1
|
Shteinfer-Kuzmine A, Santhanam M, Shoshan-Barmatz V. VDAC1-Based Peptides as Potential Modulators of VDAC1 Interactions with Its Partners and as a Therapeutic for Cancer, NASH, and Diabetes. Biomolecules 2024; 14:1139. [PMID: 39334905 PMCID: PMC11430116 DOI: 10.3390/biom14091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
This review presents current knowledge related to the voltage-dependent anion channel-1 (VDAC1) as a multi-functional mitochondrial protein that acts in regulating both cell life and death. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows control of metabolic cross-talk between the mitochondria and the rest of the cell, and also enables its interaction with proteins that are involved in metabolic, cell death, and survival pathways. VDAC1's interactions with over 150 proteins can mediate and regulate the integration of mitochondrial functions with cellular activities. To target these protein-protein interactions, VDAC1-derived peptides have been developed. This review focuses specifically on cell-penetrating VDAC1-based peptides that were developed and used as a "decoy" to compete with VDAC1 for its VDAC1-interacting proteins. These peptides interfere with VDAC1 interactions, for example, with metabolism-associated proteins such as hexokinase (HK), or with anti-apoptotic proteins such as Bcl-2 and Bcl-xL. These and other VDAC1-interacting proteins are highly expressed in many cancers. The VDAC1-based peptides in cells in culture selectively affect cancerous, but not non-cancerous cells, inducing cell death in a variety of cancers, regardless of the cancer origin or genetics. They inhibit cell energy production, eliminate cancer stem cells, and act very rapidly and at low micro-molar concentrations. The activity of these peptides has been validated in several mouse cancer models of glioblastoma, lung, and breast cancers. Their anti-cancer activity involves a multi-pronged attack targeting the hallmarks of cancer. They were also found to be effective in treating non-alcoholic fatty liver disease and diabetes mellitus. Thus, VDAC1-based peptides, by targeting VDAC1-interacting proteins, offer an affordable and innovative new conceptual therapeutic paradigm that can potentially overcome heterogeneity, chemoresistance, and invasive metastatic formation.
Collapse
Affiliation(s)
- Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| |
Collapse
|
2
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
3
|
Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P, Pandey GK. VDAC and its interacting partners in plant and animal systems: an overview. Crit Rev Biotechnol 2020; 40:715-732. [PMID: 32338074 DOI: 10.1080/07388551.2020.1756214] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular trafficking between different subcellular compartments is the key for normal cellular functioning. Voltage-dependent anion channels (VDACs) are small-sized proteins present in the outer mitochondrial membrane, which mediate molecular trafficking between mitochondria and cytoplasm. The conductivity of VDAC is dependent on the transmembrane voltage, its oligomeric state and membrane lipids. VDAC acts as a convergence point to a diverse variety of mitochondrial functions as well as cell survival. This functional diversity is attained due to their interaction with a plethora of proteins inside the cell. Although, there are hints toward functional conservation/divergence between animals and plants; knowledge about the functional role of the VDACs in plants is still limited. We present here a comparative overview to provide an integrative picture of the interactions of VDAC with different proteins in both animals and plants. Also discussed are their physiological functions from the perspective of cellular movements, signal transduction, cellular fate, disease and development. This in-depth knowledge of the biological importance of VDAC and its interacting partner(s) will assist us to explore their function in the applied context in both plant and animal.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
4
|
Tulha J, Lucas C. Saccharomyces cerevisiae mitochondrial Por1/yVDAC1 (voltage-dependent anion channel 1) interacts physically with the MBOAT O-acyltransferase Gup1/HHATL in the control of cell wall integrity and programmed cell death. FEMS Yeast Res 2019; 18:5089977. [PMID: 30184078 DOI: 10.1093/femsyr/foy097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023] Open
Abstract
Gup1 is the yeast counterpart of the high eukaryotes HHATL. This and the close homologue Gup2/HHAT regulate the Hedgehog morphogenic, developmental pathway. In yeasts, a similar paracrine pathway is not known though the Δgup1 mutant is associated with morphology and proliferation/death processes. As a first step toward identifying the actual molecular/enzymatic function of Gup1, this work identified by co-immunoprecipitation the yeast mitochondria membrane VDAC1/Por1 as a physical partner of Gup1. Gup1 locates in the ER and the plasma membrane. It was now confirmed to further locate, as Por1, in the mitochondrial sub-cellular fraction. The yeast Por1-Gup1 association was found important for (i) the sensitivity to cell wall perturbing agents and high temperature, (ii) the differentiation into structured colonies, (iii) the size achieved by multicellular aggregates/mats and (iv) acetic-acid-induced Programmed Cell Death. Moreover, the absence of Gup1 increased the levels of POR1 mRNA, while decreasing the amounts of intracellular Por1, which was concomitantly previously known to be secreted by the mutant but not by wt. Additionally, Por1 patchy distribution in the mitochondrial membrane was evened. Results suggest that Por1 and Gup1 collaborate in the control of colony morphology and mat development, but more importantly of cellular integrity and death.
Collapse
Affiliation(s)
- Joana Tulha
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal
| | - Cândida Lucas
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, 4710-054 Braga, Portugal.,Institute of Science and Innovation on Bio-sustainability (IB-S), University of Minho, 4710-054 Braga, Portugal
| |
Collapse
|
5
|
Leggio L, Guarino F, Magrì A, Accardi-Gheit R, Reina S, Specchia V, Damiano F, Tomasello MF, Tommasino M, Messina A. Mechanism of translation control of the alternative Drosophila melanogaster Voltage Dependent Anion-selective Channel 1 mRNAs. Sci Rep 2018; 8:5347. [PMID: 29593233 PMCID: PMC5871876 DOI: 10.1038/s41598-018-23730-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic porin, also called the Voltage Dependent Anion-selective Channel (VDAC), is the main pore-forming protein of the outer mitochondrial membrane. In Drosophila melanogaster, a cluster of genes evolutionarily linked to VDAC is present on chromosome 2L. The main VDAC isoform, called VDAC1 (Porin1), is expressed from the first gene of the cluster. The porin1 gene produces two splice variants, 1A-VDAC and 1B-VDAC, with the same coding sequence but different 5' untranslated regions (UTRs). Here, we studied the influence of the two 5' UTRs, 1A-5' UTR and 1B-5' UTR, on transcription and translation of VDAC1 mRNAs. In porin-less yeast cells, transformation with a construct carrying 1A-VDAC results in the expression of the corresponding protein and in complementation of a defective cell phenotype, whereas the 1B-VDAC sequence actively represses VDAC expression. Identical results were obtained using constructs containing the two 5' UTRs upstream of the GFP reporter. A short region of 15 nucleotides in the 1B-5' UTR should be able to pair with an exposed helix of 18S ribosomal RNA (rRNA), and this interaction could be involved in the translational repression. Our data suggest that contacts between the 5' UTR and 18S rRNA sequences could modulate the translation of Drosophila 1B-VDAC mRNA. The evolutionary significance of this finding is discussed.
Collapse
Affiliation(s)
- L Leggio
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - F Guarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy.,National Institute of Biostructures and Biosystems (INBB), Catania, Italy
| | - A Magrì
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy
| | - R Accardi-Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, 69372, France
| | - S Reina
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 95123, Italy
| | - V Specchia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - F Damiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - M F Tomasello
- IBB-CNR, Institute of Biostructure and Bioimaging, Section of Catania, Via Paolo Gaifami, 18-95126, Catania, Italy
| | - M Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, 69372, France
| | - A Messina
- Department of Biological, University of Catania, Geological and Environmental Sciences, Catania, 95125, Italy. .,National Institute of Biostructures and Biosystems (INBB), Catania, Italy.
| |
Collapse
|
6
|
Shoshan-Barmatz V, Maldonado EN, Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017; 1:11-36. [PMID: 30542671 PMCID: PMC6287957 DOI: 10.15698/cst2017.10.104] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review presents current knowledge related to VDAC1 as a multi-functional mitochondrial protein acting on both sides of the coin, regulating cell life and death, and highlighting these functions in relation to disease. It is now recognized that VDAC1 plays a crucial role in regulating the metabolic and energetic functions of mitochondria. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows the control of metabolic cross-talk between mitochondria and the rest of the cell and also enables interaction of VDAC1 with proteins involved in metabolic and survival pathways. Along with regulating cellular energy production and metabolism, VDAC1 is also involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. VDAC1 functions in the release of apoptotic proteins located in the mitochondrial intermembrane space via oligomerization to form a large channel that allows passage of cytochrome c and AIF and their release to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also regulates apoptosis via interactions with apoptosis regulatory proteins, such as hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. This review also provides insight into VDAC1 function in Ca2+ homeostasis, oxidative stress, and presents VDAC1 as a hub protein interacting with over 100 proteins. Such interactions enable VDAC1 to mediate and regulate the integration of mitochondrial functions with cellular activities. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
7
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A, Arif T. Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics. Front Oncol 2017; 7:154. [PMID: 28824871 PMCID: PMC5534932 DOI: 10.3389/fonc.2017.00154] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 06/28/2017] [Indexed: 01/17/2023] Open
Abstract
Cancer cells share several properties, high proliferation potential, reprogramed metabolism, and resistance to apoptotic cues. Acquiring these hallmarks involves changes in key oncogenes and non-oncogenes essential for cancer cell survival and prosperity, and is accompanied by the increased energy requirements of proliferating cells. Mitochondria occupy a central position in cell life and death with mitochondrial bioenergetics, biosynthesis, and signaling are critical for tumorigenesis. Voltage-dependent anion channel 1 (VDAC1) is situated in the outer mitochondrial membrane (OMM) and serving as a mitochondrial gatekeeper. VDAC1 allowing the transfer of metabolites, fatty acid ions, Ca2+, reactive oxygen species, and cholesterol across the OMM and is a key player in mitochondrial-mediate apoptosis. Moreover, VDAC1 serves as a hub protein, interacting with diverse sets of proteins from the cytosol, endoplasmic reticulum, and mitochondria that together regulate metabolic and signaling pathways. The observation that VDAC1 is over-expressed in many cancers suggests that the protein may play a pivotal role in cancer cell survival. However, VDAC1 is also important in mitochondria-mediated apoptosis, mediating release of apoptotic proteins and interacting with anti-apoptotic proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-xL, and hexokinase (HK), which are also highly expressed in many cancers. Strategically located in a “bottleneck” position, controlling metabolic homeostasis and apoptosis, VDAC1 thus represents an emerging target for anti-cancer drugs. This review presents an overview on the multi-functional mitochondrial protein VDAC1 performing several functions and interacting with distinct sets of partners to regulate both cell life and death, and highlights the importance of the protein for cancer cell survival. We address recent results related to the mechanisms of VDAC1-mediated apoptosis and the potential of associated proteins to modulate of VDAC1 activity, with the aim of developing VDAC1-based approaches. The first strategy involves modification of cell metabolism using VDAC1-specific small interfering RNA leading to inhibition of cancer cell and tumor growth and reversed oncogenic properties. The second strategy involves activation of cancer cell death using VDAC1-based peptides that prevent cell death induction by anti-apoptotic proteins. Finally, we discuss the potential therapeutic benefits of treatments and drugs leading to enhanced VDAC1 expression or targeting VDAC1 to induce apoptosis.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yakov Krelin
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
8
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
Trindade D, Pereira C, Chaves SR, Manon S, Côrte-Real M, Sousa MJ. VDAC regulates AAC-mediated apoptosis and cytochrome c release in yeast. MICROBIAL CELL 2016; 3:500-510. [PMID: 28357318 PMCID: PMC5348984 DOI: 10.15698/mic2016.10.533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial outer membrane permeabilization is a key event in apoptosis
processes leading to the release of lethal factors. We have previously shown
that absence of the ADP/ATP carrier (AAC) proteins (yeast orthologues of
mammalian ANT proteins) increased the resistance of yeast cells to acetic acid,
preventing MOMP and the release of cytochrome c from
mitochondria during acetic acid - induced apoptosis. On the other hand, deletion
of POR1 (yeast voltage-dependent anion channel - VDAC)
increased the sensitivity of yeast cells to acetic acid. In the present work, we
aimed to further characterize the role of yeast VDAC in acetic acid - induced
apoptosis and assess if it functionally interacts with AAC proteins. We found
that the sensitivity to acetic acid resulting from POR1
deletion is completely abrogated by the absence of AAC proteins, and propose
that Por1p acts as a negative regulator of acetic acid - induced cell death by a
mechanism dependent of AAC proteins, by acting on AAC - dependent cytochrome
c release. Moreover, we show that Por1p has a role in
mitochondrial fusion that, contrary to its role in apoptosis, is not affected by
the absence of AAC, and demonstrate that mitochondrial network fragmentation is
not sufficient to induce release of cytochrome c or sensitivity
to acetic acid - induced apoptosis. This work enhances our understanding on
cytochrome c release during cell death, which may be relevant
in pathological scenarios where MOMP is compromised.
Collapse
Affiliation(s)
- Dário Trindade
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal. ; Institut de Biochimie et de Génétique Cellulaires (IBGC), UMR5095 CNRS & Université de Bordeaux, 1 Rue de Camille Saint-Saëns, 33077 Bordeaux, France
| | - Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal. ; IBMC-Institute for Molecular and Cell Biology, University of Porto, Porto, 4200-465, Portugal
| | - Susana R Chaves
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires (IBGC), UMR5095 CNRS & Université de Bordeaux, 1 Rue de Camille Saint-Saëns, 33077 Bordeaux, France
| | - Manuela Côrte-Real
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria J Sousa
- Centro de Biologia Molecular e Ambiental (CBMA), Departamento de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
11
|
Mato E, Barceló-Batllori S, Orera I, Selva L, Corra M, González C, Bell O, Lerma E, Moral A, Pérez JI, de Leiva A. The proteomic 2D-DIGE approach reveals the protein voltage-dependent anion channel 2 as a potential therapeutic target in epithelial thyroid tumours. Mol Cell Endocrinol 2015; 404:37-45. [PMID: 25617717 DOI: 10.1016/j.mce.2015.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/15/2015] [Indexed: 02/08/2023]
Abstract
We investigated the role of VDAC2 in human epithelial thyroid tumours using proteomic 2D-DIGE analysis and qRT-PCR. We found a significant up-regulation of VDAC2 in thyroid tumours and in thyroid tumour cell lines (TPC-1 and CAL-62). We did not detect overexpression of VDAC2 in a normal thyroid cell line (Nthy-ori 3-1). Silico analysis revealed that two proteins, BAK1 and BAX, had a strong relationship with VDAC2. BAK1 gene expression showed down-regulation in thyroid tumours (follicular and papillary tumours) and in TPC-1 and CAL-62 cell lines. Transient knockdown of VDAC2 in TPC-1 and CAL-62 promoted upregulation of the BAK1 gene and protein expression, and increased susceptibility to sorafenib treatment. Overexpression of the BAK1 gene in CAL-62 showed lower sorafenib sensitivity than VDAC2 knockdown cells. We propose the VDAC2 gene as a novel therapeutic target in these tumours.
Collapse
Affiliation(s)
- Eugenia Mato
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain.
| | - Sílvia Barceló-Batllori
- Proteomics Unit, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Irene Orera
- Centro Investigaciones Biomédicas Aragón (CIBA), Instituto Aragonés de Ciencias de la Salud-Instituto de Investigación Sanitaria Aragón (IACS-IIS), Zaragoza, Spain
| | - Laia Selva
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Martina Corra
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Cintia González
- EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain
| | - Olga Bell
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| | - Enrique Lerma
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, Autonomous University, Barcelona, Spain
| | - Antonio Moral
- General Surgery, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | | | - Alberto de Leiva
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institut d'Investigació Biomèdica Sant Pau (IIB), Autonomous University, Barcelona, Spain; EDUAB-HSP Neoplasia Thyroid Study Group, IIB, Autonomous University, Barcelona, Spain
| |
Collapse
|
12
|
Shoshan-Barmatz V, Ben-Hail D, Admoni L, Krelin Y, Tripathi SS. The mitochondrial voltage-dependent anion channel 1 in tumor cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2547-75. [PMID: 25448878 DOI: 10.1016/j.bbamem.2014.10.040] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 02/06/2023]
Abstract
VDAC1 is found at the crossroads of metabolic and survival pathways. VDAC1 controls metabolic cross-talk between mitochondria and the rest of the cell by allowing the influx and efflux of metabolites, ions, nucleotides, Ca2+ and more. The location of VDAC1 at the outer mitochondrial membrane also enables its interaction with proteins that mediate and regulate the integration of mitochondrial functions with cellular activities. As a transporter of metabolites, VDAC1 contributes to the metabolic phenotype of cancer cells. Indeed, this protein is over-expressed in many cancer types, and silencing of VDAC1 expression induces an inhibition of tumor development. At the same time, along with regulating cellular energy production and metabolism, VDAC1 is involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. The engagement of VDAC1 in the release of apoptotic proteins located in the inter-membranal space involves VDAC1 oligomerization that mediates the release of cytochrome c and AIF to the cytosol, subsequently leading to apoptotic cell death. Apoptosis can also be regulated by VDAC1, serving as an anchor point for mitochondria-interacting proteins, such as hexokinase (HK), Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. By binding to VDAC1, HK provides both a metabolic benefit and apoptosis-suppressive capacity that offer the cell a proliferative advantage and increase its resistance to chemotherapy. Thus, these and other functions point to VDAC1 as an excellent target for impairing the re-programed metabolism of cancer cells and their ability to evade apoptosis. Here, we review current evidence pointing to the function of VDAC1 in cell life and death, and highlight these functions in relation to both cancer development and therapy. In addressing the recently solved 3D structures of VDAC1, this review will point to structure-function relationships of VDAC as critical for deciphering how this channel can perform such a variety of roles, all of which are important for cell life and death. Finally, this review will also provide insight into VDAC function in Ca2+ homeostasis, protection against oxidative stress, regulation of apoptosis and involvement in several diseases, as well as its role in the action of different drugs. We will discuss the use of VDAC1-based strategies to attack the altered metabolism and apoptosis of cancer cells. These strategies include specific siRNA able to impair energy and metabolic homeostasis, leading to arrested cancer cell growth and tumor development, as well VDAC1-based peptides that interact with anti-apoptotic proteins to induce apoptosis, thereby overcoming the resistance of cancer cell to chemotherapy. Finally, small molecules targeting VDAC1 can induce apoptosis. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Danya Ben-Hail
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Lee Admoni
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yakov Krelin
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shambhoo Sharan Tripathi
- Department of Life Sciences, and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
13
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
14
|
Guzun R, Gonzalez-Granillo M, Karu-Varikmaa M, Grichine A, Usson Y, Kaambre T, Guerrero-Roesch K, Kuznetsov A, Schlattner U, Saks V. Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1545-54. [PMID: 22244843 DOI: 10.1016/j.bbamem.2011.12.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 12/29/2011] [Indexed: 01/06/2023]
Abstract
This review describes the recent experimental data on the importance of the VDAC-cytoskeleton interactions in determining the mechanisms of energy and metabolite transfer between mitochondria and cytoplasm in cardiac cells. In the intermembrane space mitochondrial creatine kinase connects VDAC with adenine nucleotide translocase and ATP synthase complex, on the cytoplasmic side VDAC is linked to cytoskeletal proteins. Applying immunofluorescent imaging and Western blot analysis we have shown that β2-tubulin coexpressed with mitochondria is highly important for cardiac muscle cells mitochondrial metabolism. Since it has been shown by Rostovtseva et al. that αβ-heterodimer of tubulin binds to VDAC and decreases its permeability, we suppose that the β-tubulin subunit is bound on the cytoplasmic side and α-tubulin C-terminal tail is inserted into VDAC. Other cytoskeletal proteins, such as plectin and desmin may be involved in this process. The result of VDAC-cytoskeletal interactions is selective restriction of the channel permeability for adenine nucleotides but not for creatine or phosphocreatine that favors energy transfer via the phosphocreatine pathway. In some types of cancer cells these interactions are altered favoring the hexokinase binding and thus explaining the Warburg effect of increased glycolytic lactate production in these cells. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Rita Guzun
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
VDAC proteomics: post-translation modifications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1520-5. [PMID: 22120575 DOI: 10.1016/j.bbamem.2011.11.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/03/2011] [Accepted: 11/11/2011] [Indexed: 01/07/2023]
Abstract
Voltage-dependent anion channels are abundant mitochondrial outer membrane proteins expressed in three isoforms, VDAC1-3, and are considered as "mitochondrial gatekeepers". Most tissues express all three isoforms. The functions of VDACs are several-fold, ranging from metabolite and energy exchange to apoptosis. Some of these functions depend on or are affected by interaction with other proteins in the cytosol and intermembrane space. Furthermore, the function of VDACs, as well as their interaction with other proteins, is affected by posttranslational modification, mainly phosphorylation. This review summarizes recent findings on posttranslational modification of VDACs and discusses the physiological outcome of these modifications. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
|
16
|
Asmarinah, Nuraini T, Sumarsih T, Paramita R, Saleh MI, Narita V, Moeloek N, Steger K, Hinsch KD, Hinsch E. Mutations in exons 5, 7 and 8 of the human voltage-dependent anion channel type 3 (VDAC3) gene in sperm with low motility. Andrologia 2011. [DOI: 10.1111/j.1439-0272.2010.01101.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Yang XY, Chen ZW, Xu T, Qu Z, Pan XD, Qin XH, Ren DT, Liu GQ. Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature. THE PLANT CELL 2011; 23:1093-106. [PMID: 21406623 PMCID: PMC3082256 DOI: 10.1105/tpc.110.082420] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/10/2011] [Accepted: 02/21/2011] [Indexed: 05/17/2023]
Abstract
The involvement of cytoskeleton-related proteins in regulating mitochondrial respiration has been revealed in mammalian cells. However, it is unclear if there is a relationship between the microtubule-based motor protein kinesin and mitochondrial respiration. In this research, we demonstrate that a plant-specific kinesin, Kinesin-like protein 1 (KP1; At KIN14 h), is involved in respiratory regulation during seed germination at a low temperature. Using in vitro biochemical methods and in vivo transgenic cell observations, we demonstrate that KP1 is able to localize to mitochondria via its tail domain (C terminus) and specifically interacts with a mitochondrial outer membrane protein, voltage-dependent anion channel 3 (VDAC3). Targeting of the KP1-tail to mitochondria is dependent on the presence of VDAC3. When grown at 4° C, KP1 dominant-negative mutants (TAILOEs) and vdac3 mutants exhibited a higher seed germination frequency. All germinating seeds of the kp1 and vdac3 mutants had increased oxygen consumption; the respiration balance between the cytochrome pathway and the alternative oxidase pathway was disrupted, and the ATP level was reduced. We conclude that the plant-specific kinesin, KP1, specifically interacts with VDAC3 on the mitochondrial outer membrane and that both KP1 and VDAC3 regulate aerobic respiration during seed germination at low temperature.
Collapse
|
18
|
Anflous-Pharayra K, Lee N, Armstrong DL, Craigen WJ. VDAC3 has differing mitochondrial functions in two types of striated muscles. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:150-6. [PMID: 20875390 PMCID: PMC2998388 DOI: 10.1016/j.bbabio.2010.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Voltage-dependent anion channel (VDAC) is an abundant mitochondrial outer membrane protein. In mammals, three VDAC isoforms have been characterized. We have previously reported alterations in the function of mitochondria when assessed in situ in different muscle types in VDAC1 deficient mice (Anflous et al., 2001). In the present report we extend the study to VDAC3 deficient muscles and measure the respiratory enzyme activity in both VDAC1 and VDAC3 deficient muscles. While in the heart the absence of VDAC3 causes a decrease in the apparent affinity of in situ mitochondria for ADP, in the gastrocnemius, a mixed glycolytic/oxidative muscle, the affinity of in situ mitochondria for ADP remains unchanged. The absence of VDAC1 causes multiple defects in respiratory complex activities in both types of muscle. However, in VDAC3 deficient mice the defect is restricted to the heart and only to complex IV. These functional alterations correlate with structural aberrations of mitochondria. These results demonstrate that, unlike VDAC1, there is muscle-type specificity for VDAC3 function and therefore in vivo these two isoforms may fulfill different physiologic functions.
Collapse
Affiliation(s)
- Keltoum Anflous-Pharayra
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
19
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 579] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
20
|
Neumann D, Bückers J, Kastrup L, Hell SW, Jakobs S. Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. PMC BIOPHYSICS 2010; 3:4. [PMID: 20205711 PMCID: PMC2838807 DOI: 10.1186/1757-5036-3-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 03/05/2010] [Indexed: 11/10/2022]
Abstract
The voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is the major transport channel mediating the transport of metabolites, including ATP, across the mitochondrial outer membrane. Biochemical data demonstrate the binding of the cytosolic protein hexokinase-I to VDAC, facilitating the direct access of hexokinase-I to the transported ATP. In human cells, three hVDAC isoforms have been identified. However, little is known on the distribution of these isoforms within the outer membrane of mitochondria and to what extent they colocalize with hexokinase-I. In this study we show that whereas hVDAC1 and hVDAC2 are localized predominantly within the same distinct domains in the outer membrane, hVDAC3 is mostly uniformly distributed over the surface of the mitochondrion. We used two-color stimulated emission depletion (STED) microscopy enabling a lateral resolution of ~40 nm to determine the detailed sub-mitochondrial distribution of the three hVDAC isoforms and hexokinase-I. Individual hVDAC and hexokinase-I clusters could thus be resolved which were concealed in the confocal images. Quantitative colocalization analysis of two-color STED images demonstrates that within the attained resolution, hexokinase-I and hVDAC3 exhibit a higher degree of colocalization than hexokinase-I with either hVDAC1 or hVDAC2. Furthermore, a substantial fraction of the mitochondria-bound hexokinase-I pool does not colocalize with any of the three hVDAC isoforms, suggesting a more complex interplay of these proteins than previously anticipated. This study demonstrates that two-color STED microscopy in conjunction with quantitative colocalization analysis is a powerful tool to study the complex distribution of membrane proteins in organelles such as mitochondria.PACS: 87.16.Tb, 87.85.Rs.
Collapse
Affiliation(s)
- Daniel Neumann
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Johanna Bückers
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lars Kastrup
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W Hell
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
22
|
Abstract
The eukaryotic VDAC (voltage-dependent anion channel) is a pore-forming protein originally discovered in the outer membrane of mitochondria. It has been established as a key player in mitochondrial metabolism and ion signalling. In addition, in recent years, it has also been proposed that VDAC is present in extra-mitochondrial membranes, and it has been related to cytoskeletal structures. However, little is known about the presence and intracellular localization of VDAC subtypes in mammalian gametes. In the present study, we confirm the synthesis of VDAC1 and 2 subtypes in GV (germinal vesicle) and MII (meiosis II) stage porcine oocytes as well as their protein expression. A shift in the abundance of immunoreactive 32 kDa VDAC protein between GV and MII stage oocytes was observed with anti-VDAC2 antibody. Furthermore, subcellular localization by confocal laser microscopy demonstrated fluorescent labelling of VDAC1 over the entire oocyte surface, suggesting the presence of VDAC1 in the porcine oocyte plasma membrane and around the cortical area. Anti-VDAC2 immunostaining yielded ring-like clusters of structures distributed on the cortical area in some GV, but not in MII, stage oocytes. These results are the first data obtained for VDAC in mammalian female gametes and provide the basis for studying protein–protein interactions, distribution and possible functions of VDAC subtypes during maturation and fertilization of mammalian oocytes.
Collapse
|
23
|
Guerrero K, Monge C, Brückner A, Puurand U, Kadaja L, Käämbre T, Seppet E, Saks V. Study of possible interactions of tubulin, microtubular network, and STOP protein with mitochondria in muscle cells. Mol Cell Biochem 2009; 337:239-49. [PMID: 19888554 DOI: 10.1007/s11010-009-0304-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
We studied possible connections of tubulin, microtubular system, and microtubular network stabilizing STOP protein with mitochondria in rat and mouse cardiac and skeletal muscles by confocal microscopy and oxygraphy. Intracellular localization and content of tubulin was found to be muscle type-specific, with high amounts in oxidative muscles, and much lower in glycolytic skeletal muscle. STOP protein localization and content in muscle cells was also muscle type-specific. In isolated heart mitochondria, addition of 1 microM tubulin heterodimer increased apparent K(m) for ADP significantly. Dissociation of microtubular system into free tubulin by colchicine treatment only slightly decreased initially high apparent K(m) for ADP in permeabilized cells, and diffusely distributed free tubulin stayed inside the cells, obviously connected to the intracellular structures. To identify the genes that are specific for oxidative muscle, we developed and applied a method of kindred DNA. The results of sequencing and bioinformatic analysis of isolated cDNA pool common for heart and m. soleus showed that in adult mice the beta-tubulin gene is expressed predominantly in oxidative muscle cells. It is concluded that whereas dimeric tubulin may play a significant role in regulation of mitochondrial outer membrane permeability in the cells in vivo, its organization into microtubular network has a minor significance on that process.
Collapse
Affiliation(s)
- Karen Guerrero
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E221, Joseph Fourier University, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bay DC, Court DA. Effects of ergosterol on the structure and activity of Neurospora mitochondrial porin in liposomes. Can J Microbiol 2009; 55:1275-83. [DOI: 10.1139/w09-088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial porins (also known as voltage-dependent anion-selective channels (VDACs)) regulate and contribute to cellular metabolism. These proteins copurify with sterols, and some purified forms of the protein require sterol for insertion into planar artificial membranes. Recently, interactions between detergent-solubilized mitochondrial porins and sterols have been detected by NMR and spectroscopic methods, but the effects of sterols on pore function remained to be assessed. Therefore, in this work, a freeze–thaw technique was used to introduce recombinant Neurospora porin into liposomes containing, or lacking, the native fungal sterol ergosterol. In both types of liposomes, insertion of the protein converts it to a protease-resistant state and low levels of dimeric and trimeric forms are observed. There are only minor differences between the secondary structural components of the protein in the presence or absence of sterol. Ergosterol in proteoliposomes alters their osmotic responses to sucrose, possibly due to increased membrane rigidity or interactions with the protein that were not revealed by the methods used in this study. The presence of ergosterol is associated with an increased change in conformation and loss of function of liposome-embedded porin at high temperature. Taken with other evidence for direct interactions of sterols with porins, these results support a link between these two molecules in mitochondrial membrane activity.
Collapse
Affiliation(s)
- Denice C. Bay
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Deborah A. Court
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
25
|
Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I. Mitochondrial dysfunction increases allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:5379-87. [PMID: 19786549 DOI: 10.4049/jimmunol.0900228] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prevalence of allergies and asthma among the world's population has been steadily increasing due to environmental factors. It has been described that exposure to ozone, diesel exhaust particles, or tobacco smoke exacerbates allergic inflammation in the lungs. These environmental oxidants increase the levels of cellular reactive oxygen species (ROS) and induce mitochondrial dysfunction in the airway epithelium. In this study, we investigated the involvement of preexisting mitochondrial dysfunction in the exacerbation of allergic airway inflammation. After cellular oxidative insult induced by ragweed pollen extract (RWE) exposure, we have identified nine oxidatively damaged mitochondrial respiratory chain-complex and associated proteins. Out of these, the ubiquinol-cytochrome c reductase core II protein (UQCRC2) was found to be implicated in mitochondrial ROS generation from respiratory complex III. Mitochondrial dysfunction induced by deficiency of UQCRC2 in airway epithelium of sensitized BALB/c mice prior the RWE challenge increased the Ag-induced accumulation of eosinophils, mucin levels in the airways, and bronchial hyperresponsiveness. Deficiency of UQCRC1, another oxidative damage-sensitive complex III protein, did not significantly alter cellular ROS levels or the intensity of RWE-induced airway inflammation. These observations suggest that preexisting mitochondrial dysfunction induced by oxidant environmental pollutants is responsible for the severe symptoms in allergic airway inflammation. These data also imply that mitochondrial defects could be risk factors and may be responsible for severe allergic disorders in atopic individuals.
Collapse
Affiliation(s)
- Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The eukaryotic porin or Voltage Dependent Anion-selective Channels (VDAC) is the protein forming the aqueous pore channel in the mitochondrial outer membrane. It can modulate the energy-dependent metabolism of the cell forming a diffusion barrier to ions, adenine-nucleotides and other metabolites and it is probably involved in the regulation of apoptotic-relevant events. For these reasons, VDAC co-responsibility in unphysiological events leading to important pathologies such as onset or sustainment of cancer has been envisaged very early. The knowledge of the VDAC atomic structure is thus a relevant step in the design of modern drugs acting upon the mitochondrial function and its related apoptotic balance. This goal, despite many efforts, has not been gained until now. Several predictive or descriptive techniques have been employed to obtain models or representations of the pore-structure. The results obtained are reported in this review. The emerging picture arising from these many results is coherent and sufficiently informative. From these efforts it appears that VDAC is functionally monomeric but can cluster in tight but regular groups; it is asymmetric with larger exposed domains on the cytosolic side of the outer mitochondrial membrane; the diameter of the pore is between 2.5-3.0 nm and it is apparently free from obstructions (in the open state); the channel wall is mainly formed by typical amphipathic beta-strands; mobile components (the N-terminal ?) can have functional relevance to the pore regulation.
Collapse
|
27
|
Molecular and functional characterization of VDAC2 purified from mammal spermatozoa. Biosci Rep 2009; 29:351-62. [PMID: 18976238 DOI: 10.1042/bsr20080123] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
VDAC (voltage-dependent anion channel) is the pore-forming protein located in the outer mitochondrial membrane. In higher eukaryotes, three genes encode VDAC. Nevertheless, the knowledge of VDAC isoforms is mainly restricted to VDAC1, the only isoform that has been characterized from living tissues to date. We have highly enriched the isoform VDAC2 using as starting material bovine spermatozoa. VDAC2 was obtained in the hydroxyapatite/celite pass-through of sperm proteins solubilized with Triton X-100. This fraction showed in SDS/PAGE two major bands and one faint band in the molecular mass range of 30-35 kDa. Two-dimensional electrophoresis resolved these bands in ten spots with various Coomassie Blue staining intensities. Western-blot analysis with antibodies monospecific for each isoform and MS peptide sequencing showed that the main protein resolved in electrophoresis was VDAC2 with minor contaminations of the other isoforms. Proteomic analysis of the higher molecular mass VDAC2 protein allowed the coverage of the whole protein with the exception of the tripeptide A24AR26. In the same material, the presence of two possible amino acid substitutions (T88 to L88 and A97 to Q97) was revealed. Reconstitution of VDAC2 pores in planar lipid bilayers showed typical features of mitochondrial porins. Stepwise increases in membrane conductance were observed with a predominant conductance of approx. 3.5 nS (nanoSiemens) in 1 M KCl. Very often, small short-lived fluctuations were observed with single-channel conductance of approx. 1.5 nS. Bovine spermatozoa VDAC2 was anion selective and showed voltage dependence. The present study is the first work to report the purification and characterization of VDAC2 from a mammalian tissue.
Collapse
|
28
|
Timohhina N, Guzun R, Tepp K, Monge C, Varikmaa M, Vija H, Sikk P, Kaambre T, Sackett D, Saks V. Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for Mitochondrial Interactosome. J Bioenerg Biomembr 2009; 41:259-75. [PMID: 19597977 DOI: 10.1007/s10863-009-9224-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/13/2009] [Indexed: 11/25/2022]
Abstract
The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase - phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O(2) ratio equal to 5.68 +/- 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 +/- 2 microM to 330 +/- 47 microM, but creatine again decreased it to 23 +/- 6 microM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.
Collapse
Affiliation(s)
- Natalia Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Distler AM, Kerner J, Hoppel CL. Proteomics of mitochondrial inner and outer membranes. Proteomics 2009; 8:4066-82. [PMID: 18763707 DOI: 10.1002/pmic.200800102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.
Collapse
Affiliation(s)
- Anne M Distler
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
30
|
Distler AM, Kerner J, Lee K, Hoppel CL. Post-translational modifications of mitochondrial outer membrane proteins. Methods Enzymol 2009; 457:97-115. [PMID: 19426864 DOI: 10.1016/s0076-6879(09)05006-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, a wide variety of proteomic approaches using gel electrophoresis and mass spectrometry has been developed to detect post-translational modifications. Mitochondria are often a focus of these studies due to their important role in cellular function. Many of their crucial transport and oxidative-phosphorylation functions are performed by proteins residing in the inner and outer membranes of the mitochondria. Although proteomic technologies have greatly enhanced our understanding of regulation in cellular processes, analysis of membrane proteins has lagged behind that of soluble proteins. Herein, we present techniques to facilitate the detection of post-translational modifications of mitochondrial membrane proteins including the isolation of resident membranes as well as electrophoretic and immunological-based methods for identification of post-translational modifications.
Collapse
Affiliation(s)
- Anne M Distler
- Department of Pharmacology, and Center for Mitochondrial Disease, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
31
|
Liu B, Wang Z, Zhang W, Wang X. Expression and localization of voltage-dependent anion channels (VDAC) in human spermatozoa. Biochem Biophys Res Commun 2008; 378:366-70. [PMID: 19013129 DOI: 10.1016/j.bbrc.2008.10.177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Voltage-dependent anion channels (VDAC), also known as mitochondrial porins, are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures. VDAC allow the passage of the metabolites across the mitochondrial outer membrane, and are involved in metabolite transport and signal transduction. Several recent studies have indicated the important roles of VDAC in maintaining normal structure and motility of mammalian spermatozoa. To study the expression and localization of VDAC in human spermatozoa, different experimental approaches were applied: (1) specific primers were designed and VDAC gene sequences were cloned by PCR amplification from human testis cDNA library; (2) recombinant VDAC proteins were produced in the expression vector Escherichia coli BL21 (DE3); (3) human sperm VDAC proteins were extracted, separated and analyzed by Western blotting; (4) the localization of VDAC in human spermatozoa were detected using immunofluorescence. The three gene sequences and recombinant VDAC proteins were obtained, respectively. VDAC proteins were detected to be located in human spermatozoa, especially in sperm flagella. Our study elucidated for the first time that VDAC were synthesized and secreted at the testis level and eventually became an integral part of sperm proteins.
Collapse
Affiliation(s)
- Bianjiang Liu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | |
Collapse
|
32
|
Porin isoform 2 has a different localization in Drosophila melanogaster ovaries than porin 1. J Bioenerg Biomembr 2008; 40:219-26. [DOI: 10.1007/s10863-008-9149-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/22/2008] [Indexed: 11/25/2022]
|
33
|
Spät A, Szanda G, Csordás G, Hajnóczky G. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium 2008; 44:51-63. [PMID: 18242694 DOI: 10.1016/j.ceca.2007.11.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/23/2007] [Accepted: 11/30/2007] [Indexed: 11/30/2022]
Abstract
The Ca(2+) coupling between endoplasmic reticulum (ER) and mitochondria is central to multiple cell survival and cell death mechanisms. Cytoplasmic [Ca(2+)] ([Ca(2+)](c)) spikes and oscillations produced by ER Ca(2+) release are effectively delivered to the mitochondria. Propagation of [Ca(2+)](c) signals to the mitochondria requires the passage of Ca(2+) across three membranes, namely the ER membrane, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM). Strategic positioning of the mitochondria by cytoskeletal transport and interorganellar tethers provides a means to promote the local transfer of Ca(2+) between the ER membrane and OMM. In this setting, even >100 microM [Ca(2+)] may be attained to activate the low affinity mitochondrial Ca(2+) uptake. However, a mitochondrial [Ca(2+)] rise has also been documented during submicromolar [Ca(2+)](c) elevations. Evidence has been emerging that Ca(2+) exerts allosteric control on the Ca(2+) transport sites at each membrane, providing mechanisms that may facilitate the Ca(2+) delivery to the mitochondria. Here we discuss the fundamental mechanisms of ER and mitochondrial Ca(2+) transport, particularly the control of their activity by Ca(2+) and evaluate both high- and low-[Ca(2+)]-activated mitochondrial calcium signals in the context of cell physiology.
Collapse
Affiliation(s)
- András Spät
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
34
|
Triphan X, Menzel VA, Petrunkina AM, Cassará MC, Wemheuer W, Hinsch KD, Hinsch E. Localisation and function of voltage-dependent anion channels (VDAC) in bovine spermatozoa. Pflugers Arch 2007; 455:677-86. [PMID: 17647012 DOI: 10.1007/s00424-007-0316-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/22/2007] [Accepted: 06/23/2007] [Indexed: 10/23/2022]
Abstract
Sperm motility, regulation of cell volume, sperm capacitation, acrosome reaction and tight binding of spermatozoa to the zona pellucida are crucial events in the process of fertilisation. Voltage-dependent anion channels (VDAC) are highly conserved pore-forming proteins implicated in apoptosis, metabolite transport between mitochondria and cytosol, energy metabolism, and cell volume regulation in somatic cells. Several studies have demonstrated the presence of VDAC in cell compartments other than mitochondria. In previous studies using immunofluorescence, we were able to localise VDAC2 and VDAC3 in outer dense fibres of the bovine sperm flagellum. Furthermore, we described the presence of VDAC2 in the head of bovine sperm. In the present study, we confirm the localisation of VDAC2 in the acrosomal region of bovine spermatozoa using immunoelectron microscopy. After incubation with anti-VDAC antibodies raised against each VDAC isoform, bovine spermatozoa showed an increased loss of the acrosomal cap, noticeable changes in the surface of the head, coiled tails and an increased cell volume. The incubation of bovine spermatozoa with anti-VDAC antibodies might lead to alteration of the intracellular ion concentration that causes changes in the cell volume, followed by destabilization of the cytoskeleton and, finally, to loss of the acrosomal cap.
Collapse
Affiliation(s)
- Xenia Triphan
- Centre of Dermatology and Andrology, Justus Liebig University of Giessen, Gaffkystr. 14, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
De Pinto V, Tomasello F, Messina A, Guarino F, Benz R, La Mendola D, Magrì A, Milardi D, Pappalardo G. Determination of the conformation of the human VDAC1 N-terminal peptide, a protein moiety essential for the functional properties of the pore. Chembiochem 2007; 8:744-56. [PMID: 17387661 DOI: 10.1002/cbic.200700009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mitochondrial porin or VDAC (voltage-dependent anion-selective channel) is the most abundant protein in the mitochondrial outer membrane. The structure of VDAC has been predicted to be a transmembrane beta-barrel with an alpha-helix at the N terminus. It is a matter of debate as to whether this putative alpha-helix plays a structural role as a component of the pore walls or a function in the pore activity. We have synthesised the human VDAC1 (HVDAC1) N-terminal peptide Ac-AVPPTYADLGKSARDVFTK-NH2 (Prn2-20) and determined its structure by CD and NMR spectroscopy. CD studies show that the Prn2-20 peptide exists in aqueous solvent as an unstructured peptide with no stable secondary structure. In membrane-mimetic SDS micelles or water/trifluoroethanol, however, it assumes an amphipathic alpha-helix conformation between Tyr5 and Val16, as deduced from NMR. No ordered structure was observed in dodecyl beta-maltoside. Differential scanning calorimetric measurements were carried out in order to examine the membrane affinity of the peptide. Upon interaction with the negatively charged 1,2 dipalmitoyl-sn-glycero-3-phosphoserine membrane, Prn2-20 exhibited distinctive behaviour, suggesting that electrostatics play an important role. Interaction between the peptide and artificial bilayers indicates that the peptide lies on the membrane surface. Recombinant HVDAC1 deletion mutants, devoid of seven or 19 N-terminal amino acids, were used for transfection of eukaryotic cells. Over-expression of HVDAC1 increases the number of Cos cells with depolarised mitochondria, and this effect is progressively reduced in cells transfected with HVDAC1 lacking those seven or 19 amino acids. The mitochondrial targeting of the deletion mutants is unaffected. The overall picture emerging from our experiments is that the VDAC N-terminal peptide plays a role in the proper function of this protein during apoptotic events.
Collapse
Affiliation(s)
- Vito De Pinto
- Department of Chemical Sciences, Laboratory of Molecular Biology, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 2007; 313:2063-76. [PMID: 17509566 DOI: 10.1016/j.yexcr.2007.03.033] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/20/2007] [Accepted: 03/29/2007] [Indexed: 12/17/2022]
Abstract
Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival.
Collapse
Affiliation(s)
- Yassemi Capetanaki
- Cell Biology Division, Center of Basic Research, Biomedical Research Foundation Academy of Athens, Soranou Efessiou 4, 12965 Athens, Greece.
| | | | | | | | | |
Collapse
|
37
|
Distler AM, Kerner J, Hoppel CL. Post-translational modifications of rat liver mitochondrial outer membrane proteins identified by mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:628-36. [PMID: 17478130 PMCID: PMC1950290 DOI: 10.1016/j.bbapap.2007.03.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 12/17/2022]
Abstract
The identification of post-translational modifications is difficult especially for hydrophobic membrane proteins. Here we present the identification of several types of protein modifications on membrane proteins isolated from mitochondrial outer membranes. We show, in vivo, that the mature rat liver mitochondrial carnitine palmitoyltransferase-I enzyme is N-terminally acetylated, phosphorylated on two threonine residues, and nitrated on two tyrosine residues. We show that long chain acyl-CoA synthetase 1 is acetylated at both the N-terminal end and at a lysine residue and tyrosine residues are found to be phosphorylated and nitrated. For the three voltage-dependent anion channel isoforms present in the mitochondria, the N-terminal regions of the protein were determined and sites of phosphorylation were identified. These novel findings raise questions about regulatory aspects of carnitine palmitoyltransferase-I, long chain acyl-CoA synthetase and voltage dependent anion channel and further studies should advance our understanding about regulation of mitochondrial fatty acid oxidation in general and these three proteins in specific.
Collapse
Affiliation(s)
- Anne M. Distler
- Department of Medicine, Case Western Reserve University and Medical Research Service, Cleveland OH, 44106
- Department of Nutrition, Case Western Reserve University and Medical Research Service, Cleveland OH, 44106
| | - Janos Kerner
- Department of Medicine, Case Western Reserve University and Medical Research Service, Cleveland OH, 44106
- Department of Nutrition, Case Western Reserve University and Medical Research Service, Cleveland OH, 44106
| | - Charles L. Hoppel
- Department of Medicine, Case Western Reserve University and Medical Research Service, Cleveland OH, 44106
- Department of Pharmacology, Case Western Reserve University and Medical Research Service, Cleveland OH, 44106
- Louis Stokes Department of Veterans Affairs Medical Center, Cleveland OH, 44106
| |
Collapse
|
38
|
Abstract
BACKGROUND Mitochondrial porins, or voltage-dependent anion-selective channels (VDAC) allow the passage of small molecules across the mitochondrial outer membrane, and are involved in complex interactions regulating organellar and cellular metabolism. Numerous organisms possess multiple porin isoforms, and initial studies indicated an intriguing evolutionary history for these proteins and the genes that encode them. RESULTS In this work, the wealth of recent sequence information was used to perform a comprehensive analysis of the evolutionary history of mitochondrial porins. Fungal porin sequences were well represented, and newly-released sequences from stramenopiles, alveolates, and seed and flowering plants were analyzed. A combination of Neighbour-Joining and Bayesian methods was used to determine phylogenetic relationships among the proteins. The aligned sequences were also used to reassess the validity of previously described eukaryotic porin motifs and to search for signature sequences characteristic of VDACs from plants, animals and fungi. Secondary structure predictions were performed on the aligned VDAC primary sequences and were used to evaluate the sites of intron insertion in a representative set of the corresponding VDAC genes. CONCLUSION Our phylogenetic analysis clearly shows that paralogs have appeared several times during the evolution of VDACs from the plants, metazoans, and even the fungi, suggesting that there are no "ancient" paralogs within the gene family. Sequence motifs characteristic of the members of the crown groups of organisms were identified. Secondary structure predictions suggest a common 16 beta-strand framework for the transmembrane arrangement of all porin isoforms. The GLK (and homologous or analogous motifs) and the eukaryotic porin motifs in the four representative Chordates tend to be in exons that appear to have changed little during the evolution of these metazoans. In fact there is phase correlation among the introns in these genes. Finally, our preliminary data support the notion that introns usually do not interrupt structural protein motifs, namely the predicted beta-strands. These observations concur with the concept of exon shuffling, wherein exons encode structural modules of proteins and the loss and gain of introns and the shuffling of exons via recombination events contribute to the complexity of modern day proteomes.
Collapse
|
39
|
Roman I, Figys J, Steurs G, Zizi M. Hunting interactomes of a membrane protein: obtaining the largest set of voltage-dependent anion channel-interacting protein epitopes. Mol Cell Proteomics 2006; 5:1667-80. [PMID: 16735301 DOI: 10.1074/mcp.t600009-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of epitopes involved in protein-protein interactions is essential for understanding protein structure and function. Large scale efforts, although identifying the interactions, did not always yield these epitopes, could not confirm most of the known interactions, and seemed particularly unsuccessful for native intrinsic membrane proteins. We have developed a fluidics-based approach (non-steady-state kinetics) to obtain the broadest set of the epitopes interacting with a given target and applied it to a phage display methodology optimized for membrane proteins. Phages expressing a liver cDNA library were screened against a membrane protein (voltage-dependent anion channel) reconstituted into liposomes and captured on a chip surface. The controlled fluidics was obtained by a surface plasmon resonance (SPR) device that combined the advantages of working with minute reaction volumes and non-equilibrium conditions. We demonstrated selective enrichment of binders and could even select for different binding affinities by fractionation of the selected outputs at various elution times. With voltage-dependent anion channel as bait (a mitochondrial channel critical for cellular metabolism and apoptosis) we found at least 40% of its already reported ligands and independently confirmed 55 novel functional interactions, some of which fully blocked the channel. This highly efficient approach is generally applicable for any protein and could be automated and scaled up even without the use of a SPR device. The epitopes directly identified by this method are useful not only for unraveling interactomes but also for drug design and therapeutics.
Collapse
Affiliation(s)
- Inge Roman
- Department of Physiology (FYSP), Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
40
|
Roman I, Figys J, Steurs G, Zizi M. Direct measurement of VDAC-actin interaction by surface plasmon resonance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:479-86. [PMID: 16678788 DOI: 10.1016/j.bbamem.2006.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 02/20/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
VDAC--a mitochondrial channel involved in the control of aerobic metabolism and apoptosis--interacts in vitro and in vivo with a wide repertoire of proteins including cytoskeletal elements. A functional interaction between actin and Neurospora crassa VDAC was reported, excluding other VDAC isoforms. From a recent genome-wide screen of the VDAC interactome, we found that human actin is a putative ligand of yeast VDAC. Since such interaction may have broader implications for various mitochondrial processes, we probed it with Surface Plasmon Resonance (SPR) technology using purified yeast VDAC (YVDAC) and rabbit muscle G-actin (RGA). We show that RGA binds to immobilized YVDAC in a reversible and dose-dependent manner with saturating kinetics and an apparent K(D) of 50 microg/ml (1.2 microM actin). BSA does not bind VDAC regardless of the concentrations. Alternatively, VDAC binds similarly to immobilized RGA but without saturating kinetics. VDAC being known to interact with itself, this latter interaction was directly measured to interpret the RGA signals. VDAC could bind to VDAC without saturating kinetics as expected if higher order binding occurred, and could account for maximally 66% of the non-saturating behavior of VDAC binding onto RGA. Hence, actin-VDAC interactions are not a species-specific oddity and may be a more general phenomenon, the role of which ought to be further investigated.
Collapse
Affiliation(s)
- Inge Roman
- Molecular Membrane Biophysics and Neurophysiology, Dept. of Physiology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 103 Laarbeeklaan, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
41
|
Knipling L, Wolff J. Direct interaction of Bcl-2 proteins with tubulin. Biochem Biophys Res Commun 2006; 341:433-9. [PMID: 16446153 DOI: 10.1016/j.bbrc.2005.12.201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 12/31/2005] [Indexed: 11/24/2022]
Abstract
A direct interaction between tubulin and several pro-apoptotic and anti-apoptotic members of the Bcl-2 family has been demonstrated by effects on the assembly of microtubules from pure rat brain tubulin. Bcl-2, Bid, and Bad inhibit assembly sub-stoichiometrically, whereas peptides from Bak and Bax promote tubulin polymerization at near stoichiometric concentrations. These opposite effects on microtubule assembly are mutually antagonistic. The BH3 homology domains, common to all members of the family, are involved in the interaction with tubulin but do not themselves affect polymerization. Pelleting experiments with paclitaxel-stabilized microtubules show that Bak is associated with the microtubule pellet, whereas Bid remains primarily with the unpolymerized fraction. These interactions require the presence of the anionic C-termini of alpha- and beta-tubulin as they do not occur with tubulin S in which the C-termini have been removed. While in no way ruling out other pathways, such direct associations are the simplest potential regulatory mechanism for apoptosis resulting from disturbances in microtubule or tubulin function.
Collapse
Affiliation(s)
- Leslie Knipling
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Iriuchijima N, Sato-Harada R, Takano M, Fujio K, Sato T, Goto F, Harada A. Reduced expression of kinase-associated phosphatase in cortical dendrites of MAP2-deficient mice. Biochem Biophys Res Commun 2005; 338:1216-21. [PMID: 16257389 DOI: 10.1016/j.bbrc.2005.10.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that cAMP-dependent protein kinase was reduced in the dendrites of MAP2-deficient mice. In this study, we compared the expression of various protein phosphatases (PPs) between wild-type and map2(-/-) dendrites. Kinase-associated phosphatase (KAP) was the only PP which showed difference between the two phenotypes: (1) the expression of KAP was reduced in map2(-/-) cortical dendrites, and (2) the amount of KAP bound to microtubules was reduced in map2(-/-) brains. We also demonstrated in cultured neuroblastoma cells that KAP is not only expressed in dividing cells, but also in the neurites of differentiated cells. Our findings propose that KAP, which has been reported to function in cell-cycle control, has an as yet uncovered role in regulating dendritic functions. We also propose MAP2-deficient mice as an ideal system for identifying protein phosphatases essential for dendritic functions.
Collapse
Affiliation(s)
- Nobuhisa Iriuchijima
- Laboratory of Molecular Traffic, Department of Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Shoshan-Barmatz V, Israelson A. The voltage-dependent anion channel in endoplasmic/sarcoplasmic reticulum: characterization, modulation and possible function. J Membr Biol 2005; 204:57-66. [PMID: 16151701 DOI: 10.1007/s00232-005-0749-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 04/25/2005] [Indexed: 01/15/2023]
Abstract
In recent years, it has been recognized that there is a metabolic coupling between the cytosol, ER/SR and mitochondria. In this cross-talk, mitochondrial Ca(2+) homeostasis and ATP production and supply play a major role. The primary transporter of adenine nucleotides, Ca(2+)and other metabolites into and out of mitochondria is the voltage-dependent anion channel (VDAC) located at the outer mitochondrial membrane, at a crucial position in the cell. VDAC has been established as a key player in mitochondrial metabolite and ion signaling and it has also been proposed that VDAC is present in extramitochondrial membranes. Thus, regulation of VDAC, as the main interface between mitochondrial and cellular metabolism, by other molecules is of utmost importance. This article reviews localization and function of VDAC, and focuses on VDAC as a skeletal muscle sarcoplasmic reticulum channel. The regulation of VDAC activity by associated proteins and by inhibitors is also presented. Several aspects of the physiological relevance of VDAC to Ca(2+) homeostasis and mitochondria-mediated apoptosis will be discussed.
Collapse
Affiliation(s)
- V Shoshan-Barmatz
- Department of Life Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | |
Collapse
|
44
|
Chada SR, Hollenbeck PJ. Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 2004; 14:1272-6. [PMID: 15268858 DOI: 10.1016/j.cub.2004.07.027] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 05/24/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
Axonal transport is thought to distribute mitochondria to regions of the neuron where their functions are required. In cultured neurons, mitochondrial transport responds to growth cone activity, and this involves both a transition between motile and stationary states of mitochondria and modulation of their anterograde transport activity. Although the exact cellular signals responsible for this regulation remain unknown, we recently showed that mitochondria accumulate in sensory neurons at regions of focal stimulation with NGF and suggested that this involves downstream kinase signaling. Here, we demonstrate that NGF regulation of axonal organelle transport is specific to mitochondria. Quantitative analyses of motility show that the accumulation of axonal mitochondria near a focus of NGF stimulation is due to increased movement into bead regions followed by inhibition of movement out of these regions and that anterograde and retrograde movement are differentially affected. In axons made devoid of F-actin by latrunculin B treatment, bidirectional transport of mitochondria continues, but they can no longer accumulate in the region of NGF stimulation. These results indicate that intracellular signaling can specifically regulate mitochondrial transport in neurons, and they suggest that axonal mitochondria can respond to signals by locally altering their transport behavior and by undergoing docking interactions with the actin cytoskeleton.
Collapse
Affiliation(s)
- Sonita R Chada
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392 USA
| | | |
Collapse
|
45
|
Shoshan-Barmatz V, Zalk R, Gincel D, Vardi N. Subcellular localization of VDAC in mitochondria and ER in the cerebellum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:105-14. [PMID: 15238267 DOI: 10.1016/j.bbabio.2004.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 02/06/2004] [Accepted: 02/11/2004] [Indexed: 11/24/2022]
Abstract
The voltage-dependent anion channel (VDAC) provides passage for adenine nucleotides, Ca2+ and other metabolites into and from mitochondria. Here, the intracellular localization and oligomeric organization of VDAC in brain mitochondria and ER are demonstrated. Immunohistochemical staining of VDAC in rat cerebellum showed high labeling of the Purkinje neurons. Immunogold labeling and EM analysis of the cerebellar molecular layer showed specific VDAC immunostaining of the mitochondrial outer membrane, highly enhanced in contact sites between mitochondria or between mitochondria and associated ER. Purified ER membranes contain VDAC, but not other mitochondrial proteins. Chemical cross-linking of isolated mitochondria, ER or purified VDAC demonstrated the existence of VDAC in oligomeric form. Based on the enrichment of VDAC in the junctional face of closely associated mitochondrial and ER membranes and the existence of VDAC oligomers, we propose an involvement of VDAC in specialized intermembrane communication between mitochondria or between ER and mitochondria, serving to complement the tight structural and functional coupling observed between these organelles.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
| | | | | | | |
Collapse
|
46
|
Graham BH, Craigen WJ. Genetic approaches to analyzing mitochondrial outer membrane permeability. Curr Top Dev Biol 2004; 59:87-118. [PMID: 14975248 DOI: 10.1016/s0070-2153(04)59004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
47
|
Sardiello M, Tripoli G, Oliva M, Santolamazza F, Moschetti R, Barsanti P, Lanave C, Caizzi R, Caggese C. A comparative study of the porin genes encoding VDAC, a voltage-dependent anion channel protein, in Anopheles gambiae and Drosophila melanogaster. Gene 2004; 317:111-5. [PMID: 14604798 DOI: 10.1016/s0378-1119(03)00658-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The protein called voltage-dependent anion-selective channel (VDAC), or mitochondrial porin, forms channels that provide the major pathway for small metabolites across the mitochondrial outer membrane. We have identified and sequenced agporin, a gene of the malaria vector mosquito Anopheles gambiae that conceptually encodes a protein with 73% identity to the VDAC protein encoded by the porin gene in Drosophila melanogaster. By in situ hybridization, we have localized agporin at region 35D on the right arm of A. gambiae chromosome 3, which is homologous to the 2L chromosomal arm of D. melanogaster where the porin gene resides. The comparison of agporin with its putative Drosophila counterpart revealed that both the nucleotide sequence and the structural organization of the two genes are strikingly conserved even though the ancestral lines of A. gambiae and D. melanogaster are thought to have diverged about 250 million years ago. Our results suggest that, while in yeast, plants, and mammals, VDAC isoforms are encoded by small multigene families and are able to compensate for each other at least partially, in A. gambiae a single gene encodes the VDAC protein.
Collapse
Affiliation(s)
- Marco Sardiello
- Dipartimento di Anatomia Patologica e di Genetica, sezione di Genetica, Università di Bari, via Amendola 165/A, Bari 70126, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hinsch KD, De Pinto V, Aires VA, Schneider X, Messina A, Hinsch E. Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum. J Biol Chem 2004; 279:15281-8. [PMID: 14739283 DOI: 10.1074/jbc.m313433200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outer dense fibers (ODF) are specific subcellular components of the sperm flagellum. The functions of ODF have not yet been clearly elucidated. We have investigated the protein composition of purified ODF from bovine spermatozoa and found that one of the most abundant proteins is a 30-32-kDa polypeptide. This protein was analyzed by sequencing peptides derived following limited proteolysis. Peptide sequences were found to match VDAC2 and VDAC3. VDACs (voltage-dependent, anion-selective channels) or eukaryotic porins are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures in membranes. In mammals, three VDAC isoforms (VDAC1, -2, -3) have been identified by cDNA cloning and sequencing. Antibodies against synthetic peptides specific for the three mammal VDAC isoforms were generated in rabbits. Their specificity was demonstrated by immunoblotting using recombinant VDAC1, -2, and -3. In protein extracts of bovine spermatozoa, VDAC1, -2, and -3 were detected by specific antibodies, while only VDAC2 and -3 were found as solubilized proteins derived from purified bovine ODFs. Immunofluorescence microscopy of spermatozoa revealed that anti-VDAC2 and anti-VDAC3 antibodies clearly bound to the sperm flagellum, in particular to the ODF. Transmission electron immunomicroscopy supported the finding that VDAC2 protein is abundant in the ODF. Since the ODF does not have any known membranous structure, it is tempting to speculate that VDAC2 and VDAC3 might have an alternative structural organization and different functions in ODF than in mitochondria.
Collapse
Affiliation(s)
- Klaus-Dieter Hinsch
- Center of Dermatology and Andrology, Justus Liebig University, 35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Weisleder N, Taffet GE, Capetanaki Y. Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc Natl Acad Sci U S A 2004; 101:769-74. [PMID: 14715896 PMCID: PMC321756 DOI: 10.1073/pnas.0303202101] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
One of the hallmarks of cardiomyopathy and heart failure is pronounced and progressive cardiomyocyte death. Understanding the mechanisms involved in cardiomyocyte cell death is a topic of great interest for treatment of cardiac disease. Mice null for desmin, the muscle-specific member of the intermediate filament gene family, develop cardiomyopathy characterized by extensive cardiomyocyte death, fibrosis, calcification, and eventual heart failure. The earliest ultrastructural defects are observed in mitochondria. In the present study, we have demonstrated that these mitochondrial abnormalities are the primary cause of the observed cardiomyopathy and that these defects can be ameliorated by overexpression of bcl-2 in desmin null heart. Overexpression of bcl-2 in the desmin null heart results in correction of mitochondrial defects, reduced occurrence of fibrotic lesions in the myocardium, prevention of cardiac hypertrophy, restoration of cardiomyocyte ultrastructure, and significant improvement of cardiac function. Furthermore, we have found that loss of desmin also diminishes the capacity of mitochondria to resist exposure to calcium, a defect that can be partially restored by bcl-2 overexpression. These results point to a unique function for desmin in protection of mitochondria from calcium exposure that can be partially rescued by overexpression of bcl-2. We show that bcl-2 cardiac overexpression has provided significant improvement of an inherited form of cardiomyopathy, revealing the potential for bcl-2, and perhaps other genes in the family, as therapeutic agents for heart disease of many types, including inherited forms.
Collapse
MESH Headings
- Animals
- Calcinosis/pathology
- Calcium/pharmacology
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/pathology
- Cardiomyopathy, Hypertrophic, Familial/therapy
- Desmin/deficiency
- Desmin/genetics
- Fibrosis
- Gene Expression
- Genes, bcl-2
- Genetic Therapy
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Electron
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/pathology
- Mitochondrial Diseases/therapy
- Mitochondrial Swelling/drug effects
- Myocardium/pathology
- Organ Size
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
50
|
Abstract
Mitochondria are localized to regions of the cell where ATP consumption is high and are dispersed according to changes in local energy needs. In addition to motion directed by molecular motors, mitochondrial distribution in neuronal cells appears to depend on the docking of mitochondria to microtubules and neurofilaments. We examined interactions between mitochondria and neurofilaments using fluorescence microscopy, dynamic light scattering, atomic force microscopy, and sedimentation assays. Mitochondria-neurofilament interactions depend on mitochondrial membrane potential, as revealed by staining with a membrane potential sensitive dye (JC-1) in the presence of substrates/ADP or uncouplers (valinomycin/carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) and are affected by the phosphorylation status of neurofilaments and neurofilament sidearms. Antibodies against the neurofilament heavy subunit disrupt binding between mitochondria and neurofilaments, and isolated neurofilament sidearms alone interact with mitochondria, suggesting that they mediate the interactions between the two structures. These data suggest that specific and regulated mitochondrial-neurofilament interactions occur in situ and may contribute to the dynamic distribution of these organelles within the cytoplasm of neurons.
Collapse
|