1
|
van Doorn J. Insulin-like growth factor-II and bioactive proteins containing a part of the E-domain of pro-insulin-like growth factor-II. Biofactors 2020; 46:563-578. [PMID: 32026557 PMCID: PMC7497164 DOI: 10.1002/biof.1623] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Insulin-like growth factor (IGF)-II is considered to function as an important fetal growth factor, which is structurally and functionally related to IGF-I and proinsulin. At least in vitro, IGF-II actions are mediated through the IGF-I receptor and to a lesser extent the insulin receptor. After birth, the function of IGF-II is less clear although in adults the serum level of IGF-II exceeds that of IGF-I several fold. The IGF-II gene is maternally imprinted, with exception of the liver and several parts of the brain, where it is expressed from both alleles. The regulation, organization, and translation of the IGF-II gene is complex, with five different putative promotors leading to a range of noncoding and coding mRNAs. The 180-amino acid pre-pro-IGF-II translation product can be divided into five domains and include a N-terminal signal peptide of 24 amino acid residues, the 67 amino acid long mature protein, and an 89 residues extension at the COOH terminus, designated as the E-domain. After removal of the signal peptide, the processing of pro-IGF-II into mature IGF-II requires various steps including glycosylation of the E-domain followed by the action of endo-proteases. Several of these processing intermediates can be found in the human circulation. There is increasing evidence that, besides IGF-II, several incompletely processed precursor forms of the protein, and even a 34-amino acid peptide (preptin) derived from the E-domain of pro-IGF-II, exhibit distinct biological activities. This review will focus on the current insights regarding the specific roles of the latter proteins in cancer, glucose homeostasis, and bone physiology. To address this topic clearly in the right context, a concise overview of the biological and biochemical properties of IGF-II and several relevant aspects of the IGF system will be provided.
Collapse
Affiliation(s)
- Jaap van Doorn
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Abstract
Soluble M6P/IGFIIR has the potential to be a significant carrier of IGF-II and mannose 6-P proteins in the circulation and play an important role as an antagonist to the cellular receptor. Evidence suggests that soluble receptor plays a role in fetal and childhood growth by opposing the growth stimulatory effects of IGF-II. Maternal serum levels of M6P/IGFIIR are elevated in late pregnancy and the IGF-II:soluble M6P/IGFIIR ratio in cord blood correlates strongly with weight at birth and placental weight suggesting an important role in fetal growth and development. However, elevated soluble receptor levels may also be indicative of disease in later life, such as liver cirrhosis and some tumor types and may be a useful marker for monitoring treatment and progression of the disease. Further investigation of the regulation of this soluble receptor in health and disease is required to fully elucidate its role in the circulation.
Collapse
Affiliation(s)
- Carolyn D Scott
- Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, Sydney, Australia.
| | - Wieland Kiess
- Hospital for Children and Adolescents, Centre for Pediatric Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Das R, Lee YK, Strogantsev R, Jin S, Lim YC, Ng PY, Lin XM, Chng K, Yeo GSH, Ferguson-Smith AC, Ding C. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics 2013; 14:685. [PMID: 24094292 PMCID: PMC3829101 DOI: 10.1186/1471-2164-14-685] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. RESULTS Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. CONCLUSIONS Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development.
Collapse
Affiliation(s)
- Radhika Das
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kok Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ruslan Strogantsev
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Shengnan Jin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yen Ching Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Poh Yong Ng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xueqin Michelle Lin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Keefe Chng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - George SH Yeo
- Department of Maternal Fetal Medicine, K.K. Women’s and Children’s Hospital, Singapore, Singapore
| | - Anne C Ferguson-Smith
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
4
|
Apostolidou S, Abu-Amero S, O'Donoghue K, Frost J, Olafsdottir O, Chavele KM, Whittaker JC, Loughna P, Stanier P, Moore GE. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med (Berl) 2006; 85:379-87. [PMID: 17180344 DOI: 10.1007/s00109-006-0131-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 01/17/2023]
Abstract
The identification of genes that regulate fetal growth will help establish the reasons for intrauterine growth restriction. Most autosomal genes are expressed biallelically, but some are imprinted, expressed only from one parental allele. Imprinted genes are associated with fetal growth and development. The growth of the fetus in utero relies on effective nutrient transfer from the mother to the fetus via the placenta. Some current research on the genetic control of fetal growth has focused on genes that display imprinted expression in utero. The expression levels of four imprinted genes, the paternally expressed insulin growth factor 2 (IGF2), the mesoderm-specific transcript isoform 1 (MEST); the maternally expressed pleckstrin homology-like domain, family A, member 2 (PHLDA2); and the polymorphically imprinted insulin-like growth factor 2 (IGF2R) gene are all known to have roles in fetal growth and were studied in the placentae of 200 white European, normal term babies. The quantitative expression analysis with real-time PCR showed the maternally expressing PHLDA2 but not the paternally expressing IGF2 and MEST, nor the polymorphic maternally expressing IGF2R placental levels to have a statistically significant effect on birth weight. PHLDA2 expression levels are negatively correlated with size at birth. These data implicate PHLDA2 as an imprinted gene important in fetal growth and also as a potential marker of fetal growth.
Collapse
Affiliation(s)
- S Apostolidou
- Translational Research Laboratory, Department of Gynaecological Oncology, The Windeyer Institute of Medical Sciences, 46 Cleveland Street, London, W1T 4JF, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vu TH, Jirtle RL, Hoffman AR. Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene. Cytogenet Genome Res 2006; 113:202-8. [PMID: 16575181 DOI: 10.1159/000090833] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 08/17/2005] [Indexed: 11/19/2022] Open
Abstract
The epigenetic marks on the IGF2R gene that encodes a receptor responsible for IGF-II degradation consist of differentially methylated DNA in association with multiple modifications on the associated histones. We review these epigenetic marks across various species during the evolution of IGF2R imprinting. Both IGF2 and IGF2R genesare imprinted in the mammal lineage that diverged from Monotremata approximately 150 million years ago. While IGF2 is consistently imprinted in all mammals following its divergence, IGF2R imprinting disappears in the Euarchonta lineage, including human species, approximately 75 million years ago. Differential DNA methylation marks on the two parental alleles correlate with imprinting in all imprinted genes including IGF2R. While the DNA methylation marks in the IGF2R promoter region 1 (DMR1) correlate with IGF2R allelic expression, the DNA methylation marks in the intron region 2 (DMR2) fail to correlate with IGF2R imprinting status in a number of species. Human IGF2R and mouse neuronal Igf2r are not imprinted despite the presence of DMR2. We have noted that human IGF2R is not imprinted in more than 100 informative samples including various tumor tissues. Furthermore, opossum (Marsupialia) IGF2R is consistently imprinted despite the absence of DMR2. These lines of evidence indicate that DNA methylation marks in DMR2 are neither necessary nor sufficient for consistent imprinting of IGF2R across species. Histone modification marks, however, correlate more consistently with the tissue-specific and species-specific imprinting status of IGF2R in human and mouse. Acetylated histone H3 and H4 and methylated lysine 4 of H3 (H3-K4Me) associate with transcriptionally active alleles while tri-methylated lysine 9 of H3 (H3-K9Me3) marks the silenced alleles. In the mouse, an antisense non-coding transcript called Air is transcribed from DMR2 on the paternal allele, and this imprinted transcript plays a central role in Igf2r imprinting. Mouse Igf2r imprinting depends on an Air RNA while the existence of AIR in other species is unknown. Overall, DNA methylation, histone acetylation, and histone methylation play a vital role in coordinating IGF2R allelic expression across all species. Rare monoallelic or skewed allelic expression of human IGF2R and their biological importance warrants further rigorous study.
Collapse
Affiliation(s)
- T H Vu
- GRECC, VA Palo Alto Health Care System, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | |
Collapse
|
6
|
Monk D, Arnaud P, Apostolidou S, Hills FA, Kelsey G, Stanier P, Feil R, Moore GE. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci U S A 2006; 103:6623-8. [PMID: 16614068 PMCID: PMC1564202 DOI: 10.1073/pnas.0511031103] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The epigenetic phenomenon of genomic imprinting provides an additional level of gene regulation that is confined to a limited number of genes, frequently, but not exclusively, important for embryonic development. The evolution and maintenance of imprinting has been linked to the balance between the allocation of maternal resources to the developing fetus and the mother's well being. Genes that are imprinted in both the embryo and extraembryonic tissues show extensive conservation between a mouse and a human. Here we examine the human orthologues of mouse genes imprinted only in the placenta, assaying allele-specific expression and epigenetic modifications. The genes from the KCNQ1 domain and the isolated human orthologues of the imprinted genes Gatm and Dcn all are expressed biallelically in the human, from first-trimester trophoblast through to term. This lack of imprinting is independent of promoter CpG methylation and correlates with the absence of the allelic histone modifications dimethylation of lysine-9 residue of H3 (H3K9me2) and trimethylation of lysine-27 residue of H3 (H3K27me3). These specific histone modifications are thought to contribute toward regulation of imprinting in the mouse. Genes from the IGF2R domain show polymorphic concordant expression in the placenta, with imprinting demonstrated in only a minority of samples. Together these findings have important implications for understanding the evolution of mammalian genomic imprinting. Because most human pregnancies are singletons, this absence of competition might explain the comparatively relaxed need in the human for placental-specific imprinting.
Collapse
Affiliation(s)
- D Monk
- Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
An intriguing characteristic of imprinted genes is that they often cluster in large chromosomal domains, raising the possibility that gene-specific and domain-specific mechanisms regulate imprinting. Several common features emerged from comparative analysis of four imprinted domains in mice and humans: (a) Certain genes appear to be imprinted by secondary events, possibly indicating a lack of gene-specific imprinting marks; (b) some genes appear to resist silencing, predicting the presence of cis-elements that oppose domain-specific imprinting control; (c) the nature of the imprinting mark remains incompletely understood. In addition, common silencing mechanisms are employed by the various imprinting domains, including silencer elements that nucleate and propagate a silent chromatin state, insulator elements that prevent promoter-enhancer interactions when hypomethylated on one parental allele, and antisense RNAs that function in silencing the overlapping sense gene and more distantly located genes. These commonalities are reminiscent of the behavior of genes subjected to, and the mechanisms employed in, dosage compensation.
Collapse
Affiliation(s)
- Raluca I Verona
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.
| | | | | |
Collapse
|
8
|
Killian JK, Oka Y, Jang HS, Fu X, Waterland RA, Sohda T, Sakaguchi S, Jirtle RL. Mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) variants in American and Japanese populations. Hum Mutat 2002; 18:25-31. [PMID: 11438990 DOI: 10.1002/humu.1146] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
M6P/IGF2R encodes a multifunctional protein involved in lysosomal enzyme trafficking, fetal organogenesis, tumor suppression, and cytotoxic T cell-induced apoptosis. M6P/IGF2R is imprinted and expressed only from the maternally inherited allele in marsupials and rodents. In contrast, humans were initially reported to differ from the imprinted mammalian orders by not having an imprinted M6P/IGF2R; however, some studies now suggest M6P/IGF2R imprinting may be a human polymorphic trait. Mutational and functional evidence are consistent with M6P/IGF2R also being a tumor suppressor in human colon, liver, lung, breast, and ovarian cancers. M6P/IGF2R expression is also pathologically downregulated following mammalian in vitro embryo culture, resulting in fetal overgrowth and "large offspring syndrome." Therefore, the M6P/IGF2R imprint status in humans is an unresolved question that critically impacts upon biological issues ranging from human cancer predisposition to evolution. Attempts to further characterize the imprint status of human M6P/IGF2R and loss of heterozygosity at this locus in cancer have been hindered by a lack of readily usable polymorphisms. To facilitate these genetic analyses, we have screened American and Japanese populations for M6P/IGF2R single nucleotide polymorphisms (SNPs). We have identified nine novel SNPs intragenic to human M6P/IGF2R, and have described experimental conditions for their optimal use. Three identified amino-acid variants in the M6P/IGF2R ligand-binding domains may be under selection in humans.
Collapse
Affiliation(s)
- J K Killian
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Oudejans CB, Westerman B, Wouters D, Gooyer S, Leegwater PA, van Wijk IJ, Sleutels F. Allelic IGF2R Repression Does Not Correlate with Expression of Antisense RNA in Human Extraembryonic Tissues. Genomics 2001; 73:331-7. [PMID: 11350125 DOI: 10.1006/geno.2001.6522] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the mouse, expression of an antisense Igf2r RNA (Air) is correlated with Igf2r repression on the paternal allele. One of the possible models for Igf2r repression could be through promoter competition or through the action of the Air RNA, in, e.g., transcriptional interference or repressor binding. These models predict the conservation of AIR RNA in human samples with monoallelic IGF2R expression and the production of AIR RNA in first-trimester human tissues. However, by strand-specific RT-PCR and by ribonuclease protection assay we have not detected any AIR RNA in first-trimester placental tissue samples, not even in samples that downregulate IGF2R expression in an allele-specific manner. This indicates that in contrast to the mouse, allelic IGF2R repression in the developing human placenta does not correlate with AIR expression.
Collapse
Affiliation(s)
- C B Oudejans
- Molecular Biology Laboratory, Department of Clinical Chemistry, University Hospital 'Vrije Universiteit', De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|