1
|
Georgieva E, Leber SL, Wex C, Garbers C. Perturbation of the Actin Cytoskeleton in Human Hepatoma Cells Influences Interleukin-6 (IL-6) Signaling, but Not Soluble IL-6 Receptor Generation or NF-κB Activation. Int J Mol Sci 2021; 22:ijms22137171. [PMID: 34281231 PMCID: PMC8268250 DOI: 10.3390/ijms22137171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
The transcription factor nuclear factor-kappa B (NF-κB) is critically involved in inflammation and cancer development. Activation of NF-κB induces the expression and release of several pro-inflammatory proteins, which include the cytokine interleukin-6 (IL-6). Perturbation of the actin cytoskeleton has been previously shown to activate NF-κB signaling. In this study, we analyze the influence of different compounds that modulate the actin cytoskeleton on NF-κB activation, IL-6 signaling and the proteolytic generation of the soluble IL-6 receptor (sIL-6R) in human hepatoma cells. We show that perturbation of the actin cytoskeleton is not sufficient to induce NF-κB activation and IL-6 secretion. However, perturbation of the actin cytoskeleton reduces IL-6-induced activation of the transcription factor STAT3 in Hep3B cells. In contrast, IL-6R proteolysis by the metalloprotease ADAM10 did not depend upon the integrity of the actin cytoskeleton. In summary, we uncover a previously unknown function of the actin cytoskeleton in IL-6-mediated signal transduction in Hep3B cells.
Collapse
Affiliation(s)
- Elizabeta Georgieva
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Stefan L. Leber
- Division of Neuroradiology, Vascular & Interventional Radiology, Department of Radiology, Medical University of Graz, 8036 Graz, Austria;
| | - Cora Wex
- Department of General, Visceral, Vascular and Transplantation Surgery, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Correspondence:
| |
Collapse
|
2
|
Steggink LC, Boer H, Meijer C, Lefrandt JD, Terstappen LWMM, Fehrmann RSN, Gietema JA. Genome-wide association study of cardiovascular disease in testicular cancer patients treated with platinum-based chemotherapy. THE PHARMACOGENOMICS JOURNAL 2020; 21:152-164. [PMID: 33011741 PMCID: PMC7997802 DOI: 10.1038/s41397-020-00191-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023]
Abstract
Genetic variation may mediate the increased risk of cardiovascular disease (CVD) in chemotherapy-treated testicular cancer (TC) patients compared to the general population. Involved single nucleotide polymorphisms (SNPs) might differ from known CVD-associated SNPs in the general population. We performed an explorative genome-wide association study (GWAS) in TC patients. TC patients treated with platinum-based chemotherapy between 1977 and 2011, age ≤55 years at diagnosis, and ≥3 years relapse-free follow-up were genotyped. Association between SNPs and CVD occurrence during treatment or follow-up was analyzed. Data-driven Expression Prioritized Integration for Complex Trait (DEPICT) provided insight into enriched gene sets, i.e., biological themes. During a median follow-up of 11 years (range 3–37), CVD occurred in 53 (14%) of 375 genotyped patients. Based on 179 SNPs associated at p ≤ 0.001, 141 independent genomic loci associated with CVD occurrence. Subsequent, DEPICT found ten biological themes, with the RAC2/RAC3 network (linked to endothelial activation) as the most prominent theme. Biology of this network was illustrated in a TC cohort (n = 60) by increased circulating endothelial cells during chemotherapy. In conclusion, the ten observed biological themes highlight possible pathways involved in CVD in chemotherapy-treated TC patients. Insight in the genetic susceptibility to CVD in TC patients can aid future intervention strategies.
Collapse
Affiliation(s)
- Lars C Steggink
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hink Boer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Coby Meijer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Joop D Lefrandt
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Center Groningen, University of Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Leon W M M Terstappen
- Medical Cell BioPhysics, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
3
|
Limanjaya I, Hsu TI, Chuang JY, Kao TJ. L-selectin activation regulates Rho GTPase activity via Ca +2 influx in Sertoli cell line, ASC-17D cells. Biochem Biophys Res Commun 2020; 525:1011-1017. [PMID: 32178872 DOI: 10.1016/j.bbrc.2020.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022]
Abstract
In seminiferous epithelium, tight junctions (TJs) between adjacent Sertoli cells constitute the blood-testis barrier and must change synchronically for germ cells to translocate from the basal to the adluminal compartment during the spermatogenic cycle. Rho GTPase activation through stimulation with specific L-selectin ligands has been proposed to modulate tight junctional dynamics. However, little is known regarding the role of Ca+2 dynamics in Sertoli cell and how Ca+2 relays L-selectin signals to modulate Rho GTPase activity in Sertoli cells, thus prompting us to investigate the Ca+2 flux induced by L-selectin ligand in ASC-17D cells. Using fluorescent real-time image, we first demonstrated the increase of intracellular Ca+2 level following L-selectin ligand stimulation. This Ca+2 increase was inhibited in ASC-17D cells pretreated with nifedipine, the L-type voltage-operated Ca+2 channel (VOCC) blocker, but not mibefradil, the T-type VOCC blocker. We then demonstrated the up-regulation of Rho and Rac1 in ASC-17D cells following the administration of L-selectin ligand, and the pre-treatment with nifedipine, but not mibefradil, prior to L-selectin ligand-binding abolished the activation of both Rho and Rac1. Together, we conclude that the activation of L-selectin induces Ca+2 influx through the L-type VOCC, which up-regulates Rho and Rac1 proteins, in ASC-17D cells.
Collapse
Affiliation(s)
- Ivan Limanjaya
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Yu L, Zheng Y, Feng Y, Ma F. Role of L-selectin on leukocytes in the binding of sialic acids on sperm surface during the phagocytosis of sperm in female reproductive tract. Med Hypotheses 2018; 120:4-6. [DOI: 10.1016/j.mehy.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
|
5
|
New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2011; 2012:967852. [PMID: 21912565 PMCID: PMC3170826 DOI: 10.1155/2012/967852] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023]
Abstract
Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered.
Collapse
|
6
|
Wedepohl S, Beceren-Braun F, Riese S, Buscher K, Enders S, Bernhard G, Kilian K, Blanchard V, Dernedde J, Tauber R. L-selectin--a dynamic regulator of leukocyte migration. Eur J Cell Biol 2011; 91:257-64. [PMID: 21546114 DOI: 10.1016/j.ejcb.2011.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 01/13/2023] Open
Abstract
The leukocytic cell adhesion receptor L-selectin mediates the initial step of the adhesion cascade, the capture and rolling of leukocytes on endothelial cells. This event enables leukocytes to migrate out of the vasculature into surrounding tissues during inflammation and immune surveillance. Distinct domains of L-selectin contribute to proper leukocyte migration. In this review, we discuss the contributions of these domains with respect to L-selectin function: the regulation by serine phosphorylation of the cytoplasmic tail, the role of the transmembrane domain in receptor positioning on the cell surface as well as the N-glycosylation of the extracellular part and the identification of novel binding partners.
Collapse
Affiliation(s)
- Stefanie Wedepohl
- Zentralinstitut für Laboratoriumsmedizin und Pathobiochemie, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, D-12203 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ball CJ, King MR. Role of c-Abl in L-selectin shedding from the neutrophil surface. Blood Cells Mol Dis 2011; 46:246-51. [PMID: 21277237 DOI: 10.1016/j.bcmd.2010.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/06/2010] [Accepted: 12/20/2010] [Indexed: 11/18/2022]
Abstract
L-selectin is a key molecule that participates in neutrophil tethering and subsequent rolling. It is cleaved from the surface of neutrophils activated in the presence of lipopolysaccharides, N-formyl-methionine-leucine-phenylalanine (fMLP), or Interleukin-8 (IL-8). We previously showed that L-selectin is also shed from the neutrophil surface during rolling on sialyl Lewis-x coated surfaces in a force-, ADAM-17 sheddase-, and p38 MAP kinase-dependent manner under flow. c-Abl tyrosine kinase is phosphorylated when L-selectin on the surface of neutrophils is cross-linked with anti-L-selectin antibodies. Here, we study the effect of c-Abl inhibition on L-selectin shedding from primary human neutrophils in static conditions following exposure to fMLP, IL-8, and hypotonic buffer and under flow through sialyl Lewis-x coated microtubes. Results indicate that c-Abl inhibition by STI571 significantly affects neutrophil adhesion via L-selectin, by decreasing the average rolling velocity and increasing the flux of rolling cells. The change in surface receptor expression was verified by flow cytometry. Interestingly, other forms of L-selectin shedding induced by fMLP, IL-8 or osmotic swelling were unaffected by STI571 treatment. These findings implicate the c-Abl signaling molecule in regulating L-selectin mechanical shedding in response to shear stress, setting this type of signaling apart from those triggered by the presence of a hypotonic environment, fMLP, or IL-8. This study sheds light on the role of c-Abl in neutrophil adhesion not previously reported in the literature.
Collapse
Affiliation(s)
- Carissa J Ball
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
8
|
|
9
|
Chapter 5 Cytoskeletal Interactions with Leukocyte and Endothelial Cell Adhesion Molecules. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Xu T, Chen L, Shang X, Cui L, Luo J, Chen C, Ba X, Zeng X. Critical role of Lck in L-selectin signaling induced by sulfatides engagement. J Leukoc Biol 2008; 84:1192-201. [PMID: 18653462 DOI: 10.1189/jlb.0208084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recruitment of leukocytes onto inflamed tissues is an important physiological event, in which L-selectin plays an essential role in initial leukocyte capture and at the same time, triggers cell signaling. Lck is a member of the Src family of protein tyrosine kinases and is critical for T cell activation triggered by receptor ligation. Here, we demonstrated that Lck was associated directly with and phosphorylated the L-selectin cytoplasmic tail upon L-selectin engagement with sulfatides. Through the direct interaction with ZAP-70 and c-Abl via its Src homology 2 (SH2) and SH3 domains, Lck organized a signaling complex at the cytoplasmic tail of L-selectin. In the cells with Lck knockdown by small interfering RNA treatment, L-selectin signaling was suppressed dramatically, as indicated by reduced phosphorylation of c-Abl and ZAP-70. Re-expression of wild-type or constitutively active but not kinase-dead murine Lck rescued the phosphorylation completely, but the SH2 domain mutant or the SH3/SH2 double mutant of murine Lck had no effect. These results suggest that Lck plays a critical role in L-selectin signaling upon sulfatides stimulation.
Collapse
Affiliation(s)
- Ting Xu
- Northeast Normal University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen C, Shang X, Cui L, Xu T, Luo J, Ba X, Zeng X. L-selectin ligation-induced CSF-1 gene transcription is regulated by AP-1 in a c-Abl kinase-dependent manner. Hum Immunol 2008; 69:501-9. [PMID: 18619508 DOI: 10.1016/j.humimm.2008.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/05/2008] [Accepted: 06/13/2008] [Indexed: 11/16/2022]
Abstract
L-selectin is a cell adhesion molecule that plays an important role both in mediating the initial capture and subsequent rolling of leukocytes along the endothelial cells and in the signal transduction for leukocyte activation. In our previous studies, we reported that L-selectin ligation could increase macrophage colony-stimulating factor (CSF)-1 gene transcription, in which c-Abl acts as a crucial cytoplasmic kinase. Here we investigated the function of the nuclear c-Abl kinase in the CSF-1 gene transcriptional events triggered by L-selectin ligation. We determined that c-Abl kinase recruits to the nucleus following L-selectin ligation, and the nuclear c-Abl kinase can phosphorylate c-Jun and regulate activator protein (AP)-1 activity. Furthermore, the activated c-Abl kinase interacts with AP-1 and forms a complex in the CSF-1 promoter region to regulate CSF-1 gene transcription in the L-selectin ligation-activated cells. These results indicate that nuclear c-Abl kinase can activate CSF-1 gene transcription by regulating AP-1 activity in the signaling events induced by L-selectin ligation.
Collapse
Affiliation(s)
- Cuixia Chen
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ley K. The Microcirculation in Inflammation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Chen C, Shang X, Xu T, Cui L, Luo J, Ba X, Hao S, Zeng X. c-Abl is required for the signaling transduction induced by L-selectin ligation. Eur J Immunol 2007; 37:3246-58. [PMID: 17960665 DOI: 10.1002/eji.200737221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lymphocyte recruitment onto inflamed tissues requires cells tethering to and rolling on vascular surfaces under flow. L-selectin is constitutively expressed on leukocytes to mediate the leukocytes' initial capture and subsequent rolling along the vessel. Apart from its adhesive function, engagement of L-selectin also results in cell activation, which is related to the completed signaling transduction. Here we show that ligation of L-selectin with its mAb increases c-Abl kinase activity, and that the activated c-Abl kinase can be recruited to and phosphorylate the cytoplasmic domain of L-selectin. In addition, the activated c-Abl kinase can regulate Zap70 kinase by increasing the phosphorylation of the Y319 site of Zap70 kinase and connect with Zap70 kinase through its SH2 domain. These results indicate that c-Abl kinase plays an important role in accepting and transferring the upstream activation events induced by L-selectin ligation.
Collapse
Affiliation(s)
- Cuixia Chen
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, PR China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bock D, Philipp S, Wolff G. Therapeutic potential of selectin antagonists in psoriasis. Expert Opin Investig Drugs 2007; 15:963-79. [PMID: 16859397 DOI: 10.1517/13543784.15.8.963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Psoriasis is a systemic chronic inflammatory disorder. One of the major characteristics is an excess of infiltration of inflammatory cells, mainly lymphocytes, into the skin. Because the adhesion family of selectins is suggested to play a relevant role in this process, selectins have emerged as an interesting target for drug discovery and development in psoriasis. Different strategies targeting selectins have been described. This review discusses these approaches and summarises the current development of selectin antagonists for the treatment of psoriasis. An expert opinion will give the authors' personal opinion about selectin antagonism in psoriasis and which approach might be preferable.
Collapse
Affiliation(s)
- Daniel Bock
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, 16761 Hennigsdorf, Germany.
| | | | | |
Collapse
|
15
|
Kao TJ, Millette CF. L-type voltage-operated Ca(+2) channels modulate transient Ca(+2) influx triggered by activation of Sertoli cell surface L-selectin. J Cell Biochem 2007; 101:1023-37. [PMID: 17477368 DOI: 10.1002/jcb.21135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Near the base of mammalian seminiferous epithelium, Sertoli cells are joined by tight junctions, which constitute the blood-testis barrier. Differentiating germ cells are completely enveloped by Sertoli cells and must traverse the tight junctions during spermatogenic cycle. Following the specific ligand activation of L-selectin, the up-regulated Rho family small G-proteins have been implicated as important modulators of tight junctional dynamics. Although the activation of L-selectin transmits subsequent intracellular signals in a Ca(+2)-dependent fashion in various cell types, little is understood regarding the signaling pathways utilized by L-selectin in Sertoli cells. Therefore, we have examined the possible resultant calcium influx triggered by specific ligand-activation of cell surface L-selectin receptors or by cross-linking of L-selectin with anti-L-selectin. Spectrofluorimetric studies demonstrate increase of intracellular Ca(+2) levels immediately after the treatment of the L-selectin ligands, fucoidan and sialyl Lewis-a, or after treatment with anti-L-selectin antibody. We then determined the mechanism of Ca(+2) influx by investigating L- and T-type voltage-operated Ca(+2) channels, which have been suggested to present in the membranes of Sertoli cells. Data demonstrate that Sertoli cells treated with L-type voltage-operated Ca(+2) channel antagonists, nifedipine, diltiazem, or verapamil, lead to dose-dependent blockage of L-selectin-induced Ca(+2) influx. Cells treated with mibedradil, a T-type voltage-operated Ca(+2) channel antagonist, results in little or no blocking effect. Therefore, we conclude that activation of Sertoli cell L-selectin induces Ca(+2) influx, which is at least partially regulated by L-type voltage-operated Ca(+2) channels.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | |
Collapse
|
16
|
Chen C, Ba X, Xu T, Cui L, Hao S, Zeng X. c-Abl is involved in the F-actin assembly triggered by L-selectin crosslinking. J Biochem 2006; 140:229-35. [PMID: 16840500 DOI: 10.1093/jb/mvj149] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
L-selectin is a cell adhesion molecule mediating the initial capture and subsequent rolling of leukocytes along the endothelial cells expressing L-selectin ligands. In addition to its action in adhesion, an intracellular signaling role for L-selectin has been recognized. Its cytoplasmic domain is involved in signal transduction following antibody crosslinking and in the regulation of receptor binding activity in response to intracellular signals. In this work, we demonstrated that L-selectin crosslinking led to F-actin polymerization and redistribution in human neutrophils. Using immuno-fluorescence microscopy, we observed that F-actin redistribution spatiotemporally related to the polarization of L-selectin. STI571, a specific inhibitor for cytoplasmic tyrosine kinase c-Abl, can inhibit F-actin polymerization and c-Abl redistribution in the activated neutrophils. Furthermore, we determined that c-Abl redistributed to the region where L-selectin polarized and associated with L-selectin in the activated neutrophils. The association between L-selectin and c-Abl was reduced by cytochalasin B. These results suggested that c-Abl was involved in the F-actin alteration triggered by L-selectin crosslinking in human neutrophils.
Collapse
Affiliation(s)
- Cuixia Chen
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, P.R. China
| | | | | | | | | | | |
Collapse
|
17
|
Nishijima KI, Ando M, Sano S, Hayashi-Ozawa A, Kinoshita Y, Iijima S. Costimulation of T-cell proliferation by anti-L-selectin antibody is associated with the reduction of a cdk inhibitor p27. Immunology 2005; 116:347-53. [PMID: 16236124 PMCID: PMC1802426 DOI: 10.1111/j.1365-2567.2005.02234.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, we investigated the costimulatory activity of l-selectin in primary mouse T cells. Proliferation induced by immobilized anti-CD3 antibody was enhanced by immobilized anti-l-selectin antibody. In contrast to the anti-CD28 antibody, anti-l-selectin antibody did not enhance interleukin-2 (IL-2) expression. One of the cyclin-dependent kinase (cdk) inhibitors, p27, was reduced by costimulation with anti-l-selectin antibody, as with anti-CD28 antibody, suggesting that the enhancement of T-cell proliferation is the result of a reduced p27 level. Since anti-l-selectin antibody enhanced the activation of extracellular signal-regulated protein kinase (ERK) induced by anti-CD3 antibody, ERK plays an important role in signal integration during costimulation. These results suggest that the mechanism of T-cell costimulation is at least partially different between CD28 and l-selectin, although the two mechanisms share a common downstream event, a reduction of p27 level, as a critical biochemical event in the cell cycle progression of T cells.
Collapse
|
18
|
Barkhausen T, Krettek C, van Griensven M. L-selectin: adhesion, signalling and its importance in pathologic posttraumatic endotoxemia and non-septic inflammation. ACTA ACUST UNITED AC 2005; 57:39-52. [PMID: 16089318 DOI: 10.1016/j.etp.2005.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The leucocyte expressed surface-bound L-selectin belongs to the selectin family of adhesion molecules. It exhibits adhesive as well as signalling functions. Mainly, it is of importance in lymphocyte homing and in the extravasation of leucocytes into the surrounding tissue during inflammation. Acting in the initial step of the cell adhesion cascade, L-selectin is responsible for the rolling of leucocytes on endothelial layers. Therefore, L-selectin is thought to be an adequate target for pharmacological interventions. Beneath the discussion of the molecules' general features like molecule structure and its regulation, the review focuses firstly on L-selectin in the context of posttraumatic inflammatory disorders, and secondly on the importance of L-selectin specific signalling events.
Collapse
Affiliation(s)
- Tanja Barkhausen
- Experimental Trauma Surgery, Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany.
| | | | | |
Collapse
|
19
|
Abstract
L-selectin is a cell adhesion molecule consisting of a large, highly glycosylated, extracellular domain, a single spanning transmembrane domain and a small cytoplasmic tail. It is expressed on most leukocytes and is involved in their rolling on inflamed vascular endothelium prior to firm adhesion and transmigration. It is also required for the constitutive trafficking of lymphocytes through secondary lymphoid organs. Like most adhesion molecules, L-selectin function is regulated by a variety of mechanisms including gene transcription, post-translational modifications, association with the actin cytoskeleton, and topographic distribution. In addition, it is rapidly downregulated by proteolytic cleavage near the cell surface by ADAM-17 (TACE) and at least one other "sheddase". This process of "ectodomain shedding" results in the release of most of the extracellular portion of L-selectin from the cell surface while retaining the cytoplasmic, transmembrane, and eleven amino acids of the extracellular domain on the cell. This review will examine the mechanism(s) of L-selectin ectodomain shedding and discuss the physiological implications.
Collapse
Affiliation(s)
- D M Smalley
- Cardiovascular Research Center and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22908-1294, USA
| | | |
Collapse
|
20
|
Khan AI, Landis RC, Malhotra R. L-Selectin ligands in lymphoid tissues and models of inflammation. Inflammation 2005; 27:265-80. [PMID: 14635784 DOI: 10.1023/a:1026056525755] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Both lymphocyte recirculation through the lymphoid tissues and leukocyte recruitment to sites of inflammation are essential components of immune surveillance, and are necessary for sustained protection against pathogens. This process is mediated by the leukocyte-endothelial adhesion cascade of which the interaction of leukocyte L-Selectin with its endothelial ligand initiates the first critical tethering and rolling step. As well as discussing the constitutive L-Selectin ligands in lymphoid tissues, this review examines the literature regarding their induction in inflammation, and draws attention to recent findings regarding soluble L-Selectin ligands that suggest an emerging multifunctional role in leukocyte recirculation and inflammation.
Collapse
Affiliation(s)
- Adil I Khan
- BHF Cardiovascular Medicine Unit, National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom.
| | | | | |
Collapse
|
21
|
Ba X, Chen C, Gao Y, Zeng X. Signaling function of PSGL-1 in neutrophil: Tyrosine-phosphorylation-dependent and c-Abl-involved alteration in the F-actin-based cytoskeleton. J Cell Biochem 2005; 94:365-73. [PMID: 15526280 DOI: 10.1002/jcb.20213] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) is the best-characterized selectin ligand that has been demonstrated to mediate leukocytes rolling on endothelium and leukocytes recruitment into inflamed tissue in vivo. In addition to its direct role in leukocyte capturing, PSGL-1 also functions as a signal-transducing receptor. The present work showed that after cross-linking of PSGL-1 with KPL1, an anti-PSGL-1 monoclonal antibody, PSGL-1 linked to the cytoskeleton and became a detergent-insoluble component in activated neutrophils. The antibody cross-linking led to the polymerization and redistribution of F-actin-based cytoskeleton, and this alteration of cytoskeleton was spatiotemporally related to the polarization of PSGL-1. PSGL-1's polarization was cytoskeleton-dependent because it was eliminated by cytochalasin B. Furthermore, the polymerization and redistribution of F-actin filaments were tyrosine-phosphorylation-dependent since the alteration of F-actin-based cytoskeleton was severely blocked by genistein, a universal tyrosine kinase inhibitor. STI571, a small molecule inhibitor for cytoplasmic tyrosine kinase c-Abl, also inhibited the alteration of F-actin-based cytoskeleton, and c-Abl was redistributed to where F-actin concentrated in the activated neutrophils. The results suggested that cross-linking of PSGL-1 induces the phosphorylation-dependent and c-Abl-involved alteration of F-actin-based cytoskeleton in neutrophils.
Collapse
Affiliation(s)
- Xueqing Ba
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, Peoples Republic of China
| | | | | | | |
Collapse
|
22
|
Ivetic A, Florey O, Deka J, Haskard DO, Ager A, Ridley AJ. Mutagenesis of the Ezrin-Radixin-Moesin Binding Domain of L-selectin Tail Affects Shedding, Microvillar Positioning, and Leukocyte Tethering. J Biol Chem 2004; 279:33263-72. [PMID: 15178693 DOI: 10.1074/jbc.m312212200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-selectin is a cell adhesion molecule that mediates the initial capture (tethering) and subsequent rolling of leukocytes along ligands expressed on endothelial cells. We have previously identified ezrin and moesin as novel binding partners of the 17-amino acid L-selectin tail, but the biological role of this interaction is not known. Here we identify two basic amino acid residues within the L-selectin tail that are required for binding to ezrin-radixinmoesin (ERM) proteins: arginine 357 and lysine 362. L-selectin mutants defective for ERM binding show reduced localization to microvilli and decreased phorbol 12-myristate 13-acetate-induced shedding of the L-selectin ectodomain. Cells expressing these L-selectin mutants have reduced tethering to the L-selectin ligand P-selectin glycoprotein ligand-1, but rolling velocity on P-selectin glycoprotein ligand-1 is not affected. These results suggest that ERM proteins are required for microvillar positioning of L-selectin and that this is important both for leukocyte tethering and L-selectin shedding.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, 91 Riding House Street, London W1W 7BS United Kingdom.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The ezrin/radixin/moesin (ERM) family of actin-binding proteins act both as linkers between the actin cytoskeleton and plasma membrane proteins and as signal transducers in responses involving cytoskeletal remodelling. The Rho family of GTPases also regulate cytoskeletal organisation, and several molecular pathways linking ERM proteins and Rho GTPases have been described. This review discusses recent findings on ERM protein function in leucocytes and how these may be integrated with Rho GTPase signalling.
Collapse
Affiliation(s)
- Aleksandar Ivetic
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, London, UK
| | | |
Collapse
|
24
|
Kilian K, Dernedde J, Mueller EC, Bahr I, Tauber R. The interaction of protein kinase C isozymes alpha, iota, and theta with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor. J Biol Chem 2004; 279:34472-80. [PMID: 15192100 DOI: 10.1074/jbc.m405916200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leukocyte adhesion molecule L-selectin has an important role in the initial steps of leukocyte extravasation during inflammation and lymphocyte homing. Its cytoplasmic domain is involved in signal transduction after L-selectin cross-linking and in the regulation of receptor binding activity in response to intracellular signals. However, the signaling events occurring at the level of the receptor are largely unknown. This study therefore addressed the question of whether protein kinases associate with the cytoplasmic domain of the receptor and mediate its phosphorylation. Using a glutathione S-transferase fusion protein of the L-selectin cytoplasmic domain, we isolated a kinase activity from cellular extracts of the human leukemic Jurkat T-cell line that phosphorylated L-selectin on serine residues. This kinase showed characteristics of the protein kinase C (PKC) family. Moreover, the Ca(2+)-independent PKC isozymes theta and iota were found associated with the cytoplasmic domain of L-selectin. Pseudosubstrate inhibitors of these isozymes abolished phosphorylation of the cytoplasmic domain, demonstrating that these kinases are responsible for the phosphorylation. Analysis of proteins specifically bound to the phosphorylated cytoplasmic tail of L-selectin revealed that PKCalpha and -theta are strongly associated with the phosphorylated cytoplasmic domain of L-selectin. Binding of these isozymes to L-selectin was also found in intact cells after phorbol ester treatment inducing serine phosphorylation of the receptor. Furthermore, stimulation of Jurkat T-cells by CD3 cross-linking induced association of PKCalpha and -theta with L-selectin, indicating a role of these kinases in the regulation of L-selectin through the T-cell receptor complex. The phosphorylation-regulated association of PKC isozymes with the cytoplasmic domain of L-selectin indicates an important role of this kinase family in L-selectin signal transduction.
Collapse
Affiliation(s)
- Karin Kilian
- Institut für Klinische Chemie und Pathobiochemie, Charité, Berlin 12200, Germany.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Endothelial cells express a diverse and exquisite array of adhesion molecules and cell surface receptors. Adhesion molecules expressed on endothelial cells not only maintain structural integrity of the vasculature, but also mediate more dynamic processes such as the highly regulated movement of leukocytes from free flow into different tissue compartments. Recent studies have focused on the molecular processes that mediate endothelial cell function and their ability to respond rapidly to changes in their immediate microenvironment, as well as maintaining routine cell trafficking through specialist tissue compartments. Adhesion molecules expressed on the endothelium mediate the movement of leukocytes into the underlying extravasculature to mediate a diverse array of functions including immune effector responses, cellular interactions in specialist lymphatic microenvironments and recirculation back into the vasculature. The true diversity and capacity of adhesion molecules capable of being expressed on the endothelium is now beginning to emerge, demonstrating new levels of complexity as specialist subsets of endothelium are characterised that define specific, yet diverse functions. In this chapter, the role of cell adhesion molecules in mediating endothelial cell function is discussed, from how their different physiochemical properties contribute to function, to how specific ligand interactions expressed on leukocyte cell populations contribute to functions ranging from constitutive cell trafficking to inflammation.
Collapse
|
26
|
Alon R, Grabovsky V, Feigelson S. Chemokine induction of integrin adhesiveness on rolling and arrested leukocytes local signaling events or global stepwise activation? Microcirculation 2003; 10:297-311. [PMID: 12851647 DOI: 10.1038/sj.mn.7800195] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Accepted: 11/06/2002] [Indexed: 01/28/2023]
Abstract
The arrest of rolling leukocytes on target endothelium is predominantly mediated by integrins, which pre-exist in largely inactive states on circulating immune cells and need to be activated in situ. These adhesion receptors acquire high avidity upon encounter with endothelial-displayed chemokines or chemoattractants, which are ligands to specific G protein-coupled receptors (GPCRs) on the leukocyte surface. In order to arrest, the leukocyte must constantly integrate endothelial-based signals as it moves along the vessel wall. It is unclear whether the chemokine signal is locally transmitted at the endothelial contact zone or whether the rolling leukocyte accumulates successive chemokine signals to reach a threshold global activation. Recent in vitro and in vivo data suggest that the induction of high integrin avidity by endothelial chemokine-transduced G(i)-signals is a general mechanism that has evolved to locally enhance integrin avidity to ligand within subseconds at restricted leukocyte-endothelial contacts. In addition, a second specialized mechanism, involving stepwise signals integrated by selectin ligands on rolling cells, seems to activate integrins on the entire leukocyte surface. This GPCR-independent and much slower pathway (10(1)-10(2) seconds) is transmitted through rolling engagements of neutrophils, primarily on E-selectin. We propose that these two mechanisms are differentially used by distinct leukocyte subsets at various vascular beds, providing much larger combinatorial diversity of integrin activation on rolling leukocytes than previously predicted.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, 76100 Israel.
| | | | | |
Collapse
|
27
|
Phong MC, Gutwein P, Kadel S, Hexel K, Altevogt P, Linderkamp O, Brenner B. Molecular mechanisms of L-selectin-induced co-localization in rafts and shedding [corrected]. Biochem Biophys Res Commun 2003; 300:563-9. [PMID: 12504120 DOI: 10.1016/s0006-291x(02)02886-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leukocyte recruitment to lymph nodes or inflammatory sites is regulated by adhesion and activation. L-selectin (CD62L) is expressed on leukocytes and mediates tethering and rolling of leukocytes on endothelial cells. Upon stimulation L-selectin is down-regulated by proteolytic cleavage but the molecular mechanisms regulating this shedding step are poorly defined. To study intracellular mechanisms, we induced shedding of L-selectin by cross-linking with an immobilized L-selectin antibody (Dreg56) in Jurkat cells. The loss of surface expression was quantitated by flow cytometry and the increase of soluble L-selectin was determined by Western blot analysis. We find that Jurkat and p56(lck)-deficient JCaM1.6 cells released L-selectin to similar extent (18+/-4% and 17+/-3%, respectively) and revealed comparable inhibition with the src-tyrosine kinase inhibitor PP2. Glutathione (GSH), an inhibitor of the neutral sphingomyelinase, PD98059, a MAP-kinase (MAP-K) inhibitor and metalloprotease inhibitors (MPI) (TAPI, Ro 31-9790, and BB-3103) reduced significantly L-selectin-induced shedding by 60-80%. In Jurkat cells, L-selectin was present in Triton X-100 insoluble membrane rafts and was constitutively tyr-phosphorylated. Dreg56 cross-linking enhanced phosphorylation and recruitment of L-selectin into rafts which was significantly decreased by pretreatment of cells with PD98059. We conclude, that the metalloproteinase-mediated cleavage of L-selectin from cell surface is triggered by intracellular signaling pathways that are independent of p56(lck) tyrosine kinase activity, but require other tyrosine kinases and the neutral sphingomyelinase. The cleavage of L-selectin might involve membrane rafts as signaling platform.
Collapse
Affiliation(s)
- Minh-Chau Phong
- Department of Pediatrics, Division of Neonatology, University of Heidelberg, Im Neuenheimer Feld 150, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Vicente-Manzanares M, Sancho D, Yáñez-Mó M, Sánchez-Madrid F. The leukocyte cytoskeleton in cell migration and immune interactions. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:233-89. [PMID: 12049209 DOI: 10.1016/s0074-7696(02)16007-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Leukocyte migration is crucial during the development of the immune system and in the responses to infection, inflammation, and tumor rejection. The migratory behavior of leukocytes under physiological and pathological conditions as well as the extracellular cues and intracellular machinery that control and guide migration have been studied thoroughly. The cytoskeleton of leukocytes is extremely versatile, bearing characteristic features that enable these cells to migrate under conditions of flow through narrow spaces and onto target tissues. What makes the cytoskeleton machinery so extraordinary is not so much its molecular composition, but its flexibility which allows it to display a unique combination of responses to the extracellular medium and a rapid regulation of the architecture of its components. This review focuses on the cytoskeleton of the leukocyte. Its molecular components and the regulation of their assembly and organization are discussed. Furthermore, it highlights aspects of the regulation of the leukocyte cytoskeleton that confer flexibility to these cells in order to perform their specific tasks. Finally, different subcellular structures such as the immunological synapse, the uropod of migrating leukocytes, and the phagosome displayed by phagocytic cells are discussed in detail. The relationship of the leukocyte with its environment occurs through different kinds of receptors that interact with ligands that are soluble, fixed on the membrane of other cells, or immobilized on the extracellular matrix. The impact of receptor-ligand binding on the functional responses and the rearrangement of the cytoskeleton is also examined.
Collapse
Affiliation(s)
- Miguel Vicente-Manzanares
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Croker BA, Handman E, Hayball JD, Baldwin TM, Voigt V, Cluse LA, Yang FC, Williams DA, Roberts AW. Rac2-deficient mice display perturbed T-cell distribution and chemotaxis, but only minor abnormalities in T(H)1 responses. Immunol Cell Biol 2002; 80:231-40. [PMID: 12067410 DOI: 10.1046/j.1440-1711.2002.01077.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The haematopoietic-specific RhoGTPase, Rac2, has been indirectly implicated in T-lymphocyte development and function, and as a pivotal regulator of T Helper 1 (T(H)1) responses. In other haematopoietic cells it regulates cytoskeletal rearrangement downstream of extracellular signals. Here we demonstrate that Rac2 deficiency results in an abnormal distribution of T lymphocytes in vivo and defects in T-lymphocyte migration and filamentous actin generation in response to chemoattractants in vitro. To investigate the requirement for Rac2 in IFN-gamma production and TH1 responses in vivo, Rac2-deficient mice were challenged with Leishmania major and immunized with ovalbumin-expressing cytomegalovirus. Despite a minor skewing towards a T(H)2 phenotype, Rac2-deficient mice displayed no increased susceptibility to L. major infection. Cytotoxic T-lymphocyte responses to cytomegalovirus and ovalbumin were also normal. Although Rac2 is required for normal T-lymphocyte migration, its role in the generation of T(H)1 responses to infection in vivo is largely redundant.
Collapse
Affiliation(s)
- Ben A Croker
- Divisions of Cancer, Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, South Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brenner BC, Kadel S, Grigorovich S, Linderkamp O. Mechanisms of L-selectin-induced activation of the nuclear factor of activated T lymphocytes (NFAT). Biochem Biophys Res Commun 2002; 291:237-44. [PMID: 11846396 DOI: 10.1006/bbrc.2002.6451] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selectins are mediating transient contacts of leukocytes with endothelium during inflammatory processes and in the development of the immune system. L-selectin expressed on almost all leukocytes also functions as a signaling receptor. Recently, we have identified different signaling pathways in T lymphocytes by L-selectin. One signaling cascade leads via the tyrosine kinase p56lck to the small G-proteins Ras and Rac and to MAP-kinases. A second independent pathway results in ceramide release. In this study, an L-selectin-induced translocation of the transcription factor NFAT to the nucleus was identified. Using genetically modified JCaM1.6 cells, pharmacological inhibitors, and antisense molecules, it was shown that L-selectin-induced NFAT activation depends on src-tyrosine kinases, calcineurin and small G-proteins. MAP-kinases and actin filaments were identified as Ras effectors involved in NFAT translocation. We conclude that L-selectin cross-linking results in activation of NFAT by different signaling pathways. The activation of NFAT might modulate the immune response of leukocytes interacting with endothelial cells.
Collapse
Affiliation(s)
- Birgit C Brenner
- Department of Cardiology, Children's Hospital, Moorenstrasse 5, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
31
|
Hu Y, Szente B, Kiely JM, Gimbrone MA. Molecular events in transmembrane signaling via E-selectin. SHP2 association, adaptor protein complex formation and ERK1/2 activation. J Biol Chem 2001; 276:48549-53. [PMID: 11602579 DOI: 10.1074/jbc.m105513200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
E-selectin is a cytokine-inducible adhesion molecule that is expressed by activated endothelial cells at sites of inflammation. In addition to supporting rolling and stable arrest of leukocytes, there is increasing evidence that E-selectin functions in transmembrane signaling into endothelial cells during these adhesive interactions. We have previously shown that adhesion of HL-60 cells (which express ligands for E-selectin), or antibody-mediated cross-linking of E-selectin, results in formation of a Ras/Raf-1/phospho-MEK macrocomplex, extracellular signal-regulated protein kinase (ERK1/2) activation, and c-fos up-regulation. All of these downstream signaling events appear to require an intact cytoplasmic domain of E-selectin. Here we demonstrate that tyrosine 603 in the cytoplasmic domain of E-selectin is required for the E-selectin-dependent ERK1/2 activation. Tyrosine 603 plays an important role in mediating the association of E-selectin with SHP2, and the catalytic domain of SHP2 is, in turn, critical for E-selectin-dependent ERK1/2 activation. An adapter protein complex consisting of Shc.Grb2.Sos bridges between SHP2 and the Ras.Raf.phospho-MEK macrocomplex. These molecular events thus outline a mechanism by which cross-linking of E-selectin by engagement of ligands on adherent leukocytes can initiate a multifunctional signaling pathway in the activated endothelial cell at sites of inflammation.
Collapse
Affiliation(s)
- Y Hu
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02132, USA.
| | | | | | | |
Collapse
|
32
|
Kurkchubasche AG, Panepinto JA, Tracy TF, Thurman GW, Ambruso DR. Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction disease. J Pediatr 2001; 139:141-7. [PMID: 11445809 DOI: 10.1067/mpd.2001.114718] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The case of an infant with multiple, rapidly progressive, soft-tissue infections is presented. Despite features suggesting a neutrophil disorder, results of screening tests of phagocyte function were normal. A novel, multifaceted leukocyte disorder-distinguished by defects in shape change, chemotaxis, ingestion, degranulation, superoxide anion production, and bactericidal activity-was established secondary to a defect in Rac2.
Collapse
Affiliation(s)
- A G Kurkchubasche
- Department of Surgery, Division of Pediatric Surgery, Brown University School of Medicine, Providence, Rhode Island, USA
| | | | | | | | | |
Collapse
|
33
|
Brenner B, Kadel S, Birle A, Linderkamp O. L-selectin tyrosine phosphorylates cbl and induces association of tyrosine-phosphorylated cbl with crkl and grb2. Biochem Biophys Res Commun 2001; 282:41-7. [PMID: 11263968 DOI: 10.1006/bbrc.2001.4546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-Selectin-mediated rolling of leukocytes on endothelial cells is an important step for lymphocyte homing and an early event in the immune response to pathogens or inflammatory stimuli. We have previously elucidated intracellular signaling cascades upon L-selectin engagement resulting in activation of Ras, Rac and JNK as well as cytoskeletal changes, oxygen release, ceramide synthesis and receptor capping. Activation of the src-tyrosine kinase p56lck is followed by phosphorylation of the L-selectin molecule and MAP-K. Here we show a tyrosine kinase dependent phosphorylation of the Cbl adapter protein after L-selectin engagement in lymphocytes. Phosphorylation of Cbl was absent in Jurkat cells that are pharmacologically treated with tyrosine kinase inhibitors and in lck-deficient JCaM cells. There is an activation induced association of tyrosine phosphorylated Cbl with Grb2 and CrkL, respectively, but not CrkII. Therefore, the adapter protein Cbl plays a role in L-selectin signaling and might modulate immune function by the specific recruitment of signaling molecules to multiprotein complexes.
Collapse
Affiliation(s)
- B Brenner
- Department of Pediatrics, Division of Neonatology, Heidelberg University, Im Neuenheimer Feld 150, Heidelberg, 69120, Germany.
| | | | | | | |
Collapse
|
34
|
Brenner B, Junge S, Birle A, Kadel S, Linderkamp O. Surfactant modulates intracellular signaling of the adhesion receptor L-selectin. Pediatr Res 2000; 48:283-8. [PMID: 10960491 DOI: 10.1203/00006450-200009000-00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intraalveolar leukocyte accumulation is one of the hallmarks during respiratory distress. In the intraalveolar space, leukocyte activation is mediated by pathogens, cytokines, and different ligands binding to adhesion molecules. Leukocyte stimulation via the adhesion molecule L-selectin is specifically induced by ligands expressed on leukocytes, platelets, endothelial cells, or lipopolysaccharide. Recently, we have demonstrated that leukocyte activation by L-selectin transmits several intracellular signaling cascades resulting in capping and cytoskeletal changes, the activation of kinases and neutral sphingomyelinase, the recruitment of adaptor proteins to the cell membrane, the activation of the small G-proteins Ras and Rac, and the release of oxygen. In the present study, we examined the effects of surfactant on L-selectin-induced signal transduction in leukocytes. Using fluorescence microscopy, we provide evidence that preincubation of leukocytes with surfactant significantly inhibits receptor capping; 28+/-7% of cells show capping after L-selectin stimulation versus 8+/-5% and 3+/-1% of cells after preincubation with Exosurf and Curosurf, respectively (p < 0.05). The activity of the neutral sphingomyelinase in cell lysates is also modulated by surfactant. In addition, we show that the activation of the tyrosine kinase p56lck is diminished by approximately 50% after surfactant treatment. This results in inhibition in tyrosine phosphorylation of certain intracellular proteins. The interaction of the L-selectin molecule with its antibody was not influenced by surfactant as shown by flow cytometry. Surfactant inhibits intracellular signaling events of the L-selectin receptor in leukocytes and might therefore contribute to the modulatory effects of surfactant on immune function.
Collapse
Affiliation(s)
- B Brenner
- Department of Pediatrics, Im Neuenheimer Feld 150, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Abstract
Rho GTPases regulate many important processes in all eukaryotic cells, including the organization of the actin cytoskeleton, gene transcription, cell cycle progression, and membrane trafficking. Their activity is regulated by signals originating from different classes of surface receptors including G-protein-coupled receptors, tyrosine kinase receptors, cytokine receptors, and adhesion receptors. Recent work has identified multiple mechanisms by which receptors can signal to Rho GTPases and this will be the major focus of this review. In addition, there is growing evidence for cross-talk within the Rho GTPase family as well as between the Rho and Ras GTPase families. These signaling networks are thought to provide the cooperative and coordinated interactions that are crucial for regulating complex biological processes such as cell migration.
Collapse
Affiliation(s)
- L Kjoller
- CRC Oncogene and Signal Transduction Group, Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | |
Collapse
|
36
|
Simon SI, Cherapanov V, Nadra I, Waddell TK, Seo SM, Wang Q, Doerschuk CM, Downey GP. Signaling Functions of L-Selectin in Neutrophils: Alterations in the Cytoskeleton and Colocalization with CD18. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Ligation and clustering of L-selectin by Ab (“cross-linking”) or physiologic ligands results in activation of diverse responses that favor enhanced microvascular sequestration and emigration of neutrophils. The earliest responses include a rise in intracellular calcium, enhanced tyrosine phosphorylation, and activation of extracellular signal-regulated kinases. Additionally, cross-linking of L-selectin induces sustained shape change and activation of β2 integrins, leading to neutrophil arrest under conditions of shear flow. In this report, we examined several possible mechanisms whereby transmembrane signals from L-selectin might contribute to an increase in the microvascular retention of neutrophils and enhanced efficiency of emigration. In human peripheral blood neutrophils, cross-linking of L-selectin induced alterations in cellular biophysical properties, including a decrease in cell deformability associated with F-actin assembly and redistribution, as well as enhanced adhesion of microspheres bound to β2 integrins. L-selectin and the β2 integrin became spatially colocalized as determined by confocal immunofluorescence microscopy and fluorescence resonance energy transfer. We conclude that intracellular signals from L-selectin may enhance the microvascular sequestration of neutrophils at sites of inflammation through a combination of cytoskeletal alterations leading to cell stiffening and an increase in adhesiveness mediated through alterations in β2 integrins.
Collapse
Affiliation(s)
- Scott I. Simon
- *Department of Pediatrics, Section of Leukocyte Biology, Baylor College of Medicine, Houston, TX 77030
| | - Vera Cherapanov
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| | - Imad Nadra
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| | - Tom K. Waddell
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| | - Scott M. Seo
- *Department of Pediatrics, Section of Leukocyte Biology, Baylor College of Medicine, Houston, TX 77030
| | - Qin Wang
- ‡Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115
| | - Claire M. Doerschuk
- ‡Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115
| | - Gregory P. Downey
- †Department of Medicine, Division of Respirology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
37
|
|
38
|
Wójciak-Stothard B, Williams L, Ridley AJ. Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering. J Cell Biol 1999; 145:1293-307. [PMID: 10366600 PMCID: PMC2133155 DOI: 10.1083/jcb.145.6.1293] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The GTPase Rho is known to mediate the assembly of integrin-containing focal adhesions and actin stress fibers. Here, we investigate the role of Rho in regulating the distribution of the monocyte-binding receptors E-selectin, ICAM-1, and VCAM-1 in human endothelial cells. Inhibition of Rho activity with C3 transferase or N19RhoA, a dominant negative RhoA mutant, reduced the adhesion of monocytes to activated endothelial cells and inhibited their spreading. Similar effects were observed after pretreatment of endothelial cells with cytochalasin D. In contrast, dominant negative Rac and Cdc42 proteins did not affect monocyte adhesion or spreading. C3 transferase and cytochalasin D did not alter the expression levels of monocyte-binding receptors on endothelial cells, but did inhibit clustering of E-selectin, ICAM-1, and VCAM-1 on the cell surface induced by monocyte adhesion or cross-linking antibodies. Similarly, N19RhoA inhibited receptor clustering. Monocyte adhesion and receptor cross-linking induced stress fiber assembly, and inhibitors of myosin light chain kinase prevented this response but did not affect receptor clustering. Finally, receptor clusters colocalized with ezrin/moesin/ radixin proteins. These results suggest that Rho is required in endothelial cells for the assembly of stable adhesions with monocytes via the clustering of monocyte-binding receptors and their association with the actin cytoskeleton, independent of stress fiber formation.
Collapse
|
39
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
40
|
Evans SS, Schleider DM, Bowman LA, Francis ML, Kansas GS, Black JD. Dynamic Association of L-Selectin with the Lymphocyte Cytoskeletal Matrix. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
L-selectin mediates lymphocyte extravasation into lymphoid tissues through binding to sialomucin-like receptors on the surface of high endothelial venules (HEV). This study examines the biochemical basis and regulation of interactions between L-selectin, an integral transmembrane protein, and the lymphocyte cytoskeleton. Using a detergent-based extraction procedure, constitutive associations between L-selectin and the insoluble cytoskeletal matrix could not be detected. However, engagement of the L-selectin lectin domain by Abs or by glycosylation-dependent cell adhesion molecule-1, an HEV-derived ligand for L-selectin, rapidly triggered redistribution of L-selectin to the detergent-insoluble cytoskeleton. L-selectin attachment to the cytoskeleton was not prevented by inhibitors of actin/microtubule polymerization (cytochalasin B, colchicine, or nocodozole) or serine/threonine and tyrosine kinase activity (staurosporine, calphostin C, or genistein), although L-selectin-mediated adhesion of human PBL was markedly suppressed by these agents. Exposure of human PBL or murine pre-B transfectants expressing full-length human L-selectin to fever-range hyperthermia also markedly increased L-selectin association with the cytoskeleton, directly correlating with enhanced L-selectin-mediated adhesion. In contrast, a deletion mutant of L-selectin lacking the COOH-terminal 11 amino acids failed to associate with the cytoskeletal matrix in response to Ab cross-linking or hyperthermia stimulation and did not support adhesion to HEV. These studies, when taken together with the previously demonstrated interaction between the L-selectin cytoplasmic domain and the cytoskeletal linker protein α-actinin, strongly implicate the actin-based cytoskeleton in dynamically controlling L-selectin adhesion.
Collapse
Affiliation(s)
| | | | | | | | - Geoffrey S. Kansas
- ‡Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611
| | - Jennifer D. Black
- †Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263; and
| |
Collapse
|
41
|
Abstract
Selectins are a family of three cell adhesion molecules (L-, E-, and P-selectin) specialized in capturing leukocytes from the bloodstream to the blood vessel wall. This initial cell contact is followed by the selectin-mediated rolling of leukocytes on the endothelial cell surface. This represents the first step in a cascade of molecular interactions that lead to leukocyte extravasation, enabling the processes of lymphocyte recirculation and leukocyte migration into inflamed tissue. The central importance of the selectins in these processes has been well documented in vivo by the use of adhesion-blocking antibodies as well as by studies on selectin gene-deficient mice. This review focuses on the molecular mechanisms that regulate expression and function(s) of the selectins and their ligands. Cell-surface expression of the selectins is regulated by a variety of different mechanisms. The selectins bind to carbohydrate structures on glycoproteins, glycolipids, and proteoglycans. Glycoproteins are the most likely candidates for physiologically relevant ligands. Only a few glycoproteins are appropriately glycosylated to allow strong binding to the selectins. Recently, more knowledge about the structure and the regulated expression of some of the carbohydrates on these ligands necessary for selectin binding has been accumulated. For at least one of these ligands, the physiological function is now well established. A novel and exciting aspect is the signaling function of the selectins and their ligands. Especially in the last two years, convincing data have been published supporting the idea that selectins and glycoprotein ligands of the selectins participate in the activation of leukocyte integrins.
Collapse
Affiliation(s)
- D Vestweber
- Institute of Cell Biology, Center of Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | |
Collapse
|
42
|
Brenner B, Grassmé HU, Müller C, Lang F, Speer CP, Gulbins E. L-selectin stimulates the neutral sphingomyelinase and induces release of ceramide. Exp Cell Res 1998; 243:123-8. [PMID: 9716456 DOI: 10.1006/excr.1998.4146] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selectins have been shown to be crucial in the rolling process of leukocytes during lymphocyte homing and in the early phase of inflammatory processes. Recently, we and others have shown that binding of L-selectin to its ligands correlates with a rapid induction of several intracellular signaling molecules, in particular, Src-like tyrosine kinases, MAP-kinases, Jun NH2-terminal kinase, the small G-proteins Ras and Rac, and a release of Ca2+ in leukocytes. Here, we demonstrate the activation of a novel signaling pathway by L-selectin. Stimulation of Jurkat T-lymphocytes via L-selectin results in an increase of neutral sphingomyelinase activity. This activity correlates with a consumption of cellular sphingomyelin and a release of ceramide. The activation of the neutral sphingomyelinase by L-selectin does not depend on tyrosine kinase activity and, therefore, represents an alternative and novel pathway to stimulate lymphocytes via L-selectin.
Collapse
Affiliation(s)
- B Brenner
- Department of Neonatology, University of Tuebingen, Ruemelinstrasse 23, Tuebingen, 72070, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Yoshida M, Szente BE, Kiely JM, Rosenzweig A, Gimbrone MA. Phosphorylation of the Cytoplasmic Domain of E-Selectin Is Regulated During Leukocyte-Endothelial Adhesion. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.2.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
E-selectin, a selectin expressed on activated vascular endothelium, supports rolling and stable adhesion of leukocytes at sites of inflammation. Previously, we have reported that leukocyte adhesion to cultured endothelial cells induces association of the cytoplasmic domain of E-selectin with cytoskeletal elements, suggesting that outside-in signaling may occur during E-selectin-mediated adhesion. To investigate this potential signaling function of E-selectin, HUVEC activated with recombinant human IL-1β (10 U/ml, 4 h) were labeled with [32P]orthophosphate, and E-selectin was immunoprecipitated using mAb H18/7. Autoradiography revealed constitutive phosphorylation of E-selectin in these cells and time-dependent dephosphorylation following adhesion of HL-60 cells. Cross-linking of cell surface E-selectin using H18/7 and a polyclonal secondary Ab induced E-selectin dephosphorylation, as did adhesion of beads coated with recombinant P-selectin glycoprotein ligand-1 (PSGL-1), an E-selectin ligand. Using adenoviral vector-mediated transfection in HUVEC of a tail-less E-selectin and phosphoamino acid analysis, we documented phosphorylation occurring exclusively within the cytoplasmic domain and involving serine residues. Additional experiments using a series of cytoplasmic domain mutants of E-selectin expressed in COS-7 cells localized the regions that were constitutively phosphorylated. Preincubation with okadaic acid and sodium vanadate abrogated adhesion-induced dephosphorylation of E-selectin. Thus, E-selectin, which is constitutively phosphorylated in cytokine-activated human endothelial cells, undergoes an enzymatically regulated dephosphorylation following leukocyte adhesion. This process appears to be triggered by multivalent ligand binding and/or cross-linking of cell surface E-selectin. Ligand-dependent regulation of the phosphorylation of E-selectin’s cytoplasmic domain provides additional evidence for a transmembrane signaling function of this molecule during leukocyte-endothelial interactions.
Collapse
Affiliation(s)
- Masayuki Yoshida
- *Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital,
| | - Brian E. Szente
- *Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital,
| | - Jeanne-Marie Kiely
- *Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital,
| | - Anthony Rosenzweig
- †Cardiovascular Research Center, Massachusetts General Hospital-East, Harvard Medical School, Boston, MA
| | - Michael A. Gimbrone
- *Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital,
| |
Collapse
|
44
|
Abstract
The actin cytoskeleton mediates a variety of essential biological functions in all eukaryotic cells. In addition to providing a structural framework around which cell shape and polarity are defined, its dynamic properties provide the driving force for cells to move and to divide. Understanding the biochemical mechanisms that control the organization of actin is thus a major goal of contemporary cell biology, with implications for health and disease. Members of the Rho family of small guanosine triphosphatases have emerged as key regulators of the actin cytoskeleton, and furthermore, through their interaction with multiple target proteins, they ensure coordinated control of other cellular activities such as gene transcription and adhesion.
Collapse
Affiliation(s)
- A Hall
- Medical Research Council Laboratory for Molecular Cell Biology, Cancer Research Campaign Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
45
|
Hidari KI, Weyrich AS, Zimmerman GA, McEver RP. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem 1997; 272:28750-6. [PMID: 9353345 DOI: 10.1074/jbc.272.45.28750] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During inflammation, P-selectin on activated platelets and endothelial cells initiates adhesion of leukocytes through interactions with P-selectin glycoprotein ligand-1 (PSGL-1). We investigated whether ligation of PSGL-1 also transmits signals into leukocytes. Neutrophils incubated with anti-PSGL-1 monoclonal antibodies, but not with Fab fragments of these antibodies, rapidly increased tyrosine phosphorylation of proteins with relative molecular masses of 105-120, 70-84, and 42-44 kDa. PSGL-1-dependent adhesion of neutrophils to P-selectin increased tyrosine phosphorylation of similarly sized proteins. Cytochalasin B did not prevent the tyrosine phosphorylation induced by ligation of PSGL-1, suggesting that an intact cytoskeleton is not required for signaling. Engagement of PSGL-1 activated the GTPase Ras through a mechanism that did not require tyrosine phosphorylation of PSGL-1 or association of the Shc.Grb2.Sos1 complex with PSGL-1. Engagement of PSGL-1 activated the 42-44-kDa extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinases through a pathway that required activation of the MAP kinase kinase. Ligation of PSGL-1 also stimulated secretion of interleukin-8. The tyrosine kinase inhibitor, genistein, blocked tyrosine phosphorylation and secretion of interleukin-8, whereas the MAP kinase kinase inhibitor PD98059 partially inhibited secretion of interleukin-8. Tyrosine phosphorylation stimulated through PSGL-1 on selectin-tethered leukocytes may propagate a signaling cascade that is integrated with signals generated by other mediators.
Collapse
Affiliation(s)
- K I Hidari
- W. K. Warren Medical Research Institute and the Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|