1
|
Sato H, Ito Y, Inoue M, Nakahira Y, Hashimoto S, Nakajima T, Kamijima M. Simple method to detect triclofos and its metabolites in plasma of children by combined use of liquid chromatography tandem-mass spectrometry and gas chromatography-mass spectrometry. Sci Rep 2019; 9:9294. [PMID: 31243319 PMCID: PMC6594997 DOI: 10.1038/s41598-019-45790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022] Open
Abstract
Triclofos sodium (TCS) and chloral hydrate (CH) are widely used as sedatives for children, but no analytical method to simultaneously monitor concentrations of blood TCS, CH and their metabolites, trichloroacetic acid (TCA) and trichloroethanol (TCEOH), has been reported. The present study aimed to develop a simple analytical method for TCS and its metabolites (TCA, TCEOH and CH) in small-volume plasma from children. After acidification of specimens, TCS formic acid adduct or the metabolites derivatized using water/sulfuric acid/methanol (6:5:1, v/v) were measured by combined use of liquid chromatography tandem-mass spectrometry and gas chromatography mass-spectrometry. The limits of detection and quantification levels (µg/ml) were 0.10 and 0.29 for TCS, 0.24 and 0.72 for TCA, 0.10 and 0.31 for TCEOH, and 0.25 and 0.76 for CH, respectively. The mean recoveries were 82.8-107% for TCS, 85.4-101% for TCA, 91.6-107% for TCEOH, and 88.9-109% for CH. Within-run and between-run precision (percent of relative standard deviation, %RSD) using this method ranged from 1.1 to 15.7% and 3.6 to 13.5%, respectively, for TCS and all of its metabolites. The calibration curves were obtained with standard spiked plasma, and all of the coefficients of determination were more than 0.975. Subsequently, we applied the present method to plasma taken from five children after sedation induced by CH and TCS. In addition to TCS and CH, elevated TCA and TCEOH concentrations were detected. This new method can be applied for the pharmacokinetic analysis of TCS and its metabolites and the determination of the optimal TCS dosage in children.
Collapse
Affiliation(s)
- Hirotaka Sato
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Miho Inoue
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuki Nakahira
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tamie Nakajima
- College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
2
|
Kim YS, Lim BG, Kang SW, Lee SH, Lee W, Lee IO. Assessment of chloral hydrate-centered pediatric sedation performed by non-anesthesiologists. Anesth Pain Med (Seoul) 2016. [DOI: 10.17085/apm.2016.11.4.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Young Sung Kim
- Department of Anesthesiology and Pain Medicine, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Byung Gun Lim
- Department of Anesthesiology and Pain Medicine, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Sung Wook Kang
- Department of Anesthesiology and Pain Medicine, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - So Hyun Lee
- Department of Anesthesiology and Pain Medicine, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Wonjoon Lee
- Department of Anesthesiology and Pain Medicine, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Il Ok Lee
- Department of Anesthesiology and Pain Medicine, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Bailey MA, Saraswatula A, Dale G, Softley L. Paediatric sedation for imaging is safe and effective in a district general hospital. Br J Radiol 2016; 89:20150483. [PMID: 26959609 DOI: 10.1259/bjr.20150483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To devise a safe and effective sedation protocol for imaging paediatric patients in a small district general hospital (DGH). METHODS Chloral hydrate, alimemazine and learned best practice were used for imaging 105 children between January 2013 and May 2015. We retrospectively reviewed case notes for this time period to establish rates of successful sedation and adverse events. RESULTS Scanning was successful in 100/105 (95%) children. No serious adverse events were reported. Non-serious adverse events occurred in eight cases. 12 patients were discharged more than 4 h after scanning owing to prolonged sedation. CONCLUSION This is a safe and effective protocol for delivering sedation for imaging in paediatric patients. We would encourage similar centres to adopt this protocol where resources for i.v. sedation and general anaesthesia are limited. ADVANCES IN KNOWLEDGE There are many different sedation protocols in the literature for imaging in paediatric patients, with varying levels of success and adverse event rates. We present here a protocol that offers a high efficacy and safe sedation for imaging in a DGH.
Collapse
Affiliation(s)
- Mark A Bailey
- Paediatric Department, West Suffolk Hospital, Bury St Edmunds, UK
| | - Arun Saraswatula
- Paediatric Department, West Suffolk Hospital, Bury St Edmunds, UK
| | - Gemma Dale
- Paediatric Department, West Suffolk Hospital, Bury St Edmunds, UK
| | - Laura Softley
- Paediatric Department, West Suffolk Hospital, Bury St Edmunds, UK
| |
Collapse
|
4
|
Shroads AL, Coats BS, Langaee T, Shuster JJ, Stacpoole PW. Chloral hydrate, through biotransformation to dichloroacetate, inhibits maleylacetoacetate isomerase and tyrosine catabolism in humans. Drug Metab Pers Ther 2015; 30:49-55. [PMID: 25283137 DOI: 10.1515/dmdi-2014-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chloral hydrate (CH), a sedative and metabolite of the environmental contaminant trichloroethylene, is metabolized to trichloroacetic acid, trichloroethanol, and possibly dichloroacetate (DCA). DCA is further metabolized by glutathione transferase zeta 1 (GSTZ1), which is identical to maleylacetoacetate isomerase (MAAI), the penultimate enzyme in tyrosine catabolism. DCA inhibits its own metabolism through depletion/inactivation of GSTZ1/MAAI with repeated exposure, resulting in lower plasma clearance of the drug and the accumulation of the urinary biomarker maleylacetone (MA), a metabolite of tyrosine. It is unknown if GSTZ1/MAAI may participate in the metabolism of CH or any of its metabolites and, therefore, affect tyrosine catabolism. Stable isotopes were utilized to determine the biotransformation of CH, the kinetics of its major metabolites, and the influence, if any, of GSTZ1/MAAI. METHODS Eight healthy volunteers (ages 21-40 years) received a dose of 1 g of CH (clinical dose) or 1.5 μg/kg (environmental) for five consecutive days. Plasma and urinary samples were analyzed by gas chromatography-mass spectrometry. RESULTS Plasma DCA (1.2-2.4 μg/mL), metabolized from CH, was measured on the fifth day of the 1 g/day CH dosage but was undetectable in plasma at environmentally relevant doses. Pharmacokinetic measurements from CH metabolites did not differ between slow and fast GSTZ1 haplotypes. Urinary MA levels increased from undetectable to 0.2-0.7 μg/g creatinine with repeated CH clinical dose exposure. Kinetic modeling of a clinical dose of 25 mg/kg DCA administered after 5 days of 1 g/day CH closely resembled DCA kinetics obtained in previously naïve individuals. CONCLUSIONS These data indicate that the amount of DCA produced from clinically relevant doses of CH, although insufficient to alter DCA kinetics, is sufficient to inhibit MAAI and tyrosine catabolism, as evidenced by the accumulation of urinary MA.
Collapse
|
5
|
Yamane K, Indalao IL, Chida J, Yamamoto Y, Hanawa M, Kido H. Diisopropylamine dichloroacetate, a novel pyruvate dehydrogenase kinase 4 inhibitor, as a potential therapeutic agent for metabolic disorders and multiorgan failure in severe influenza. PLoS One 2014; 9:e98032. [PMID: 24865588 PMCID: PMC4035290 DOI: 10.1371/journal.pone.0098032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023] Open
Abstract
Severe influenza is characterized by cytokine storm and multiorgan failure with metabolic energy disorders and vascular hyperpermeability. In the regulation of energy homeostasis, the pyruvate dehydrogenase (PDH) complex plays an important role by catalyzing oxidative decarboxylation of pyruvate, linking glycolysis to the tricarboxylic acid cycle and fatty acid synthesis, and thus its activity is linked to energy homeostasis. The present study tested the effects of diisopropylamine dichloroacetate (DADA), a new PDH kinase 4 (PDK4) inhibitor, in mice with severe influenza. Infection of mice with influenza A PR/8/34(H1N1) virus resulted in marked down-regulation of PDH activity and ATP level, with selective up-regulation of PDK4 in the skeletal muscles, heart, liver and lungs. Oral administration of DADA at 12-h intervals for 14 days starting immediately after infection significantly restored PDH activity and ATP level in various organs, and ameliorated disorders of glucose and lipid metabolism in the blood, together with marked improvement of survival and suppression of cytokine storm, trypsin up-regulation and viral replication. These results indicate that through PDK4 inhibition, DADA effectively suppresses the host metabolic disorder-cytokine cycle, which is closely linked to the influenza virus-cytokine-trypsin cycle, resulting in prevention of multiorgan failure in severe influenza.
Collapse
Affiliation(s)
- Kazuhiko Yamane
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Irene L Indalao
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | - Junji Chida
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| | | | - Masaaki Hanawa
- R&D Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
6
|
Varshney M, Chandra A, Chauhan LKS, Goel SK. Micronucleus induction by oxidative metabolites of trichloroethylene in cultured human peripheral blood lymphocytes: a comparative genotoxicity study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8709-8716. [PMID: 23719688 DOI: 10.1007/s11356-013-1806-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
The genotoxic effects of oxidative metabolites of trichloroethylene (TCE), namely chloral hydrate, trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol (TCEOH) were examined in human peripheral blood lymphocytes. In this context, lymphocytes were exposed in vitro to 25, 50, and 100 μg/ml concentrations of these metabolites separately for a period of 48 h and examined for micronucleus (MN) induction through flow cytometer. At 50 μg/ml TCE metabolites, TCA (6.33 ± 0.56 %), DCA (5.06 ± 0.55), and TCEOH (4.70 ± 1.73) induced highly significant (p<0.001) frequency of MN in comparison to control (1.03 ± 0.40) suggestive of their genotoxic potential. However, exposure of 100 μg/ml of all the metabolites consistently declined the frequencies of MN which in some cases was equable to that of observed at 25 μg/ml. Further, cytotoxicity and cell cycle disturbances were also measured to find out the association of these endpoints with the MN induction. DNA content analysis revealed 3-4-fold elevation of S-phase at all the concentrations tested. Particularly, at 100 μg/ml, treatment elevation of S-phase was significantly (p<0.0001) higher as compared to the control. Present findings together with earlier reports indicate that TCE induces genotoxicity through its metabolites. Interaction of these metabolites with DNA, as evident by elevated S-phase, seems to be the major cause of MN induction. However, involvement of spindle disruption cannot be ruled out. This comparative study also suggests that after TCE exposure, the metabolic efficiency of human to generate oxidative metabolites determines the extent of genotoxicity.
Collapse
Affiliation(s)
- Meenu Varshney
- Petroleum Toxicology Division, Indian Institute of Toxicology Research (IITR), Council of Scientific and Industrial Research, P.O. Box No. 80, Mahatma Gandhi Marg, Lucknow, 226001, India
| | | | | | | |
Collapse
|
7
|
Jollow DJ, Bruckner JV, McMillan DC, Fisher JW, Hoel DG, Mohr LC. Trichloroethylene risk assessment: a review and commentary. Crit Rev Toxicol 2010; 39:782-97. [PMID: 19852561 DOI: 10.3109/10408440903222177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is a widespread environmental contaminant that is carcinogenic when given in high, chronic doses to certain strains of mice and rats. The capacity of TCE to cause cancer in humans is less clear. The current maximum contaminant level (MCL) of 5 ppb (microg/L) is based on an US Environment Protection Agency (USEPA) policy decision rather than the underlying science. In view of major advances in understanding the etiology and mechanisms of chemically induced cancer, USEPA began in the late 1990s to revise its guidelines for cancer risk assessment. TCE was chosen as the pilot chemical. The USEPA (2005) final guidelines emphasized a "weight-of-evidence" approach with consideration of dose-response relationships, modes of action, and metabolic/toxicokinetic processes. Where adequate data are available to support reversible binding of the carcinogenic moiety to biological receptors as the initiating event (i.e., a threshold exists), a nonlinear approach is to be used. Otherwise, the default assumption of a linear (i.e., nonthreshold) dose-response is utilized. When validated physiologically based pharmacokinetic (PBPK) models are available, they are to be used to predict internal dosimetry as the basis for species and dose extrapolations. The present article reviews pertinent literature and discusses areas where research may resolve some outstanding issues and facilitate the reassessment process. Key research needs are proposed, including role of dichloroacetic acid (DCA) in TCE-induced liver tumorigenesis in humans; extension of current PBPK models to predict target organ deposition of trichloroacetic acid (TCA) and DCA in humans ingesting TCE in drinking water; use of human hepatocytes to ascertain metabolic rate constants for use in PBPK models that incorporate variability in metabolism of TCE by potentially sensitive subpopulations; measurement of the efficiency of first-pass elimination of trace levels of TCE in drinking water; and assessment of exogenous factors' (e.g., alcohol, drugs) ability to alter metabolic activation and risks at such low-level exposure.
Collapse
Affiliation(s)
- David J Jollow
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
8
|
Merdink JL, Robison LM, Stevens DK, Hu M, Parker JC, Bull RJ. Kinetics of chloral hydrate and its metabolites in male human volunteers. Toxicology 2007; 245:130-40. [PMID: 18243465 DOI: 10.1016/j.tox.2007.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 12/15/2007] [Accepted: 12/18/2007] [Indexed: 01/12/2023]
Abstract
Chloral hydrate (CH) is a short-lived intermediate in the metabolism of trichloroethylene (TRI). TRI, CH, and two common metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA) have been shown to be hepatocarcinogenic in mice. To better understand the pharmacokinetics of these metabolites of TRI in humans, eight male volunteers, aged 24-39, were administered single doses of 500 or 1,500 mg or a series of three doses of 500 mg given at 48 h intervals, in three separate experiments. Blood and urine were collected over a 7-day period and CH, DCA, TCA, free trichloroethanol (f-TCE), and total trichloroethanol (T-TCE=trichloroethanol and trichloroethanol-glucuronide [TCE-G]) were measured. DCA was detected in blood and urine only in trace quantities (<2 microM). TCA, on the other hand, had the highest plasma concentration and the largest AUC of any metabolite. The TCA elimination curve displayed an unusual concentration-time profile that contained three distinct compartments within the 7-day follow-up period. Previous work in rats has shown that the complex elimination curve for TCA results largely from the enterohepatic circulation of TCE-G and its subsequent conversion to TCA. As a result TCA had a very long residence time and this, in turn, led to a substantial enhancement of peak concentrations following the third dose in the multiple dose experiment. Approximately 59% of the AUC of plasma TCA following CH administration is produced via the enterohepatic circulation of TCE-G. The AUC for f-TCE was found to be positively correlated with serum bilirubin concentrations. This effect was greatest in one subject that was found to have serum bilirubin concentrations at the upper limit of the normal range in all three experiments. The AUC of f-TCE in the plasma of this individual was consistently about twice that of the other seven subjects. The kinetics of the other metabolites of CH was not significantly modified in this individual. These data indicate that individuals with a more impaired capacity for glucuronidation may be very sensitive to the central nervous system depressant effects of high doses of CH, which are commonly attributed to plasma levels of f-TCE.
Collapse
Affiliation(s)
- J L Merdink
- Pharmacology/Toxicology, Washington State University, Pullman, WA, United States
| | | | | | | | | | | |
Collapse
|
9
|
Delinsky AD, Bruckner JV, Bartlett MG. A review of analytical methods for the determination of trichloroethylene and its major metabolites chloral hydrate, trichloroacetic acid and dichloroacetic acid. Biomed Chromatogr 2005; 19:617-39. [PMID: 15828053 DOI: 10.1002/bmc.488] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Trichloroethylene (TCE) and some of its metabolites are potentially carcinogenic compounds that the general population is commonly exposed to in drinking water. Concentrations of TCE, dichloroacetic acid (DCA) and trichloroacetic acid (TCA) given to laboratory animals in cancer bioassays are high, whereas drinking water levels of the compounds are very low. It is not clear whether the trace amounts of TCE, DCA and TCA in drinking water pose a cancer risk to humans. The accuracy of pharmacokinetic studies relies on the analytical method from which blood and tissue concentration data are obtained. Models that extrapolate cancer risks of TCE and its metabolites from laboratory animals to humans, in turn, rely on the results of pharmacokinetic studies. Therefore, it is essential to have reliable analytical methods for the analysis of TCE and its metabolites. This paper reviews the methods currently in the literature for the analysis of TCE, DCA, TCA and, to a lesser extent, chloral hydrate (CH). Additional aspects of analytical methods such as method validation, species preservation and future directions in the analysis of TCE and its metabolites are also discussed.
Collapse
Affiliation(s)
- Amy D Delinsky
- University of Georgia, College of Pharmacy, Department of Pharmaceutical and Biomedical Sciences, Athens, GA 30602, USA
| | | | | |
Collapse
|
10
|
Forkert PG, Lash L, Tardif R, Tanphaichitr N, Vandevoort C, Moussa M. Identification of trichloroethylene and its metabolites in human seminal fluid of workers exposed to trichloroethylene. Drug Metab Dispos 2003; 31:306-11. [PMID: 12584157 DOI: 10.1124/dmd.31.3.306] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the potential of the male reproductive tract to accumulate trichloroethylene (TCE) and its metabolites, including chloral, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA). Human seminal fluid and urine samples from eight mechanics diagnosed with clinical infertility and exposed to TCE occupationally were analyzed. In in vivo experimental studies, TCE and its metabolites were determined in epididymis and testis of mice exposed to TCE (1000 ppm) by inhalation for 1 to 4 weeks. In other studies, incubations of monkey epididymal microsomes were performed in the presence of TCE and NADPH. Our results showed that seminal fluid from all eight subjects contained TCE, chloral, and TCOH. DCA was present in samples from two subjects, and only one contained TCA. TCA and/or TCOH were also identified in urine samples from only two subjects. TCE, chloral, and TCOH were detected in murine epididymis after inhalation exposure with TCE for 1 to 4 weeks. Levels of TCE and chloral were similar throughout the entire exposure period. TCOH levels were similar at 1 and 2 weeks but increased significantly after 4 weeks of TCE exposure. Chloral was identified in microsomal incubations with TCE in monkey epididymis. CYP2E1, a P450 that metabolizes TCE, was localized in human and monkey epididymal epithelium and testicular Leydig cells. These results indicated that TCE is metabolized in the reproductive tract of the mouse and monkey. Furthermore, TCE and its metabolites accumulated in seminal fluid, and suggested associations between production of TCE metabolites, reproductive toxicity, and impaired fertility.
Collapse
Affiliation(s)
- Poh-Gek Forkert
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
11
|
Lantum HBM, Baggs RB, Krenitsky DM, Board PG, Anders MW. Immunohistochemical localization and activity of glutathione transferase zeta (GSTZ1-1) in rat tissues. Drug Metab Dispos 2002; 30:616-25. [PMID: 12019185 DOI: 10.1124/dmd.30.6.616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutathione transferase zeta (GSTZ1-1) catalyzes the biotransformation of a range of alpha-haloacids, including dichloroacetic acid (DCA), and the penultimate step in the tyrosine degradation pathway. DCA is a rodent carcinogen and a common drinking water contaminant. DCA also causes multiorgan toxicity in rodents and dogs. The objective of this study was to determine the expression and activities of GSTZ1-1 in rat tissues with maleylacetone and chlorofluoroacetic acid as substrates. GSTZ1-1 protein was detected in most tissues by immunoblot analysis after immunoprecipitation of GSTZ1-1 and by immunohistochemical analysis; intense staining was observed in the liver, testis, and prostate; moderate staining was observed in the brain, heart, pancreatic islets, adrenal medulla, and the epithelial lining of the gastrointestinal tract, airways, and bladder; and sparse staining was observed in the renal juxtaglomerular regions, skeletal muscle, and peripheral nerve tissue. These patterns of expression corresponded to GSTZ1-1 activities in the different tissues with maleylacetone and chlorofluoroacetic acid as substrates. Specific activities ranged from 258 +/- 17 (liver) to 1.1 +/- 0.4 (muscle) nmol/min/mg of protein with maleylacetone as substrate and from 4.6 +/- 0.89 (liver) to 0.09 +/- 0.01 (kidney) nmol/min/mg of protein with chlorofluoroacetic acid as substrate. Rats given DCA had reduced amounts of immunoreactive GSTZ1-1 protein and activities of GSTZ1-1 in most tissues, especially in the liver. These findings indicate that the DCA-induced inactivation of GSTZ1-1 in different tissues may result in multiorgan disorders that may be associated with perturbed tyrosine metabolism.
Collapse
Affiliation(s)
- Hoffman B M Lantum
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
12
|
George MH, Moore T, Kilburn S, Olson GR, DeAngelo AB. Carcinogenicity of chloral hydrate administered in drinking water to the male F344/N rat and male B6C3F1 mouse. Toxicol Pathol 2000; 28:610-8. [PMID: 10930049 DOI: 10.1177/019262330002800415] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Male B6C3F1 mice and male F344/N rats were exposed to chloral hydrate (chloral) in the drinking water for 2 years. Rats: Measured chloral hydrate drinking water concentrations for the study were 0.12 g/L, 0.58 g/L, and 2.51 g/L chloral hydrate that yielded time-weighted mean daily doses (MDDs) of 7.4, 37.4, and 162.6 mg/kg per day. Water consumptions, survival, body weights, and organ weights were not altered in any of the chloral hydrate treatments. Life-time exposures to chloral hydrate failed to increase the prevalence (percentage of animals with a tumor) or the multiplicity (tumors/animal) of hepatocellular neoplasia. Chloral hydrate did not increase the prevalence of neoplasia at any other organ site. Mice: Measured chloral hydrate drinking water concentrations for the study were 0.12 g/L, 0.58 g/L, and 1.28 g/L that gave MDDs of 13.5, 65.0, and 146.6 mg/kg per day. Water consumptions, survival, body and organ weights, were not altered from the control values by any of the chloral hydrate treatments. Enhanced neoplasia was observed only in the liver. Prevalence and multiplicity of hepatocellular carcinoma (HC) were increased only for the high-dose group (84.4%; 0.72 HC/animal; p < or = 0.05). Values of 54.3%; 0.72 HC/animal and 59%; 1.03 HC/animal were observed for the 13.5- and 65.0-mg/kg per day treatment groups. Prevalence and multiplicity for the control group were 54.8%; 0.74 HC/animal. Hepatoadenoma (HA) prevalence and multiplicity were significantly increased (p < or = 0.05) at all chloral hydrate concentrations: 43.5%; 0.65 HA/animal, 51.3%; 0.95 HA/animal and 50%; 0.72 HA/animal at 13.5, 65.0, and 146.6 mg/kg per day chloral hydrate compared to 21.4%; 0.21 HA/animal in the untreated group. Altered foci of cells were evident in all doses tested in the mouse, but no significant differences were observed over the control values. Hepatocellular necrosis was minimal and did not exceed that seen in untreated rats and mice. Chloral hydrate exposure did not alter serum chemistry and hepatocyte proliferation in rats and mice or increase hepatic palmitoyl CoA oxidase in mice at any of the time periods monitored. It was concluded that chloral hydrate was carcinogenic (hepatocellular neoplasia) in the male mouse, but not in the rat, following a lifetime exposure in the drinking water. Based upon the increased HA and combined tumors at all chloral hydrate doses tested, a no observed adverse effect level was not determined.
Collapse
Affiliation(s)
- M H George
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | |
Collapse
|
13
|
Wempe MF, Anderson WB, Tzeng HF, Board PG, Anders MW. Glutathione transferase zeta-catalyzed biotransformation of deuterated dihaloacetic acids. Biochem Biophys Res Commun 1999; 261:779-83. [PMID: 10441501 DOI: 10.1006/bbrc.1999.1127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione transferase zeta (GSTZ) catalyzes the biotransformation of alpha-haloalkanoic acids. Treatment of rats or humans with dichloroacetic acid prolongs its elimination half-life, and preliminary studies in this laboratory show that fluorine-lacking, but not fluorine-containing dihaloacetic acids inactivate GSTZ. In the present study, the GSTZ-catalyzed biotransformation of unlabeled and deuterated dihaloacetic acids was investigated. With [(2)H]dichloroacetic acid and [(2)H]chlorofluoroacetic acid as substrates, the deuterium present in the [(2)H]dihaloacetic acid was retained in the [(2)H]glyoxylic acid formed. This finding indicates that the enol of the dihaloacetic acid does not serve as the substrate for the enzyme. The data afford an explanation of the failure of fluorine-containing dihaloacetic acids to inactivate GSTZ: dichloroacetic acid is converted to glyoxylic acid and inactivates GSTZ, whereas chlorofluoroacetic acid is biotransformed to glyoxylic acid, but produces negligible inactivation. Mechanisms are presented indicating that this difference may be attributed to the nucleofugicity of the leaving group.
Collapse
Affiliation(s)
- M F Wempe
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York, 14642, USA
| | | | | | | | | |
Collapse
|
14
|
Yan Z, Henderson GN, James MO, Stacpoole PW. Determination of chloral hydrate metabolites in human plasma by gas chromatography-mass spectrometry. J Pharm Biomed Anal 1999; 19:309-18. [PMID: 10704096 DOI: 10.1016/s0731-7085(98)00123-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chloral hydrate (CH) is a widely used sedative. Its pharmacological and toxicological effects are directly related to its metabolism. Prior investigations of CH metabolism have been limited by the lack of analytical techniques sufficiently sensitive to identify and quantify metabolites of CH in biological fluids. In this study a gas chromatography mass spectrometry (GC/MS) method was developed and validated for determining CH and its metabolites, monochloroacetate (MCA), dichloroacetate (DCA), trichloroacetate (TCA) and total trichloroethanol (free and glucuronidated form, TCE and TCE-Glu) in human plasma. Of these, DCA and MCA are newly identified metabolites in humans. The drug, its plasma metabolites and an internal standard, 4-chlorobutyric acid (CBA), were derivatized to their methyl esters by reacting with 12% boron trifluoride-methanol complex (12% BF3-MeOH). The reaction mixture was extracted with methylene chloride and analyzed by GC/MS, using a selected ion monitoring (SIM) mode. The quantitation limits of MCA, DCA, TCA, and TCE were between 0.12 and 7.83 microM. The coefficients of variation were between 0.58 and 14.58% and the bias values ranged between -10.03 and 14.37%. The coefficients of linear regression were between 0.9970 and 0.9996.
Collapse
Affiliation(s)
- Z Yan
- Department of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
15
|
Fisher JW, Mahle D, Abbas R. A human physiologically based pharmacokinetic model for trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. Toxicol Appl Pharmacol 1998; 152:339-59. [PMID: 9853003 DOI: 10.1006/taap.1998.8486] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nine male and eight female healthy volunteers were exposed to 50 or 100 ppm trichloroethylene vapors for 4 h. Blood, urine, and exhaled breath samples were collected for development of a physiologically based pharmacokinetic (PBPK) model for trichloroethylene and its two major P450-mediated metabolites, trichloroacetic acid and free trichloroethanol. Blood and urine were analyzed for trichloroethylene, chloral hydrate, free trichloroethanol and trichloroethanol glucuronide, and trichloroacetic acid. Plasma was analyzed for dichloroacetic acid. Trichloroethylene was also measured in exhaled breath samples. Trichloroethylene, free trichloroethanol, and trichloroacetic acid were found in blood samples of all volunteers and only trace amounts of dichloroacetic acid (4-12 ppb) were found in plasma samples from a few volunteers. Trichloroethanol glucuronide and trichloroacetic acid were found in urine of all volunteers. No chloral hydrate was detected in the volunteers. Gender-specific PBPK models were developed with fitted urinary rate constant values for each individual trichloroethylene exposure to describe urinary excretion of trichloroethanol glucuronide and trichloroacetic acid. Individual urinary excretion rate constants were necessary to account for the variability in the measured cumulative amount of metabolites excreted in the urine. However, the average amount of trichloroacetic acid and trichloroethanol glucuronide excreted in urine for each gender was predicted using mean urinary excretion rate constant values for each sex. A four-compartment physiological flow model was used for the metabolites (lung, liver, kidney, and body) and a six-compartment physiological flow model was used for trichloroethylene (lung, liver, kidney, fat, and slowly and rapidly perfused tissues). Metabolic capacity (Vmaxc) for oxidation of trichloroethylene was estimated to be 4 mg/kg/h in males and 5 mg/kg/h in females. Metabolized trichloroethylene was assumed to be converted to either free trichloroethanol (90%) or trichloroacetic acid (10%). Free trichloroethanol was glucuronidated forming trichloroethanol glucuronide or converted to trichloroacetic acid via back conversion of trichloroethanol to chloral (trichloroacetaldehyde). Trichloroethanol glucuronide and trichloroacetic acid were then excreted in urine. Gender-related pharmacokinetic differences in the uptake and metabolism of trichloroethylene were minor, but apparent. In general, the PBPK models for the male and female volunteers provided adequate predictions of the uptake of trichloroethylene and distribution of trichloroethylene and its metabolites, trichloroacetic acid and free trichloroethanol. The PBPK models for males and females consistently overpredicted exhaled breath concentrations of trichloroethylene immediately following the TCE exposure for a 2- to 4-h period. Further research is needed to better understand the biological determinants responsible for the observed variability in urinary excretion of trichloroethanol glucuronide and trichloroacetic acid and the metabolic pathway resulting in formation of dichloroacetic acid.
Collapse
Affiliation(s)
- J W Fisher
- Armstrong Laboratory, Toxicology Division, Wright-Patterson AFB, Ohio, USA
| | | | | |
Collapse
|
16
|
Stacpoole PW, Henderson GN, Yan Z, Cornett R, James MO. Pharmacokinetics, metabolism and toxicology of dichloroacetate. Drug Metab Rev 1998; 30:499-539. [PMID: 9710704 DOI: 10.3109/03602539808996323] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- P W Stacpoole
- Department of Medicine, Division of Endocrinology, University of Florida, Gainesville 32610, USA.
| | | | | | | | | |
Collapse
|
17
|
Tong Z, Board PG, Anders MW. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem J 1998; 331 ( Pt 2):371-4. [PMID: 9531472 PMCID: PMC1219363 DOI: 10.1042/bj3310371] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dichloroacetic acid (DCA), a common drinking-water contaminant, is hepatocarcinogenic in rats and mice, and is a therapeutic agent used clinically in the management of lactic acidosis. DCA is biotransformed to glyoxylic acid by glutathione-dependent cytosolic enzymes in vitro and is metabolized to glyoxylic acid in vivo. The enzymes that catalyse the oxygenation of DCA to glyoxylic acid have not, however, been identified or characterized. In the present investigation, an enzyme that catalyses the glutathione-dependent oxygenation of DCA was purified to homogeneity (587-fold) from rat liver cytosol. SDS/PAGE and HPLC gel-filtration chromatography showed that the purified enzyme had a molecular mass of 27-28 kDa. Sequence analysis showed that the N-terminus of the purified protein was blocked. An internal sequence of 30 amino acid residues was obtained that matched the recently discovered human glutathione transferase Zeta well [Board, Baker, Chelvanayagam and Jermiin (1997) Biochem. J. 328, 929-935]. Western-blot analysis showed that the purified rat-liver enzyme cross-reacted with rabbit antiserum raised against recombinant human glutathione transferase Zeta. The apparent Km and Vmax values of the purified enzyme with DCA as the variable substrate were 71.4 microM and 1334 nmol/min per mg of protein, respectively; the Km for glutathione was 59 microM. Both the purified rat-liver enzyme and the recombinant human enzyme showed high activity with DCA as the substrate. These results demonstrate that the glutathione-dependent oxygenation of DCA to glyoxylic acid is catalysed by a Zeta-class glutathione transferase.
Collapse
Affiliation(s)
- Z Tong
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | | | | |
Collapse
|