. In this study, we evaluated a synthetic glycopolymer, which is recognized by the asialoglycoprotein receptor (ASGPR) expressed on the surface of hepatocytes, as an artificial matrix to regulate integrin-mediated signaling. The phosphorylation of focal adhesion kinase was restricted in hepatocytes cultured on the glycopolymer compared with fibronectin. In addition, there was no reorganization of cytoskeleton-related proteins such as actin filaments, microtubules, and vinculin in hepatocytes cultured on the glycopolymer. DNA synthesis and cyclin D1 expression were suppressed in hepatocytes grown on the glycopolymer as compared with those grown on fibronectin and collagen. The data suggest that the glycopolymer will be a good artificial matrix to regulate integrin-mediated signaling and cell growth through the unique ASGPR-carbohydrate interaction.
Collapse
Affiliation(s)
- Sang-Heon Kim
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8501 Yokohama, Japan
| | | | | |
Collapse
|
36
|
Nakagiri R, Oda H, Kamiya T. Small scale rat hepatocyte primary culture with applications for screening hepatoprotective substances. Biosci Biotechnol Biochem 2003; 67:1629-35. [PMID: 12951493 DOI: 10.1271/bbb.67.1629] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isolated hepatocytes are known to maintain their physiological functions for over a week when cultured on Matrigel, artificially reconstituted from basement membrane components. Although this culture technique has been frequently used in research on hepatocyte functions, there has been a limitation on its application for small scale experiments due to some technical problems. By using micro-culture plates with 96 round-bottom wells, we succeeded in coating the wells uniformly with Matrigel. When the cultured hepatocytes were treated with either 10 mM, 15 mM, or 20 mM of acetaminophen or 1 mM, 10 mM, or 20 mM of D-galactosamine, the viability of the hepatocytes became 91.1%, 75.3%, 64.7%, and 79.0%, 43.8%, 26.2% of the non-treated control at 48 hours, respectively. Fractionated extracts of Glycyrrhiza glabra L. and Schisandra chinensis Baillon inhibited the action of acetaminophen or D-galactosamine in this model. From these results, we concluded that the microculture system presented here is capable of maintaining the in vivo characteristics of hepatocytes and is suitable for the screening of hepatoprotective substances.
Collapse
Affiliation(s)
- Ryusuke Nakagiri
- Kyowa Hakko Kogyo Co., Ltd., Tsukuba Research Laboratories, 2 Miyukigaoka, Tsukuba-shi, Ibaraki 305-0841, Japan.
| | | | | |
Collapse
|
37
|
Sugimoto S, Mitaka T, Ikeda S, Harada K, Ikai I, Yamaoka Y, Mochizuki Y. Morphological changes induced by extracellular matrix are correlated with maturation of rat small hepatocytes. J Cell Biochem 2003; 87:16-28. [PMID: 12210718 DOI: 10.1002/jcb.10274] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Small hepatocytes (SHs), which are known to be hepatic progenitor cells, were isolated from an adult rat liver. SHs in a colony sometimes change their shape from small to large and from flat to rising/piled-up. The aim of the present study is to clarify whether the alteration of cell shape is correlated with the maturation of SHs and whether extracellular matrix (ECM) can induce the morphological changes of SHs. We used liver-enriched transcription factors (LETFs) such as hepatocyte nuclear factor (HNF) 4 alpha, HNF6, CCAAT/enhancer binding proteins (C/EBP) alpha, and C/EBP beta, tryptophan 2,3-dioxygenase (TO), and serine dehydratase (SDH) as markers of hepatic maturation. To enrich the number of SH colonies, the colonies were isolated from dishes and replated. Replated colonies proliferated and the average number of cells per colony was about five times larger at day 9 than at day 1. When the cells were treated with laminin, type IV collagen, a mixture of laminin and type IV collagen, Matrigel or collagen gel (CG), only the cells treated with Matrigel dramatically changed their shape within several days and had reduced growth activity, whereas the cells treated with other ECM did not. HNF4 alpha, HNF6, C/EBP alpha, C/EBP beta, and TO were well expressed in the cells treated with Matrigel. Furthermore, addition of both glucagon and dexamethasone dramatically induced the expression of SDH mRNA and protein in the cells treated with Matrigel. In conclusion, morphological changes of SHs may be correlated with hepatic maturation and basement membrane (BM)-like structure may induce the morphological changes of SHs.
Collapse
Affiliation(s)
- Shinichi Sugimoto
- Department of Pathology, Cancer Research Institute, Sapporo Medical University School of Medicine, Chuo-Ku, S-1, W-17, Sapporo 060-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase. Hepatology 2002; 35:1351-9. [PMID: 12029620 DOI: 10.1053/jhep.2002.33331] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we described that embryonic day 14.5 (E14.5) mouse fetal hepatocytes differentiate to express tyrosine amino transferase (TAT) and glucose-6-phosphatase, which are expressed in the perinatal liver, in response to oncostatin M (OSM) or in high-cell-density culture. However, under such conditions, fetal hepatic cells failed to express genes for adult liver-specific enzymes, such as tryptophan oxygenase (TO). Although phenobarbital (PB) and dimethylsulfoxide (DMSO) have been known to maintain the functions of adult hepatocytes in vitro, they failed to induce TO expression in fetal hepatic cells. Thus far, no system has been developed that reproduces terminal differentiation of fetal hepatocytes in vitro. Here, we describe that extracellular matrices derived from Engelbreth-Holm-Swarm sarcoma (EHS) in combination with OSM or high-cell-density culture induced expression of TO as well as cytochrome P450 genes that are involved in detoxification. However, EHS alone was insufficient to induce expression of TO, although it induced TAT expression in fetal hepatocytes. In addition, high-density culture further augmented differentiation. In conclusion, the combination of signals by cytokines, cell-cell contact, and cell-matrix interaction is required for induction of adult liver functions in fetal hepatocytes in vitro. This primary culture system will be useful for studying the mechanism of liver development.
Collapse
Affiliation(s)
- Akihide Kamiya
- Stem Cell Regulation Project, Kanagawa Academy of Science and Technology, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
39
|
Gómez-Lechón MJ, Donato T, Jover R, Rodriguez C, Ponsoda X, Glaise D, Castell JV, Guguen-Guillouzo C. Expression and induction of a large set of drug-metabolizing enzymes by the highly differentiated human hepatoma cell line BC2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1448-59. [PMID: 11231298 DOI: 10.1046/j.1432-1327.2001.02011.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The BC2 cell line derived from the human hepatocarcinoma, HGB, undergoes a spontaneous sharp differentiation process in culture as it becomes confluent, remains stably differentiated for several weeks, and may return to proliferation thereafter under appropriate density conditions. The relevance of the line as an hepatic model has been evaluated. Cells synthesize a large number of plasma proteins, and rates of glycogen and urea synthesis increase with time of confluency and become sensitive to insulin, reflecting the process of differentiation. Differentiated BC2 cells express the most relevant cytochrome P-450 (CYP) isozyme activities (CYP1A1/2, 2A6, 2B6, 2C9, 2E1, and 3A4) and conjugating enzymes (glutathione S-transferase and UDP-glucuronyltransferase) and also respond to model inducers. Methylcholanthrene induced an increase in CYP1A1/2 enzyme activity (eightfold), phenobarbital induced CYP2B6 activity (1.7-fold), and dexamethasone induced CYP3A4 activity (fivefold). In parallel, expression of the most relevant liver-enriched transcription factors, HNF-4, HNF-1, C/EBP-alpha and C/EBP-beta mRNAs, was significantly increased in differentiated cultures. This increase was largest in HNF-1 and HNF-4, which supports the idea that a redifferentiation process towards the hepatic phenotype takes place. BC2 is an hepatic cell line that is able to express most hepatic functions, especially the drug-biotransformation function, far more efficiently than any previously described human hepatoma cell line.
Collapse
Affiliation(s)
- M J Gómez-Lechón
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital U. La Fe, Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kuzumaki T. Regulation of gene expression by changes in cell adhesion. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2001; 25:71-87. [PMID: 10986719 DOI: 10.1007/978-3-642-59766-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- T Kuzumaki
- Department of Biochemistry, Yamagata University School of Medicine, Japan
| |
Collapse
|
41
|
Gómez-Lechón MJ, Jover R, Donato T, Ponsoda X, Castell JV. Expression of liver specific-genes in hepatocytes cultured in collagen gel matrix. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2001; 25:89-104. [PMID: 10986720 DOI: 10.1007/978-3-642-59766-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M J Gómez-Lechón
- Unidad de Hepatología Experimental, Centro de Investigación, Valencia, Spain
| | | | | | | | | |
Collapse
|
42
|
Apolipoprotein A-I gene expression is upregulated by polychlorinated biphenyls in rat liver. J Nutr Biochem 2000; 11:568-573. [PMID: 11137894 DOI: 10.1016/s0955-2863(00)00121-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Xenobiotics such as polychlorinated biphenyls (PCB) increase serum cholesterol level (especially high density lipoprotein cholesterol) and apolipoprotein A-I (apo A-I) level in rats. The effect of PCB on serum apo A-I and hepatic apo A-I gene expression and the relationship between apo A-I and drug-metabolizing enzymes in rats were investigated. Serum levels of cholesterol and apo A-I were increased by dietary addition of PCB in a dose-dependent manner (0-500 mg/kg diet). Hepatic apo A-I mRNA level was also elevated by PCB in a similar fashion. Serum level of cholesterol gradually increased during feeding period of PCB (200 mg/kg diet, 105 days) and reached a two-fold higher level in PCB group than in controls. The levels of serum apo A-I and hepatic apo A-I mRNA linearly elevated during feeding period of PCB and were increased 3- or 4-fold, respectively, compared to controls. Although acute administration (16 hr) of PCB, 3-methylcholanthrene, and phenobarbital induced cytochrome P-450 gene expression in the liver, hepatic apo A-I gene expression was not increased by these xenobiotics. These results indicated that the serum levels of cholesterol and apo A-I had positive correlation with hepatic level of apo A-I mRNA in rats fed PCB, and that hepatic apo A-I gene expression was dependent upon intake of PCB but was not directly related to the induction of drug-metabolizing enzymes. This study demonstrated that xenobiotic-induced hyper-alpha-cholesterolemia would be caused by the increased apo A-I gene expression and cholesterol synthesis in the liver, coordinately.
Collapse
|
43
|
Pagan R, Sánchez A, Martin I, Llobera M, Fabregat I, Vilaró S. Effects of growth and differentiation factors on the epithelial-mesenchymal transition in cultured neonatal rat hepatocytes. J Hepatol 1999; 31:895-904. [PMID: 10580588 DOI: 10.1016/s0168-8278(99)80292-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Loss of specific differentiation markers, adoption of a migrating morphology and progressive replacement of the cytokeratin network by vimentin intermediate filaments characterize the epithelial-mesenchymal transition of cultured neonatal rat hepatocytes. In a previous study (Hepatology 1997; 25: 598-606), we reported that this process can be differentially regulated by EGF and DMSO, two agents that affect hepatocyte growth and differentiation. The aim of the present study was to determine if growth activation or differential gene expression could explain the differences in EMT observed between these two factors. METHODS We compared the effects of EGF, HGF, TGF-beta1 and DMSO on growth, proto-oncogene expression, epithelial-mesenchymal transition markers and expression of liver transcription factors in cultured neonatal rat hepatocytes using thymidine incorporation, Northern blotting and Western blotting analysis. RESULTS When TGF-beta1 or DMSO was added to the cultures supplemented with EGF and HGF, the mitogenic activity induced by these factors was inhibited. DMSO down-regulated c-myc and c-fos expression. mRNA levels of some liver-specific genes such as albumin, or liver-enriched transcription factors such as C/EBPdelta, HNF-4 and HNF-1beta were slightly different in cultures supplemented with DMSO or TGF-beta1. However, no differences were found when DMSO or TGF-beta1 was added to the cultures supplemented with EGF. Western blotting analysis showed that TGF-beta1 decreased cytokeratin and increased vimentin levels, while DMSO decreased both cytokeratin and vimentin. When DMSO or TGF-beta1 was added in combination with EGF or HGF, both factors maintained the increase in albumin and cytokeratin induced by the growth factors although DMSO, but not TGF-beta1, inhibited vimentin expression. CONCLUSIONS Activation of vimentin expression produced in cultures supplemented with the mitogenic factors (EGF and HGF) is independent of the activation of cell growth, because DMSO but not TGF-beta1 can abolish vimentin synthesis, although both inhibited growth. Moreover, the vimentin expression in these cultures seems to be independent of the mRNA levels of transcription factors associated with the differentiated liver phenotype.
Collapse
Affiliation(s)
- R Pagan
- Department de Biologia Cel.lular, Universitat de Barcelona, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Kawamura A, Yoshida Y, Kimura N, Oda H, Kakinuma A. Phosphorylation/Dephosphorylation steps are crucial for the induction of CYP2B1 and CYP2B2 gene expression by phenobarbital. Biochem Biophys Res Commun 1999; 264:530-6. [PMID: 10529397 DOI: 10.1006/bbrc.1999.1544] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of several protein kinase activators and protein phosphatase inhibitors on the phenobarbital (PB)-induced gene expression of CYP2B1 and CYP2B2 (CYP2B1/2B2) in adult rat hepatocytes were investigated. Insulin, epidermal growth factor, interleukin 6, cAMP, phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, vanadate, and okadaic acid were found to suppress the induction of CYP2B1/2B2 at mRNA and protein levels in hepatocytes. cAMP and vanadate completely suppressed the induction of CYP2B1/2B2 gene expression in both rat hepatocytes and liver. The addition of genistein to vanadate-treated hepatocytes partially recovered the induction of CYP2B1/2B1 gene expression by PB. These results of the present study demonstrate that phosphorylation/dephosphorylation steps are crucial for the induction of CYP2B1/2B2 gene expression by PB.
Collapse
Affiliation(s)
- A Kawamura
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | |
Collapse
|
45
|
Yokogoshi H, Mochizuki H, Nanami K, Hida Y, Miyachi F, Oda H. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. J Nutr 1999; 129:1705-12. [PMID: 10460208 DOI: 10.1093/jn/129.9.1705] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of taurine on hypercholesterolemia induced by feeding a high-cholesterol (HC) diet (10g/kg) to rats was examined. When various amounts of taurine (0.25, 0.5, 1, 2.5, 5, 10, 20, 30, 40 or 50 g/kg diet) were supplemented to HC for 2 wk, serum total cholesterol gradually and significantly decreased in a dose-dependent manner and normalized at the dose of 10 g taurine/kg, compared with the control (cholesterol free) diet group. By contrast, serum HDL-cholesterol was elevated by taurine supplementation. The HC diet caused a significant decrease in the concentration of taurine in serum, liver and heart compared to that in the control group, and the effective dose of supplemental taurine to improve its reduction was 2.5 g/kg diet. In the hypercholesterolemic rats fed the HC diet, the excretion of fecal bile acids and hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) activity and its mRNA level increased significantly, and the supplementation of taurine further enhanced these indexes, indicating an increase in cholesterol degradation. The abundance of mRNA for Apo A-I, one of the main components of HDL, was reduced by HC and recovered by taurine supplementation. Agarose gel electrophoresis revealed that, in hypercholesterolemic rats fed the HC diet, the serum level of the heavier VLDL increased significantly, but taurine repressed this increase and normalized this pattern. Significant correlations were observed between the time- and dose-dependent increases of CYP7A1 gene expression and the decrease of blood cholesterol concentration in rats fed the HC diet supplemented with taurine (time, r = -0.538, P < 0.01, n = 32; dose, r = -0.738, P < 0.001, n = 20). These results suggest that the hypocholesterolemic effects of taurine observed in the hypocholesterolemic rats fed the HC diet were mainly due to the enhancement of cholesterol degradation and the excretion of bile acid.
Collapse
Affiliation(s)
- H Yokogoshi
- School of Food and Nutritional Sciences, The University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Runge D, Runge DM, Daskalakis N, Lubecki KA, Bowen WC, Michalopoulos GK. Matrix-mediated changes in the expression of HNF-4alpha isoforms and in DNA-binding activity of ARP-1 in primary cultures of rat hepatocytes. Biochem Biophys Res Commun 1999; 259:651-655. [PMID: 10364473 DOI: 10.1006/bbrc.1999.0848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we have developed a culture system in which rat hepatocytes dedifferentiate and proliferate and after the addition of EHS-gel redifferentiate. During both developmental stages HNF-4alpha2 mRNA was more abundant than HNF-4alpha1 mRNA. However, Western blot analysis using COS-7 cell-expressed HNF-4alpha1 and HNF-4alpha2 proteins as standards revealed that (i) HNF-4alpha2 protein was not expressed in dedifferentiated hepatocytes and (ii) either HNF-4alpha2 protein or a highly phosphorylated HNF-4alpha1 protein was the dominating isoform in redifferentiated hepatocytes. The changes in HNF4-isoform expression could not be mimicked by DMSO, suggesting them to be matrix specific. Furthermore, DMSO was less efficient than EHS-gel in reinducing liver-specific gene expression. EHS-gel overlay also led to reduction of ARP-1 DNA binding activity, while overall ARP-1 protein levels did not change. These results suggest that EHS-matrix overlay regulates the expression of different HNF-4alpha isoforms on a posttranscriptional level while ARP-1 DNA binding activity is regulated by posttranslational mechanisms.
Collapse
Affiliation(s)
- D Runge
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | | | | | |
Collapse
|
47
|
Matsumoto S, Yamamoto K, Nagano T, Okamoto R, Ibuki N, Tagashira M, Tsuji T. Immunohistochemical study on phenotypical changes of hepatocytes in liver disease with reference to extracellular matrix composition. LIVER 1999; 19:32-8. [PMID: 9928763 DOI: 10.1111/j.1478-3231.1999.tb00006.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS/BACKGROUND Extracellular matrix (ECM) may affect the function and phenotype of hepatocytes. Phenotypic changes of hepatocytes in diseased liver were investigated with reference to ECM composition. METHODS Immunohistochemistry was performed on biopsied liver samples from chronic viral hepatitis (CVH), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and normal patients, using monoclonal antibodies for laminin, type IV collagen, cytokeratin 19 (CK19) and epithelial glycoprotein (EGP), a protein homologous to nidogen. RESULTS In normal controls, both EGP and CK 19 were expressed exclusively on biliary epithelia. Laminin and type IV collagen were expressed around portal bile ducts and blood vessels. Although type IV collagen was expressed in Disse's space, laminin was scarcely expressed. In all pathological livers, both EGP and CK 19 were expressed in proliferated bile ductules. In CVH with piecemeal necrosis, EGP was expressed on periportal hepatocytes, while CK19 expression was limited to a few hepatocytes. Laminin was expressed in Disse's space of periportal sinusoids, where EGP was expressed on hepatocytes. EGP expression on hepatocytes and laminin deposition in Disse's space were rare in PBC and PSC liver. CONCLUSION These results suggest that hepatocytes transform into a phenotype similar to biliary epithelia and, laminin deposition in Disse's space (capillarization of sinusoids) may play a role in this phenotypic change.
Collapse
Affiliation(s)
- S Matsumoto
- First Department of Internal Medicine, Okayama University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Smalley M, Leiper K, Floyd D, Mobberley M, Ryder T, Selden C, Roberts EA, Hodgson H. Behavior of a cell line derived from normal human hepatocytes on non-physiological and physiological-type substrates: evidence for enhancement of secretion of liver-specific proteins by a three-dimensional growth pattern. In Vitro Cell Dev Biol Anim 1999; 35:22-32. [PMID: 10475252 DOI: 10.1007/s11626-999-0040-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The behavior of a recently described cell line, HH25, derived from normal human hepatocytes, has been investigated on several different substrates--tissue-culture plastic, glass, a thin layer of rat-tail collagen I, and thin layers or thick gels of extracellular matrix derived from the Engelbreth-Holm-Swarm murine sarcoma (EHS matrix). Cellular morphology, proliferation, and secretion of three hepatocyte-specific proteins (albumin, alpha1 acid glycoprotein, and alpha1 antitrypsin) have been examined. There were no differences in morphology, proliferation, or differentiated function in the cells on either plastic, glass, collagen, I, or a thin layer of EHS matrix, but on a thick EHS matrix gel the cells altered their morphology (forming three-dimensional colonies with canalicular-like structures) and their production of albumin and alpha1 acid glycoprotein was enhanced. This suggests that the enhanced differentiated function is associated with the morphological change (occurring only on the thick EHS gel) rather than with receptor-mediated cell-matrix interactions (which can also occur on the thin layer of EHS matrix). This cell line is therefore a good in vitro cellular model for the investigation of the roles of morphological changes and of cell-cell and cell-matrix interactions in the control of human hepatocyte behavior without the need for an extensive source of primary tissue.
Collapse
Affiliation(s)
- M Smalley
- Department of Medicine, Royal Postgraduate Medical School, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nakamura T, Mura T, Saito K, Ohsawa T, Akiyoshi H, Sato K. Adenovirus-transferred HNF-3 gamma conserves some liver functions in primary cultured hepatocytes of adult rats. Biochem Biophys Res Commun 1998; 253:352-7. [PMID: 9878541 DOI: 10.1006/bbrc.1998.9797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte nuclear factor-3 (HNF-3) isoforms are key factors for regulation of gene expression and differentiation in hepatocytes. HNF-3gamma is abundantly expressed in the mature liver, but down-regulated in primary cultured hepatocytes, in which some other hepatic gene expressions are also decreased. In this study, the primary hepatocytes were infected with the recombinant adenovirus carrying HNF-3gamma gene (AxCAHNF3gamma), and this led to marked induction of the HNF-3gamma gene. As a result, the expressions of albumin, catalase, and ornithine transcarbamylase (OTC) genes were also recovered to significant levels in the AxCAHNF3gamma-infected hepatocytes. Moreover, hepatocyte proliferation stimulated by epidermal growth factor (EGF) and insulin was also inhibited by AxCAHNF3gamma infection. Our results demonstrate that the enforced expression of HNF-3gamma gene can lead to conservation of some original liver functions in the primary cultured hepatocytes accompanied by morphological differentiation and growth inhibition.
Collapse
Affiliation(s)
- T Nakamura
- Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Ouchi H, Otsu K, Kuzumaki T, Iuchi Y, Ishikawa K. Synergistic induction by collagen and fibronectin of liver-specific genes in rat primary cultured hepatocytes. Arch Biochem Biophys 1998; 358:58-62. [PMID: 9750164 DOI: 10.1006/abbi.1998.0841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix plays an important role for maintaining liver functions. We examined the effects of type I collagen and fibronectin on the expression of liver-specific genes in rat primary hepatocytes. When primary culture hepatocytes were overlaid with a type I collagen-gel, the expression of liver-specific genes (tyrosine aminotransferase, aldolase B, and albumin) increased by 4-5 times, compared with not overlaid hepatocytes. In contrast, the expression of non-liver-specific genes (GAPDH and beta-actin) was suppressed under the same conditions. The addition of fibronectin together with type I collagen-gel further enhanced the expression of liver-specific genes by 1.4-1.8 times. The addition of GRGDS peptide instead of fibronectin with the collagen-gel had a similar effect on hepatic gene expression to that of fibronectin. Addition of fibronectin alone exhibited had no effect on gene expression. These results suggest that type I collagen and fibronectin synergistically induce liver-specific genes.
Collapse
Affiliation(s)
- H Ouchi
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata, 990-9585, Japan
| | | | | | | | | |
Collapse
|